中考复习总结专题:-实际应用题.doc
中考数学专题实际应用题(解析版)
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)
初三数学中考专题:实际应用题压轴题大全
类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。
中考数学专题复习--应用题行程问题
行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少?
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。
3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。
当他们第二次相遇时距离B地30千米。
问AB两地的距离是多少?
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。
快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。
从两车头相遇到两车的尾部离开,需要几秒钟?
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。
二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。
从开始走到第二次相遇,共用了6小时。
A、B两地相距多少千米?
6.一排解放军从驻地出发去执行任务,每小时行5千米。
离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。
通讯员以每小时10千米的速度回到驻地,取了地图立即返回。
通讯员从驻地出发,几小时可以追上队伍?。
中考数学实际问题总结归纳
中考数学实际问题总结归纳数学是一门应用广泛的学科,它贯穿了我们生活的方方面面。
在中考中,数学实际问题常常成为考试的一部分。
解决实际问题需要我们将数学知识与实际情境相结合,灵活运用数学思维方法。
本文将对中考数学实际问题进行总结归纳,帮助同学们更好地应对考试。
一、问题分类为了更好地总结中考数学实际问题,我们可以将其分为以下几个分类:1.几何问题:涉及到图形的周长、面积、体积等计算。
在解决几何问题时,首先要熟悉各种图形的性质,掌握计算周长、面积、体积的公式,然后将实际问题转化为数学问题。
2.比例问题:涉及到比例关系的问题,如物品的比价、速度的比较等。
解决比例问题需要掌握比例的性质,能够正确地建立比例关系,灵活运用各种比例方法。
3.数据统计问题:涉及到数据的整理、分析和统计。
解决数据统计问题需要学会收集、整理和分析数据,对数据进行合理的处理和解读。
4.函数问题:涉及到函数的概念、性质和应用。
解决函数问题需要掌握函数的定义、图像、运算和应用等知识,能够准确地描述函数关系,灵活运用函数的性质和定理。
二、解题方法针对不同的问题分类,我们可以采用不同的解题方法。
下面以几何问题和比例问题为例,介绍一些解题方法。
1.几何问题解题方法:(1)几何问题中,首先要熟悉各种图形的性质和特点。
比如,对于矩形,要知道其两对边分别相等,对角线相等等性质。
(2)掌握计算几何图形的周长、面积、体积等公式,并能够正确运用公式解决实际问题。
比如,计算矩形的面积就是长度乘以宽度。
(3)在解决实际问题时,要将问题转化为数学问题。
比如,如果题目是求二维图形的面积,我们要将实际问题中的长度或宽度与数学公式中的变量对应起来,建立数学模型。
2.比例问题解题方法:(1)正确理解比例的含义和性质。
比例是指两个或多个量之间的相对关系,可以表示为等比例关系或相等比例关系。
(2)能够正确建立比例关系,并灵活运用各种比例方法。
比如,在求物品的比价时,可以通过设未知数、列方程、解方程等方法解决问题。
中考数学专题:实际应用题带答案
1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。
中考数学专题复习填空实际应用题
中考数学专题复习填空实际应用题学校:___________姓名:___________班级:___________考号:__________评卷人得分一、填空题1.某销售商五月份销售A、B、C三种饮料的数量之比为3:2:4,A、B、C三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A饮料增加的销售占六月份销售总额的115,B、C饮料增加的销售额之比为2:1.六月份A饮料单价上调20%且A饮料的销售额与B饮料的销售额之比为2:3,则A饮料五月份的销售数量与六月份预计的销售数量之比为_____________.2.盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为__________元.3.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.4.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.5.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.6.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.7.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________.(-=100%商品的售价商品的成本价商品的利润率商品的成本价)8.为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是_____(商品的销售利润率=商品的售价-商品的成本价商品的成本价×100%)参考答案:1.910【解析】 【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可 【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x , A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y . 六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m , A 饮料增加的销售占六月份销售总额的115A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3, B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++= ∴=15m xy六月份A 种预计的销售额1315415xy xy xy +⨯=, 六月份预计的销售数量()1041+20%y 3xy x ÷=∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x = 故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键 2.155 【解析】 【分析】设B 盒中蓝牙耳机3a 个,迷你音箱2a 个,列方程求出B 盒中各种设备的数量,再设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x 、y 、z 元,根据题意列出方程组,再整体求出32x y z ++的值即可. 【详解】解:根据题意,设B 盒中蓝牙耳机3a 个,迷你音箱2a 个,优盘的数量为3a+2a=5 a 个,则23132513222a a a ++++++++=,解得,a=1;设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x 、y 、z 元,根据题意列方程组得,23145352245x y z x y z ++=⎧⎨++=⎩①② ∴-∴得,2100x y z ++=③, ∴×3-∴得,32155x y z ++=, 故答案为:155. 【点睛】本题考查了三元一次方程组和一元一次方程的应用,解题关键是找准题目中的等量关系列出方程(组),熟练运用等式的性质进行方程变形,整体求值.3.18【解析】 【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∴7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.4.1230.【解析】【分析】设第一时段统计摸到红、黄、绿球的次数分别为a,b,c,则第二时段统计摸到红、黄、绿球的次数分别为3a,2b,4c,第三时段统计摸到红、黄、绿球的次数分别为a,4b,2c.根据题意得到关于a,b,c方程组,根据a,b,c均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩,即25217251942a b c b c ++=⎧⎨+=⎩,其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∴a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a +60b +40c =150×5+60×4+40×6=1230. 故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可. 【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数. 5.3:20 【解析】 【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x ,依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可. 【详解】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x依题意可得,5919()121640191:3:43164x y x y x y y z x z ⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+= ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①② 由∴得32x y =③ 将∴代入∴得38z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202y z x y y y ==++ 故答案为3:20. 【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键 6.18:19 【解析】 【分析】设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,根据题意列出三元一次方程组,解方程组得到答案. 【详解】解:设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天, 则第五、六车间每天生产的产品数量分別是34x 和83x ,由题意得,6()36322248(24)43x x x m ac x x m bc x m bc ⎧⎪+++=⎪⎪⎛⎫++=⎨ ⎪⎝⎭⎪⎪+⨯+=⎪⎩①②③,2⨯-②③得,3m x =,把3m x =分别代入∴得,92x ac =, 把3m x =分别代入∴得,1922x bc =, 则:18:19a b =,甲、乙两组检验员的人数之比是18:19,故答案为18:19.【点睛】本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.7.8 9【解析】【详解】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:品种类别甲乙A31B12C12由题意可得甲的成本价为:58.5130%=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.8.47【解析】 【分析】根据每袋甲种粗粮的成本是每千克A 种粗粮成本的7.5倍,可得甲的成本,乙的成本;根据乙种袋装粗粮的销售利润率是20%,可得乙的售价,根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%,可得甲的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案. 【详解】设A 的单价为x 元,B 的单价为y 元,C 的单价为z 元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a 袋,乙的销售量为b 袋,由题意,得 A 一袋的成本是7.5x=3x+y+z , 化简,得 y+z=4.5x ;乙一袋的成本是x+2y+2z=x+2(y+z )=x+9x=10x , 乙一袋的售价为10x (1+20%)=12x , 甲一袋的售价为10x . 根据甲乙的利润,得(10x-7.5x )a+20%×10xb=(7.5xa+10xb )×24% 化简,得 2.5a+2b=1.8a+2.4b 0.7a=0.4b 47a b , 故答案为47.【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.。
中考专题复习——实际应用题·最优方案问题(课例及评析)
