LM1801中文资料
lm331中文资料
电压-频率变换器LM331LM331是美国NS公司生产的性能价格比较高的集成芯片。
LM331可用作精密的频率电压(F/V)转换器、A/D转换器、线性频率调制解调、长时间积分器以及其他相关的器件。
LM331为双列直插式8脚芯片,其引脚如图3所示。
LM331内部有(1)输入比较电路、(2)定时比较电路、(3)R-S触发电路、(4)复零晶体管、(5)输出驱动管、(6)能隙基准电路、(7)精密电流源电路、(8)电流开关、(9)输出保护点路等部分。
输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,从而适应TTL、DTL和CMOS 等不同的逻辑电路。
此外,LM331可采用单/双电源供电,电压范围为4~40V,输出也高达40V。
IR(PIN1)为电流源输出端,在f0(PIN3)输出逻辑低电平时,电流源IR输出对电容CL充电。
引脚2(PIN2)为增益调整,改变RS的值可调节电路转换增益的大小。
f0(PIN3)为频率输出端,为逻辑低电平,脉冲宽度由Rt和Ct决定。
引脚4(PIN4)为电源地。
引脚5(PIN5)为定时比较器正相输入端。
引脚6(PIN6)为输入比较器反相输入端。
引脚7(PIN7)为输入比较器正相输入端。
引脚8(PIN8)为电源正端。
LM331频率电压转换器V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。
LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。
同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。
图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。
MBI1801 Datasheet VA.01- CN
*模拟时,PCB尺寸为76.2mm*114.3mm。请参考JEDEC JESD 51标准。 **越接近此最大范围值操作,IC的寿命越短、可靠度越低;超过此最大限定范围工作时,将会影响IC运作并造成毁损, 因此建议的IC工作时的接合点温度在125°C以内。 注:散热表现是与散热片面积、PCB层数与厚度相关。实测热阻值会与模拟值有所不同。使用者应根据所欲达到的散 热表现,选择合适的封装与PCB布局,以增加散热能力。
-8-
2012 年 9 月, VA.01
MBI1801
“Pb-Free & Green”封装之焊接制程*
All-Ways-OnTM 高功率 LED 驱动芯片
聚积科技所生产的“Pb-Free & Green"的半导体产品遵循欧洲 RoHS 标准,封装选用 100%之纯锡以兼容于目前锡铅 (SnPb)焊接制程,且支持需较高温之无铅制程。纯锡目前已被欧美及亚洲区的电子产品客户与供货商广泛采用,成为 取代含锡铅材料的最佳替代品。100%纯锡可生产于含锡铅(SnPb)锡炉制程,锡炉温度请参考 JEDEC J-STD-020C 标 准规定。 但若客户使用完全无铅锡膏和材料, 则锡炉温度须达 J-STD-020C 标准之 245°C 至 260°C (参阅下图)。 材料, 则锡炉温度须达 J-STD-020C 标准之 245°C 至 260°C (参阅下图)。
OE =高电位时耐受电压
输出端电流 输入端电压 输出端漏电流 输出电流1 电流偏差量 输出电流 2 电流偏差量 电流偏差量 vs. 输出电压 电流偏差量 vs. 电源电压 Pull-up电阻
=17V, OE =High
VDS= 0.6V IOUT= 488mA VDS= 0.6V VDS= 0.8V IOUT= 976mA VDS= 0.8V
各种测井曲线代码
各种测井曲线代码附录33 测井曲线名称代码名称代码名称代码名称代码0、4米电位电阻率 R04 井径1 C1 阵列感应4英尺分辨率及60英寸探测深度电阻率 AF600、45米电位电阻率 R045 井径2 C2 阵列感应4英尺分辨率及90英寸探测深度电阻率 AF900、5米电位电阻率 R05 井径3 C3 阵列感应4英尺分辨率侵入带真电阻率 AFRX1米底部梯度电阻率 R1 井斜 DEV 补偿声波时差AC2、5米底部梯度电阻率 R25 井斜方位 AZIM 井径CAL4米底部梯度电阻率 R4 高分辨率侧向电阻率 LLHR 长源距声波时差 DT6米底部梯度电阻率 R6 方位电阻率曲线1 ARO1 纵横波速度比 VPVS8米底部梯度电阻率 R8 方位电阻率曲线10 AR10 纵横波方式单极横波时差 DT4S深侧向电阻率 RD 方位电阻率曲线11 AR11 纵横波方式单极纵波时差 DT4P浅侧向电阻率 RS 方位电阻率曲线12 AR12 泊松比PR邻近侧向电阻率 RPRX 方位电阻率曲线2 ARO2 上偶极横波时差 DT2微侧向电阻率 RMLL 方位电阻率曲线3 ARO3 下偶极横波时差 DT1微球型聚焦电阻率 MSFL 方位电阻率曲线4 ARO4 斯通利波时差 DTST深感应电阻率 RILD 方位电阻率曲线5 ARO5 全波列波形 WF中感应电阻率 RILM 方位电阻率曲线6 ARO6 声波成象ACI八侧向电阻率 RFOC 方位电阻率曲线7 ARO7 自然伽马GR球型聚焦电阻率 SFLU 方位电阻率曲线8 ARO8 无铀自然伽马 CGR数字聚焦电阻率 DFL 方位电阻率曲线9 ARO9 钾 K 感应电导率 COND 阵列感应1英尺分辨率地层真电阻率AORT 钍 TH微电位电阻率 ML1 阵列感应1英尺分辨率及10英寸探测深度电阻率 AO10 铀 U微梯度电阻率 ML2 阵列感应1英尺分辨率及20英寸探测深度电阻率 AO20 补偿中子 CNL钻井液电阻率 RM 阵列感应1英尺分辨率及30英寸探测深度电阻率 AO30 井壁中子 SNL井温 TEMP 阵列感应1英尺分辨率及60英寸探测深度电阻率AO60 中子伽马 NGR钻头直径 BS 阵列感应1英尺分辨率及90英寸探测深度电阻率 AO90 补偿密度 DEN200兆赫兹电阻率 R4SL 阵列感应1英尺分辨率侵入带真电阻率 AORX 岩性密度 LDL200兆赫兹幅度比 R4AT 阵列感应2英尺分辨率地层真电阻率ATRT 密度校正值 DRH200兆赫兹介电常数 D2EC 阵列感应2英尺分辨率及10英寸探测深度电阻率 AT10 光电吸收截面指数 PE200兆赫兹相位角 P2HS 阵列感应2英尺分辨率及20英寸探测深度电阻率 AT20 核磁共振总孔隙度 TPOR47兆赫兹电阻率 R4SL 阵列感应2英尺分辨率及30英寸探测深度电阻率 AT30 核磁共振渗透率 KCMR47兆赫兹幅度比 R4AT 阵列感应2英尺分辨率及60英寸探测深度电阻率 AT60 核磁共振束缚流体体积 MBVI47兆赫兹介电常数 D4EC 阵列感应2英尺分辨率及90英寸探测深度电阻率 AT90 核磁共振自由流体体积 CMFF47兆赫兹相位角 P4HS 阵列感应2英尺分辨率侵入带真电阻率 ATRX 核磁共振有效孔隙度 CMRP地层倾角微电阻(电导)率 RBSV 阵列感应4英尺分辨率地层真电阻率 AFRT T2分布对数平均值 T2LM电阻率成象 RIM 阵列感应4英尺分辨率及10英寸探测深度电阻率 AF10 核磁T2谱 T21号极板方位 P1AZ 阵列感应4英尺分辨率及20英寸探测深度电阻率 AF20相对方位 RB 阵列感应4英尺分辨率及30英寸探测深度电阻率 AF30附录30测井服务项目代码名称代码名称代码名称代码双感应 DIL 超声井眼成像 UBI 井径 CAL相量感应 PI 井周声波扫描成像 CAST 井温 TEMP 阵列感应 AIT 井周声波成像 CBIL 钻井液电阻率RM高分辨率感应--数字聚焦 DHRI 地层学高分辨率地层倾角SHDT 邻近侧向 PROX八侧向 RFOC 六臂倾角 SED 微侧向 MLL感应 COND 地层倾角 DIP 球型聚焦 SFL双侧向 DLL 电缆地层测试 MDT 微球型聚焦 MSFL 高分辨率方位侧向 ARI 电缆地层测试 RFT 微电极ML七侧向 LL7 电缆地层测试 SFT 井斜 DEV三侧向 LL3 电缆地层测试 FMT 井斜方位 AZIM补偿密度 DEN 全井眼微电阻率扫描成像 FMI 0、4米电位电阻率 R04岩性密度 LDL 全井眼微电阻率扫描成像 EMI 0、45米底部梯度电阻率 R045补偿中子 CNL 全井眼微电阻率扫描成像 STAR 0、5米电位电阻率 R05井壁中子 SPN 核磁共振 NMR 1米底部梯度电阻率R1补偿声波 AC 自然伽马能谱 NGS 2、5米底部梯度电阻率 R25长源距声波 SLS 电磁波传播测井 EPT 4米底部梯度电阻率 R4偶极子横波成像 DSI 自然电位 SP 6米底部梯度电阻率 R6低频偶极子声波成像 LFD 自然伽马 GR 8米底部梯度电阻率 R8多极子声波成像 MAC 垂直地震测井 VSP超声成像 USI 中子伽马 NGR附录29测井地面仪器类型代码名称代码名称代码JD58-1 C01 CLS-3600 C21SJD58-1 C02 CLS-3700 C22SL91-I C03 EXLIPS-5700 C23SL91-II C04 CSU C31VCT-2000 C05 MAXIS-500 C32WP-2000 C06 DDL-III C41SDCL-2000 C07 DDL-V C42SL-3000 C08 EXCELL-1000 C43SL-6000 C09 EXCELL-2000 C44691 C10 AT+ C5183系列 C11 CS400 C52附录31测井下井仪器型号代码名称代码说明双感应-八侧向 SL1503双感应-八侧向 SL1502双侧向 SL1230微球型聚焦 SL3105补偿密度 SL1608补偿声波 SL1608补偿声波 SL1670高分辨率声波 SL9801补偿中子 SL2436岩性密度 SL2222岩性密度 SL2223自然伽马 SL1310自然伽马能谱 SL1319四臂与六臂地层倾角 SL1017 地层压力测试 SL1967声波井眼成像 SL1620核磁共振 SL1801多极子声波 SL1616PCM、及井斜方位 SL1600双感应-八侧向 SL1501 小井眼双侧向 SL1228 小井眼微球型聚焦 SL3102 小井眼补偿声波 SL1607 小井眼补偿中子 SL2434 小井眼岩性密度 SL2220 小井眼自然伽马 SL1308 小井眼PCM、及井斜方位 SL1559 小井眼双感应 1502 阿特拉斯双感应 1503 阿特拉斯双感应 1504 阿特拉斯补偿中子 2420 阿特拉斯补偿中子 2435 阿特拉斯补偿中子 2436 阿特拉斯本帖最近评分记录:财富:+8(烟灰乱弹) 应助奖励来自: 顶端回复引用分享加为好友 kokoever级别:果园新丁作者资料发送短消息 QQ联系UID: 363638精华: 0发帖: 8威望: 0 点财富: 56 果果活期存款: 0 果果定期存款: 0 果果总资产: 56 果果贡献值: 0 点在线时间: 1(时)注册时间: 2010-05-26最后登录: 2010-06-08 11 发表于: 2010-05-26 11:13 只瞧该作者| 小中大测井符号中文名称AC 声波时差数据计数补偿密度A1R1 T1R1声波幅度A1R2 T1R2声波幅度A2R1 T2R1声波幅度A2R2 T2R2声波幅度AAC 声波附加值AAVG 第一扇区平均值AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗AIPD 密度孔隙度AIPN 中子孔隙度AL 声波(速度)测井AMAV 声幅AMAX 最大声幅AMIN 最小声幅AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATAV 平均衰减率ATC 声波衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位AZ1 1号极板方位AZI 1号极板方位AZIM 方位角AZIM 井斜方位BACBGF 远探头背景计数率BGN 近探头背景计数率BHC 补偿声波BHT 井底温度BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据BxC1 井径C2 井径C3 井径CAL 井径CAL 井径CAL1 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEC 