湖南省长沙市长郡滨江中学2019-2020年初中九年级毕业班3月份限时检测数学试卷(Word版,无答
2019-2020学年人教A版湖南省长沙市长郡中学高三第二学期(3月份)第一次段考(理科)数学试卷 含解析
2019-2020学年高三第二学期段考数学试卷(理科)(3月份)一、选择题1.若i为虚数单位,复数z满足z(1+i)=|1﹣i|+i,则z的虚部为()A.B.C.D.2.设集合A={x|<0},B={x|x≤﹣3},则集合{x/x≥1}=()A.A∩B B.A∪B C.(∁R A)∪(∁R B}D.(∁R A)∩(∁R B} 3.中国古代数学著作《九章算术》中有这样一个问题:“某贾人擅营,月入益功疾(注:从第2月开始,每月比前一月多入相同量的铜钱),3月入25贯,全年(按12个月计)共入510贯”,则该人12月营收贯数为()A.35B.65C.70D.604.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是()A.B.C.D.5.已知a=log0.62,b=log20.6,c=0.62,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b6.椭圆C:+=1,F1,F2是其焦点,点P是椭圆C上一点,若△F1PF2是直角三角形,则点P到x轴的距离为()A.B.C.D.27.若α为锐角,且(4cos50°﹣tan40°)tanα=1,则α=()A.60°B.50°C.40°D.30°8.设等比数列{a n}的前n项和为S n,公比为q,且S3,S9,S6成等差数列,则8q3等于()A.﹣4B.﹣2C.2D.49.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是()A.B.C.D.10.已知函数的图象关于直线对称,若f(x1)f(x2)=﹣4,则|x1﹣x2|的最小值为()A.B.C.D.11.如图,在梯形ABCD中已知|AB|=2|CD|,=,双曲线过C,D,E三点,且以A,B为焦点,则双曲线的离心率为()A.B.2C.3D.12.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)二、填空题13.已知n=(﹣2x)dx,则x(1﹣)n的展开式中的常数项为.14.某封闭几何体的三视图如图所示,则该几何体的表面积为15.对于数列{a n},若∀m,n∈N*(m≠n),都有成立,则称数列{a n}具有性质P(t).若数列{a n}的通项公式为,且具有性质P(10),则实数a的取值范围是.16.若∀x∈[e,+∞),满足恒成立,则实数m的取值范围为.三.解答题17.已知在△ABC中,a,b,c分别为角A,B,C的对应边,点D为BC边的中点,△ABC 的面积为.(1)求sin∠BAD•sin∠BDA的值;(2)若BC=6AB,AD=2,求b.18.如图,矩形ABCD中,AB=6,,点F是AC上的动点.现将矩形ABCD沿着对角线AC折成二面角D'﹣AC﹣B,使得.(Ⅰ)求证:当时,D'F⊥BC;(Ⅱ)试求CF的长,使得二面角A﹣D'F﹣B的大小为.19.已知F为抛物线C:y2=2px(p>0)的焦点,过F的动直线交抛物线C于A,B两点.当直线与x轴垂直时,|AB|=4.(1)求抛物线C的方程;(2)设直线AB的斜率为1且与抛物线的准线l相交于点M,抛物线C上存在点P使得直线PA,PM,PB的斜率成等差数列,求点P的坐标.20.已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.21.如图,直角坐标系中,圆的方程为x2+y2=1,A(1,0),B(﹣,),C(﹣,﹣)为圆上三个定点,某同学从A点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.设掷骰子n次时,棋子移动到A,B,C处的概率分别为P n(A),P n(B),P n(C).例如:掷骰子一次时,棋子移动到A,B,C处的概率分别为P1(A)=0,P1(B)=,P1(C)=(1)分别掷骰子二次,三次时,求棋子分别移动到A,B,C处的概率;(2)掷骰子n次时,若以x轴非负半轴为始边,以射线OA,OB,OC为终边的角的余弦值记为随机变量X n,求X4的分布列和数学期望;(3)记P n(A)=a n,P n(B)=b n,P n(C)=c n.,其中a n+b n+c n=1.证明:数列{b n ﹣}是等比数列,并求a2020.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后的曲线为C2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q 两点,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;(Ⅱ)当x∈R时,求证f(x)≤g(x).参考答案一.选择题1.若i为虚数单位,复数z满足z(1+i)=|1﹣i|+i,则z的虚部为()A.B.C.D.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由z(1+i)=|1﹣i|+i=,得z=.∴z的虚部为.故选:D.2.设集合A={x|<0},B={x|x≤﹣3},则集合{x/x≥1}=()A.A∩B B.A∪B C.(∁R A)∪(∁R B}D.(∁R A)∩(∁R B}【分析】解不等式得集合A,根据补集的定义写出∁R A、∁R B,即可得出结论解:集合A={x|<0}={x|﹣3<x<1},B={x|x≤﹣3},则∁R A={x|x≤﹣3或x≥1},∁R B={x|x>﹣3};∴(∁R A)∩(∁R B}={x|x≥1}.故选:D.3.中国古代数学著作《九章算术》中有这样一个问题:“某贾人擅营,月入益功疾(注:从第2月开始,每月比前一月多入相同量的铜钱),3月入25贯,全年(按12个月计)共入510贯”,则该人12月营收贯数为()A.35B.65C.70D.60【分析】设每个月的收入为等差数列{a n}.公差为d.由a3=25,S12=510.可得a1+2d =25,12a1+d=510,联立解出即可得出.解:设每个月的收入为等差数列{a n}.公差为d.则a3=25,S12=510.∴a1+2d=25,12a1+d=510,解得a1=15,d=5,∴a12=15+11×5=70.故选:C.4.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是()A.B.C.D.