(轧制理论)轧制原理PPT

合集下载

轧制理论基础..

轧制理论基础..
bB 100 % b lL 100 % l
H
bB b 100 % 100 % B B
b ln B l ln L
相对延伸量
lL l 100 % 100 % L L
变形系数的表示法
轧制时表示各向变形系数的关系式
1


1
.
ln 1/η +lnω +lnμ =0
3)鼓形宽展
• 轧件侧面变成鼓形而造成的展宽量,用ΔB3表示, 此时轧件的最大宽度为 B3 =B2+ΔB3=B1+ΔB1+ΔB2 +ΔB3
轧件的总展宽量为: ΔB=ΔB1 +ΔB2 +ΔB 3
• 上述宽展的组成及其相互的关系,由下图清楚地 表示出来。
宽展的组成及其相互的关系
4 轧制过程中的纵变形—前滑和后滑
2)提高β的方法
• (1) 改善轧辊或轧件表面状态,以使β升高 • 初轧粗轧在轧辊刻槽焊点滚花等目的均使f升, β升. • 精轧通过立轧高压水去除氧化皮等办法改善轧 件表面状态,使f升, β升. • (2) 合理调节轧制速度 • 利用稳定轧制条件下的剩余摩擦力,采用低速 咬入,高速轧制.
作业
• 已知 某1150轧机钢锭尺寸 880*880/635*635*1400 热轧,该条件下允 许咬入角28°问: • 1)从理论讲,改钢锭如何轧制可使轧件轧一 道次厚度最小,轧后厚度为多大 • 2)求该轧制条件下的最大咬入角和接触弧长.
物理概念
• 根据物理概念: • 摩擦系数可用摩擦角表示,即摩擦角的正 切就是摩擦系数f。 • tgβ=f • 则 tgβ≥tgα • β≥α!!! • 轧制过程中的咬入条件为摩擦角大于咬入 角, Β=α为临界条件。
咬入的几何意义
α
β

轧制理论)轧制原理PPT

轧制理论)轧制原理PPT
数值模拟软件
开发专门的数值模拟软件,如MSC.Marc、ABAQUS等,可实现轧制过程的可视化模拟, 提高模拟的准确性和效率。
模拟结果验证
通过与实际轧制实验数据的对比,验证计算机模拟结果的准确性和可靠性,为实际生产 提供指导。
人工智能技术在轧制理论中的应用
神经网络模型
应用神经网络模型对轧制过程进行建模和预测,可以实现轧制参数 的优化和自适应控制,提高产品质量和生产效率。
制压力和力矩。
05 轧制过程中的温度场和应力场分析
CHAPTER
温度场分析的基本原理和方法
热传导方程
描述物体内部温度分布随时间变 化的偏微分方程,是温度场分析 的基础。
初始条件和边界条

确定热传导方程的解,初始条件 为物体初始时刻的温度分布,边 界条件为物体表面与周围环境之 间的热交换情况。
有限差分法
02 轧制变形基本原理
CHAPTER
轧制变形的基本概念
轧制变形
指金属坯料在两个旋转轧辊的缝 隙中受到压缩,产生塑性变形, 获得所需断面形状和尺寸的加工
方法。
轧制产品
通过轧制变形得到的产品,如板材、 带材、线材、棒材等。
轧制方向
金属在轧辊作用下变形的方向,通 常与轧辊轴线平行。
轧制变形的力学基础
利用塑性变形区的滑移线 场,通过数学解析计算轧 制压力。
上限法
基于塑性变形理论的上限 定理,通过构建速度场计 算轧制压力的上限值。
轧制力矩的计算方法
能量法
根据轧制过程中的能量守恒原理,通过计算变形 功来计算轧制力矩。
解析法
基于弹性力学和塑性力学理论,通过数学解析计 算轧制力矩。
有限元法
利用有限元分析软件,对轧制过程进行数值模拟, 从而计算轧制力矩。