中考专题复习——实际应用题·最优方案问题(课例及评析)摘要:笔者设计三个活动,通过创设问题情境,让学生先解决问题再联想已学知识,从而很顺畅地过度到今天的教学内容中.通过解答表格信息题,让学生互帮互助,体会合作学习的重要性.通过解答函数图象信息题,和学生亲身感悟构建函数模型,借助数形结合解决方案问题的作用,从而将一节复习课上出数学味,挖掘丰富的数学内涵.关键词:复习探究;函数模型;数形结合一、教学内容及内容分析(一)教学内容本节课通过构建完整的知识网络,巩固已学知识,研究不等式和一次函数的图象和性质在实际问题中的应用,渗透数形结合、函数模型等思想方法,它既是前面所学知识的延伸,也为中考复习做了重要的知识储备,所以,本节课具有承上启下的重要作用.通过“复习—探究—归纳—巩固—反馈”的过程,进一步培养学生的观察能力、分析能力、逻辑推理能力和归纳能力.因此,本节课无论在知识上,还是在对学生能力的培养方面都有着十分重要的意义和作用.1.教学内容的分析本节课是方案选择问题的复习课,着重探究不等式和一次函数的图象和性质在实际问题中应用.在教学中,通过举贴近学生生活的实例,结合一次函数和不等式的实际应用,让学生感知生活中处处有数学,感受生活中的数学美;通过发现问题、提出问题、分析问题和解决问题的教学过程让学生感受数学思想方法和数学模型在解决实际问题中的重要性;通过开展小组合作学习,让学生明白合作的价值.在例题的选取上,注重联系实际,激发学生学习兴趣,让学生经历知识的“再生成”过程,主动用数学知识解决实际问题,同时渗透数学思想方法,落实核心素养,让学生形成属于自己的数学思维和能力.二、教学目标及重难点(一)教学目标1.会用不等式和一次函数的知识解决方案选择问题,体会数形结合和函数模型思想;2.能从不同的角度思考问题,优化解决问题的方法;3.能对解决问题过程的进行反思,总结解决问题的方法.(二)教学重难点:1.重点:应用不等式和一次函数模型解决方案选择问题.2.难点:分析实际问题背景中所包含的变量和对应关系建立函数模型,解决实际问题,从而使选择方案优化.1.教学问题诊断分析九年级的学生思维活跃并且已具备自主探索及归纳的能力,逻辑思维较强.对于授课班级的学生来说,他们总体层次较好,接受能力较强,已经初步具有了应用数形结合和构建函数模型的意识.但从解决实际问题中发现学生在建立数学模型方面还存在一定困难,因此,在本节课的教学中同时要注意培养和提高学生分析问题与解决问题的能力.在教学中我采用先解决问题,再对数学知识和思想方法进行提炼,最后再用所学知识解决问题,为学生搭一个台阶,从而更好地解决这个难点.在设计问题时,我注重挑选与数形结合联系比较紧密的实际问题,让学生主动运用数学知识解决实际问题,通过练习渗透数形结合等数学思想方法,发展学生应用数学的意识,提高学生解决问题的能力.四、教法、学法(一)教法常言道:“教必有法,教无定法”.所以我针对九年级学生的心理特点和认知水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活.因此,本节课的教学,我以学生为主体,教师为主导,让学生积极思维,勇于探索,主动地获取知识.同时,采用了现代教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率.本节课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础.本节课的设计是以新课程标准和教材为依据,采用复习探究式教学.遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性.教学过程中,注重学生探究能力的培养.还课堂给学生,让学生亲身去体验知识的再生成过程,拓展学生的创造性思维.同时,注意加强对学生的启发和引导,鼓励培养学生主动学习的意识.(二)学法学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“复习—探究—归纳—巩固—反馈”的主线进行学习.让学生从活动中去复习、探究、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲自思考、提出问题、解决问题,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建.五、教学过程近三年云南省中考对“最优方案问题”考查情况师:“最优方案问题”是中考的重要考点之一,在中考中占有重要地位,这是近3年云南省中考对“最优方案问题”的考查情况,从表格中可以清晰看出,所占分值较高,考点以“一次函数、二次函数、不等式”的应用为主,题型均为解答题,其中,2017—2018年均为图表信息题,2019年为函数图象信息题.所以,正确审题、识图和剖析表格是解决此类问题的关键.【评析】在本文的教学内容分析中提到过,构建函数模型借助数形结合的数学思想方法解决方案选择问题是初中数学的重要内容,也是中考的热门考点之一,它们又是贯穿数学的关键模型和思想,富有丰富的教学价值.用对比探究的方式教学,可以把数学知识最富有魅力的一面展示给学生,好的方法在对比中脱颖而出,学生适时理解和掌握,提高了学习效率,激发了学生学习的兴趣.整个教学过程中,教师引导在先总结在后,学生积极参与互帮互助,真正做到把课堂还给学生,让学生成为课堂的主人.教学环节以问题串的形式展开,遵循学生螺旋式上升的知识结构,教学内容层层递进,不断深入,引发学生对知识的探索和思考,旧的知识得到了提炼和升华,培养了学生发现问题和解决问题能力.在复习探究的过程中,学生产生了很多独特想法,但是因为缺少提问的机会或积极回答的习惯,这些想法会悬而不决,阻碍学生进一步学习.课后习题训练是必须的,它是巩固知识的有效方法,但它却不是唯一的手段.所以,在课后跟进了解学生的学习情况,相机引导不同层次的学生,才是高效教学、整体推进的关键.4。
2019年中考数学专题目实际应用问题目.doc
课程解读一、学习目标:了解实际应用问题的常见类型,掌握其分析方法和解题思路,能把实际应用问题转化成数学问题。
二、考点分析:实际应用问题是中考的必考内容、重点内容,题型包括选择题、填空题和解答题,综合程度较高。
实际应用问题主要考查学生收集和处理信息的能力以及探究分析问题和解决问题的创新实践能力。
此类问题在中考中所占比例较大,分值一般在20分以上,题目中等偏难。
知识梳理1、实际应用问题按知识内容可分为:代数应用题、几何应用题、函数应用题、概率统计应用题等。
按现实生产和生活中的应用进行分类,则有成本、价格、利润、存款与贷款、运输、航行、管理与决策、农业生产、生物繁殖等。
2、实际应用问题的特点是贴近日常生活,反映市场经济规律,涉及的背景材料十分广泛,这就要求学生学会运用数学知识去观察、分析、概括题目所给的实际问题,将其转化为数学模型来解答。
典型例题知识点一:方程型实际应用问题例1:快乐公司决定按如图所示给出的比例,从甲、乙、丙三个工厂共购买200件同种产品A,已知这三个工厂生产的产品A的优品率如下表所示:(1)快乐公司从甲厂应购买多少件产品A;(2)求快乐公司所购买200件产品A的优品率;(3)你认为快乐公司能否通过调整从三个工厂所购买的产品A的比例,使所购买的200件产品A的优品率上升3%。
若能,请问应从甲厂购买多少件产品A;若不能,请说明理由。
工厂优品率甲80%乙85%丙90%别忘了优等品数也是整数哦!思路分析:1)题意分析:左面表格给出的是各厂的优品率,右面扇形图给出的是从各厂购买产品A的比例。
2)解题思路:难点在第(3)问,先假设优品率能上升3%,再设未知数列方程求解。
但应注意前提条件,即200件产品A中包含甲、乙、丙三个厂的产品。
解答过程:(1)甲厂:200×25%=50。
(2)乙厂:200×40%=80;丙厂:200×35%=70。
优品率:(50×80%+80×85%+70×90%)÷200=0.855=85.5%。
九年级数学中考综合复习: 实际应用题 复习讲义
综合复习.实际应用题&.综合评述:应用题是中考试题的经典题型,为了贯彻新课标中“人人学有价值的数学,人人都能获得必要的数学,不同的学生在数学上得到不同的发展”理念,应用的结构与形式发生了变化,已不再注意计算的难度和解答的技巧,而多以那些时代感强、立意新颖,具有民族的人文气息,极富实际应用价值和德育内涵的生活素材为背景,进行一系列设计创编,形成符合中学生认知水平的新型应用题,这类题取材广泛,涉及的数学知识多,题面有时比较大,不易领会其中的要领,但难度均不大,且计算不复杂。
这类应用题包括数与式的应用、方程(组)与不等式(组)的应用、函数的应用、几何的应用及统计与概率的应用等题型.由于这类题题面的文字材料比较长,所以在解题时,要有耐心,仔细阅读、细心领会,找出其考查的主要内容和主要知识点,然后灵活运用相关的知识和方法,将原题中的实际问题转化为简单的数学模型是解答这类问题的关键,是应用能力的核心。
&.典型例题剖析:§.例1、商场购进某种商品m 件,每件按进价加价30元售出全部商品的65%,然后将售价下降10%,这样每件仍可以获利18元,又售出全部商品的25%.(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润不低于25%,剩余商品的售价应不低于多少元?思路点拨:本题属于方程(组)应用题.题中相等关系为:(1)第一次售价-进价=30元;(2)售价⨯(101-%)-进价18=元.题中不等关系为:总利润率25≥%.根据相等关系和不等关系列出方程或不等式。
解:(1)设该商品的进价为x 元,第一次的售价为y 元,由题意得: ()⎩⎨⎧=--=-18%10130x y x y ,解这个方程组得:⎩⎨⎧==12090y x 即该商品的进价为90元,第一次售价为120元。
(2)设剩余商品的售价为z 元,由题意得:()()00000000259025651902518%6530⨯≥---+⨯+⨯m z m m解这个不等式得:75≥x即剩余商品的售价应不低于75元。
中考复习实际应用题---销售利润问题讲义
实际应用题 -- 销售利润问题销售利润问题中常出现的量有:售价、标价、进价、销量、利润、利润率、折扣等。
涉及的等量关系有:售价=折扣数×10%×标价,利润率=进利价润= 售价进-价进价,总进价进价利润=(销售单价-进货单价)×销售量。
1. (2019 湘潭)湘潭政府工作报告中强调,2019 年着重推进乡村振兴战略,做做优做响湘莲等特色农产品品牌。
小亮调查了一家湘潭特产店A,B 两种湘莲礼盒一个月的销售情况, A 种湘莲礼盒进价72 元/盒,售价120元/盒,B种湘莲礼盒进价40 元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800 元,平均每天的总利润为1280 元。
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,A种湘莲礼盒售价每降 3 元可多卖 1 盒。
若B种湘莲礼盒的售价和销量不娈,当 A 种湘莲礼盒降价多少元/ 盒时,这两种湘莲盒平均每天的总利润最大,最大是多少元?解:(1)设平均每天销售 A 种礼盒为x 盒,B种礼盒为y 盒,则有(120-72)x+(80-40)y=1280,120x+80y=2800,解得x=10,Y=20.故该店平均每天销售 A 种礼盒为10盒,B种礼盒为20 盒。
(3)设 A 种湘莲盒降价m 元/盒,利润为W 元,依题意得,总利润W=(120-m-72)(10+m)+800,311化简得W=- 3 m123+6m+1280=-3(m-9)2+1307.1∵ a=- <0,3∴当m=9 时,取得最大值为1307,故当 A 湘莲礼盒降价9 元/ 盒时,这两种湘莲礼盒平均每天的总利润最大,最大值为1307 元。
2. 某文具店购进一批纪念册,每本进价为20 元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28 元,在销售过程中发现该纪念册每周的销售量y 本与每本纪念册的售价x 元之间满足一次函数关系:当销售单价为22 元时,销售量为35 本;当销售单价为24 元时,销售量为32 本。
中考复习 实际应用题---销售利润问题 讲义
实际应用题------- 销售利润问题销售利润问题中常出现的量有:售价、标价、进价、销量、利润、利润率、折扣等。
涉及的等量关系有:售价=折扣数×10%×标价,利润率=进价售价-进价进价利润=,总利润=(销售单价-进货单价)×销售量。
1.(2019湘潭)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做做优做响湘莲等特色农产品品牌。
小亮调查了一家湘潭特产店A ,B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B 种湘莲礼盒进价40元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元。
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,A 种湘莲礼盒售价每降3元可多卖1盒。
若B 种湘莲礼盒的售价和销量不娈,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲盒平均每天的总利润最大,最大是多少元?解:(1)设平均每天销售A 种礼盒为x 盒,B 种礼盒为y 盒, 则有 (120-72)x+(80-40)y=1280,120x+80y=2800,解得 x=10,Y=20.故该店平均每天销售A 种礼盒为10盒,B 种礼盒为20盒。
(3)设A 种湘莲盒降价m 元/盒,利润为W 元,依题意得,总利润W=(120-m-72)(10+3m )+800, 化简得W=-31m 2+6m+1280=-31(m-9)2+1307. ∵a=-31<0, ∴当m=9时,取得最大值为1307,故当A 湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大值为1307元。
2.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y 本与每本纪念册的售价x 元之间满足一次函数关系:当销售单价为22元时,销售量为35本;当销售单价为24元时,销售量为32本。
中考数学复习讲义课件 专题6 实际应用问题
(1)若制作三种产品共计需要 25 小时,所获利润为 450 元,求制作展板、宣 传册和横幅的数量; [分析] 设制作展板数量为 x 件,横幅数量为 y 件,则宣传册数量为 5x 件, 根据题意列出二元一次方程组求解即可;
解:设制作展板的数量为 x 件,横幅的数量为 y 件,则制作宣传册的数量为
根据题意,得12x00=2×2x9-0030.解得 x=60.