阳离子交换能力CEMC 水泥图CET 水泥评价测井?CGR 自然伽马CI 总能谱比CL 粘土含量CLD 分散粘土体积CLL 层状粘土体积CLS 结构粘土体积CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 中子CN 补偿中子CNL CNL井壁中子CNL 补偿中子CO 碳氧比CON 感应测井CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200兆赫兹介电常数D4EC 47兆赫兹介电常数DAZ 井斜方位DEN 密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DHY 残余烃密度DHYC 烃密度DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度补偿值DT 声波时差DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串EPOR 有效孔隙度ESW 有效含水饱与度ETIMD 时间F 地层因数FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR1 自然伽马?GR2 同位素示踪伽马HAC 高分辨率声波时差HAZI 井斜方位HDRS 深感应电阻率HF 累计烃米数HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IES 感应测井?Ild(RILD) 深探测感应测井Ilm(RILM) 中探测感应测井Ils 浅探测感应测井IDPH 深感应电阻率IMPH 中感应电阻率ISF 球形聚焦测井K 钾KCMR 核磁共振渗透率KRO 油的相对渗透率KRW 水的相对渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LL 侧向测井?LL3 深三侧向电阻率LL7 深七侧向电阻率LL8 深八侧向电阻率LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLD7、LLS7 七测向LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率LSS 长源距声波测井M 胶结指数M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML 微电位电阻率MK 微梯度电阻率ML1 微电位电阻率(微电极A0、025M0、025N-A0、05M) ML2 微梯度电阻率(微电极A0、025M0、025N-A0、05M) MLL 微侧向电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率N 饱与度指数NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NGS 自然伽马能谱测井NLL 中子寿命测井NML 核磁共振测井NPHI 补偿中子OMRL 定向微电阻率测井P01 第1组分孔隙度P02 第2组分孔隙度P03 第3组分孔隙度P04 第4组分孔隙度P05 第5组分孔隙度P06 第6组分孔隙度P07 第7组分孔隙度P08 第8组分孔隙度P09 第9组分孔隙度P10 第10组分孔隙度P11 第11组分孔隙度P12 第12组分孔隙度P1AZ 1号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1号极板电阻率曲线PAD2 2号极板电阻率曲线PAD3 3号极板电阻率曲线PAD4 4号极板电阻率曲线PAD5 5号极板电阻率曲线PAD6 6号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM 渗透率Perm / K 渗透率PERM-IND 核磁共振渗透率PF 流体电阻率测井PI 微球聚焦屏流比PIH 油气有效渗透率PIW 水的有效渗透率POR 孔隙度Por / Ф 孔隙度PORB 储层的孔隙度PORb Pore / Фe 有效孔隙度PORG 气指数PORT 总孔隙度Port / Фt 总孔隙度PORW 含水孔隙度POTA 钾POTV 100%粘土中钾的体积PPOR 核磁T2谱PPORB 核磁T2谱PPORC 核磁T2谱PR 泊松比PRESS URE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量QV 阳离子交换容量R04 0、4米电位电阻率R045 0、45米电位电阻率R05 0、5米电位电阻率R1 1米底部梯度电阻率R25 2、5米底部梯度电阻率R250 2、5米底部梯度电阻率R4 4米底部梯度电阻率R400 4米底部梯度电阻率R4AT 200兆赫兹幅度比R4AT_1 47兆赫兹幅度比R4SL 200兆赫兹电阻率R4SL_1 47兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径) RAD2 井径(极板半径) RAD3 井径(极板半径) RAD4 井径(极板半径) RAD5 井径(极板半径) RAD6 井径(极板半径) RADS 井径(极板半径) RATI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深双侧向电阻率测井RFOC 八侧向电阻率RHOB 岩性体积密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率Rm 泥浆电阻率Rmf 泥浆滤液电阻率RMG 微梯度电阻率RMLL 微侧向电阻率测井RMN 微电位电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅双侧向电阻率测井Rt 地层真电阻率Rw 地层水电阻率Rxo 冲洗带地层电阻率RXO1 RXO1微球形聚焦电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SH 微电位电阻率SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNP 井壁中子孔隙度测井SNUM 特征值数量So 含油饱与度Sor 残余油饱与度SP 自然电位SPER 特征值周期Sw 含水饱与度SWB 束缚水饱与度Swirr / SIRR 束缚水饱与度SWN 井壁中子测井Swxo 冲洗带含水饱与度T2 核磁T2谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2分布对数平均值T2LM T2分布对数平均值TCHK 绿泥石与高岭石含量TEMP 井温TENS 张力TH 钍THOR 钍TILL 伊利石含量TKRA 钍钾比TPI 钍钾乘积指数TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比ULSEL 超长电极距测井URAN 铀VAMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比Vsh / Sh 泥质含量VWF 可视波形WAV1 第一扇区的波列WAV2 第二扇区的波列WAV3 第三扇区的波列WAV4 第四扇区的波列WAV5 第五扇区的波列WAV6 第六扇区的波列WAVE 变密度图WF 全波列波形ZCORR 密度校正值。
MD1801-1800 PDF中文资料
MD1800 1801 中文资料PRODUCT DESCRIPTIONMD1800/01是高性能的主要传感器(PSR)和单片开关电源控制器的设计电流模式控制小电源设备。
建立精确的CV/CC控制电路,消除了光耦合器,TL431及其相关回路装置。
高度集成的设计,高性能功率BJT和控制器和各种在一个芯片的保护电路,使外围元件,大大节约了成本,md180x可以简单地设计了一个典型的反激式开关变换器,独特的驱动技术推动的特点,耐压和优异的转换效率FEATURE◆滞过温度保护(OTP)电路◆输出电压保护(OVP/UVP)◆高效率,符合效率标准6级◆建立810v @ md1801,在700V@md1800功率BJT◆PSR控制替代了光耦和TL431◆精准CC/ CV控制◆空载损耗< 100 MW◆自动重启功能◆超低启动电流PINOUT CONFIGURATIONPIN Function DescriptionPin Name Function Description1 Vcc 控制器电源供应引脚。
为让控制器得到更稳定的电压,外部滤波电容必须使用低阻抗的电解电容(LOW ESR)2 FB 输出反馈引脚,通过辅助绕组电压检测输出条件变压器3 CPC 连接100+nf电容,此引脚补偿输出电缆压降4 CS 连外部的初级线圈电流传感器Rcs,控制器可以通过外部传感器电阻检测初级线圈电流。
当电阻上电压达到最大值时,内部功率晶体管将立即关闭5-6 HV 连接内部功率晶体管的集电极8 GND 接地引脚FUNCTIONAL BlOCK DIAGRAMABSOLUTE MAXIMUM RATINGSHV PIN最大电压-0.3~700V 存储温度-55~+150°IC Peak Current MD1800 280mA Lead Temperature +260°/10S MD1801 350mA ESD(Human BodyModel)2000VVCC Pin 电压8.6V 注释:1.所有电压是以IC GND为地(25°)2.持续时间不超过2ms3.即时最大额定范围指是对产品产FB Pin 电压7V其他Pin 电压Vcc+0.3V 生永久损伤的;长时间的超额定运行将影响产品的可靠性运行温度0~+150°ELECTRICAL CHARACTERISTICSFUNCTION DESCRIPTIONMD180x是专门为充电器、适配器和数字产品设计的。
电磁炉各型号电压测试参考点
电磁炉各型号电压测试参考点606G线路板接线盘各脚电压606G不接面板各脚电压《插座》主板接先线盘无接面板各脚电压LM393各脚电压619A主板接线盘无接面板各脚电压MCL-1005A接线盘无接面板各脚电压LM339。
U1LM339U2CPU不接按键板各脚电压805A主板接线盘无接面板各脚电压LM339各脚电压509A主板接线盘无接面板用于MCE-1903D机型LM339各脚电压MC-1903D-A的CPU各脚电压MC18-E11机型迪稀方案主板各脚电压LM339各脚电压CPU各脚电压MCE-1802B主板接线盘各脚电压贴片LM339各脚电压MCL-1801主板各脚电压LM339各脚电压MC18-F7拓邦主板各脚电压LM339各脚电压IC3LM339各脚电压IC2MC10-A8机型,CPU带变压器081A-1线路板。
LM339各脚电压CPU各脚电压WLDCL10-1MC10-A8鑫方案各脚电压600A-1主板无接负载各脚电压无接面板KM339各脚电压U3主板接负载各脚电压无接面板LM339各脚电压U3MC10-A8的故障代码〈1〉高火力闪报警E2〈2〉高火力加保温灯闪报警E4〈3〉低火力闪报警E1〈4〉保温灯闪报警E3〈5〉高火力加低火力灯闪报警E5MC-1922,805A-2线路板各脚电压LM339各脚静态电压,串灯泡,锁线盘。
509A不接面板锁线盘用于MC-200G机型509A-2串灯炮,接显示板,锁线盘,不接触摸板,用于MC-200S机型。
LM339各脚电压CPUMC-200S接触摸板各脚电压除〈1〉,〈2〉,〈19〉,〈20〉,有变化都为0伏,其余各脚电压都没有变化。