51钢铁PPT-轧钢基本理论课件

51钢铁PPT-轧钢基本理论课件

残余内应力的影响
▪ 宏观内应力 ▪ 引起新的变形,降低精度。 ▪ 微观内应力 ▪ 引起开裂,产生微裂纹。 ▪ 晶格畸变内应力 ▪ 强化金属;耐蚀性降低。
塑性变形的金属在加热时 组织和性能变化
▪ 1.回复
▪ 2.再结晶 ▪ 3.晶粒长大
塑性变形的金属在加热时 组织变化
回复
▪ 塑性变形后的金属在低温加热时,发生回复过程
轧钢基本理论
51钢铁收集整理
内容提要
▪ 1、金属压力加工; ▪ 2、塑性变形对组织和性能的影响; ▪ 3、钢材品种及用途; ▪ 4、型钢生产系统; ▪ 5、钢材产品标准及技术要求; ▪ 6、轧钢基本工序介绍; ▪ 7、轧制过程参数及变形规律; ▪ 8、宽展、前滑和后滑,以及影响其的因素; ▪ 9、轧制力能参数介绍。
金属压力变形分类
▪ 金属压力变形分为: ▪ 1、弹性变形:给其力则变形,力撤销其变形即消失。 ▪ 基本原理:外力应力原子离开平衡位置变形原子位能增加返
回趋势外力消失变形消失弹性变形 ▪ 条件:外力小于屈服极限 ▪ 2、塑性变形:给其力则变形,力撤销其变形依然存在。 ▪ 基本原理:金属塑性变形的实质——晶粒内部或晶粒之间产生的滑移及
冷加工对组织和性能的影响
▪ 冷加工 —— 在 T再 以下温度进行的变形加工,如低碳钢的冷拔、冷冲。

冷加工时,无再结晶过程。
▪ 冷加工能产生加工硬化,提高强度和硬度,塑性和韧性下降。是重要的强化
手段,对不能热处理强化的合金尤其重 要。但增加继续塑性变形的抗力。
➢ 由于有加工硬化的存在,故冷变形可提高工件的强度和硬度,但冷变形 不能太大,否则易开裂;
再结晶温度(最低)
▪ 纯金属 T再 =0.4 T熔 ▪ 合 金 T再 =(0.5 ~ 0.7)T熔 ▪ (温度单位:绝对温度( K ))

轧制原理-第三章变形区金属的流动课件

轧制原理-第三章变形区金属的流动课件
研究开发新型的轧制技术,以提高轧制效率和产 品质量。
加强轧制过程的智能化和自动化
研究智能化和自动化技术在轧制过程中的应用, 以提高生产效率和产品质量。
THANKS FOR WATCHING
感谢您的观看
优化轧制工艺参数的方法
1 2 3
实验优化法
通过实验测试不同的轧制工艺参数组合,找到最 优的参数组合,以达到最佳的金属流动效果和产 品质量。
数值模拟法
利用数值模拟软件对轧制过程进行模拟,预测不 同参数下的金属流动和产品质量,指导实际生产 中的参数优化。
人工智能法
利用人工智能算法对大量历史数据进行分析和学 习,找到最优的工艺参数组合,实现快速优化。
厚向应变
金属在厚度方向上的长度变化。
轧制过程中的应力-应变关系
真实应力-应变曲线
描述了金属在轧制过程中的应力与应变之间的关系,是材料力学 性能的重要指标。
加工硬化
随着应变的增加,金属的屈服强度增加的现象,影响金属的进一步 变形。
流动应力曲线
描述金属在轧制过程中的应力与应变行为,对于确定轧制工艺参数 和优化产品质量具有重要意义。
轧制力对变形区金属流动的影响
力增大,金属流动阻力增大
随着轧制力的增大,变形区内金属所受的应力增加,流动阻力增大,导致金属流动速度减缓。
流动不均匀性改善
轧制力的增大有助于改善变形区内金属流动的不均匀性。这是因为较大的轧制力可以减小因应变速率差异引起的 流动不均匀性问题。
05
实际生产中的变形区金 属流动控制
轧制原理-第三章变形 区金属的流动课件
目 录
• 引言 • 变形区金属流动的规律 • 轧制过程中的应力与应变 • 轧制工艺参数对变形区金属流动的影响 • 实际生产中的变形区金属流动控制 • 结论与展望