经检验,x=60 是原方程的解,且符合题意.∴2x-30=90. 答:足球的单价是 60 元,篮球的单价是 90 元.
(2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球和 篮球的总费用不超过 15500 元,学校最多可以购买多少个篮球? [分析] 设学校可以购买 m 个篮球,则可以购买(200-m)个足球,利用总价 =单价×数量,结合购买足球和篮球的总费用不超过 15500 元,即可得出 关于 m 的一元一次不等式,解之取其中的最大整数值即可得出结论.
由题意,得 60m+60m+50(90+m)+70(90+m)≤32000. 解得 m≤8813. ∵m 为正整数, ∴m 可以取的最大值为 88. 答:这次最多购买《西游记》88 本.
2.(2021·佳木斯)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大 粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,
[分析] 先由 DE 的坡度计算 DC 的长度,根据矩形性质得 AB 长度,再由 AF 的坡度得出 BF 的长度,根据勾股定理计算出 AF 的长度. 解:∵DE=10m,其坡度为 i1=1∶ 3, ∴在 Rt△DCE 中,DE= DC2+CE2=2DC=10, ∴DC=5. ∵四边形 ABCD 为矩形,∴AB=CD=5. ∵斜坡 AF 的坡度为 i2=1∶4,∴ABBF=14.
中考复习专题:-实际应用题
中考复习专题:实际应用题类型一一次函数图象型问题1.某游泳池一天要经过“注水—保持—排水”三个过程,如图,图中折线表示的是游泳池在一天某一时间段内池中水量y(m3)与时间x(min)之间的关系.(1)求排水阶段y与x之间的函数关系式,并写出x的取值范围;(2)求水量不超过最大水量的一半值的时间一共有多少分钟.第1题图2. (2017衢州8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.第2题图3. (2017吉林省卷8分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28 s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为________cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.第3题图4. 如图①所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶,图②是客车、货车离C站的距离y1(千米),y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距________千米;(2)求两小时后,货车离C站的距离y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?第4题图5. (2017乌鲁木齐10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地.两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.第5题图答案1. 解:(1)设排水阶段y 与x 之间的函数关系式是y =kx +b ,将(285,1500),(300,0)代入得,28515003000k b k b +=⎧⎨+=⎩,解得-10030000k b =⎧⎨=⎩, 即排水阶段y 与x 之间的函数关系式是y =-100x +30000,当y =2000时,2000=-100x +30000,解得x =280,∴x 的取值范围是280≤x ≤300;(2)设注水阶段y 与x 的函数关系式为y =mx ,将(30,1500)代入得,30m =1500,解得m =50,∴注水阶段y 与x 的函数关系式为y =50x ,当y =1000时,1000=50x ,得x =20,将y =1000代入y =-100x +30000,得x =290,∴水量不超过最大水量的一半值的时间一共有20+(300-290)=30(分钟).2. 解:(1)由题意可知y 1=k 1x +80,且图象过点(1,95),则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),由题意易得y 2=30x (x ≥0);(2)当y 1=y 2时,解得x =163, 当y 1>y 2时,解得x <163, 当y 1<y 2时,解得x >163. ∴当租车时间为163小时,选择甲、乙公司一样合算; 当租车时间小于163小时,选择乙公司合算; 当租车时间大于163小时,选择甲公司合算. 3. 解:(1)10;【解法提示】由题意可得12秒时,水槽内水面的高度为10 cm ,12秒后水槽内高度变化趋势改变,故正方体的棱长为10 cm ;(2)设线段AB 对应的函数解析式为:y =kx +b ,∵图象过A (12,10),B (28,20),∴12102820k b k b +=⎧⎨+=⎩,解得5852k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴线段AB 对应的函数解析式为:y =58x +52(12≤x ≤28); (3)4 s.【解法提示】∵没有正方体时,水面上升10 cm ,所用时间为16 s ,∴没有正方体的圆柱形水槽,注满需要用时间32 s ,∴取出正方体铁块后,已经注水28 s ,且注水速度一定,故还需要4 s 才能注满圆柱形水槽,∴t =4 s.4. 解:(1)420;(2)由题图可知货车的速度为60÷2=30(千米/小时),货车到达A 地一共需要2+360÷30=14(小时).设y 2=kx +b ,代入点(2,0),(14,360)得 21014360k b k b +=⎧⎨+=⎩,解得30-60k b =⎧⎨=⎩,所以y 2=30x -60; (3)设y 1=mx +n ,代入点(6,0),(0,360)得60360m n n +=⎧⎨=⎩,解得60360m n =-⎧⎨=⎩.所以y 1=-60x +360. 由y 1=y 2得30x -60=-60x +360,解得x =143.答:客、货两车经过143小时相遇. 5. 解:(1)由题图得,甲乙两地相距600千米;(2)由题图得,慢车总用时10小时,∴慢车速度为60010=60(千米/小时), 设快车速度为x 千米/小时.由题图得,60×4+4x =600,解得x =90(千米/小时),∴快车速度90千米/小时,慢车速度60(千米/小时);(3)由(2)得,60090=203(小时), 60×203=400(千米),时间为203小时时快车已到达,此时慢车走了400千米, ∴两车相遇后y 与x 之间的函数关系式为20150600(4)32060(10)3y x x y x x ⎧=-⎪⎪⎨⎪=⎪⎩≤<≤≤; (4)设出发x 小时后,两车相距300千米,①当两车相遇前,由题意得:60x +90x =600-300,解得x =2;②当两车相遇后,由题意得:60x +90x =600+300,解得x =6,即两车行驶6小时或2小时后,两车相距300千米.类型二方案选取型问题1. 现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?2. (2017焦作模拟)某会堂举行专场音乐会,出售的门票分为成人票和学生票,已知购买2张成人票和1张学生票共需45元,购买1张成人票和2张学生票共需30元.(1)求成人票和学生票的单价分别是多少?(2)暑假期间,为了丰富广大师生的业余文化生活,该会堂制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y与x的函数关系式;(3)在(2)的条件下,请计算并确定出最节省费用的购票方案.3.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.4.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话时间为x分钟,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x的关系式;(2) 某人估计一个月内通话300分钟,应选择哪种移动通讯合算些.(3)一个月通话为多少分钟时,哪种业务更优惠?5. 为奖励在社会实践活动中表现优异的同学,某校准备购买一批文具袋和水性笔作为奖品.已知文具袋的单价是水性笔单价的5倍,购买5支水性笔和3个文具袋共需60元.(1)求文具袋和水性笔的单价;(2)学校准备购买文具袋20个,水性笔若干支,文具店给出两种优惠方案:A:购买一个文具袋,赠送1支水性笔;B:购买水性笔10支以上,超出10支的部分按原价的八折优惠,文具袋不打折.①设购买水性笔x支,选择方案A总费用为y1元,选择方案B总费用为y2元,分别求出y1,y2与x的函数关系式;②若学校购买水性笔超过10支,选择哪种方案更合算?请说明理由.参考答案1. 解:(1)甲快递公司快递该物品的费用y 1(元)与x (千克)之间的函数关系式为: 当0<x ≤1时,y 1=22x ;当x >1时,y 1=22+15(x -1)=15x +7.∴y 1=22(01)157(1)x x x x ⎧⎨+⎩<≤>, 乙快递公司快递该物品的费用y 2(元)与x (千克)之间的函数关系式为y 2=16x +3;(2)若0<x ≤1,当22x >16x +3时,12<x ≤1; 当22x =16x +3时,x =12; 当22x <16x +3时,0<x <12; 若x >1,当15x +7>16x +3时,1<x <4;当15x +7=16x +3时,x =4;当15x +7<16x +3时,x >4, 因此,当12<x <4时,选乙快递公司省钱; 当x =12或x =4时,选甲、乙两家快递公司快递费一样多; 当0<x <12或x >4时,选甲快递公司省钱. 