【分析】小千和大年比赛至第四局小千胜出,由指前3局中小千胜2局,有1局不胜,第四局小千胜,由此能求出小千和大年比赛至第四局小千胜出的概率.解:根据“石头”胜“剪刀”,“剪刀”胜“布”,而“布”又胜“石头”,可得每局比赛中小千胜大年、小千与大年和局和小千输给大年的概率都为,∴小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出,由指前3局中小千胜2局,有1局不胜,第四局小千胜,∴小千和大年比赛至第四局小千胜出的概率是:p==.故选:B.5.已知a=log0.62,b=log20.6,c=0.62,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【分析】a=log0.62=﹣1,又ab=1.可得b=log20.6∈(﹣1,0),而c >0,即可得出大小关系.解:a=log0.62=﹣1,又ab=×=1.∴b=log20.6∈(﹣1,0),c=0.62>0,则c>b>a.故选:C.6.椭圆C:+=1,F1,F2是其焦点,点P是椭圆C上一点,若△F1PF2是直角三角形,则点P到x轴的距离为()A.B.C.D.2【分析】分两种情况讨论,是∠P为90°还是∠F1或∠F2为90°,注意P的纵坐标的取值范围,将P的坐标代入椭圆中,再由角为90°可得P的纵坐标的绝对值,即是P 到x轴的距离.解:设P(m,n),|n|2≤5,由题意可得:+=1,m2=9(1﹣),a2=9,b2=5,所以c2=a2﹣b2=9﹣5=4,所以c=2,F1(﹣2,0),F2(2,0),△F1PF2是直角三角形,当∠PF2F1=90°,或∠PF1F2=90°结果一样的,则m=c=2,代入椭圆可得|n|==;当∠F1PF2=90°时,而=(m+2,n),=(m﹣2,n),所以=0,即(m+2)(m﹣2)+n2=0,m2+n2=4,即9(1﹣)+n2=4,解得n2=>5,不成立,综上所述|n|=,故选:A.7.若α为锐角,且(4cos50°﹣tan40°)tanα=1,则α=()A.60°B.50°C.40°D.30°【分析】先利用三角函数公式化简4cos50°﹣tan40°=,则tan,从而求出α的值.解:4cos50°﹣tan40°=4sin40°﹣tan40°======,∴,又∵α为锐角,∴α=300,故选:D.8.设等比数列{a n}的前n项和为S n,公比为q,且S3,S9,S6成等差数列,则8q3等于()A.﹣4B.﹣2C.2D.4【分析】利用等差数列的性质、等比数列的通项公式即可得出.解:)∵S3,S9,S6成等差数列,∴2S9=S3+S6,∴(S9﹣S6)+(S9﹣S3)=0,即(a7+a8+a9)+(a7+a8+a9)+(a4+a5+a6)=0,∴2q3(a4+a5+a6)+(a4+a5+a6)=0,∵,∴q3=﹣,∴8q3=﹣4.故选:A.9.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是()A.B.C.D.【分析】化圆C的方程为(x﹣4)2+y2=1,求出圆心与半径,由题意,只需(x﹣4)2+y2=4与直线y=kx+2有公共点即可.解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=4与直线y=kx+2有公共点即可.设圆心C(4,0)到直线y=kx+2的距离为d,则d=≤2,即3k2≤﹣4k,∴﹣≤k≤0.∴k的最小值是.故选:A.10.已知函数的图象关于直线对称,若f(x1)f(x2)=﹣4,则|x1﹣x2|的最小值为()A.B.C.D.【分析】根据函数的对称性,利用f(0)=f(﹣),建立方程求出a的值,然后利用辅助角公式求出f(x)的解析式,利用最值性质转化为周期关系进行求解即可.解:∵f(x)的图象关于直线对称,∴f(0)=f(﹣),即﹣=a sin(﹣)﹣cos(﹣)=﹣a﹣,得a=,得a=1,则f(x)=sin2x﹣cos2x=2sin(2x﹣),∵f(x1)f(x2)=﹣4,∴f(x1)=2,f(x2)=﹣2或f(x1)=﹣2,f(x2)=4,即f(x1),f(x2)一个为最大值,一个为最小值,则|x1﹣x2|的最小值为,∵T==π,∴=,即|x1﹣x2|的最小值为,故选:D.11.如图,在梯形ABCD中已知|AB|=2|CD|,=,双曲线过C,D,E三点,且以A,B为焦点,则双曲线的离心率为()A.B.2C.3D.【分析】以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立如图所示的坐标系,求出C的坐标,根据向量的运算求出点E的坐标,代入双曲线方程即可求出解:由|AB|=2|CD|,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立如图所示的坐标系,设双曲线的方程为﹣=1,由双曲线是以A,B为焦点,∴A(﹣c,0),B(c,0),把x=c,代入﹣=1,可得y=b,即有C(c,b),又设A(﹣c,0),∴=(c,b),设E(x,y),∴=(x+c,y),∵=,∴(x+c,y)=(c,b),解得x=﹣c,y=b•),可得E(﹣c,b•),代入双曲线的方程可得﹣(﹣1)=1,即e2﹣(﹣1)=,即e2=7,即e=,故选:A.12.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)【分析】如图所示,O在AC上,C1O⊥α,垂足为E,则C1E为所求,∠OAE=30°,由题意,设CO=x,则AO=4﹣x,由此可得顶点C1到平面α的距离的最大值.解:如图所示,AC的中点为O,C1O⊥α,垂足为E,则C1E为所求,∠AOE=30°由题意,设CO=x,则AO=4﹣x,C1O=,OE=OA=2﹣x,∴C1E=+2﹣x,令y=+2﹣x,则y′=﹣=0,可得x=,∴x=,顶点C1到平面α的距离的最大值是2(+).故选:B.二、填空题13.已知n=(﹣2x)dx,则x(1﹣)n的展开式中的常数项为60.【分析】根据题意,由定积分计算公式可得n的值,进而由二项式定理分析(1﹣)6的展开式含x﹣1次方的项,据此分析可得答案.解:根据题意,n=(﹣2x)dx=()dx﹣(2x)dx=××π﹣(x2)=6,(1﹣)6的展开式通项为T r+1=C6r(﹣)r,当r=2时,有T3=C62(﹣)2=,则x(1﹣)n的展开式中的常数项为60;故答案为:6014.某封闭几何体的三视图如图所示,则该几何体的表面积为222+6【分析】由已知中的三视图可得该几何体是一个三棱柱切去一个三棱锥所得的组合体,画出直观图,计算各个面的面积,相加可得答案.