轧制理论基础

轧制理论基础

水平合力 :
∑ F = T cos α − p sin α 当 ∑ F ≥ 0 轧件才可能被咬入
x x
, 完成轧制 .
结论
T sin α ≥ ≥ tgα ⇒ P cos α f ≥ tgα (咬入条件) 说明咬入角的正切等于 轧件与轧辊之间的摩擦系数
物理概念
• 根据物理概念: • 摩擦系数可用摩擦角表示,即摩擦角的正 切就是摩擦系数f。 • tgβ=f • 则 tgβ≥tgα • β≥α!!! !!! • 轧制过程中的咬入条件为摩擦角大于咬入 角, Β=α为临界条件。
①等径
α
B C
Δh/2
A
由几何关系 : L = R −
2 2
∆h R− 2
2
D
得L = R ⋅ ∆h −
∆h 2 ( ) 2
= R ⋅ ∆h
② 不等径
L1 R1 R1 − ∆h1
2
=
2

(
)
2
= 2
R1 ∆h ∆h1
1− 2
2
L1≈ D1∆h1 L R R 2 − ∆h 2
• 纵轧:金属在两个旋转方向相反的轧辊之间通过,并 纵轧: 金属在两个旋转方向相反的轧辊之间通过, 两个旋转方向相反的轧辊 之间通过 在其间产生塑性变形的过程。 在其间产生塑性变形的过程。 • 横轧 :轧件变形后运动方向与轧辊轴线方向一致 轧件变形后运动方向与轧辊轴线方向一致 • 斜轧:轧件作螺旋运动,轧件与轧辊轴线非特角 斜轧:轧件作螺旋运动, 螺旋运动
第二章 轧制理论基础 二章
• • • • • • •
1 轧制变形基本概念 2 实现轧制过程的条件 3 轧制过程中的横变形宽展 4 轧制过程中的纵变形――前滑与后滑 5 轧制压力及力矩 6 连轧 7 斜轧

轧制理论)轧制原理

轧制理论)轧制原理

轧制理论的发展趋势与未来展望
1 2
智能化发展
随着人工智能和大数据技术的应用,轧制理论的 智能化发展成为趋势,实现轧制过程的自动化和 智能化控制。
新材料和新工艺研究
未来轧制理论将继续在新材料、新工艺的研究方 面发挥重要作用,推动行业的创新发展。
3
绿色可持续发展
轧制理论将注重绿色可持续发展,致力于降低能 耗和减少环境污染,实现行业的可持续发展。
轧制理论)轧制原理
目录
量 • 轧制过程的模拟与优化 • 轧制理论的应用与发展
01
轧制原理概述
轧制的基本概念
轧制是一种金属加工工艺,通过两个 旋转的轧辊将金属坯料压缩,使其发 生塑性变形,从而获得所需形状和性 能的金属制品。
轧制过程中,金属坯料通过轧辊的摩 擦力作用被牵引,经过连续的塑性变 形,形成一定规格和形状的成品或半 成品。
智能算法进行故障诊断和预警,提高轧制过程的稳定性和可靠性。
05
轧制理论的应用与发展
轧制理论在钢铁工业中的应用
轧制工艺优化
轧制理论为钢铁工业提供了优化轧制工艺的方法,提高了产品质 量和生产效率。
新材料研发
轧制理论在新材料研发中发挥了重要作用,推动了钢铁材料的不 断升级和革新。
节能减排
轧制理论的应用有助于钢铁工业实现节能减排,降低生产过程中 的能耗和污染物排放。
利用测厚系统实时监测板材厚度, 反馈调整轧制参数,以实现厚度 控制的自动化和精细化。
04
轧制过程的模拟与优化
轧制过程的数值模拟技术
有限元法
01
通过将轧制过程划分为一系列小的单元,利用数学方程描述每
个单元的行为,从而模拟整个轧制过程。
有限差分法