2. 解:(1)设成人票的单价是a 元,学生票的单价是b 元, 根据题意得245230a b a b +=⎧⎨+=⎩,解得205ab=⎧⎨=⎩,则成人票的单价是20元,学生票的单价是5元;(2)方案①:y1=20×4+(x-4)×5=5x+60(x≥4),方案②:y2=(5x+20×4)×90%=4.5x+72(x≥4);(3)由(2)得y1-y2=0.5x-12(x≥4),①当y1-y2=0,即0.5x-12=0时,解得x=24,∴当学生人数为24时,两种优惠方案付款一样多.②当y1-y2<0,即0.5x-12<0时,解得x<24,∴当4≤x<24时,优惠方案①付款较少.③当y1-y2>0,即0.5x-12>0时,解得x>24,当x>24时,优惠方案②付款较少.3.解:(1)当1≤x≤8时,每平方米的售价为y=4000-(8-x)×30=30x+3760(元/平方米);当9≤x≤23时,每平方米的售价为y=4000+(x-8)×50=50x+3600(元/平方米).∴y=303760(18) 503600(923) x xx x+⎧⎨+⎩≤≤≤≤.(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),设所交房款为W元.按照方案一所交房款为:W1=4400×120×(1-8%)-a=485760-a(元),按照方案二所交房款为:W2=4400×120×(1-10%)=475200(元),当W1>W2时,即485760-a>475200,解得:0<a<10560;当W1=W2时,即a=10560;当W1<W2时,即485760-a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a=10560元时两种方案一样;当a>10560时,方案一合算.4.解:(1)根据题意得:y1=50+0.4x;y2=0.6x.(2)将x=300代入到y1=50+0.4x,得y1=170,将x=300代入到y2=0.6x,得y2=180.∵170<180,∴选择全球通业务更优惠.(3)当y1>y2时,有50+0.4x>0.6x,解得:x<250;当y1=y2时,有50+0.4x=0.6x,x=250;当y1<y2时,有50+0.4x<0.6x,解得:x>250,答:当一个月通话时间小于250分钟时,选择“神州行”业务更优惠;当一个月通话时间为250分钟时,选择“全球通”和“神州行”业务费用相同;当一个月通话时间大于250分钟时,选择“全球通”业务更优惠.5.解:(1)设水性笔的单价是x元,则文具袋的单价是5x元.由题意得5x+3×5x=60,解得x=3,则5x=15,所以水性笔的单价是3元,文具袋的单价是15元;(2)①根据题意,得y1=20×15+3×(x-20)=3x+240,当0≤x≤10时,y2=3x+300;当x>10时,y2=20×15+3×10+3×0.8(x-10)=2.4x+306.②当y1>y2时,可知3x+240>2.4x+306,解得x>110,所以当购买数量超过110支时,选择方案B更合算;当y1=y2时,可知3x+240=2.4x+306,解得x=110,所以当购买数量为110支时,选择方案A、B均可;当y1<y2时,可知3x+240<2.4x+306,解得x<110,所以当购买数量超过10支而不足110支时,选择方案A更合算.类型三方案设计型问题1.我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A 种树苗5棵,B种树苗6棵,则需要800元.(1)求购买A,B两种树苗每棵各需要多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)若种好一棵A种树苗应付工钱30元,种好一棵B种树苗应付工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?2. 做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获得的总利润最大?最大的总利润是多少?3. (2017潍坊8分)某蔬菜加工公司先后两批次收购蒜薹(tɑi)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种;粗加工每吨利润400元.精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.某校在去年购买A,B两种足球,费用分别为2400和2000元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?5. (2017遂宁9分)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨;(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派车方案;(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算.6. 巴基斯坦瓜达尔港成为我国“一带一路”倡议上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m 艘,那么如何安排装运,可使集团获得最大利润?最大利润为多少?7. (2016葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?答案1. 解:(1)设购买A 种树苗每棵需要x 元,B 种树苗每棵需要y 元,由题意得8395056800x y x y +=⎧⎨+=⎩,解得10050x y =⎧⎨=⎩. 答:购买A 种树苗每棵需要100元,B 种树苗每棵需要50元 .(2)设购买A 种树苗m 棵,则购买B 种树苗(100-m )棵,由题意得100m +50(100-m )≤7650,解得m ≤53.又∵m ≥50,∴50≤m ≤53, 即有四种购买方案:方案一:购买A 种树苗50棵,B 种树苗50棵;方案二:购买A 种树苗51棵,B 种树苗49棵;方案三:购买A种树苗52棵,B种树苗48棵;方案四:购买A种树苗53棵,B种树苗47棵.(3)方案一所付的种植工钱为50×30+50×20=2500(元);方案二所付的种植工钱为51×30+49×20=2510(元);方案三所付的种植工钱为52×30+48×20=2520(元);方案四所付的种植工钱为53×30+47×20=2530(元).∵2500<2510<2520<2530,∴方案一购买A种树苗50棵,B种树苗50棵所付的种植工钱最少,最少工钱是2500元.2.解:(1)设A款式服装分配到甲店铺为x件,则分配到乙店铺为(36-x)件;B款式分配到甲店铺为(30-x)件,分配到乙店铺为(x-6)件.根据题意得30x+35×(30-x)=26×(36-x)+36×(x-6),解得x=22.∴36-x=14(件),30-x=8(件),x-6=16(件),故A款式服装分配到甲店铺为22件,分配到乙店铺为14件,B款式分配到甲店铺为8件,分配到乙店铺为16件时,能使两个店铺在销售完这批服装后所获利润相同;(2)设总利润为w元,根据题意得:30x+35×(30-x)≥950,解得x≤20.由题意得6≤x≤20,w=30x+35×(30-x)+26×(36-x)+36×(x-6)=5x+1770,∵k=5>0,∴w随x的增大而增大,∴当x=20时,w有最大值,最大值为5×20+1770=1870.∴A款式服装分配给甲、乙两店铺分别为20件和16件,B款式服装分配给甲、乙两店铺分别为10件和14件,王老板获得利润最大,最大的总利润为1870元.3.解:(1)设第一批次收购x吨蒜薹,则第二批次收购(100-x)吨蒜薹,由题意得,4000x+1000(100-x)=160000,解得,x=20,∴100-x=80,∴第一批次收购20吨蒜薹,第二批次收购80吨蒜薹;(2)设精加工数量为y吨,则粗加工数量为(100-y)吨,∵精加工数量不多于粗加工数量的3倍,∴y≤3(100-y),解得y≤75,设获得的利润为w元,由题意可得w与y之间的关系式为w=1000y+400(100-y),整理得w=600y+40000,∵w是y的一次函数,且k=600>0,∴w随y的增大而增大,∴当y取最大值时,w最大,∵y≤75,∴当y=75时,w最大,最大值w=600×75+40000=85000.综上所述,精加工数量为75吨时,可获得最大利润,最大利润是85000元.4.解:(1)设A种足球单价为x元,则B种足球单价为(x+80)元,根据题意,得2400x =2×2000+80x,解得x=120,经检验:x=120是原分式方程的解.答:A种足球单价为120元,B种足球单价为200元.(2)设再次购买A种足球x个,则B种足球为(18-x)个.根据题意,得W=120x+200(18-x)=-80x+3600,∵18-x≥2x,∴x≤6,∵-80<0,∴W随x的增大而减小,∴当x=6时,W最小,此时18-x=12,答:本次购买A种足球6个,B种足球12个,才能使购买费用W最少.5. 解:(1)设一辆大型渣土运输车每次运土方x吨,一辆小型渣土运输车每次运土方y吨,根据题意,得153870x yx y+=⎧⎨+=⎩,解得105xy=⎧⎨=⎩,答:一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土为5吨;(2)设派出小型渣土运输车m辆,则派出大型渣土运输车为(20-m)辆,根据题意,得510(20)1487m mm+-⎧⎨⎩≥≥,解得7≤m≤1025,∵m取整数,∴m=7,8,9,10.