解:由已知中的三视图可得该几何体是一个三棱柱切去一个三棱锥所得的组合体,其直观图如图所示:底面△ABC的面积为:×8×6=24;侧面ACDE的面积为:×10=100,侧面ABFE的面积为:(4+10)×6=42,侧面CBFD的面积为:(4+10)×8=56,面EFD中,EF=6,FD=10,ED=10,故面积为:×6×=6,故几何体的表面积S=222+6,故答案为:222+615.对于数列{a n},若∀m,n∈N*(m≠n),都有成立,则称数列{a n}具有性质P(t).若数列{a n}的通项公式为,且具有性质P(10),则实数a的取值范围是[36,+∞).【分析】由题意知恒成立,从而可得数列为单调递增数列,从而可得恒成立,即a≥﹣n(n+1)(2n﹣9),从而解得.解:∵数列通项公式且数列具有性质P(10),∴,∴恒成立,∴数列为单调递增数列,∴恒成立,即a≥﹣n(n+1)(2n﹣9),由数轴标根法作图如下,故最大值在n=1,2,3或4上取得,当n=1时,﹣n(n+1)(2n﹣9)=14,当n=2时,﹣n(n+1)(2n﹣9)=30,当n=3时,﹣n(n+1)(2n﹣9)=36,当n=4时,﹣n(n+1)(2n﹣9)=20,故a≥36.故答案为:[36,+∞).16.若∀x∈[e,+∞),满足恒成立,则实数m的取值范围为(﹣∞,2e].【分析】通过①m≤0,判断是否满足题意;②m>0时,由,利用函数的单调性转化求解即可.解:①m≤0,恒成立,所以满足恒成立,显然成立;②m>0时,由,由f(x)=xe x在[e,+∞)为增⇒m≤2xlnx在[e,+∞)恒成立,由g(x)=2xlnx在[e,+∞)为增函数,g(x)min=2e,0<m≤2e,综上,m≤2e,故答案为:(﹣∞,2e].三.解答题17.已知在△ABC中,a,b,c分别为角A,B,C的对应边,点D为BC边的中点,△ABC 的面积为.(1)求sin∠BAD•sin∠BDA的值;(2)若BC=6AB,AD=2,求b.【分析】(1)由ABC的面积为且D为BC的中点可得△ABD的面积为,再由三角形的面积公式及正弦定理可求sin∠BAD•sin∠BDA;(2)由(1)可得BC=6AB,可求sin∠BAD,3sin∠BDA,再由余弦定理可求.解:(1)∵D为BC边的中点,△ABC的面积为,∴△ABD的面积为,∴,∴3AB•BD=,由正弦定理可得,=∴3AB•BD==,∴sin∠BAD•sin∠BDA=(2)∵BC=6AB,且D为BC的中点,∴BC=2BD=6AB,即BD=3AB,△ABD中,由正弦定理可得,,∴sin∠BAD=3sin∠BDA,由(1)可知,sin∠BAD•sin∠BDA=∴sin∠BAD=1,sin∠BDA=,∴∠BAD=90°,Rt△ABD中,AD=2,∴AB=1,BD=3,∴BC=2BD=6,△ABC中,由余弦定理可得,b2=a2+c2﹣2ac cos B=1+36﹣2×1×6×=33,∴b=.18.如图,矩形ABCD中,AB=6,,点F是AC上的动点.现将矩形ABCD沿着对角线AC折成二面角D'﹣AC﹣B,使得.(Ⅰ)求证:当时,D'F⊥BC;(Ⅱ)试求CF的长,使得二面角A﹣D'F﹣B的大小为.【分析】(Ⅰ)连结DF,BF.通过计算DF2+AF2=9+3=DA2,推出DF⊥AC,得到D'F⊥AC,证明BF⊥D'F,然后证明D'F⊥平面ABC.推出D'F⊥BC.(Ⅱ)说明OE,OC,OD'两两垂直,以O为原点,的方向为x轴的正方向建立空间直角坐标系O﹣xyz,求出平面AD'F的一个法向量.平面BD'F的法向量通过向量的数量积求解二面角的平面角的余弦值即可.【解答】满分.(Ⅰ)证明:连结DF,BF.在矩形ABCD中,,∴,∠DAC=60°.…(1分)在△ADF中,∵,∴DF2=DA2+AF2﹣2DA•AF•cos∠DAC=9,.…∵DF2+AF2=9+3=DA2,∴DF⊥AC,即D'F⊥AC.…又在△ABF中,BF2=AB2+AF2﹣2AB•AF•cos∠CAB=21,…∴在△D'FB中,,∴BF⊥D'F,…又∵AC∩FB=F,∴D'F⊥平面ABC.∴D'F⊥BC.…(Ⅱ)解:在矩形ABCD中,过D作DE⊥AC于O,并延长交AB于E.沿着对角线AC翻折后,由(Ⅰ)可知,OE,OC,OD'两两垂直,以O为原点,的方向为x轴的正方向建立空间直角坐标系O﹣xyz,则O(0,0,0),E(1,0,0),, (7))k AB=﹣1平面AD'F,∴为平面AD'F的一个法向量.…设平面BD'F的法向量为=(x,y,z),∵F(0,t,0),∴,由得取y=3,则,∴.…∴,即,∴.∴当时,二面角A﹣D'F﹣B的大小是.…19.已知F为抛物线C:y2=2px(p>0)的焦点,过F的动直线交抛物线C于A,B两点.当直线与x轴垂直时,|AB|=4.(1)求抛物线C的方程;(2)设直线AB的斜率为1且与抛物线的准线l相交于点M,抛物线C上存在点P使得直线PA,PM,PB的斜率成等差数列,求点P的坐标.【分析】(1)由题意可得|AB|=2p=4,即可求出抛物线的方程,(2)设直线AB的方程为y=x﹣1,联立消去x,得y2﹣4y﹣4=0,根据韦达定理结合直线PA,PM,PB的斜率成等差数列,即可求出点P的坐标解:(1)因为,在抛物线方程y2=2px中,令,可得y=±p.于是当直线与x轴垂直时,|AB|=2p=4,解得p=2.所以抛物线的方程为y2=4x.(2)因为抛物线y2=4x的准线方程为x=﹣1,所以M(﹣1,﹣2).设直线AB的方程为y=x﹣1,联立消去x,得y2﹣4y﹣4=0.设A(x1,y1),B(x2,y2),则y1+y2=4,y1y2=﹣4.若点P(x0,y0)满足条件,则2k PM=k PA+k PB,即,因为点P,A,B均在抛物线上,所以.代入化简可得,将y1+y2=4,y1y2=﹣4代入,解得y0=±2.将y0=±2代入抛物线方程,可得x0=1.于是点P(1,±2)为满足题意的点.20.已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(2)得到e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,通过讨论a 的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1f(x)的最小值为1.(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0(*)令g(x)=e x+ax+ln(x+1)﹣1,则①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于ϕ(0)=2+a<0,.