轧制理论

轧制理论

咬入之后,在金属逐渐充填变形区的过程中,径向力的合力作用点相应地
向轧件出口平面方向移动,而使合力作用方向逐渐向出口倾斜。因此而使得Tx逐 步增加,Nx相应减少。这样一来,摩擦力的水平分力就有了剩余,其值为Tx-Nx。 由于剩余摩擦力的出现,而使得轧件一旦被咬入,就能更顺利地使轧件充满变形
由置于出口和入口两侧的测厚仪,测出带钢厚度,反馈到高速的计算机系统,再去控制 一个“电--液压”系统来实现对带钢厚度的控制。
测厚仪简图
3.2.AGC系统控制方法
➢前 馈:把前面的测厚仪测得厚度与目标厚度相比。 ➢后 馈:把后面的测厚仪测得厚度与目标厚度相比,只有1pass时使用 。 ➢质量流:轧机出入口的秒流量相等的原理控制,左右测厚仪同时使用
轧辊把轧件拉入旋转方向相反的两个轧辊辊缝 之中叫轧件的咬入。轧辊能够顺利地将轧件咬入是 轧制的必要条件。 轧件与轧辊接触时,轧辊对轧件的作用力和摩擦 力如图所示。N和T分解成的水平分力为:
不能咬入 临界状态 可以咬入 设摩擦角为β,则摩擦系数:
图3 轧辊对轧件的作用力和摩擦力
可以推出:
3.2.轧制过程建立
延伸率是带钢长度变化率,其表示式为: 在忽略宽展时,延伸率μ与压下率ε有如下关系:
2.SPM的目的
➢消除退火带钢的屈服平台,改善力学性能,保证产品的成形加工性; ➢修正板形,改善平直度; ➢根据用户的使用要求,加工光面或麻面板,并改善表面质量。
中性面:在整个变形区中,存在一个前后滑的过渡面。轧件在该面上运动的速度与 该处轧辊线速度的水平分速度相等,这个平面就叫中性面。由出口平面到中性面称 前滑区,由入口平面到中性面称后滑区。
5.2前滑的计算式
如图,在中性面轧件运动的速度与轧辊水平分速度相等,即 中性面与出口截面的秒体积相等,并忽略宽展时,可得 上式,经整理得到 :

冷轧轧制理论

冷轧轧制理论

轧制一、轧制过程及基本原理简单理想轧制过程中,两个同直径、同转速的轧辊均被驱动。

轧件仅靠轧辊作用力(无外力)均匀运动完成轧制。

以动画为例,说明轧制的概念。

延伸的轧制又称压延,是金属坯料通过转动轧辊间的缝隙承受压缩变形,在长度方面发生延伸的过程。

可得到板带材、管材、线材各种型材等(摄像:轧制螺纹),又可改善金材内部质量,提高其力学性能。

(一)压下量(△h ),压下率ε,延伸系数λ,宽展△b,压下量△h压下量(轧制前后轧件厚度差)△h = h o-h,压下率εε=(△h/h0)×100%延伸系数λ= L1/L0宽展△b:轧制前后锭料宽度的变化△b=b1-b0以上属于轧制件的塑性变形条件。

(二)轧制过程中金属流动轧件从轧辊入口至出口,厚度逐渐减少,金属在变形区内流动速度逐渐增加。

但入口处的流动速度小于轧辊表面园周速度,出口处则相反。

从入口至出口处的变形区依次分为后滑区,中性面,前滑区,并由变形区力平衡和几何条件分析导出轧制过程变形与几何条件的内在联系。

(如图)γ:中性角α:咬入角β:摩擦角(三)咬入条件初始稳定后或N x轧件上水平外力T x摩擦力水平分力轧件与轧辊接触后,轧辊能把轧件拉入轧缝完成轧制的必要条件,取决于加在轧件上水平外力Nx 与摩擦力水平分力Tx,满足,或者,,(咬入角小于等于摩擦角)。