509A串灯炮,接线盘,不插面板,用于MC-210V机型LM339各脚电压CPU 210V-A各脚静态电压22A各脚静态电压:第〈1〉〈2〉脚-4.43V;第〈3〉脚-3.4V;第〈4〉脚8.1V;第〈5〉〈6〉〈7〉〈8〉脚270V光藕各脚静态电压:第〈1〉脚17.59V;第〈2〉脚16.55V;第〈3〉脚-2.46V;第〈4〉脚8.71V;509A串灯泡,接线盘,不插面板,用于MC-210QCPU :光藕各脚电压〈1〉17.58〈2〉16.55〈3〉-2.46〈4〉8.71MC10-A8,081A-3线路板各脚电压081A-3,LM339各脚电压MC18-C10,091A线路板各脚电压091A线路板LM339各脚电压CPU C10-3静态各脚电压:集成8316各脚电压:〈1〉0.38〈2〉23〈3〉0—0.03〈4〉0〈5〉0〈6〉0〈7〉0 MC-210A,619A线路板各脚电压串灯泡,锁线盘各脚静态电压,LM339各脚电压集成393各脚静态电压MCL-1005 ,114A线路板各脚电压集成LM339各脚静态电压CPU L1005-1各脚静态电压:MC-2057,817A线路板各脚电压集成LM339各脚电压MCL-1005A,626线路板各脚电压集成LM339各脚静态电压U1U2CPU各脚静态电压:MC-1008故障代码〈1〉自动灯闪报警E1〈2〉开关灯闪报警E2〈3〉开关灯加自动灯加手动灯闪报警E3〈4〉手动灯闪报警E5串灯泡,不接负载,不接面板,CPU各脚静态工作电压:662A按键板,集成TM1628各脚电压:MC-210B,614A线路板各脚电压集成LM339各脚电压:LM393各脚静态电压:MC-1008,656A线路板各脚电压220V串灯泡,不锁线盘,不接面板各脚电压:220V串灯泡,锁线盘,不接面板各脚电压:MC-1930,线路板各脚电压集成22A各脚电压MC18-F7,主板075B面板077B线路板各脚电压集成LM339各脚静态电压CPU各脚静态电压F7-1:集成22A各脚电压集成8316各脚电压:MC-200H,903A线路板各脚电压LM339各脚电压686A线路板各脚电压(串灯泡,接线盘,不接面板)CPU各脚电压:688A线路板各脚电压LM339各脚电压LM393各脚静态电压插座从上到下:〈1〉0V〈2〉5V〈3〉5V〈4〉0.1V〈5〉0.26V〈6〉0V〈7〉5V〈8〉4.9V〈9〉4.9V〈10〉3.15V 2077/2056主板各脚电压(串灯泡,接线盘,不接面板)CPU各脚电压:。
芯片资料-LMD18200
摘要] LMD18200是美国国家半导体公司(NS)推出的专用于直流电动机驱动的H桥组件。
同一芯片上集成有CMOS控制电路和DMOS功率器件,利用它可以与主处理器、电机和增量型编码器构成一个完整的运动控制系统。
LMD18200广泛应用于打印机、机器人和各种自动化控制领域。
本文介绍了LMD18200芯片的结构、原理及其典型应用。
[关键词] LMD18200 MC68332 PWM 双极性驱动 单极性驱动1、 主要性能l 峰值输出电流高达6A,连续输出电流达3A;l 工作电压高达55V;l Low RDS(ON) typically 0.3W per switch;l TTL/CMOS兼容电平的输入;l 无 “shoot-through” 电流;l 具有温度报警和过热与短路保护功能;l 芯片结温达145℃,结温达170℃时,芯片关断;l 具有良好的抗干扰性。
2、 典型应用l 驱动直流电机、步机电机l 伺服机构系统位置与转速l 应用于机器人控制系统l 应用于数字控制系统l 应用于电脑打印机与绘图仪3、 内部结构和引脚说明LMD18200外形结构如图1所示,内部电路框图2如图所示。
它有11个引脚,采用TO-220和双列直插式封装。
各引脚的功能如下:引脚名称功能描述1、11桥臂1,2的自举输入电容连接端在脚1与脚2、脚10与脚11之间应接入10uF的自举电容2、10H桥输出端3方向输入端转向时,输出驱动电流方向见表1。
该脚控制输出1与输出2(脚2、10)之间电流的方向,从而控制马达旋转的方向。
4刹车输入端刹车时,输出驱动电流方向见表1。
通过该端将马达绕组短路而使其刹车。
刹车时,将该脚置逻辑高电平,并将PWM信号输入端(脚5)置逻辑高电平,3脚的逻辑状态决定于短路马达所用的器件。
3脚为逻辑高电平时,H桥中2个高端晶体管导通;3脚呈逻辑低电平时,H桥中2个低端晶体管导通。
脚4置逻辑高电平、脚5置逻辑低电平时,H桥中所有晶体管关断,此时,每个输出端只有很小的偏流(1.5mA)。
Datasheet MLX90614 中文 数据手册 rev008
10-位 PWM 输出模式是连续输出所测物体温度的标准配置,测量物体的温度范围为-20…120 °C,分辨 率为 0.14 °C。PWM 通过修改 EEPROM 内 2 个单元的值,实际上可以根据需求调整至任何温度范围,而这对 出厂校准结果并无影响。
传感器的测量结果均出厂校准化,数据接口为数字式的 PWM 和 SMBus(System Management Bus) 输出。
作为标准,PWM 为 10 位,且配置为-20˚C 至 120 ˚C 内,分辨率为 0.14 ˚C 的连续输出。
传感器出厂默认,上电复位时为 SMBus 通信。
3901090614 Rev 008
PWM 引脚也可配置为热继电器(输入是 To),这样可以实现简单且性价比高的恒温控制器或温度报警(冰 点/沸点)应用,其中的温度临界值是用户可编程的。在 SMBus 系统里,这个功能可以作为处理器的中断信号, 以此触发读取主线上从动器的值,并确定精度条件。
传感器有两种供电电压选择:5V 或 3V(电池供电)。其中,5V 也可简便的从更高供电电压(例如 8 至 16V)上通过外接元件调制。(具体请参考“应用信息”)
MLX90614 connection to SMBus
图 1: 典型应用电路
2 概述
MLX90614 是一款用于非接触式的红外温度传感器,集成 了红外探测热电堆芯片与信号处理专用集成芯片,全部封装 在 TO-39。
低噪声放大器、17 位 ADC 和强大的 DSP 处理单元的全 集成,使传感器实现了高精度,高分辨率的测量。
LM1875中文资料_数据手册_参数
ICL8038_中文资料
精密波形发生器概述:ICL8038波形发生器是一个用最少的外部元件就能生产高精度正弦,方形,三角,锯齿波和脉冲波形的单片综合集成电路.频率(或重复频率)可用外部电阻器或电容器来调节选定,范围从0.001hz到高于300khz并且,用外部电压可以完成频率调制及扫频.ICL8038的制造采用了先进的整体技术,采用肖特基势垒二极管、薄膜电阻使电路输出在温度和电源变化较大的范围内保持稳定。
这个芯片与锁相环路配合,以减少温度漂移使小于250ppm/℃特点:1、低温度—频率漂移,…………………………250ppm/℃;2、低失真度…………………………1%(正弦波输出);3、高线性度…………………………0.1%(三角波输出);4、宽具频率输出范围…………………………0.001Hz~300kHz的;;5、可变占空比…………………………2%~98%;6、宽电平输出…………………………从TTL至28V;7、同时输出正弦波、三角波和方波;8、易于使用,只需要很少的外部元件。
封装引脚如下图:ICL8038内部原理框图最大限值范围:供电电压(V-to V+) (36V)到V+输入电压(任何管脚) (V)–输入电流(管4-5).......................................25mA输出槽电流(管脚3和9)..................................25mA工作条件温度范围ICL8038AC,ICL8038BC,ICL8038CC............0℃to70℃图1:测试电路图2ICL8038内部详细的示意图应用信息(看功能图)由两个恒流源对外接电容C进行充电和放电,恒流源2的工作状态由触发器控制,同时恒流源1始终打开。
假设,触发器使得恒流源2关闭电容C由恒流源1充电,电容器C两端电压随时间线性上升。
当这个电压达到比较器1的输入电平(设定在2/3电源电压),触发器翻转改变状态,使恒流源2处于关闭状态。
LMD18201中文资料
LMD182013A,55V H-BridgeGeneral DescriptionThe LMD18201is a 3A H-Bridge designed for motion control applications.The device is built using a multi-technology pro-cess which combines bipolar and CMOS control circuitry with DMOS power devices on the same monolithic structure.The H-Bridge configuration is ideal for driving DC and step-per motors.The LMD18201accommodates peak output cur-rents up to 6A.Current sensing can be achieved via a small sense resistor connected in series with the power ground lead.For current sensing without disturbing the path of cur-rent to the load,the LMD18200is recommended.Featuresn Delivers up to 3A continuous output n Operates at supply voltages up to 55V n Low R DS(ON)typically 0.33Ωper switchn TTL and CMOS compatible inputs n No “shoot-through”currentn Thermal warning flag output at 145˚C n Thermal shutdown (outputs off)at 170˚C n Internal clamp diodes n Shorted load protectionnInternal charge pump with external bootstrap capabilityApplicationsn DC and stepper motor drivesn Position and velocity servomechanisms n Factory automation robotsn Numerically controlled machinery nComputer printers and plottersFunctional DiagramDS010793-1FIGURE 1.Functional Block Diagram of LMD18201April 1998LMD182013A,55V H-Bridge©1999National Semiconductor Corporation Connection Diagram and Ordering InformationDS010793-2Top ViewOrder Number LMD18201TSee NS Package Number TA11B2Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Total Supply Voltage(V S,Pin6)60V Voltage at Pins3,4,5and912V Voltage at Bootstrap Pins(Pins1and11)V OUT+16V Peak Output Current(200ms)6A Continuous Output Current(Note2)3A Power Dissipation(Note3)25W Sense Voltage(Pin7to Pin8)+0.5V to−1.0V Power Dissipation(T A=25˚C,Free Air)3W Junction Temperature,T J(max)150˚C ESD Susceptibility(Note4)1500V Storage Temperature,T STG−40˚C to+150˚C Lead Temperature(Soldering,10sec.)300˚COperating Ratings(Note1)Junction Temperature,T J−40˚C to+125˚C V S Supply Voltage+12V to+55VElectrical Characteristics(Note5)The following specifications apply for V S=42V,unless otherwise specified.Boldface limits apply over the entire operating