故∃x0∈(0,﹣a),使得ϕ(x0)=0,则当0<x<x0时,ϕ(x)<ϕ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞).21.如图,直角坐标系中,圆的方程为x2+y2=1,A(1,0),B(﹣,),C(﹣,﹣)为圆上三个定点,某同学从A点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.设掷骰子n次时,棋子移动到A,B,C处的概率分别为P n(A),P n(B),P n(C).例如:掷骰子一次时,棋子移动到A,B,C处的概率分别为P1(A)=0,P1(B)=,P1(C)=(1)分别掷骰子二次,三次时,求棋子分别移动到A,B,C处的概率;(2)掷骰子n次时,若以x轴非负半轴为始边,以射线OA,OB,OC为终边的角的余弦值记为随机变量X n,求X4的分布列和数学期望;(3)记P n(A)=a n,P n(B)=b n,P n(C)=c n.,其中a n+b n+c n=1.证明:数列{b n ﹣}是等比数列,并求a2020.【分析】(1)由概率的乘法公式,可得所求值;(2)随机变量X4的可能取值为1,﹣,结合(1)运用概率乘法公式,可得随机变量的分布列和期望;(3)易得b n=c n,即b n﹣1=c n﹣1,n≥2,由条件推得2b n+b n﹣1=1,由构造等比数列,可得b n=+•(﹣)n﹣1,即可得到所求值.解:(1)P2(A)=•+•=,P2(B)=•=,P2(C)=•=,P3(A)=••+••=,P3(B)=(+)•=,P3(C)=(+)•=;(2)随机变量X4的可能取值为1,﹣,由(1)可得P(x4=1)=(P3(B)+P3(C))•=(+)•=,P(x4=﹣)=(P3(A)+P3(C))•+(P3(A)+P3(B))•=,则X4的分布列为x41﹣PE(X4)=1•+(﹣)•=;(3)证明:易得b n=c n,即b n﹣1=c n﹣1,n≥2,n≥2时,b n=(a n﹣1+c n﹣1)=(a n﹣1+b n﹣1),又a n﹣1+b n﹣1+c n﹣1=1,可得2b n+b n﹣1=1,由b n﹣=﹣b n﹣1+﹣=﹣(b n﹣1﹣),可得数列{b n﹣}是首项为,公比为﹣的等比数列,则b n﹣=•(﹣)n﹣1,即b n=+•(﹣)n﹣1,又a n=1﹣b n=1﹣2[+•(﹣)n﹣1]=[1﹣(﹣)n﹣1],故a2020=[1+()2019].[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后的曲线为C2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q 两点,求|PQ|的值.【分析】(Ⅰ)求出C2的参数方程,即可求C2的极坐标方程;(Ⅱ)C2是以(1,0)为圆心,1为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,求出圆心到直线的距离,即可求|PQ|的值.解:(Ⅰ)C2的参数方程为(α为参数),普通方程为(x′﹣1)2+y′2=1,∴C2的极坐标方程为ρ=2cosθ;(Ⅱ)C2是以(1,0)为圆心,1为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,∴圆心到直线的距离d==,∴|PQ|=2=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;(Ⅱ)当x∈R时,求证f(x)≤g(x).【分析】(Ⅰ)当b=1时,把f(x)用分段函数来表示,分类讨论,求得f(x)≥1的解集.(Ⅱ)当x∈R时,先求得f(x)的最大值为b2+1,再求得g(x)的最小值,根据g(x)的最小值减去f(x)的最大值大于或等于零,可得f(x)≤g(x)成立.解:(Ⅰ)由题意,当b=1时,f(x)=|x+b2|﹣|﹣x+1|=,当x≤﹣1时,f(x)=﹣2<1,不等式f(x)≥1无解,不等式f(x)≥1的解集为∅;当﹣1<x<1时,f(x)=2x,由不等式f(x)≥1,解得x≥,所以≤x<1;当x≥1时,f(x)=2≥1恒成立,所以不等式f(x)≥1的解集为[,+∞).(Ⅱ)(Ⅱ)当x∈R时,f(x)=|x+b2|﹣|﹣x+1|≤|x+b2 +(﹣x+1)|=|b2+1|=b2+1;g(x)=|x+a2+c2|+|x﹣2b2|=≥|x+a2+c2﹣(x﹣2b2)|=|a2+c2+2b2|=a2+c2+2b2.而a2+c2+2b2﹣(b2+1)=a2+c2+b2﹣1=(a2+c2+b2+a2+c2+b2)﹣1≥ab+bc+ac﹣1=0,当且仅当a=b=c=时,等号成立,即a2+c2+2b2≥b2+1,即f(x)≤g(x).。
长郡初中课程中心2018-2019学年度初三第3次限时检测--数学答案
( ( ' ) ) * ( ! ' "
' ) ( (' ) ' ) ' ) ) *' ) ( ! ' ) ' "' )
( & ( (( & ' ) ( & ) *( & ( ! ( & ' "( &
( " ( ( ( " ' ) ( " ) *( " ( ! ( " ' "( "
长郡教育集团初中课程中心
学年度初三第三次限时检测 数学参考答案
一 选择题 题号 答案 二 填空题 %/ ! 槡 ! # ! "" ! ! $ ! " ! ! % ! " ! & ! #"/ # ! ' ! ! ( ! ( ! ! ! ! ! ! " 三 解答题 # 解答 解 原式0/ ! ) ! ! 1 " /槡 #/ $ 2 1 " 2 ! 0/槡 # &分 $ " " " / $ "1 $ "1 $ 解答 解 原式0 ! " * ! / 3 / " " "1 " " / $ "1 "/ " "1 " "/ " $ 0 / " " "1 " "/ " "1 " "1 $ / 0 " "1 " " "1 " / " "1 $ 0 " "1 " " " " 1 $ "1 $ / " / $ " 0 " "1 " $ #分 0 " "1 " " " 4 " 1 " "/ ! % 0 * " 5 " 1 " "0 ! % $ 分 5原式0 ! & ! % ' ) 1 ( & 1 ( " 1 ( % 1 ( # ( ( 1 ' ) 1 ) * 1 ( ! 1 ' " 解答 解 分 分 0 ( # 0 ( " " ! ! ! "甲 0 "乙 0 % % "分 选拔甲参加比赛更合适 理由如下 " " " 且$ 甲$ 乙 4 "甲 # "乙 $ 且甲的成绩更稳定 5甲的平均成绩高于乙 故选拔甲参加比赛更合适! %分 列表如下 # ! + " , # + $ , % & . ' . ( + ) ! * ! ! ! " , , , .