随后稳定轧制,两者接触面积增加,咬入条件变为:。

当摩擦角一定时,增加辊直径,利用冲击力可改善咬入条件;轧机确定后可把轧件加工成锥形以减少咬入角或降低咬入轧制速度增加摩擦角。

(四)轧制压力P及轧制力矩M1、轧制压力 P(如图)1)定义:轧制时轧辊施加于轧件,使之变形的力或轧件施加于轧辊总压力的垂直分量P。

2)表示:①工程上:平均单位压力F:实际接触面积②计算:可用理论,总结实测值,实测法三种。

2、轧制力矩M——确定轧制的主电机和轧辊传动机构负荷的重要参数。

(如图)1)定义:轧制压力P与其作用点到轧制中心线距离a的乘积2)计算:单辊:M=ψ:力臂系数双辊:二、轧制方法与工艺制度(如图)(一)按轧制温度分1、热轧:常温下不易塑变的金属,要在1100~1250o C下进行,表面粗糙,尺寸波动大。

金属的轧制教材教学课件

金属的轧制教材教学课件

绿色环保型轧制技术
绿色环保型轧制技术概述
介绍绿色环保型轧制技术的定义、原理、特点等基础知识。
绿色环保型轧制技术发展现状
分析当前绿色环保型轧制技术的发展状况,包括主要技术、应用领域、产业规模等。
绿色环保型轧制技术关键问题及解决方案
探讨绿色环保型轧制技术面临的关键问题,如能源消耗、废弃物处理、环境影响等,并提出相应的解决 方案。
操作不规范或失误,如调整不 及时、参数设置错误等,也可
能造成轧制缺陷。
预防措施与处理方法
01 严格原料检验 对原料进行严格的质量检验和控制,确保原料质量符 合要求。
02 加强设备维护 定期对轧机进行维护和保养,确保设备处于良好状态 。
03
优化工艺参数
根据金属材料的特性和轧制要求,优化加热制度、轧 制规程和冷却方式等工艺参数。
4. 实验后应及时清理现场,保持实验 室整洁。
数据记录和处理方法
01
数据记录
02
1. 记录实验材料的初始厚度、宽度、长度等尺寸参数;
2. 记录轧制过程中的轧制力、轧制速度、轧辊温度等实时数据;
03
数据记录和处理方法
• 记录轧制后金属板材的厚度、宽度、长度等尺寸参数,以及组织观察和力学性能测试结果。
改善组织性能。
03
组织结构对金属性能的影响
金属的组织结构对其力学性能、耐蚀性能等具有重要影响。
力学性能变化规律
轧制过程中的加工硬化
在轧制过程中,金属的加工硬化现象会导致其强度、硬度提高, 而塑性、韧性降低。
轧制后的力学性能变化
轧制完成后,金属的力学性能会得到显著改善,如强度、韧性提高 等。
力学性能与组织结构的关系
性能缺陷

轧制原理

轧制原理
3、前滑和后滑
前滑:在轧制过程中,轧件出口速度 Vh 大于轧辊在该处的速度 V,既 Vh>V
的现象称为前滑现象。公式为: S hBiblioteka =V h−V
V
×100%
后滑:轧件进入轧辊的速度 VH 小于轧辊在该处的线速度 V 的水平分量 Vcosα
的现象称为后滑现象。公式为: S H
=
V
cosα

V H
V cosα
×100%
2
3.1 前滑值的确定 (1)实验法:事先轧辊表面上刻出距离为 LH 的两个小坑,轧制后轧件的表面
上出现距离为 Lh 的两个凸包,则按下公式求前滑值:
S h
=
Vt h

Vt
Vt
=
L h

L
L H
H
(2)计算法: 式中 γ—中性角
S = γ2R/h
h—轧件出口厚度
R—轧辊半径
3.2 影响前滑的因素
2、实现轧制过程的条件
2.1 咬入条件
咬入:依靠回转的轧辊与轧件之间的摩擦力,轧辊将轧件拖入轧辊之间的现
象称为咬入。
用力将轧件移至轧辊前,使轧件与轧辊在 A、B 两点切实接触,如图 2.1 所
示。此时,轧辊对轧件的作用力为径向力 N 及切向力 T。
1
在 A 点,将 N 分解为水平分量 Nx 与垂直分量 Ny,T 分解成水平分量 Tx
与垂直分量 Ty。Ny、Ty 方向相同,使金属产生压缩变形。而 Nx、Tx 方向相反,
Tx 力求将轧件拖入轧辊之间,而 Nx 则力求将轧件推出轧辊。所以:
Nx>Tx,则轧辊不可能将轧件咬入,
轧制过程不能实现;
Nx=Tx,则处于平衡状态;