temperature range,−40˚C≤T J≤+125˚C,all other limits are for T A=T J=25˚C.Symbol Parameter Conditions Typ Limit UnitsR DS(ON)Switch ON Resistance Output Current=3A(Note6)0.330.4/0.6Ω(max)R DS(ON)Switch ON Resistance Output Current=6A(Note6)0.330.4/0.6Ω(max)V CLAMP Clamp Diode Forward Drop Clamp Current=3A(Note6) 1.2 1.5V(max)V IL Logic Low Input Voltage Pins3,4,5−0.1V(min)0.8V(max)I IL Logic Low Input Current V IN=−0.1V,Pins=3,4,5−10µA(max)V IH Logic High Input Voltage Pins3,4,52V(min)12V(max)I IL Logic High Input Current V IN=12V,Pins=3,4,510µA(max)Undervoltage Lockout Outputs Turn OFF9V(min)11V(max)T JW Warning Flag Temperature Pin9≤0.8V,I L=2mA145˚CV F(ON)Flag Output Saturation Voltage T J=T JW,I L=2mA0.15VI F(OFF)Flag Output Leakage V F=12V0.210µA(max)T JSD Shutdown Temperature Outputs Turn OFF170˚CI S Quiescent Supply Current All Logic Inputs Low1325mA(max)t D(ON)Output Turn-On Delay Time Sourcing Outputs,I OUT=3A300nsSinking Outputs,I OUT=3A300nst ON Output Turn-On Switching Time Bootstrap Capacitor=10nFSourcing Outputs,I OUT=3A100nsSinking Outputs,I OUT=3A80nst D(OFF)Output Turn-Off Delay Times Sourcing Outputs,I OUT=3A200nsSinking Outputs,I OUT=3A200nst OFF Output Turn-Off Switching Times Bootstrap Capacitor=10nFSourcing Outputs,I OUT=3A75nsSinking Outputs,I OUT=3A70nst PW Minimum Input Pulse Width Pins3,4and51µst CPR Charge Pump Rise Time No Bootstrap Capacitor20µsNote1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.DC and AC electrical specifications do not apply when operatingthe device beyond its rated operating conditions.Note2:See Application Information for details regarding current limiting.Note3:The maximum power dissipation must be derated at elevated temperatures and is a function of T J(max),θJA,and T A.The maximum allowable power dissi-pation at any temperature is P D(max)=(T J(max)−T A)/θJA,or the number given in the Absolute Ratings,whichever is lower.The typical thermal resistance from junctionto case(θJC)is1.0˚C/W and from junction to ambient(θJA)is30˚C/W.For guaranteed operation T J(max)=125˚C.Note4:Human-body model,100pF discharged through a1.5kΩresistor.Except Bootstrap pins(pins1and11)which are protected to1000V of ESD.Note5:All limits are100%production tested at25˚C.Temperature extreme limits are guaranteed via correlation using accepted SQC(Statistical Quality Control) methods.All limits are used to calculate AOQL,(Average Outgoing Quality Level).Note6:Output currents are pulsed(t W<2ms,Duty Cycle<5%).3Typical Performance CharacteristicsTest Circuit Switching Time DefinitionsV SAT vs Flag CurrentDS010793-12R DS(ON)vs TemperatureDS010793-13R DS(ON)vsSupply VoltageDS010793-14Supply Current vs Supply VoltageDS010793-15Supply Current vs Frequency (V S =42V)DS010793-16Supply Current vsTemperature (V S =42V)DS010793-17DS010793-8DS010793-9 4Pinout Description(See Connection Diagram)Pin1,BOOTSTRAP1Input:Bootstrap capacitor pin for half H-Bridge number1.The recommended capacitor(10nF)is connected between pins1and2.Pin2,OUTPUT1:Half H-Bridge number1output.Pin3,DIRECTION Input:See Table1.This input controls the direction of current flow between OUTPUT1and OUT-PUT2(pins2and10)and,therefore,the direction of rotation of a motor load.Pin4,BRAKE Input:See Table1.This input is used to brake a motor by effectively shorting its terminals.When braking is desired,this input is taken to a logic high level and it is also necessary to apply logic high to PWM input,pin5. The drivers that short the motor are determined by the logic level at the DIRECTION input(Pin3):with Pin3logic high, both current sourcing output transistors are ON;with Pin3 logic low,both current sinking output transistors are ON.All output transistors can be turned OFF by applying a logic high to Pin4and a logic low to PWM input Pin5;in this case only a small bias current(approximately−1.5mA)exists at each output pin.Pin5,PWM Input:See Table1.How this input(and DIREC-TION input,Pin3)is used is determined by the format of the PWM Signal.Pin6,V S Power SupplyPin7,POWER GROUND/SENSE Connection:This pin is the ground return for the power DMOS transistors of the H-Bridge.The current through the H-Bridge can be sensed by adding a small,0.1Ω,sense resistor from this pin to the power supply ground.Pin8,SIGNAL GROUND:This is the ground return for the internal logic circuitry used to control the PWM switching of the H-Bridge.Pin9,THERMAL FLAG Output:This pin provides the ther-mal warning flag output signal.Pin9becomes active-low at 145˚C(junction temperature).However the chip will not shut itself down until170˚C is reached at the junction.Pin10,OUTPUT2:Half H-Bridge number2output.Pin11,BOOTSTRAP2Input:Bootstrap capacitor pin for half H-Bridge number 2.The recommended capacitor (10nF)is connected between pins10and11.TABLE1.Logic Truth TablePWM Dir Brake Active Output DriversH H L Source1,Sink2H L L Sink1,Source2L X L Source1,Source2H H H Source1,Source2H L H Sink1,Sink2L X H NONEApplication InformationTYPES OF PWM SIGNALSThe LMD18201readily interfaces with different forms of PWM e of the part with two of the more popular forms of PWM is described in the following paragraphs. Simple,locked anti-phase PWM consists of a single,vari-able duty-cycle signal in which is encoded both direction andamplitude information(see Figure2).A50%duty-cyclePWM signal