【教师版】2019-2020-1长郡集团九年级第三次月考物理试卷
长郡教育集团初中课程中心2019-2020学年度初三第三次限时检测物理考试时间:2019年12月9日7:50-9:50注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共四大题,考试时量60分钟,满分100分。
一、单项选择题(每题3分,共15小题,共45分)1.用分子热运动的观点解释下列现象,解释不正确的是()A.氧气被压缩装入钢瓶——分子间有间隙B.花气袭人知骤暖(温度升高)——分子运动加剧C.两块表面平滑的铅块紧压后会结合起来——分子间存在引力D.破镜不能重圆——分子间存在斥力2.关于内能的下列说法正确的是()A.物体内能增加,一定是吸收了热量B.物体吸收热量,温度一定升高C.物体内能增加,可能是物体对外做功(不考虑吸热、放热)D.“钻木取火”是通过做功使木头的温度升高3.下列对能量转化的描述不正确的是()A.蓄电池充电:电能→化学能B.电热水器烧水时:电能→内能C.太阳能电池板工作:太阳能→化学能D.内燃机工作:化学能→内能→机械能4.如图所示,小华同学用与丝绸摩擦过的玻璃棒接触验电器的金属球,看到验电器的金属箔张开,此时()A.玻璃棒和验电器都带上了负电荷B.玻璃棒带正电荷,验电器带负电荷C.接触的过程中电荷从验电器转移到了玻璃棒上D.金属箔张开是因为异种电荷相互排斥5.如图所示的电路,将M 、N 两端连接在一起并闭合开关,灯L 发光;接着将M 、N 分开,在M ,N 之间分别接入下列物体:(1)橡皮擦、(2)铅笔芯、(3)电压表、(4)电流表;闭合开关,灯泡仍会发光的是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)6.如图所示,在“探究串联电路中电压的规律”时,小华同学用电压表测出U ab =3V,Ubc =3V,U ac =6V,在表格中记录数据后,下一步应该做的是()A.整理器材、分析数据,得出结论B.对换L 1和L 2的位置,再测出一组电压值C.改变电源电压,再测出几组电压值D.换用不同规格的小灯泡,再测出几组电压值7.为了提高行车的安全性,有的汽车装有日间行车灯,当汽车启动时,S 1闭合,日间行车灯L 1立即亮起,再闭合S 2,车前大灯L 2才亮,在下图所示的电路图中符合这一情况的是()A B C D8.小华同学利用如图所示的电路做“伏安法测电阻”的实验,已知电源电压恒为6V,滑动变阻器标有“20Ω1A”字样,实验中该同学填写的实验数据如表所示。
湖南省长沙市2019-2020学年中考数学三模考试卷含解析
湖南省长沙市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,由四个正方体组成的几何体的左视图是()A.B.C.D.2.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是26 3.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定4.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大5.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.46.在反比例函数1k y x-=的图象的每一个分支上,y 都随x 的增大而减小,则k 的取值范围是( ) A .k >1B .k >0C .k≥1D .k <17.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .48.不等式组1351x x -<⎧⎨-≤⎩的解集是( )A .x >﹣1B .x≤2C .﹣1<x <2D .﹣1<x≤29.如图,在Rt △ABC 中,∠B=90°,∠A=30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是( )A .3 B .36C .3 D .3 10.满足不等式组21010x x -≤⎧⎨+>⎩的整数解是( )A .﹣2B .﹣1C .0D .111.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°12.如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E ,若∠A=40°,则∠1的度数为( )A .80°B .70°C .60°D .40°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .14.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM =AC ,BN =BC ,测得MN =200m ,则A ,B 间的距离为_____m .15.如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为_____.16.因式分解:34a a -=_______________________.17.直线AB ,BC ,CA 的位置关系如图所示,则下列语句:①点A 在直线BC 上;②直线AB 经过点C ;③直线AB ,BC ,CA 两两相交;④点B 是直线AB ,BC ,CA 的公共点,正确的有_____(只填写序号).18.若关于x 的二次函数y =ax 2+a 2的最小值为4,则a 的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AEBE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 20.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球), 第一次变化:从左边小桶中拿出两个小球放入中间小桶中; 第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍. (1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍; (2)若每个小桶中原有a 个小球,则第二次变化后中间小桶中有_____个小球(用a 表示); (3)求第三次变化后中间小桶中有多少个小球?21.(6分)尺规作图:校园有两条路OA 、OB ,在交叉路口附近有两块宣传牌C 、D ,学校准备在这里安装一盏路灯,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P .(不写画图过程,保留作图痕迹)22.(8分)如图,在矩形ABCD 中,AB=4,BC=6,M 是BC 的中点,DE ⊥AM 于点E .求证:△ADE ∽△MAB ;求DE 的长.23.(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如表:车型目的地A 村(元/辆)B 村(元/辆)大货车800900 小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式.(3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.24.(10分)有一个n 位自然数...abcd gh 能被x 0整除,依次轮换个位数字得到的新数bcd...gha 能被x 0+1整除,再依次轮换个位数字得到的新数cd...ghab 能被x 0+2整除,按此规律轮换后,d...ghabc 能被x 0+3整除,…,...habc g 能被x 0+n ﹣1整除,则称这个n 位数a ...bcd gh 是x 0的一个“轮换数”. 例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”. (2)若三位自然数abc 是3的一个“轮换数”,其中a=2,求这个三位自然数abc .25.(10分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.[理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;[探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求as的值.26.(12分)阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.年度2013 2014 2015 2016 2017参观人数(人次)7450 0007630 0007290 0007550 0008060 000年增长率(%)38.7 2.4 -4.5 3.6 6.8他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.27.(12分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】从左边看可以看到两个小正方形摞在一起,故选B.2.C【解析】【分析】根据众数、中位数、平均数以及方差的概念求解.【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.3.A【解析】【分析】根据正比例函数的增减性解答即可.【详解】∵正比例函数y=﹣k2x(k≠0),﹣k2<0,∴该函数的图象中y随x的增大而减小,∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,∴y2>y1,故选:A.【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时,y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时,y=kx的图象经过二、四象限,y随x的增大而减小. 4.C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.5.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.6.A【解析】【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数1kyx-=图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x 的增大而增大.7.B【解析】∵点(6,4)A -,D 是OA 中点 ∴D 点坐标(3,2)- ∵(3,2)D -在双曲线(0)k y k x=<上,代入可得23k =- ∴6k =-∵点C 在直角边AB 上,而直线边AB 与x 轴垂直 ∴点C 的横坐标为-6 又∵点C 在双曲线6y x-= ∴点C 坐标为(6,1)-∴22(66)(14)3AC =-++-= 从而1136922AOC S AC OB ∆=⨯⨯=⨯⨯=,故选B 8.D 【解析】由﹣x <1得,∴x >﹣1,由3x ﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D 9.B 【解析】试题解析:如图所示:设BC=x ,∵在Rt △ABC 中,∠B=90°,∠A=30°, ∴AC=2BC=2x ,33,根据题意得:AD=BC=x ,3,作EM ⊥AD 于M ,则AM=12AD=12x , 在Rt △AEM 中,cos ∠EAD=1323xAM AE x==;【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM 是解决问题的关键.10.C【解析】【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】210 10x x -≤⎧⎨+⎩①>②∵解不等式①得:x≤0.5,解不等式②得:x >-1,∴不等式组的解集为-1<x≤0.5,∴不等式组的整数解为0,故选C .