轧制变形理论第一至第五章介绍

轧制变形理论第一至第五章介绍

1
2
x2 2R 1 2
x1 R h
l x1 x2
2R
h 2
1
2
2R1 2
l Rh x22 x2
12
△1和△2的值可由弹性理论中关于两个圆柱体压缩时的计算公 式来确定。考虑轧件厚度与轧辊直径相比非常小 ,忽略轧件 弹性变形:
l
Rh
8
1 v12
E1
2
Rp
81 v12
轧件与轧辊接触面之间的几何区,即从轧件入 轧辊的垂直平面到轧件出轧辊的垂直平面所围 成的区域ACBD 。
简单理想轧制过程示意图 6
❖ 简单轧制时变形区参数间的关系
1)咬入角
轧件被咬入轧辊时轧件和轧辊最先接触点和轧辊中心的连线与 两轧辊中心连线所构成的角度。
△h/2=D/2-D/2*cosα △h=D(1-cosα) △h≈Rα2
❖ 径向反作用力N: 水平分力Nx,垂直分力Ny
❖ 切线摩擦力T: 水平分力Tx,垂直分力Ty
作用力的功能:
❖ 垂直分力Ny和垂直分力Ty对轧件起压缩作用,使轧 件产生塑性变形
❖ 水平分力Nx阻止轧件进入轧辊辊缝。 ❖ 水平分力Tx与轧件运动方向一致,力图将轧件咬入
“+”-拉应力;“-” -压应力; 1-后外端;2-入辊处;3-临界面;4-出辊处;5-前外端
19
轧制变形区 I-易变形区;II-难变形区;III-自由变形区
20
❖ 不均匀变形理论:
1)沿轧件断面高度方向上的变形、应力和金属流动分布都是不均匀的。 2)在几何变形区内,在轧件与轧辊接触表面上,不但有相对滑动,而且
知识点:
❖ 咬入条件 ❖ 稳定轧制条件 ❖ 改善咬入条件的途径
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 轧件端部在轧制中温度氧化铁皮对摩擦影响:端部温度温 降快,温度低使摩擦系数增大,其他部分温度较高摩擦系数小.
❖ 氧化铁皮在咬入时端部与轧辊冲击易脱落,露出金属表面使 摩擦系数增大,而其他部分摩擦系数较低.
二者作用的结果使 kx项数值较小
αy =kx*α=(1.5—1.7)α 实际生产中端部咬入出现打滑现象不能建立稳定轧制
Δh/2
式中 R ---- 轧辊半径。
h R RCos
2
h D(1 COS )
cos 1 h D
sin =1 h
2 2R
sin
22
h
R
上式在 100 150 适用
α
A B
D C
Δb/2
变形区任意断面高度hx
hx hx h D(1 co形的表示方法
❖ 变形程度的意义
矩形件变形前后的尺寸
1)轧制时绝对变形量(压下,延伸,宽展)表示
❖ 绝对压下量:Δh=H-h ❖ 绝对延伸量:Δl=l -L ❖ 绝对宽展量:Δb=b -B
❖ 式中 h ,H —— 轧件轧后、轧前高度; l,L—— 轧件轧后、轧前长度;
b,B—— 轧件轧后、轧前宽度;
2 1
)
E1
E1
2
2q
1- E
2 2
2
西奇柯可公式
轧制过程的三阶段
一 咬入阶段
1 咬入阶段:轧件前端与轧辊接触的瞬间起到前 端达到变形区的出口断面(轧辊中心连线)称为咬入 阶段。
2 特点:
(1)轧件的前端在变形区有三个自由端(面),仅后 面有不参与变形的外端(或称刚端) (2)变形区的长度由零连续地增加到最大值。 (3)变形区内的合力作用点、力矩皆不断的变化。 (4)轧件对轧辊的压力由零值逐渐增加到该轧制条件 下的最大值。 (5)变形区内各断面的应力状态不断变化。
计算举例
❖ 解; 1) △h=D(1-cosα)=850(1-cos30°)=114 ❖ 则小头轧制后高 h=480-114=366
❖ 大头轧制后压下△h=550-366=184
❖ 又知热轧αy=(1.5-1.7)α=45 ° -51 ° ❖ △hmax=850(1-cosαY)=850(1-cos 51 °)
Δb/2
Δb/2
α
A B
D C
Δh/2
2)变形区参数
轧制几何变形区: 轧件承受轧辊作用发生变形 的部分
(1)咬入角α : 是指轧件开始轧入轧辊时,轧
件和轧辊最先接触的点和轧 辊中心连线与轧辊中心线所 构成的圆心角。
咬入角α与轧辊直径 D和压下量Δh 之间的关系
h H h 2R(1 COS) D(1 COS)
Δb/2
α
A B
D C
Δh/2
①等径
由几何关系:
l
2
R2
R
h
2
2
得l
R
h
(
h
2
)
2
近似得l R h
② 不等径