represents zero drive,since the net value ofvoltage(integrated over one period)delivered to the load iszero.For the LMD18201,the PWM signal drives the direc-tion input(pin3)and the PWM input(pin5)is tied to logichigh.Sign/magnitude PWM consists of separate direction(sign)and amplitude(magnitude)signals(see Figure3).The(ab-solute)magnitude signal is duty-cycle modulated,and theabsence of a pulse signal(a continuous logic low level)rep-resents zero drive.Current delivered to the load is propor-tional to pulse width.For the LMD18201,the DIRECTION in-put(pin3)is driven by the sign signal and the PWM input(pin5)is driven by the magnitude signal.USING THE THERMAL WARNING FLAGThe THERMAL FLAG output(pin9)is an open collector tran-sistor.This permits a wired OR connection of thermal warn-ing flag outputs from multiple LMD18201’s,and allows theuser to set the logic high level of the output signal swing tomatch system requirements.This output typically drives theinterrupt input of a system controller.The interrupt serviceroutine would then be designed to take appropriate steps,such as reducing load currents or initiating an orderly systemshutdown.The maximum voltage compliance on the flag pinis12V.SUPPLY BYPASSINGDuring switching transitions the levels of fast currentchanges experienced may cause troublesome voltage tran-sients across system stray inductances.It is normally necessary to bypass the supply rail with a highquality capacitor(s)connected as close as possible to the V SPower Supply(Pin6)and POWER GROUND(Pin7).A1µFhigh-frequency ceramic capacitor is recommended.Careshould be taken to limit the transients on the supply pin be-low the Absolute Maximum Rating of the device.When oper-ating the chip at supply voltages above40V a voltage sup-pressor(transorb)such as P6KE62A is recommended fromDS010793-4FIGURE2.Locked Anti-Phase PWM ControlDS010793-5 FIGURE3.Sign/Magnitude PWM Control 5Application Information(Continued) supply to ground.Typically the ceramic capacitor can be eliminated in the presence of the voltage suppressor.Note that when driving high load currents a greater amount of sup-ply bypass capacitance(in general at least100µF per Amp of load current)is required to absorb the recirculating cur-rents of the inductive loads.CURRENT LIMITINGCurrent limiting protection circuitry has been incorporated into the design of the LMD18201.With any power device it is important to consider the effects of the substantial surge cur-rents through the device that may occur as a result of shorted loads.The protection circuitry monitors the current through the upper transistors and shuts off the power device as quickly as possible in the event of an overload condition (the threshold is set to approximately10A).In a typical motor driving application the most common overload faults arecaused by shorted motor windings and locked rotors.Underthese conditions the inductance of the motor(as well as anyseries inductance in the V CC supply line)serves to reducethe magnitude of a current surge to a safe level for theLMD18201.Once the device is shut down,the control cir-cuitry will periodically try to turn the power device back on.This feature allows the immediate return to normal operationonce the fault condition has been removed.While the faultremains however,the device will cycle in and out of thermalshutdown.This can create voltage transients on the V CCsupply line and therefore proper supply bypassing tech-niques are required.The most severe condition for any power device is a direct,hard-wired(“screwdriver”)long term short from an output toground.This condition can generate a surge of currentthrough the power device on the order of15Amps and re-quire the die and package to dissipate up to500W of powerfor the short time required for the protection circuitry to shutoff the power device.This energy can be destructive,particu-larly at higher operating voltages(>30V)so some precau-tions are in order.Proper heat sink design is essential and itis normally necessary to heat sink the V CC supply pin(pin6)with1square inch of copper on the PC board. INTERNAL CHARGE PUMP AND USE OF BOOTSTRAP CAPACITORSTo turn on the high-side(sourcing)DMOS power devices,the gate of each device must be driven approximately8Vmore positive than the supply voltage.To achieve this an in-ternal charge pump is used to provide the gate drive voltage.As shown in(Figure4),an internal capacitor is alternately switched to ground and charged to about14V,then switched to V S thereby providing a gate drive voltage greater than V S. This switching action is controlled by a continuously running internal300kHz oscillator.The rise time of this drive voltage is typically20µs which is suitable for operating frequencies up to1kHz.For higher switching frequencies,the LMD18201provides for the use of external bootstrap capacitors.The bootstrap principle is in essence a second charge pump whereby a large value capacitor is used which has enough energy to quickly charge the parasitic gate input capacitance of the power device resulting in much faster rise times.The switch-ing action is accomplished by the power switches them-selves(Figure5).External10nF capacitors,connected from the outputs to the bootstrap pins of each high-side switch provide typically less than100ns rise times allowing