∴有如下四种方案:①派出小型渣土运输车7辆,派出大型渣土运输车为13辆;②派出小型渣土运输车8辆,派出大型渣土运输车为12辆;③派出小型渣土运输车9辆,派出大型渣土运输车为11辆;④派出小型渣土运输车10辆,派出大型渣土运输车为10辆;(3)设总费用为W元,派出小型渣土运输车m辆,则派出大型渣土运输车为(20-m)辆,根据题意得W=300m+500(20-m)=-200m+10000,∵k=-200<0,∴W随m的增大而减小,∴当m=10时,W最小,最小值为8000元.故该公司选择方案为小型渣土运输车10辆,大型渣土运输车10辆.6.解:(1)设用乙、丙两种型号的货轮分别为x艘、y艘,则857.555x yx y+=⎧⎨+=⎩,解得26xy=⎧⎨=⎩,答:用2艘乙种型号的货轮,6艘丙种型号的货轮;(2)设乙型货轮有n艘,则甲型有20-(m+n)艘,根据题意得10[20-(m+n)]+5n+7.5m=180,解得n=4-0.5m,∴20-(m+n)=16-0.5m,即甲型货轮有(16-0.5m)艘,乙型货轮有(4-0.5m)艘,由题意得4-0.5m+m≤16-0.5m,解得m≤12,∵m,16-0.5m,4-0.5m均为正整数,∴m=2,4,6,设集团的总利润为w,则w=10×5(16-0.5m)+5×3.6(4-0.5m)+7.5×4m=-4m+872,∵-4<0,∴w随m的增大而减小,故当m=2时,w最大,最大值为864,此时利润为864×100×10000=8.64(亿元).此时16-0.5×2=15,4-0.5×2=3.答:甲型货轮有15艘,乙型货轮有3艘,丙型货轮有2艘时,可获得最大利润,最大利润为8.64亿元.7. 解:(1)y=-2x+80(20≤x≤28);【解法提示】设一次函数的表达式为:y=kx+b(k≠0),将点(22,36)、点(24,32)分别代入求得:y=-2x+80;(2)由题意知,(x-20)(-2x+80)=150,整理得x2-60x+875=0,(x-25)(x-35)=0,解得x1=25,x2=35(不合题意,舍去),答:每本纪念册的销售单价是25元;(3)由题意知,w=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,∵a=-2<0,∴二次函数图象开口向下,∴当x<30时,w随x的增大而增大,∵20≤x≤28,∴当x=28时,w最大=-2×(28-30)2+200=192(元),答:当纪念册销售单价定为28元时,所获利润最大,最大利润为192元.。
2024学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)(含答案)
2024 学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)1.春天来了,学校计划用两种花卉对校园进行美化.已知用600元购买A 种花卉与用900元购买B 种花卉的数量相等,且B 种花卉每盆的价格比A 种花卉每盆的价格多0.5元.(1)求A ,B 两种花卉每盆的价格各是多少元;(2)学校计划购买A ,B 两种花卉共6000盆,其中A 种花卉的数量不超过B 种花卉数量的13,请你给出购买这批花卉费用最低的方案,并求出最低费用. 2.某市的A 县和B 县春季育苗,急需化肥分别为90t 和60t ,该市的C 县和D 县分别储存化肥100t 和50t ,全部调配给A 县和B 县.已知从C 县运化肥到A 县的运费为35元/t ,从C 县运化肥到B 县的运费为30元/t ,从D 县运化肥到A 县的运费为40元/t ,从D 县运化肥到B 县的运费为45元/t .(1)设C 县运到A 县的化肥为x t ,求总运费W (单位:元)关于x (单位:t )的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.3.为加强学生的劳动教育,某校准备开展以“种下希望,共建美好家园”为主题的义务植树活动. 经了解,购买2棵枣树和3棵石榴树共需44元;购买5棵枣树和6棵石榴树共需98元,该校决定购买(0)m m 棵枣树和50棵石榴树.(1)求枣树和石榴树的单价;(2)实际购买时,商家给出了如下优惠方案:方案一:均按原价的九折销售;方案二:如果购买的枣树不超过50棵,按原价销售. 如果购买的枣树超过50棵,则超出的部分按原价的八折销售,石榴树始终按原价销售.分别求出两种方案的费用1W ,2W 关于m 的函数解析式.4.“一骑红尘妃子笑,无人知是荔枝来”,夏季是盛产荔枝的季节,某县城为尽快打开市场,对本地的荔枝品种妃子笑进行线上和线下销售相结合的模式,具体费用标准如下:线上销售模式:不超过6千克时,按原价出售,超过6千克时,超出部分每千克再让利3.5元;线下销售模式:一律九折出售.购买妃子笑x 千克,所需费用为y 元,y 与x 之间的函数关系如图所示.根据以上信息回答下列问题:(1)请问妃子笑的标价为多少?(2)请求出线上销售模式所需费用y关于x的函数解析式;(3)若想购买妃子笑40千克,请问选择哪种模式购买最省钱?5.某公司为改善办公条件,计划采购一批A,B两种型号的电脑,已知1台A型电脑比1台B型电脑的便宜1200元;采购4台A型电脑与采购3台B型电脑的费用一样多.(1)求A型电脑和B型电脑每台各需多少元;(2)若公司计划采购A、B两种型号电脑共50台,且A型电脑的台数不超过B型电脑的4倍,两种型号电脑的采购总费用不超过200000元,该公司共有几种采购方案?哪种采购方案可使总费用最低,最低费用是多少元?6.希望艺术团准备采购甲,乙两种道具,某经销商知道了活动的方案后,主动联系希望艺术团,对甲种道具的出售价格根据购买量给予优惠,对乙种道具按25元/件的价格出售.设希望艺术团购买甲种道具x件,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若希望艺术团计划一次性购买甲,乙两种道具共100件,且甲种道具不少于40件,但又不超过60件.如何分配甲,乙两种道具的购买量,才能使希望艺术团付款总金额w(元)最少?(3)若甲、乙两种道具的进货价格分别为22元/件和18元/件.经销商按(2)中甲,乙两种道具购买量的分配比例卖出两种道具共a件,且销售完a件道具获得的利润不少于1050元,求a的最小值.7.我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买A,B两种奖品.已知2件A种奖品和3件B种奖品共需41元,5件A种奖品和2件B种奖品共需53元.(1)这两种奖品的单价各是多少元?(2)学校准备购进这两种奖品共90件,且B种奖品的数量不少于A种奖品数量的13,请设计出最省钱的购买方案,并求出最少费用.8.我市是福建省茶叶的主要产区,清明过后就是春茶的采摘季节.已知熟练采茶工人每天采茶的数量是新手采茶工人的3倍,每个熟练采茶工人采摘600斤鲜叶比新手采茶工人采摘450斤鲜叶少用25天.(1)求熟练采茶工人和新手采茶工人一天分别能采摘鲜叶的斤数;(2)某茶厂计划一天采摘鲜叶600斤,该茶厂有20名熟练采茶工人和15名新手采茶工人,按点工制度付给熟练采茶工人每人每天的工资为300元,付给新手采茶工人每人每天的工资为80元,应如何安排熟练采茶工人和新手采茶工人能使费用最少?9.为了方便老师工作,某中学决定购进一批教学用具,在购买教学用具时,该校从甲、乙、丙三家商场了解到同一种型号教学用具的优惠条件如下:甲:定价为90元,超过5个,超过的部分每个优惠20%;乙:定价为90元,每个优惠10% ;丙:购会员卡100元,每个教学用具70元.(1)设该校购买x个教学用具,选择甲商场时,所需费用为y1元;选择乙商场时,所需费用为y2元;选择丙商场时,所需费用为y3元;请分别求出y1,y2,y3与x之间的函数关系式;(2)当购买教学用具数量大于多少件时,y2>y3?10.某年级430名师生秋游,计划租用8辆客车,现有甲、乙两种型号客车,它们的载客量和租金如下表:(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?11.目前,全国各地都在积极开展新冠肺炎疫苗接种工作,某生物公司接到批量生产疫苗任务,要求5天内加工完成22万支疫苗,该公司安排甲,乙两车间共同完成加工任务,乙车间加工过程中停工一段时间维修设备,然后提高效率继续加工,直到与甲车间同时完成加工任务为止,设甲,乙两车间各自生产疫苗y (万支)与甲车间加工时间x (天)之间的关系如图1所示;两车间未生产疫苗w (万支)与甲车间加工时间x (天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天生产疫苗 万支,第一天甲、乙两车间共生产疫苗 万支,=a ;(2)当3x =时,求甲、乙车间生产的疫苗数(万支)之差12y y -;(3)若5.5万支疫苗恰好装满一辆货车,那么加工多长时间装满第一辆货车?再加工多长时间恰好装满第三辆货车?12.某校准备在健康大药房购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元? 13.某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.方案一:买一件夹克送一件衬衣方案二:夹克和衬衣均按定价的80%付款现有顾客要到该商场购买夹克30件,衬衣x件(x>30)(1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元;(2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?(3)当x=40时,哪种方案更省钱?请说明理由.14.