l R 2
2
1 1
2
2
R1 h1 2 R1 h1 h1
l 1
D1h1
l R 2 2 22
R2h2
2
2
2R2h2h2
l 2
D2h2
l l 假定 12
因h1h2h
R1h1R2h2R2h R2h1
❖3)轧制过程中发生的基本现象
❖ 在生产实践中遇到不同的轧辊组合方式,但实际上金 属承受压下而产生塑性变形是在一对工作轧辊中进行 的。除了一些特殊辊系结构(如行星轧机,Y型轧机) 外,均在一对轧辊间轧制的简单情况。
❖ 一般都以二辊作为研究轧制过程的开端。
送料

支承

工作 辊平 整

图 1 星行轧机
h1
R2
R 2
R1
h
l l1 l2
2R2 R1 Δh R2 R1
△h2
③ 轧辊与轧件产生弹性压缩时接触弧长
'
l x1 x0 A2 D B1C A2D A2O2 (OB3 DB3 )2 R2 ( RDB3 )2 B1C CO 2 (OB3 B1B3 )2 R2 ( RB1B3 )2
A2D 2 RDB3
DB3
h 2
1
2
;
B1C 2RB1B2 BB1 2
l ' x1 x0 A2DB1C Rh 2 R(1 2)
l' Rh x02 x0
x0
2 R(1 2 ) ;
1
2q 1-
2 1
E1
;
x0
8 Rp
(
1-
2 1
E1
21-
2 2
E 2
)
l'
Rh
(8
Rp
1-
2 1
)2
8
Rp
1-
2 特点: (1)轧件的后端在变形区内有三个自由端(面), 仅前面有刚端存在。 (2)变形区的长度由最大变到最小—零。 (3)变形区内的合力作用点、力矩皆不断地变化。 (4)轧件对轧辊的压力由最大变到零。 (5)变形区内断面的应力状态不断地变化。
2.4 实现轧制过程的条件
❖ 轧制过程是否能建立,决定于轧件能否被旋转的轧辊 咬入.因此,研究分析轧辊咬入轧件的条件,具有非 常重要的实际意义.
原因是氧化铁皮 温度变化所致.
2.4.4 孔型中轧制时的咬入条件
孔型咬入特点: 1)轧件与孔型顶部接触
与平辊轧巨型件相似 2)轧件先与孔型侧壁接触
增加了侧壁斜度的影响
N、T、N0力分别为轧辊孔型侧壁斜度作用给轧件正压力,轧辊作用给轧件的摩擦
力,轧辊作用给轧件的径向力;θ为孔型侧壁斜度夹角。
随着轧件填充孔型,实现咬入的条件仍然是
轧辊表面越粗糙,则摩擦系数越大,因而越有利 于轧件咬入。
5 轧件的形状对轧件咬入的影响。 轧件前端与轧辊接触面越大,轧件越容易咬入。
6 孔型形状对咬入的影响 型钢轧机的孔型有较小的孔型侧壁斜度时,
对轧件的咬入是有利的
二 改善咬入的措施
增大摩擦角β(即增大摩擦系数f)和减小咬入角a
1 提高摩擦系数的措施
(1)当压下量不变时,随着轧辊直径的增大,咬入角 将减小,这有利于咬入。 (2)如轧辊直径不变时,随着压下量的减小,咬入角 也减小,这有利于咬入。
2 作用在水平方向上的外力对咬入的影响
凡顺轧制方向的水平外力,一般都有利于咬入。
3 轧制速度的影响 降低轧制速度,则有利于轧件被咬入 4 轧辊表面状态的影响
❖ 则 tgβ≥tgα ❖ β≥α ❖ 轧制过程中的咬入条件为摩擦角大于咬入角, Β=α为临界条