switch-ing frequencies up to500kHz.INTERNAL PROTECTION DIODESA major consideration when switching current through induc-tive loads is protection of the switching power devices from the large voltage transients that occur.Each of the four switches in the LMD18201have a built-in protection diode to clamp transient voltages exceeding the positive supply or ground to a safe diode voltage drop across the switch. The reverse recovery characteristics of these diodes,once the transient has subsided,is important.These diodes must come out of conduction quickly and the power switches must be able to conduct the additional reverse recovery current of the diodes.The reverse recovery time of the diodes protect-ing the sourcing power devices is typically only70ns with a reverse recovery current of1A when tested with a full3A of forward current through the diode.For the sinking devices the recovery time is typically100ns with4A of reverse cur-rent under the same conditions.DS010793-6FIGURE4.Internal Charge Pump CircuitryDS010793-7FIGURE5.Bootstrap Circuitry6Typical ApplicationsBASIC MOTOR DRIVERThe LMD18201can directly interface to any Sign/Magnitude PWM controller.The LM629is a motion control processor that outputs a Sign/Magnitude PWM signal to coordinate ei-ther positional or velocity control of DC motors.The LMD18201provides fully protected motor driver stage.CURRENT SENSINGIn many motor control applications it is desirable to sense and control the current through the motor.For these types of applications a companion product,the LMD18200,is also available.The LMD18200is identical to the LMD18201but has current sensing transistors that output a current directly proportional to the current conducted by the two upper DMOS power devices to a separate current sense pin.This technique does not require a low valued,power sense resis-tor and does not subtract from the available voltage drive to the motor.To sense the bridge current through the LMD18201requires the addition of a small sense resistor between the power ground/sense pin (Pin 7)and the actual circuit ground (see Figure 7).This resistor should have a value of 0.1Ωor less tostay within the allowable voltage compliance of the sense pin,particularly at higher operating current levels.The volt-age between power ground/sense (Pin 7)and the signal ground (Pin 8)must stay within the range of −1V to +0.5V.In-ternally there is approximately 25Ωbetween pins 7and 8and this resistance will slightly reduce the value of the exter-nal sense resistor.Approximately 70%of the quiescent sup-ply current (10mA)flows out of pin 7.This will cause a slight offset to the voltage across the sense resistor when the bridge is not conducting.During reverse recovery of the in-ternal protection diodes the voltage compliance between pins 7and 8may be exceeded.The duration of these spikes however are only approximately 100ns and do not have enough time or energy to disrupt the operation of the LMD18201.DS010793-10FIGURE 6.Basic Motor DriverDS010793-11FIGURE 7.Current Sensing7Physical Dimensionsinches (millimeters)unless otherwise notedLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation AmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National Semiconductor EuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:sea.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-750711-Lead TO-220Power Package (T)Order Number LMD18201T NS Package Number TA11BL M D 182013A ,55V H -B r i d g eNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。
LM1875 datasheet说明书中文翻译
LM1875 DatasheetLM1875 20W音频功率放大器概述LM1875是一个集成的功率放大器,它能提供非常低的失真和高性能,非常适合消费级的音频应用。
LM1875能提供20W的功率,在负载4欧姆或者8欧姆,电源电压±25V情况下。
用一个8欧姆的负载和±30V的电源,它可能能提供超过30W的功率。
这放大器只需要很少的外围元件。
它含有防止过载装置包括电流过载限制和过热自动关闭。
LM1875采用先进的电子电路设计技术和工艺,因此它甚至能在高输出时候,低失真。
其他出众的产品特性有:高增益(High Gain),高转换速率,和宽的功率宽带,范围宽的输出电压,高电流能力,和适应范围宽的电源电压。
这放大器是内置地补偿的和稳定的,为了那大于等于10的增益。
功能■高于30W的输出功率■A VO典型值是90dB■低失真:0.015%,1kHZ,20W■宽功率宽带:70kHz■有AC和DC的对地短路保护■带有假释电路的热保护■输出高电流能力:4A■宽的电源电压:16V-60V■内阻输出保护二极管■94dB的脉动抑制■塑料功率封装TO-220 应用■高性能音频应用系统■桥式放大器■立体播放机■伺服放大器■仪表系统接线图典型应用绝对最大额定参数(标记一)电源电压60V输入电压–Vee到Vcc贮存温度-65℃到150℃节点温度150℃引脚稳定(焊接中,10秒)θJC=3℃θJA=73℃电气特性V CC=+25V,-V EE=-25V,T AMBIENT=25℃,R L=8欧,A V=20(26dB),f o=1kHz,若不另外说明。
标记1:“绝对最大额定参数”表明那范围如果被超出将会有可能烧坏器件。
工作范围表明那条件是可工作,但是不保证是实际工作的范围。
标记2:假设使用的散热片是有1℃/W的热电阻和对室温25℃热量无阻碍。
因为这个输出电流限制有负温度系数,这最大的功率输出给4欧姆的负载时候可能会轻微地减弱,当温度超过55℃。
中文详解ICL8038资料
精密波形发生器总体描述:ICL8038的波形发生器是一个用最少的外部元件就能生产高精度正弦,方形,三角, 锯齿波和脉冲波形彻底单片集成电路。
频率(或重复频率)的选定从0.001hz到300khz可以选用电阻器或电容器来调节, 调频及扫描可以由同一个外部电压完成。
ICL8038精密函数发生器是采用肖特基势垒二极管等先进工艺制成的单片集成电路芯片,输出由温度和电源变化范围广而决定。
这个芯片和锁相回路作用, 具有在发生温度变化时产生低的频率漂移,最大不超过250ppm /℃特点:1、具有在发生温度变化时产生低的频率漂移,最大不超过50ppm/℃;2、正弦波输出具有低于1%的失真度;3、三角波输出具有0.1%高线性度;4、具有0.001Hz~1MHz的频率输出范围;工作变化周期宽;5、2%~98%之间任意可调;高的电平输出范围;6、从TTL电平至28V;7、具有正弦波、三角波和方波等多种函数信号输出;8、易于使用,只需要很少的外部条件。
封装引脚如下图:ICL8038内部原理框图最大限值范围:供电电压 (V— toV+)。
. . . . 。
. 。
. . 。
. 。
. . . 。
. . 。
. . . 。
. . . .36V输入电压 (任何管脚) . 。
. 。
. . 。
. . 。
v — v + 输入电流(管4—5)。
...。
..。
..。
.。
.。
...。
.。
.。
.。
.。
.。
...。
25mA输出槽电流(管脚3和9).。
..。
....。
..。
.。
.。
.。
.。
.。
.。
.。
.25mA工作条件温度范围ICL8038AC, ICL8038BC, ICL8038CC 。
. 。
. . 。
. .0℃ to 70℃图1:测试电路图2 ICL8038内部详细的示意图应用信息(看功能图)外接电容C由两个恒流源充电和放电,振荡电容C由外部接入,它是由内部两个恒流源来完成充电放电过程。
恒流源2的工作状态是由恒流源1对电容器C连续充电,增加电容电压,从而改变比较器的输入电平,比较器的状态改变,带动触发器翻转来连续控制的。
【太有用了】运算放大器datasheet参数详细中文解析!