【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.11.D【解析】试题解析:∵四边形ABCD 为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.12.B【解析】【分析】根据平行线的性质得到°140ABD ∠=,根据BE 平分∠ABD ,即可求出∠1的度数. 【详解】解:∵BD ∥AC ,∴°180ABD A ∠+∠=,°140ABD ∠=,∵BE 平分∠ABD , ∴°°1111407022ABD ∠=∠=⨯= 故选B .【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.n 1+n +1.【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n 个为n 1+n+1.考点:规律型:图形的变化类.14.1【解析】【详解】∵AM=AC ,BN=BC ,∴AB 是△ABC 的中位线,∴AB=12MN=1m , 故答案为1.15.1;分析:根据辅助线做法得出CF ⊥AB ,然后根据含有30°角的直角三角形得出AB 和BF 的长度,从而得出AF 的长度.详解:∵根据作图法则可得:CF ⊥AB , ∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8, ∵∠CFB=90°,∠B=10°, ∴BF=12BC=2, ∴AF=AB -BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.16.(2)(2)a a a +-【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a -=-=+-【点睛】本题考查因式分解,掌握因式分解方法是关键.17.③【解析】【分析】根据直线与点的位置关系即可求解.【详解】①点A 在直线BC 上是错误的;②直线AB 经过点C 是错误的;③直线AB ,BC ,CA 两两相交是正确的;④点B 是直线AB ,BC ,CA 的公共点是错误的.故答案为③.【点睛】本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义.18.1.【解析】【分析】根据二次函数的性质列出不等式和等式,计算即可.解:∵关于x 的二次函数y=ax 1+a 1的最小值为4,∴a 1=4,a >0,解得,a=1,故答案为1.【点睛】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12,14;(2)证明见解析;(3)34m n =. 【解析】【分析】(1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论;(2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =g ,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥Q ,90ACB ∠=︒,BCE CAE BAC ∴∆∆∆∽∽,∴12CE AC AE EB BC EC ===, 2EB EC ∴=,2EC AE =,∴14AE EB =.故答案为:12,14.(2)如图11-中,作//DHCF交AB于H.2m=Q,3n=,∴tan∠B=12CE ACBE BC==,tan∠ACE= tan∠B=12AECE=∴BE=2CE,12AE CE=4BE AE∴=,2BD CD=,设AE a=,则4BE a=,//DH ACQ,∴2BH BDAH CD==,53AH a∴=,5233EH a a a=-=,//DH AFQ,∴3223EF AE aDE EH a===,32EF DE∴=.(3)如图2中,作DH AB⊥于H.90ACB CEB∠=∠=︒Q,90ACE ECB∴∠+∠=︒,90B ECB∠+∠=︒,ACE B∴∠=∠,DA DB=Q,EAG B∠=∠,EAG ACE∴∠=∠,90AEG AEC ∠=∠=︒Q ,AEG CEA ∴∆∆∽,2AE EG EC ∴=g ,32CG AE =Q ,设3CG a =,2AE a =,EG x =, 则有24(3)a x x a =+,解得x a =或4a -(舍弃),1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =Q ,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE Q ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,在Rt ACD ∆中,4AC b =,:4:3AC CD ∴=,mAC nDC =Q ,::4:3AC CD n m ∴==, ∴34m n =. 【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.20. (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.【解析】【分析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a 个小球,根据第三次变化方法列出方程并解答.【详解】解:(1)依题意得:(3+2)÷(3﹣2)=5 故答案是:5;(2)依题意得:a+2+1=a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a﹣1+x=2ax=a+1所以a+3﹣x=a+3﹣(a+1)=2答:第三次变化后中间小桶中有2个小球.【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.21.见解析.【解析】【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.22.(1)证明见解析;(2)24 5.【解析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB. 试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.23.(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解析】【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x辆,小货车用y辆,根据题意得:15{128152 x yx y+=+=解得:8{7xy==.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.24.(1)见解析;(2) 201,207,1【解析】试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;(2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可.试题解析:(1)设两位自然数的十位数字为x,则个位数字为2x,∴这个两位自然数是10x+2x=12x,∴这个两位自然数是12x能被6整除,∵依次轮换个位数字得到的两位自然数为10×2x+x=21x∴轮换个位数字得到的两位自然数为21x能被7整除,∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.(2)∵三位自然数是3的一个“轮换数”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的个位数字不是0,便是5,∴b=0或b=5,当b=0时,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,∴这个三位自然数为201,207,当b=5时,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴这个三位自然数可能是为251,1,257,259,而251,257,259不能被3整除,∴这个三位自然数为1,即这个三位自然数为201,207,1.【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值.25.tanA=32;综上所述,当β=45°时,若△APQ是“中边三角形”,as的值为34或1512.【解析】【分析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【详解】解:[理解]∵AC和BD是“对应边”,∴AC=BD,设AC=2x,则CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分线,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,如图3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.【点睛】本题是一道相似形综合运用的试题, 考查了相似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.26.(1)见解析;(2)答案不唯一,预估理由合理,支撑预估数据即可【解析】【分析】【详解】分析:(1)根据2015年网络售票占17.33%,2017年8月实现网络售票占比77%,2017年10月2日,首次实现全部网络售票,即可补全图1,根据2016年度中国国家博物馆参观人数及年增长率,即可补全图2;(2)根据近两年平均每年增长385000人次,即可预估2018年中国国家博物馆的参观人数.详解:(1)补全统计图如(2)近两年平均每年增长385000人次,预估2018年中国国家博物馆的参观人数为8445000人次.(答案不唯一,预估理由合理,支撑预估数据即可.)点睛:本题考查了统计表、折线统计图的应用,关键是正确从统计表中得到正确的信息,折线统计图表示的是事物的变化情况.27.(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.。
湖南长沙长郡教育集团2019-2020学年度第四次限时检测初三数学试题及参考答案
3q§)' @³<l#1""/"! "s0`!' '1,*( 1! 2&(*& @8§l*)3'&1'1!