灵宝寺河山被誉为“亚洲第一高山果园”,海拔800﹣1200米,土质肥沃,雨量充沛,日照充足,昼夜温差大,气候条件得天独厚,是苹果的最佳适生地.寺河山苹果,是三门峡市灵宝苹果的龙头品牌,素有“天下苹果属灵宝,灵宝苹果属寺河”之说.在苹果收获季节,为了保证苹果的新鲜度,需要将苹果运送至冷库进行保存,现有A,B两个果园,若A果园有苹果120吨,B果园有苹果60吨.现将A,B两个果园的苹果全部运往C,D两个冷库进行冷藏保存,已知C仓库可储存100吨,D仓库可储存80吨,A,B 两个果园到C,D两个冷藏仓库的运费如下表:设从A果园运往C仓库的苹果重量为x吨.(1)用含x(吨)的代数式表示总运费W(元),并写出自变量x的取值范围;(2)如何进行运送才能使总运费最少?求出最低总运费.15.学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程.在建设美丽中国的活动中,某学校计划组织全校1450名师生到相关部门规划的林区植树,经过研究,决定在当地租车公司租用62辆A、B两种型号的客车作为交通工具.下表是租车公司提供给学校有关A、B两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数;(1)设租用A型号客车x辆,租车总费用为y元,求y与x之间的函数表达式,并通过计算求出x的取值范围;(2)若要使租车总费用不超过13460元,则共有几种租车方案?哪种租车方案最省钱?参考答案:1.(1)A 种花卉每盆1元,B 种花卉每盆1.5元(2)当购买A 种花卉1500盆,B 种花卉4500盆时购买这批花卉总费用最低,最低费用为8250元.2.(1)W =10x +4800(40≤x ≤90)(2)最低总运费为5200元,此时的运送方案是:C 县的100t 化肥40t 运往A 县,60t 运往B 县,D 县的50t 化肥全部运往A 县3.(1)枣树的单价为10元,石榴树的单价为8元(2)19360W m =+,210400(050),8500(50).m m W m m +<≤⎧=⎨+>⎩4.(1)25元/千克(2)()()250621.5216x x y x x ⎧≤<⎪=⎨+>⎪⎩(3)线上购买5.(1)购买1台A 型电脑需要3600元,购买1台B 型电脑需要4800元.(2)该公司共有7种采购方案. 购买A 型电脑40台,B 型电脑10台方案可使总费用最低,最低费用是192000元6.(1)30(050)24300(50)x x y x x ≤≤⎧=⎨+>⎩ (2)购进甲道具40件,乙道具60件时,才能使希望艺术团付款总金额w (元)最少;(3)a 的最小值为2107.(1)A :7元,B :9元(2)购进A 种奖品67件,购进B 种奖品23件;676元8.(1)每名熟练的采茶工人一天能采摘鲜叶30斤,每名新手采茶工人一天能采摘鲜叶10斤(2)茶厂应安排15名熟练的采茶工人采摘鲜叶,15名新手采茶工人采摘鲜叶能使得费用最少9.(1)190(05)7290(5)x x y x x <≤⎧=⎨+>⎩;290(110%)81y x x =⨯-=;370100y x =+ (2)1010.(1)y =100x +3600(2)当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是4100元11.(1)2,3.5,1.5(2)1(3)2天,2天12.(1)每盒口罩和每盒水银体温计的价格各是200元,50元(2)5m(3)当m ≤4时,则w=450m ;当m >4时,w =360m +360,需要购买口罩20盒,水银体温计100盒,所需总费用为7560元13.(1)12501500402400y x y x =+⎧⎨=+⎩;(2)当90x =时12y y =;(3)当x =40时,方案一更省钱. 14.(1)43400W x =+,40100x ≤≤;(2)运送方案为A 果园将40吨苹果运往C 仓库,80吨运往D 仓库,B 果园的60吨苹果全部运往C 仓库,此时总运费最低,最低是3560元 15.(1)y =100x +11160(21≤x ≤62且x 为整数);(2)3种,租用A 型号客车21辆。
中考数学专题:实际应用题带答案
中考数学专题:实际应用题带答案购进甲型书柜,每个书柜可放置20本书,每个书柜的成本为200元;购进乙型书柜,每个书柜可放置30本书,每个书柜的成本为300元。
现有预算元,需要购进的书柜总数不能超过200个。
1)如何购进书柜,才能最大化放置的图书数量?2)如果要求购进的书柜数量必须要超过100个,应该如何购进书柜,才能最大化放置的图书数量?3)如果要求购进的书柜数量必须要超过100个,并且每个书柜必须要放置至少25本书,应该如何购进书柜,才能最大化放置的图书数量?树苗的总价最低,应该购进多少捆A种树苗和多少捆B 种树苗?1) 学校需要购买甲种书柜3个、乙种书柜2个,共需1020元;需要购买甲种书柜4个、乙种书柜3个,共需1440元。
求甲、乙两种书柜每个的价格分别是多少元?2) 学校需要购买共20个书柜,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供4320元资金。
请设计几种购买方案供学校选择。
1) 某汽车零部件生产企业从2016年到2018年的年平均增长率为12%。
若2019年保持前两年的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?2) 某县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担。
若国家财政拨付资金不超过万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元。
请问共有哪几种改扩建方案?1) 当售价为55元/千克时,每月销售水果为450千克。
2) 每千克水果售价为17.5元时,月利润为8750元。
3) 获得的月利润最大的每千克水果售价为52元。
1) 这一批树苗平均每棵的价格为615元。
2) 应该购进3500棵A种树苗和2000捆B种树苗。
树苗的费用最低,应该购买多少A种树苗和B种树苗才能达到最低费用?并求出最低费用。
在俄罗斯世界杯足球赛期间,一家商店销售了一批足球纪念册,每本进价40元。
初三实际问题知识点归纳总结
初三实际问题知识点归纳总结在初三阶段,学生们开始接触到一系列实际问题,并逐渐培养了解决问题的能力。
本文将对初三阶段常见的实际问题知识点进行归纳总结。
一、数学问题知识点1. 分数运算:包括分数的加减乘除、分数与整数的运算、分数化简等。
2. 平方根与立方根:涉及到简化根式、近似计算等。
3. 百分数与比例:了解百分数的概念、百分数的相互转化、比例关系与比例尺的应用等。
4. 数据统计:包括图表的读取与解读、平均值、中位数、众数等统计概念的掌握。
5. 代数方程:涉及到一元一次方程、一元一次不等式等的解决方法。
6. 几何问题:对于平面图形的性质、直角三角形、相似形等基本概念的理解。
7. 问题解决:思维逻辑的培养,将数学知识应用于实际问题的解决。
二、物理问题知识点1. 运动与力学:了解速度、加速度、力的概念和计算方法。
2. 压强与浮力:理解压力与压强的关系,以及浮力的规律。
3. 热学与能量:热与温度的概念,热传递方式和转换能量等基础知识的掌握。
4. 光学:了解光的传播方式和反射、折射、透射等基本规律。
5. 电学:电流、电压、电阻等概念的理解,以及电路的组成和基本原理。
三、化学问题知识点1. 物质与能量:理解物质的组成、物质的性质与变化等。
2. 元素与化合物:学习元素的周期表、元素符号与化合物的组成等。
3. 酸碱与盐:理解酸碱与PH值的关系,以及盐的生成与性质等基础知识。
4. 氧化与还原:了解氧化与还原反应的概念和规律。
5. 反应速率与平衡:学习化学反应速率的影响因素和平衡反应的条件等。
四、生物问题知识点1. 细胞与生命:细胞的基本结构和生命现象的探究。
2. 遗传与进化:理解基因的遗传规律和进化理论。
3. 生态与环境:了解生态系统、生态关系和环境保护等。
4. 人体与健康:学习人体器官、常见疾病、预防保健等知识。
五、英语问题知识点1. 语法与词汇:了解基本的语法规则,掌握日常生活中常用的词汇。
2. 阅读与理解:培养阅读理解能力,理解文章主旨和细节。
中考复习实际应用题复习学生版
对于一次函数y=kx+b(k≠0)
当k>0时,y随增大而增大,x取最小值时y得最小值,x取最大值时y得最大值;
当k<0时,y随增大而减小,x取最小值时y得最大值,x取最大值时y得最小值。
因此在一次函数求最值的问题中,先要确定自变量x的取值范围,再根据的k符号判断函数的增减性,从而确定在何时取得最大值、何时取得最小值,在实际应用问题中还需要保证所取得的x、y的值符合实际意义。
3、某校准备组织师生共60人,从武汉乘动车前往A城参加夏令营活动,动车票价如表所示(教师按成人票价购买,学生按学生票价购买)
运行区间
成人票价(元/张)
学生票价(元/张)
出发站
终点站
一等座
二等座
二等座
武汉
A城
26
22
16
若师生均购买二等座票,则共需1020元。
(1)参加活动的教师、学生各有?
(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票。设提早前往的教师有x人,购买一、二等座票全部费用为y元。
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘m(0<m<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发8000元的工资,给每名新工人每月发4800元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能有多少人?