【太有用了】运算放大器datasheet参数详细中文解析!前言集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。
下面分别对各指标作简单解释。
极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),比如NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。
NE5532的直流指标如下:输入失调电压Vos:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。
输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。
输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。
输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。
对于精密运放,输入失调电压一般在1mV以下。
输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。
所以对于精密运放是一个极为重要的指标。
输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。
这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。
一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。
输入偏置电流iOS:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。
输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。
LM136中文资料
Original Creation Date: 07/10/95Last Update Date: 12/13/99Last Major Revision Date: 12/03/99MNLM136-2.5-X REV 0A0MICROCIRCUIT DATA SHEET2.5V REFERENCE DIODEGeneral DescriptionThe LM136-2.5 integrated circuit is a precision 2.5V shunt regulator diode. Thismonolithic IC voltage reference operates as a low-temperature-coefficient 2.5V zener with 0.2 Ohms dynamic impedance. A third terminal on ther LM136-2.5 allows the reference voltage and temperature coefficient to be trimmed easily.The LM136-2.5 is useful as a precision 2.5V low voltage reference for digital voltmeters,power supplies or op amp circuitry. The 2.5V makes it convenient to obtain a stable reference from 5V logic supplies. Further, since the LM136-2.5 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.NS Part NumbersLM136H-2.5/883Industry Part NumberLM136Prime DieLM136ProcessingMIL-STD-883, Method 5004Quality Conformance InspectionMIL-STD-883, Method 5005Subgrp Description Temp ( C)o 1Static tests at +252Static tests at +1253Static tests at -554Dynamic tests at +255Dynamic tests at +1256Dynamic tests at -557Functional tests at +258A Functional tests at +1258B Functional tests at -559Switching tests at +2510Switching tests at +12511Switching tests at-55MICROCIRCUIT DATA SHEET MNLM136-2.5-X REV 0A0Features- Low temperature coefficient- Wide operating current of 400uA to 10mA- 0.2 Ohms dynamic impedance- +1% initial tolerance available- Guaranteed temperature stability- Easily trimmed for minimum temperature drift- Fast turn-on- Three lead transistor packageMICROCIRCUIT DATA SHEET MNLM136-2.5-X REV 0A0(Absolute Maximum Ratings)(Note 1)Reverse Current15mAForward Current10mAStorage Temperature-60 C to +150 COperating Ambient Temperature(Note 2)-55 C to +125 CMaximum Junction Temperture(Note 2)150 CLead Temperture(Soldering, 10 Seconds)300 CThermal ResistanceThetaJA(Still Air Flow)354 C/W(500LF/Min Air Flow)77 C/WThetaJC46 C/WPackage Weight(Typical)TBDESD Rating(Note 3)1000VNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is functional, but do notguaranteed specific performance limits. For guaranteed specifications and testconditions, see the Electrical Characteristics. The guaranteed specifications applyonly for the test conditions listed. Some performance characteristics may degradewhen the device is not operated under the listed test conditions.Note 2:The maximum power dissipation must be derated at elevated temperatures and isdictated by Tjmax (maximum junction temperature), ThetaJA (package junction toambient thermal resistance), and TA (ambient temperature). The maxium allowable powerdissipation at any temperature is Pdmax = (Tjmax - TA) /ThetaJA or the number givenin the Absolute Maximum Ratings, whichever is lower.Note 3:Human body model, 1.5K Ohms in series with 100pF.MNLM136-2.5-X REV 0A0MICROCIRCUIT DATA SHEETElectrical CharacteristicsDC PARAMETERS(The following conditions apply to all the following parameters, unless otherwise specified.)DC:Iz = 1mASYMBOL PARAMETER CONDITIONS NOTES PIN-NAME MIN MAX UNITSUB-GROUPSIadj Adjust Current Vadj = 0.7V-125+125uA1, 2,3Delta Vz Delta ZenerVoltage 0.4mA < Iz < 10 mA6mV110mV2, 3Vz Zener Voltage Vadj = Open 2.44 2.54V12.42 2.56V2, 3Vadj = 0.7V 2.39 2.49V12.29 2.49V2, 3Vadj = 1.9V 2.49 2.69V1, 2,3Zrd Reverse Dyn. Imp.11Ohm1, 2,3 Vstab Temp Stability Vz = Adjusted to 2.490V218mV2, 3 Note 1:Parameter tested go-no-go only.Note 2:Tested on Auto Drift Oven.MICROCIRCUIT DATA SHEET MNLM136-2.5-X REV 0A0Graphics and DiagramsGRAPHICS#DESCRIPTION09988HRB4METAL CAN, TO-46, 3LD, .100 DIA P.C. (B/I CKT)H03HRE METAL CAN, TO-46, 3LD, .100 DIA P.C. (P/P DWG)P000372A METAL CAN, TO-46, 3LD, .100 DIA P.C. (PINOUT)See attached graphics following this page.NMICROCIRCUIT DATA SHEET MNLM136-2.5-X REV 0A0Revision HistoryRev ECN #Rel Date Originator Changes0A0M000360912/13/99Rose Malone Change/Archive MNLM136-2.5-X, Rev. 0BL. Full MDSRelease MNLM136-2.5-X, Rev. 0A0.。
LM389N中文资料
TL H 7847LM389 Low Voltage Audio Power Amplifier with NPN Transistor ArrayDecember1994 LM389Low Voltage Audio Power Amplifierwith NPN Transistor ArrayGeneral DescriptionThe LM389is an array of three NPN transistors on the samesubstrate with an audio power amplifier similar to theLM386The amplifier inputs are ground referenced while the outputis automatically biased to one half the supply voltage Thegain is internally set at20to minimize external parts but theaddition of an external resistor and capacitor between pins4and12will increase the gain to any value up to200The three transistors have high gain and excellent matchingcharacteristics They are well suited to a wide variety of ap-plications in DC through VHF systemsFeaturesAmplifierY Battery operationY Minimum external partsY Wide supply voltage rangeY Low quiescent current drainY Voltage gains from20to200Y Ground referenced inputY Self-centering output quiescent voltageY Low distortionTransistorsY Operation from1m A to25mAY Frequency range from DC to100MHzY Excellent matchingApplicationsY AM-FM radiosY Portable tape recordersY IntercomsY Toys and gamesY Walkie-talkiesY Portable phonographsY Power convertersEquivalent Schematic and Connection DiagramsTL H 7847–1Dual-In-Line PackageTL H 7847–2Order Number LM389NSee NS Package Number N18AC1995National Semiconductor Corporation RRD-B30M115 Printed in U S AAbsolute Maximum RatingsIf Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specifications Supply Voltage15V Package Dissipation(Note1)1 89W Input Voltage g0 4V Storage Temperature b65 C to a150 C Operating Temperature0 C to a70 C Junction Temperature150 C Lead Temperature(Soldering 10sec )260 C Collector to Emitter Voltage V CEO12V Collector to Base Voltage V CBO15V Collector to Substrate Voltage V CIO(Note2)15V Collector Current I C25mA Emitter Current I E25mA Base Current I B5mA Power Dissipation(Each Transistor)T A s a70 C150mW Thermal Resistancei JC24 C W i JA70 C WElectrical Characteristics T A e25 CSymbol Parameter Conditions Min Typ Max Units AMPLIFIERV S Operating Supply Voltage412V I Q Quiescent Current V S e6V V IN e0V612mAP OUT Output Power(Note3)THD e10%V S e6V R L e8X250325mW V S e9V R L e16X500mWA V Voltage Gain V S e6V f e1kHz232630dB10m F from Pins4to1246dBBW Bandwidth V S e6V Pins4and12Open250kHzTHD Total Harmonic Distortion V S e6V R L e8X P OUT e125mW0 23 0%f e1kHz Pins4and12OpenPSRR Power Supply Rejection Ratio V S e6V f e1kHz C BYPASS e10m F3050dBPins4and12Open Referred to OutputR IN Input Resistance1050k XI BIAS Input Bias Current V S e6V Pins5and16Open250nATRANSISTORSV CEO Collector to Emitter I C e1mA I B e01220V Breakdown VoltageV CBO Collector to Base I C e10m A I E e01540V Breakdown VoltageV CIO Collector to Substrate I C e10m A I E e I B e01540V Breakdown VoltageV EBO Emitter to Base I E e10m A I C e06 47 17 8VBreakdown VoltageH FE Static Forward Current I C e10m A100Transfer Ratio(Static Beta)I C e1mA100275I C e10mA275h oe Open-Circuit Output Admittance I C e1mA V CE e5V f e1 0kHz20m mhoV BE Base to Emitter Voltage I E e1mA0 70 85V l V BE1–V