咬入的几何意义
α
α
α
β
β
β
α=β:临界 态
β>α 咬入
β<α不能咬入
当R方向向轧制方向倾斜,实现自然咬入;反之 不能咬入.
2.4.2 稳定轧制条件
❖ 在轧件被咬入后,轧辊给轧件压力P合力作用点与摩擦 力T已不作用于开始接触点处,而是向变形区出口方向 移动.
❖ 2.4.1 咬入条件
❖ 1) 咬入:依靠回转的轧辊与轧件之间的摩擦力,轧辊将轧 件拖入轧辊之间的现象.
2) 咬入条件的确定(分析金属刚被咬入时的受力)
α
p
αα
轧件受力分析
轧辊受力分析
受力分析
α
p
αα
轧件受力分析
轧辊受力分析
轧件受垂直合力: (使轧件受压变形)
F y T sin p cos (T Pf )
(7)合理调整轧制速度。
2 降低咬入角的基本措施
(1)增大轧辊直径 (2)强迫咬入,用外力将轧件顶入轧辊中 。
arcCos1 h D
(3)减小本道次的压下量可改善咬入条件。 如:减小来料厚度或使得本道次辊缝增大。
h一定D增加降, D一定h降降.
(4)减小孔型侧壁斜度
孔型中轧制时,孔型侧壁斜度夹 角θ值越小咬入越是有利。这是因 为θ值小,β值增加意味着Tx值大, 更容易把轧件拖入轧辊辊缝中。 适当减小θ角,同时要兼顾不使轧 件因孔型被过充满而出现“耳子” 缺陷。兼顾方法之一是采用“双 斜度孔型”。
H [D(1 cos ) D(1 cosx )] H D(cosx cos )
Δh、D和α三者之间的关系计算图
(2)接触弧长与变形区长
❖ 接触弧长s 轧件与轧辊相接触的圆弧根据几何关系,接触弧长s为: s=Rα
❖ 变形区长度l 轧件与轧辊相接触的圆弧的水平投影长度
❖ 变形区长度的确定(与轧制条件有关可分为三种情况)
主要内容
❖ 2.1 轧制过程及分类 ❖2.2 变形的表示方法 ❖2.3 变形区主要参数 ❖2.4 实现轧制过程的条件
1.1轧制过程及分类
❖ 1)轧制过程
轧件由摩擦力拉进旋转轧辊之间,受到压缩进行塑性 变形使金属具有一定尺寸、形状和性能的过程,称为 轧制过程。
❖ 2) 分类
❖ 轧制方式按轧件运动分:有纵轧、横轧、斜轧。 ❖ 根据金属状态分: 热轧 冷轧. ❖ 根据外部介质分类: 空气,真空, 惰性气体 ❖ 轧机工作制度: 可逆 连轧 等
ln l L
1 2 3 0
3)轧制时变形系数表示
❖ 压下系数 ❖ 宽展系数 ❖ 延伸系数
η H h
β b B
μ l L
1 1 ln 1 ln ln 0
2.3 变形区主要参数
1)简单轧制过程
α
A B
D C
Δh/2
简单轧制过程特点: (1)上下轧辊直径相同 (2)转速相等 (3)轧辊无切槽 (3)均为传动辊 (4)轧辊为刚性且对称 (5)无外力或推力 (6)轧件性质均匀
相关文档
最新文档