´'(1'.'(&*3'*&11*(('1*'&&1//)'1! "!
'&1"'(1#«*&1""*(1"#! 3^µ¶}·E*("1(&"0*&"
%#"1"0#"0""" &""0""#/##"1* "0#&"/##1*
!"#$%&'()*+,-./01 !#
3"#"槡"&"1")
E"1#槡&
3)(1槡&"1!&
3/)1!"&!
=8>?%!CE%8%"CE&8!RC®¯°8!RCE)8!
"&!/0!h#1$""/"eX"1*)T#1/"3)*/" 2' @±²l!*aq§)' @³<l#10"0% «()*%010%/1"*E()*%011"/"
!"#$%&'()*+,-./01 !%
#89:&(!*!' ºl}M·^st ^4U»¼§2! @³<l#1! """/"/3 (! @±²l4*½e4$*3*1! "4"/"/33"031!"4" 3#1! """/!"4" 2*! q§'* ¾»¼§ 2! @¿ 3()*##11"! """/""/!"4"E( ) *#"!!11""//4"4( ) *#"""11""004"4! 2*! q§'* ¾»¼§2! @¿¬4$* 3*! @±²l"/4"/"4 s0`"*! *!&!," À&! 3*!&!1"/"4/&!1"/4 3(!&!1(!/0/&!1"/40/41"/"4 3*!&!1(!&!3;8'*!(!&! lÁÂqH$H 3&*!(!&!1%&7 ^#1! """/"¿" À(¿q§)' *Ãm&'(*1%&7! 3&*!(!&!1&'(*3(!*!%(*3&(!*!'1&(*' 389:&(!*!'189:&(*' 389:&(!*!' ºl}M! s0`#' '+,(* + 2&'(*1%&73;8''(+ lÁÂqH$H
2019-2020学年湖南省长沙市天心区长郡教育集团九年级(上)月考数学试卷(含解析)印刷版
2019-2020学年湖南省长沙市天心区长郡教育集团九年级(上)月考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题所出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列各数是无理数的是()A.0B.πC.D.﹣2.(3分)下列运算,正确的是()A.2x+3y=5xy B.(x﹣3)2=x2﹣9C.(xy2)2=x2y4D.x6÷x3=x23.(3分)如图,是中心对称图形的是()A.B.C.D.4.(3分)若代数式有意义,则x的取值是()A.x=0B.x≠0C.x=3D.x≠﹣35.(3分)数据1,2,3,0,5,5,6的中位数和众数分别是()A.3和2B.3和3C.3和5D.0和56.(3分)多项式3ma2+15mab的公因式是()A.3m B.3ma2C.3ma D.3mab7.(3分)如图,能判定AB∥CD的是()A.∠1=∠4B.∠1=∠3C.∠1=∠2D.∠2=∠38.(3分)若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.109.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形10.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=31°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A'B'C,使得点A'恰好落在AB边上,则α等于()A.149°B.69°C.62°D.31°11.(3分)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+ac在直角坐标系中的图象大致为()A.B.C.D.12.(3分)如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下列结论中:(1)△OEF是等腰直角三角形;(2)图形中全等的三角形只有两对;(3)BE+BF=OA;(4)正方形ABCD的面积等于四边形OEBF面积的4倍,正确的结论有()A.1个B.2 个C.3个D.4个二、填空阻(本大题头有6小题,每小题3分,共18分,不需写出解答过程,请把答直接写在答题卡相应位置上)13.(3分)已知y=++3,则x﹣y=.14.(3分)若点P(4,﹣5)和点Q(a,b)关于原点对称,则a的值为.15.(3分)已知一等腰三角形有两边长为6,8,则这个三角形的周长为.16.(3分)已知a,b满足方程组,则a﹣4b的值为.17.(3分)如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.18.(3分)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB 的周长最小时,S△P AB=.三、解答题(本大题共8小题,第19、20题每题6分;第21、22题每题8分;第23、24题每题9分;第25,26题每题10分)19.(6分)计算:﹣22++(3﹣π)0﹣|π﹣3|.20.(6分)先化简,再求值:(a+b)2﹣(a+b)(a﹣b)﹣2b2,其中a=﹣1,b=2.21.(8分)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)在网格中画出△A1OB1,并标上字母;(2)点A关于O点中心对称的点的坐标为;(3)点A1的坐标为;(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.22.(8分)如图,在△ABC中,AE是它的角平分线,∠C=90°,∠B=30°,D在AB边上,AD=4,以AD为直径的圆O经过点E.(1)求证:BC是⊙O的切线;(2)求图中阴影部分的面积.23.(9分)某商店在2017年至2019年期间销售一种礼盒,2017年,该商店用3500元购进了这种礼盒并且全部售完;2019年这种礼盒的进价比2017年下降了11元/盒,该商店用2400元购进了与2017年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2017年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同问年增长率是多少?24.(9分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD 交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.25.在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为,OA:OB=3:4,BC =,①求AB的长;②求直线AC的解析式;(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.26.(10分)已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A,B两点(点A在点B左侧),与y轴交于点C、设直线CM与x轴交于点D.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.(3)设直线y=kx+2与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.2019-2020学年湖南省长沙市天心区长郡教育集团九年级(上)月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题所出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列各数是无理数的是()A.0B.πC.D.﹣【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【解答】解:,∴0,,是有理数,π是无理数.故选:B.2.(3分)下列运算,正确的是()A.2x+3y=5xy B.(x﹣3)2=x2﹣9C.(xy2)2=x2y4D.x6÷x3=x2【分析】直接利用合并同类项法则以及完全平方公式和积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、2x+3y,无法计算,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、(xy2)2=x2y4,正确;D、x6÷x3=x3,故此选项错误;故选:C.3.(3分)如图,是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.4.