BE2l Base to Emitter Voltage Offset I E e1mA15mVV CESAT Collector to Emitter I C e10mA I B e1mA0 150 5VSaturation VoltageC EB Emitter to Base Capacitance V EB e3V1 5pFC CB Collector to Base Capacitance V CB e3V2pFC CI Collector to Substrate V CI e3V3 5pFCapacitanceh fe High Frequency Current Gain I C e10mA V CE e5V f e100MHz1 55 5Note1 For operation in ambient temperatures above25 C the device must be derated based on a150 C maximum junction temperature and a thermal resistance of66 C W junction to ambientNote2 The collector of each transistor is isolated from the substrate by an integral diode Therefore the collector voltage should remain positive with respect to pin17at all timesNote3 If oscillation exists under some load conditions add2 7X and0 05m F series network from pin1to ground2Typical Amplifier Performance Characteristicsvs Supply VoltageQuiescent Supply Current vs Frequency(Referred to the Output)Power Supply Rejection Ratio Swing vs Supply VoltagePeak-to-Peak Output Voltage Voltage Gain vs Frequency Distortion vs Frequency Distortion vs Output PowerPower 4X Load Device Dissipation vs Output Power 8X Load Device Dissipation vs Output Power 16X LoadDevice Dissipation vs Output TL H 7847–33Typical Transistor Performance Characteristicsvs Collector CurrentForward Current Transfer Ratio Collector CurrentSaturation Voltage vs vs Collector CurrentOpen Circuit Output Admittance TL H 7847–4Noise Voltage vs Frequency Noise Current vs Frequencyvs Collector CurrentHigh Frequency Current Gain Current g oe and C oe vs Collector Current g oe and C oe vs Collector FigureContours of Constant Noise TL H 7847–54Application HintsGain ControlTo make the LM389a more versatile amplifier two pins(4 and12)are provided for gain control With pins4and12 open the1 35k X resistor sets the gain at20(26dB) If a capacitor is put from pin4to12 bypassing the1 35k X resistor the gain will go up to200(46dB) If a resistor is placed in series with the capacitor the gain can be set to any value from20to200 A low frequency pole in the gain response is caused by the capacitor working against the external resistor in series with the150X internal resistor If the capacitor is eliminated and a resistor connects pin4to 12 then the output dc level may shift due to the additional dc gain Gain control can also be done by capacitively cou-pling a resistor(or FET)from pin12to groundAdditional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications For example we can compensate poor speaker bass response by fre-quency shaping the feedback path This is done with a se-ries RC from pin1to12(paralleling the internal15k X resis-tor) For6dB effective bass boost R j15k X the lowest value for good stable operation is R e10k X if pin4is open If pins4and12are bypassed then R as low as2k X can be used This restriction is because the amplifier is only compensated for closed-loop gains greater than9V V Input BiasingThe schematic shows that both inputs are biased to ground with a50k X resistor The base current of the input transis-tors is about250nA so the inputs are at about12 5mV when left open If the dc source resistance driving the LM389is higher than250k X it will contribute very little additional offset(about2 5mV at the input 50mV at the output) If the dc source resistance is less than10k X then shorting the unused input to ground will keep the offset low (about2 5mV at the input 50mV at the output) For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground equal in value to the dc source resistance Of course all offset problems are eliminated if the input is ca-pacitively coupledWhen using the LM389with higher gains(bypassing the 1 35k X resistor between pins4and12)it is necessary to bypass the unused input preventing degradation of gain and possible instabilities This is done with a0 1m F capaci-tor or a short to ground depending on the dc source resist-ance of the driven inputSupplies and GroundsThe LM389has excellent supply rejection and does not re-quire a well regulated supply However to eliminate possi-ble high frequency stability problems the supply should be decoupled to ground with a0 1m F capacitor The high cur-rent ground of the output transistor pin18 is brought out separately from small signal ground pin17 If the two ground leads are returned separately to supply then the par-asitic resistance in the power ground lead will not cause stability problems The parasitic resistance in the signal ground can cause stability problems and it should be mini-mized Care should also be taken to insure that the power dissipation does not exceed the maximum dissipation of the package for a given temperature There are two ways to mute the LM389amplifier Shorting pin3to the supply volt-age or shorting pin12to ground will turn the amplifier off without affecting the input signalTransistorsThe three transistors on the LM389are general purpose devices that can be used the same as other small signal transistors As long as the currents and voltages are kept within the absolute maximum limitations and the collectors are never at a negative potential with respect to pin17 there is no limit on the way they can be usedFor example the emitter-base breakdown voltage of7 1V can be used as a zener diode at currents from1m A to 5mA These transistors make good LED driver devices V SAT is only150mV when sinking10mAIn the linear region these transistors have been used in AM and FM radios tape recorders phonographs and many oth-er applications Using the characteristic curves on noise voltage and noise current the level of the collector current can be set to optimize noise performance for a given source impedance Some of the circuits that have been built are shown in Figures1–7 This is by no means a complete list of applications since that is limited only by the designers imaginationTL H 7847–6FIGURE1 AM Radio5Application Hints(Continued)All switches in record modeHead characteristic280mH 300XTL H 7847–7FIGURE2 Tape RecorderTL H 7847–8FIGURE3 Ceramic Phono Amplifier with Tone Controls6Application Hints (Continued)TL H 7847–9FIGURE 4 FM Scanner Noise Squelch Circuitf e10 69R 1C 1TL H 7847–10FIGURE 5 SirenTremolo freq s12q (R a 10k)CTL H 7847–11FIGURE 6 Voltage-Controlled Amplifier or Tremolo Circuit7L M 389L o w V o l t a g e A u d i o P o w e r A m p l i f i e r w i t h N P N T r a n s i s t o r A r r a yApplication Hints (Continued)TL H 7847–12FIGURE 7 Noise Generator Using Zener DiodePhysical Dimensions inches (millimeters)Molded Dual-In-Line Package (N)Order Number LM389N NS Package Number N18ALIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a)are intended for surgical implant support device or system whose failure to perform can into the body or (b)support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injury to the userNational Semiconductor National Semiconductor National Semiconductor National Semiconductor CorporationEuropeHong Kong LtdJapan Ltd1111West Bardin RoadFax (a 49)0-180-530858613th Floor Straight Block Tel 81-043-299-2309。
LM1815说明手册
时,输入端电流将通过2脚被切断。
设备2脚接地可实现微动转换,由于接地技术不良与输入信号地有关,会导致设备运行的不稳定。
2.输入电流限制为了使输入端到地的阻值被确定为零,必须选择适当的电阻。
应用时,若输入电压信号到地不是对称关系,应采用最小的电压峰值。
最小的Rext=Vinmax/3mA,在图2中,Rext=18kΩ,建议使用的最大输入信号电压是±54V。
3.过零检测器的工作LM1815内部有一个过零检测器,在输入信号的反向沿触发一个内部开关。
不象其他过零检测器, LM1815在波形的正向部分输入信号超过阈值时才能被触发。
芯片被触发时电路复位,并且后来的零交叉点被忽略,直到阈值被再次超过。
这个阈值的改变取决于5脚的连接方式,共有三种不同的工作方式。
一是5脚开路。
自适应方式的选定是通过断开5脚。
对输入信号小于±135mV(即270mVp-p)和大于典型的±75mV(即150mVp-p),输入阈值为典型值45mV。
在这些条件下,输入信号正向必须首先通过45mV阈值来支持过零检测器,然后反向通过零点去触发它。
如果信号小于30mV峰值,就不会去触发开关。
输入信号大于±230mV(即460mVp-p)将引起阈值在峰值输入电压80%处跟踪目标。
在7脚峰值检测器电容储存正的输入电压,建立阈值。
输入信号在正向必须超过这个阈值以便支持过零检测器,然后由反向零交叉点决定哪一个能被触发。
随着输入信号幅度的增加,峰值检测器迅速地跟踪,并且随着输入信号减弱,峰值检测器电容电压通过与7脚外部连接的电阻而衰减。
如果输入信号幅度比储存到峰值检测器电容上的电压下降得快,输出信号将消耗,直到电容电压减小到适当的电平。
需要注意的是,由于输入电压被箝位,在3脚观察到的波形和在可变磁阻传感器上观察到的波形并不相同。
同样,在7脚储存的电压和在3脚呈现的峰值电压也不相同。
二是5脚连接到V+。
当5脚被连接到正电源时,输入装备阈值被固定在200mV的最小值。