4、为了保护环境,某化工厂一期工程完成后购买了3台甲型污水处理设备和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元。今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,其购买资金不超过84万元,每月处理污水至少1340吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习专题:实际应用题类型一一次函数图象型问题1.某游泳池一天要经过“注水一保持一排水”三个过程,如图,图中折线表示的是游泳池在一天某一时间段内池中水量y(m')与吋间x(min)之间的关系.(1)求排水阶段y与x之间的函数关系式,并写出x的取值范围;(2)求水量不超过最大水量的一半值的吋间一共有多少分钟.h y/in2000 -i -------- vi5()n iO° 30 285 300 x/min第1题图2.(2017衢州8分)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车H驾出游.根据以上信息,解答下列问题: ⑴设租车时间为兀小时,租用甲公司的车所需费用为“元,租用乙公司的车所需费用为力元,分别求岀刃、旳关于兀的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.3.(2017吉林省卷8分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28 s时注满水槽.水槽内水面的高度y(cm)与注水时间兀(s)Z 间的函数图彖如图②所示.(1) __________________ 正方体的棱长为 cm ;(2) 求线段AB 对应的函数解析式,并写出自变量兀的取值范Fh(3) 如果将正方体铁块取出,又经过心)恰好将此水槽注满,直接写出/的值.第3题图4. 如图①所示,在A, B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由 3地驶往A 地.两车同口寸出发,匀速行驶,图②是客车、货车离C 站的距离力(千 米),力(千米)与行驶吋间双小吋)之间的函数关系图象.(1) 填空:A, 3两地相距 ________ 千米;(2) 求两小吋后,货车离C 站的距离力与行驶时间兀之间的函数关系式;(3) 客、货两车何吋相遇?5. (2017乌鲁木齐10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发图②匀速行驶至甲地.两车之间的距离y(千米)与行驶时间兀(小时)的对应关系如图所示: ⑴甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与兀Z间的函数关系式;(4)何时两车相距300千米.答案1. 解:(1)设排水阶段y 与兀之间的函数关系式是y=kx+b,[285)1 + /? = 1500 仏=・100将(285, 1500), (300, 0)代入得,仏屮,解得仁30000’即排水阶段y 与x Z 间的函数关系式是-100x+30000,当 y=2000 时,2000=-100x4-30000,解得兀=280,・・・兀的取值范圉是280W/W300;(2)设注水阶段y 与x 的函数关系式为y=mx,将(30, 1500)代入得,30m =1500, 解得加=50,・・・注水阶段y 与兀的函数关系式为y=5(k,当 y= 1000 时,1000=50x,得兀=20,将 y=1000 代入 y= -100%+30000,得兀=290,・••水量不超过最大水量的一半值的时间一共有20+(300-290) = 30份钟). 2•解:⑴由题意可知力=加+80,且图象过点(1, 95),则有95=b + 80,・・・b = 15,・・・力=15尤+80(兀20),由题意易得y 2 = 30x(x^0);⑵当y\=yi 时,解得兀=学,3. 解:(1)10;【解法提示】由题意可得12秒时,水槽内水面的高度为10cm, 12秒后水槽内高 度变化趋势改变,故正方体的棱长为10 cm ;(2)设线段AB 对应的函数解析式为:当y\>yi 时,解得尢<¥, 当y\<yi 吋,解得学 ・••当租车时间为乎小时, 当租车时间小于学小时, 当租车时间大于学小时,选择甲、乙公司一样合算;选择乙公司合算;选择甲公司合算.7Q,解得 s b = - 2 ・・・线段AB 对应的函数解析式为:y=|r+*120W28); (3)4 s.【解法提示】・・•没有正方体吋,水面上升10cm,所用吋间为16s, A 没有正方 体的圆柱形水槽,注满需要用时间32 s,・・・取出正方体铁块后,已经注水28 s, 且注水速度一定,故还需要4 s 才能注满圆柱形水槽,.・・/=4s.4. 解:(1)420;⑵由题图可知货车的速度为60三2 = 30(千米/小时), 货车到达A 地一共需要2+360—30= 14(小时).设 y 2 = kx+h,代入点(2, 0), (14, 360)得{2k + b = \Q 仏=30仏+“360'解得[—60'所以心010;(3)设y {=mx+n 9 代入点(6, 0), (0, 360)得6m + n = Q[m = —60 ,解得{•所以 yi = —60x+360. n - 360 [n = 360145•解:⑴由题图得,甲乙两地相距600千米;(2)由题图得,慢车总用时10小时,・••慢车速度为雳=60(千米/小时), 设快车速度为兀千米/小时.由题图得,60X4+4^=600,解得x=90(千米/小时),・••快车速度90千米/小时,慢车速度60(千米/小时); ⑶由(2)得,go =了(小时)'60X^=400(千米),时间为卑小时时快车已到达,此时慢车走了 400千米, y =・・•图象过 4(12, 10), B(28, 20), 12£ + b = 10 2% + b = 20由刃=旳 得30x —60= —60x+360,解得兀=丁.14答:客、货两车经过号小时相遇.150x-600(4^x<—)・・・两车相遇后y与兀之间的函数关系式为20 ;y = 60x(—^x^lO)⑷设出发兀小时后,两车相距300千米,①当两车和遇前,由题意得:60%+90%=600—300,解得x=2;②当两车和遇后,由题意得:60%+90%=600+300,解得兀=6,即两车行驶6小时或2小时后,两车和距300千米.类型二方案选取型问题1・现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品兀千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?2.(2017焦作模拟)某会堂举行专场音乐会,出售的门票分为成人票和学生票,已知购买2张成人票和1张学生票共需45元,购买1张成人票和2张学生票共需30元.(1)求成人票和学生票的单价分别是多少?(2)暑假期间,为了丰富广大师生的业余文化生活,该会堂制定了两种优惠方案,方案⑪购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.设学生人数为兀(人),付款总金额为),(元),分别求出两种优惠方案中y与x的函数关系式;(3)在(2)的条件下,请计算并确定出最节省费用的购票方案.3・新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米彳,从第八层起每上升一层,每平方米的售价提高50元;反Z,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送d元装修基金;方案二:降价10%,没有其他赠送.⑴请写出售价y(元/米2)与楼层兀(1 w兀W23, %取整数)Z间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.4.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话时间为兀分钟,两种通讯方式的费用分别为刃元和旳元.(1)写出刃,『2与x的关系式;(2)某人估计一个月内通话300分钟,应选择哪种移动通讯合算些.(3)—个月通话为多少分钟时,哪种业务更优惠?5.为奖励在社会实践活动中表现优异的同学,某校准备购买一批文具袋和水性笔作为奖品.已知文具袋的单价是水性笔单价的5倍,购买5支水性笔和3个文具袋共需60元.(1)求文具袋和水性笔的单价;(2)学校准备购买文具袋20个,水性笔若干支,文具店给出两种优惠方案:A:购买一个文具袋,赠送1支水性笔;B:购买水性笔10支以上,超出10支的部分按原价的八折优惠,文具袋不打折.①设购买水性笔兀支,选择方案A总费用为M元,选择方案B总费用为力元,分别求出刃,力与x的函数关系式;②若学校购买水性笔超过10支,选择哪种方案更合算?请说明理由.参考答案1. 解:(1)甲快递公司快递该物品的费用P (元)与双千克)之间的函数关系式为: 当 0V JV WI 时,yi=22x ; 当兀>1 时,力=22+15(兀一1)= 15兀+7.22x (0VxWl )15x + 7(兀 >1)乙快递公司快递该物品的费用力(元)与班「克)Z 间的函数关系式为〉,2=16兀+3;(2)若 0V 兀W1,当 22%> 16x4-3 时,当 22x=16x+3 时,x=2;当 22x< 16x+3 □寸,0VxV*; 若 x>l,当 15x+7>16x+3 时,IV 兀V4; 当 15x+7=16x+3 时,x=4;当 15x+7V16x+3 时,兀>4,因此,当*VxV4时,选乙快递公司省钱;当兀=*或兀=4时,选甲、乙两家快递公司快递费一样多; 当0<xV*或兀>4时,选甲快递公司省钱.则成人票的单价是20元,学牛票的单价是5元; (2) 方案①:yi=20X4+(x —4)X5 = 5X +60(X 24), 方案②:力=(5x+20 X 4) X 90%=4.5兀+72(x24);(3) 由(2)得・ y 1 —力=0.5%-12(x^4),① 当刃一$2=0,即0.5兀一12 = 0时,解得兀=24,・・・当学生人数为24时,两种优惠方案付款一样多.2.解:(1)设成人票的单价是。
元, 学生票的单价是方元,根据题意得 2a + b = 45 d + 2b = 30解得 a = 20b = 5②当刃一旳<0,即0.5%-12<0时,解得x<24,・・・当4Wx<24时,优惠方案①付款较少.③当刃一旳>0,即0.5%-12>0时,解得x>24,当x>24时,优惠方案②付款较少.3.解:(1)当时,每平方米的售价为y=4000—(8-r)X30=3(k+3760(元/平方米);当9WxW23时,每平方米的售价为y=4000+(x-8)X50=50x+ 3600(元 / 平方米).._J30X +3760(1W X W8)•[50x + 3600(9^x^23) *(2)第十六层楼房的每平方米的价格为:50X 16+3600=4400(元/平方米),设所交房款为W元.按照方案一所交房款为:Wi = 4400X 120X(1 -8%)-=485760-^(元),按照方案二所交房款为:W2=4400X 120X(1 —10%)=475200(元),当W|>W2时,即485760—^>475200,解得:OVaV 10560;当W| = “2 时,即10560;当W|<W2时,即485760—^<475200,解得:6/>10560,・•・当0V G V10560时,方案二合算;当d=10560元时两种方案一样;当°> 10560时,方案一合算.4.解:(1)根据题意得:yi=50+0.4兀;歹2=0・6兀・(2)将兀=300代入到ji=50+0.4x,得yi = 170,将兀=300代入到力=0・6劝得旳=180.VI 70< 180,・•・选择全球通业务更优惠.(3)当刃>力时,有50+0.4x>0.6x,解得:兀<250;当y\=yi时,有50+0.4兀=0.6兀,x=250;当刃勺2时,有50+0.4%<0.6x,解得:兀>250,答:当一个月通话时间小于250分钟时,选择“神州行”业务更优惠;当一个月通话时间为250分钟时,选择“全球通”和“神州行”业务费用相同;当一个月通话时间大于250分钟时,选择“全球通”业务更优惠.5.解:(1)设水性笔的单价是兀元,则文具袋的单价是5x元.由题意得5x+3X5x=60,解得兀=3,则5兀=15,所以水性笔的单价是3元,文具袋的单价是15元;⑵①根据题意,得y 1 = 20 X 15 + 3 X (兀一20) = 3x+240,当0WxWlO 时,力=3兀+300;当x>10 时,y2=20X 15+3 X 10+3 X0.8(x- 10)=2.4x+306.②当刃>旳时,可知3兀+240>2・4兀+306,解得x>110,所以当购买数量超过110支时,选择方案B更合算;当刃=旳时,可知3兀+240=2.4兀+306,解得x=110,所以当购买数量为110支时,选择方案A、B均可;当力勺2时,可知3x+240<2.4x+306,解得*110,所以当购买数量超过10支而不足110支时,选择方案A更合算.类型三方案设计型问题1・我市在创建全国文明城市过程中,决定购买A, B两种树苗对某路段道路进行绿化改造,已知购买力种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.(1)求购买£ 3两种树苗每棵各需要多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪儿种购买方案?(3)若种好一棵A种树苗应付工钱30元,种好一棵3种树苗应付工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?2.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出人、3两种款式的服装合计30件,并且每售出一件人款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,3款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获得的总利润最大?最大的总利润是多少?3.(2017潍坊8分)某蔬菜加工公司先后两批次收购蒜薑(S)共100吨.第一批蒜臺价格为4000元/吨;因蒜蔓大量上市,第二批价格跌至1000元/吨.这两批蒜臺共用去16万元.(1)求两批次购进蒜臺各多少吨?(2)公司收购后对蒜藁进行加工,分为粗加工和精加工两种;粗加工每吨利润400 元.精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.某校在去年购买A, B两种足球,费用分别为2400和2000元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元.(1)求A, B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A, B两种足球共18 个,且本次购买3种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?5.(2017遂宁9分)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司己派出大小两种型号的渣土运输车运输土方.己知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨;(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派车方案;(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算.6.巴基斯坦瓜达尔港成为我国“一带一路”倡议上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:(1) 若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、 丙两种型号的货轮各多少艘?(2) 集团计划未來用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、 丙两种型号的货轮数量Z 和不超过甲型货轮的数量,如果设丙型货轮有加艘, 那么如何安排装运,可使集团获得最大利润?最大利润为多少?7. (2016葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑, 要求每本纪念册的售价不低于20元且不高于28元,在销售过程屮发现该纪念册 每周的销售量y (本)与每本纪念册的售价兀(元)Z 间满足一次函数关系:当销售单 价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1) 请直接写出y 与x 的函数关系式;(2) 当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价 是多少元?(3) 设该文具店每周销售纪念册所获得的利润为⑷元,将该纪念册销售单价定为 多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?答案1•解:(1)设购买A 种树苗每棵需要兀元,B 种树苗每棵需要y 元,8x + 3y = 950 5x + 6j = 800 由题意得 兀= 100y = 5Q答:购买A种树苗每棵需要100元,B种树苗每棵需要50元.(2)设购买A种树苗m棵,贝IJ购买B种树苗(100-m)棵,由题意得100加+50(100—加)W7650,解得加W53.又・.•〃倉50, A50^m<53, 即有四种购买方案:方案一:购买A种树苗50棵,B种树苗50棵;方案二:购买A种树苗51棵,B种树苗49棵;方案三:购买A种树苗52棵,B种树苗48棵;方案四: 购买A种树苗53棵,B种树苗47棵.(3)方案一所付的种植工钱为50X30+50X20=2500(元); 方案二所付的种植工钱为51 X30+49X20 = 2510(元);方案三所付的种植工钱为52X 30+48X20=2520(元);方案四所付的种植工钱为53X30+47X20=2530(元).V 2500<2510<2520<2530,・••方案一购买A种树苗50棵,B种树苗50棵所付的种植工钱最少,最少工钱是2500 元.2•解:⑴设A款式服装分配到甲店铺为兀件,贝y分配到乙店铺为(36-X)件;B款式分配到甲店铺为(30—力件,分配到乙店铺为U-6)件.根据题意得30x+35X (30—兀)=26X(36—兀)+ 36X(兀一6),解得x=22. ・・・36—兀=14(件),30-x=8(件),兀一6=16(件),故A款式服装分配到甲店铺为22件,分配到乙店铺为14件,B款式分配到甲店铺为8件,分配到乙店铺为16件时,能使两个店铺在销售完这批服装后所获利润相同;⑵设总利润为w元,根据题意得:30x+35X(30-x)^950,解得兀W20.由题意得6WxW20,w=3(k+35 X (30-x)+26 X (36—劝 + 36>< (兀一6) = 5兀+1770,・.・£=5>0,・5随x的增大而增大,・••当兀=20时,w有最大值,最大值为5X20+1770=1870.・・・A款式服装分配给甲、乙两店铺分别为20件和16件,B款式服装分配给甲、乙两店铺分别为10件和14件,王老板获得利润最大,最大的总利润为1870元. 3・解:⑴设第一批次收购x吨蒜藁,则第二批次收购(100—兀)吨蒜藁,由题意得, 4000x+1000(100-%)= 160000,解得,兀=20,二100—兀=80,・••第一批次收购20吨蒜藁,第二批次收购80吨蒜藁;(2)设精加工数量为y吨,贝【J粗加工数量为(100—y)吨,•・•精加工数量不多于粗加工数量的3倍,・・・yW3(100—y),解得)<75, 设获得的利润为⑷元,由题意可得⑷与y Z间的关系式为1000^+400(100-)0,整理得w=600y+40000,•••⑷是y的一次函数,且£=600>0,・・・w随y的增大而增大,・••当y取最大值时,w最大,•・・yW75,・••当)‘=75 时,w 最大,最大值600X75 +40000=85000.综上所述,精加工数量为75吨时,可获得最大利润,最大利润是85000元.4•解:⑴设A种足球单价为x元,则3种足球单价为(兀+80)元,根据题意,得巴=2X型,解得兀=120,x 兀+80经检验:兀=120是原分式方程的解.答:A种足球单价为120元,3种足球单价为200元.⑵设再次购买A种足球x个,则B种足球为(18—兀)个.根据题意,得W= 120x+200(18-x) = -80^+3600,V18-x^2x, ・・」W6, V-80<0,二W随兀的增大而减小,・••当x=6时,W最小,此时18一兀=12,答:本次购买A 种足球6个,B 种足球12个,才能使购买费用W 最少.5•解:(1)设一辆大型渣土运输车每次运土方兀吨,一辆小型渣土运输车每次运\x-\-y = 15[x = 10 土方y 吨,根据题意,得仁 o g 解得 v ‘ I3x + 8y = 70 [)' = 5答:一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土为5 吨;⑵设派出小型渣土运输车加辆,则派击大型渣土运输车为(20—加)辆,根据题意, 2解得7W/W1与,•・•加取整数,・・・加=7, 8, 9, 10.・・・有如下四种方案:① 派出小型渣土运输车7辆,派出大型渣土运输车为13辆;② 派出小型渣土运输车8辆,派出大型渣土运输车为12辆;③ 派出小型渣土运输车9辆,派出大型渣土运输车为11辆;④ 派出小型渣土运输车10辆,派出大型渣土运输车为10辆;(3) 设总费用为W 元,派出小型渣土运输车加辆,则派岀大型渣土运输车为(20 一加)辆,根据题意得 W= 300/??+500(20-m)= -200m +10000, ・・・R=-200v0, ・・・W 随加的增大而减小,・••当加=10时,W 最小,最小值为8000元.故该公司选择方案为小型渣土运输车10辆,大型渣土运输车10辆.6. 解:(1)设用乙、丙两种型号的货轮分别为兀艘、y 艘, (x+y = S则[5x + 7.5y =答:用2艘乙种型号的货轮,6艘丙种型号的货轮;(2)设乙型货轮有并艘,则甲型有20-(/??+«)艘,根据题意得/曰 j5/ + 10(20—加)2148得I 心7 55,解得10[20-(m+/t)] + 5/t+7.5m=180,解得料=4一0.5加,/. 20—(加+〃)= 16—0.5加,即甲型货轮有(16—0.5肋艘,乙型货轮有(4-0.5m)艘,由题意得4—0.5加+加£16—0.5加,解得加W12,*.*m, 16—0.5加,4—0.5m 均为正整数,:.m=2, 4, 6,设集团的总利润为必则10X5(16-0.5m) + 5X3.6(4—0.5加) + 7.5X4m = -4m+872,・.・—4v0,・•・w随m的增大而减小,故当m=2时,w最大,最大值为864,此时利润为864X100X10000=8.64(亿元).此时16-0.5X2=15, 4-0.5X2 = 3.答:甲型货轮有15艘,乙型货轮有3艘,丙型货轮有2艘时,可获得最大利润, 最大利润为8.64亿元.7.解:(l)y=—2x+80(20WxW28);【解法提示】设一次函数的表达式为:y=Ax+b伙H0),将点(22, 36)、点(24, 32)分别代入求得:y=-2x+80;(2)由题意知,(x-20)(-2x+80)=150,整理得?-60x+875=0,(x-25)(x-35)=0,解得兀i=25,兀2=35(不合题意,舍去),答:每本纪念册的销售单价是25元;(3)由题意知,IV=(X-20)(-2X+80)=-2?+120X-1600=-2(X-30)2+200,・・・。