(3分)若代数式有意义,则x的取值是()A.x=0B.x≠0C.x=3D.x≠﹣3【分析】根据分式有意义的条件可得x+3≠0,再解即可.【解答】解:由题意得:x+3≠0,解得:x≠﹣3,故选:D.5.(3分)数据1,2,3,0,5,5,6的中位数和众数分别是()A.3和2B.3和3C.3和5D.0和5【分析】根据中位数和众数的定义解答即可.【解答】解:把这些数从小到大为:0,1,2,3,5,5,6,最中间的数是3,则中位数是3;∵5出现了2次,出现的次数最多,∴众数是5;故选:C.6.(3分)多项式3ma2+15mab的公因式是()A.3m B.3ma2C.3ma D.3mab【分析】定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【解答】解:多项式3ma2+15mab的公因式是3ma,故选:C.7.(3分)如图,能判定AB∥CD的是()A.∠1=∠4B.∠1=∠3C.∠1=∠2D.∠2=∠3【分析】利用平行线的判定定理逐项分析即可.【解答】解:A.根据∠1=∠4能推出AB∥CD,所以此选项正确;B.根据∠3=∠1不能推出AB∥CD,所以此选项错误;C.根据∠2=∠1不能推出AB∥CD,所以此选项错误;D.根据∠3=∠2不能推出AB∥CD,所以此选项错误;故选:A.8.(3分)若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.10【分析】根据方程无实数根得出关于a的不等式,求出不等式的解集,再进行判断即可.【解答】解:∵关于x的方程x2+6x﹣a=0无实数根,∴△=62﹣4×1×(﹣a)<0,解得:a<﹣9,∴只有选项A符合,故选:A.9.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【分析】分别根据平行四边形的性质、多边形内角和和菱形的判定和性质逐项判断即可.【解答】解:∵平行四边形的对角线互相平分,∴A选项正确;∵五边形内角和=(5﹣2)×180°=540°,∴B选项正确;∵菱形的对角线互相垂直,∴C选项正确;∵只有对角线互相垂直且平分的四边形才是菱形,∴D选项错误;∴错误的是D,故选:D.10.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=31°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A'B'C,使得点A'恰好落在AB边上,则α等于()A.149°B.69°C.62°D.31°【分析】根据三角形内角和定理求出∠A,再利用等腰三角形的性质求出∠ACA′即可解决问题.【解答】解:∵∠ACB=90°,∴∠A=90°﹣∠B=59°,∵CA=CA′,∴∠A=∠CA′A=59°,∴α=∠ACA′=180°﹣2×59°=62°,故选:C.11.(3分)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+ac在直角坐标系中的图象大致为()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、c的正负情况,然后根据一次函数的解析式和一次函数的性质即可得到该一次函数的图象经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a>0,b<0,c<0,∵一次函数y=bx+ac,∴b<0,ac<0,∴一次函数y=bx+ac的图象经过第二、三、四象限,故选:D.12.(3分)如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下列结论中:(1)△OEF是等腰直角三角形;(2)图形中全等的三角形只有两对;(3)BE+BF=OA;(4)正方形ABCD的面积等于四边形OEBF面积的4倍,正确的结论有()A.1个B.2 个C.3个D.4个【分析】(1)(3)(4)正确.只要证明△BOE≌△COF,即可解决问题,(2)图中全等三角形不止两对,故(2)错误.【解答】解:∵四边形ABCD是正方形,∴AB=BC,ABC=90°,∠BAO=∠ABO=∠OBC=45°,AC⊥BD,∵∠EOF=90°,∴∠BOE+∠BOF=90°,∵∠BOF+∠COF=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴OE=OF,BE=CF,∴△EOF是等腰直角三角形,故(1)正确,∴BE+BF=CF+BF=BC=OA,故(3)正确,∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,∴S正方形ABCD=4S四边形OEBF故(4)正确;图中全等三角形有△BOE≌△COF,△AOB≌△AOD≌△DOC≌△BOC,故(2)错误.故选:C.二、填空阻(本大题头有6小题,每小题3分,共18分,不需写出解答过程,请把答直接写在答题卡相应位置上)13.(3分)已知y=++3,则x﹣y=﹣2.【分析】根据二次根式有意义的条件确定出x的值,进而得出y的值,代入即可求解.【解答】解:∵y=++3,∴解得:x=1∴y=3∴x﹣y=﹣2故答案为:﹣2 14.(3分)若点P(4,﹣5)和点Q(a,b)关于原点对称,则a的值为﹣4.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点P(4,﹣5)和点Q(a,b)关于原点对称,∴点Q的坐标为(﹣4,5),即a=﹣4.故答案为:﹣4.15.(3分)已知一等腰三角形有两边长为6,8,则这个三角形的周长为20或22.【分析】分为两种情况:①等腰三角形的三边为6,6,8,②等腰三角形的三边为6,8,8,分别求出即可.【解答】解:分为两种情况:①等腰三角形的三边为6,6,8,符合三角形的三边关系定理,此时这个三角形的周长是6+6+8=20;②等腰三角形的三边为6,8,8,符合三角形的三边关系定理,此时这个三角形的周长是6+8+8=22;即等腰三角形的周长为20或22,故答案为:20或22.16.(3分)已知a,b满足方程组,则a﹣4b的值为4.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:两式相加可得:﹣a+4b=﹣4,∴a﹣4b=4,故答案为:417.(3分)如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为9.【分析】根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA是等腰三角形,依据∠A1BA =30°得到等腰三角形的面积,由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【解答】解:∵在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=9,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为:9.18.(3分)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.【分析】根据轴对称,可以求得使得△P AB的周长最小时点P的坐标,然后求出点P到直线AB的距离和AB的长度,即可求得△P AB的面积,本题得以解决.【解答】解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.三、解答题(本大题共8小题,第19、20题每题6分;第21、22题每题8分;第23、24题每题9分;第25,26题每题10分)19.(6分)计算:﹣22++(3﹣π)0﹣|π﹣3|.【分析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=﹣4+2+1﹣(π﹣3)=﹣4+2+1﹣π+3=﹣π+2.20.(6分)先化简,再求值:(a+b)2﹣(a+b)(a﹣b)﹣2b2,其中a=﹣1,b=2.【分析】根据完全平方公式、平方差公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a+b)2﹣(a+b)(a﹣b)﹣2b2=a2+2ab+b2﹣a2+b2﹣2b2=2ab,当a=﹣1,b=2时,原式=2×(﹣1)×2=﹣4.21.(8分)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)在网格中画出△A1OB1,并标上字母;(2)点A关于O点中心对称的点的坐标为(﹣3,﹣2);(3)点A1的坐标为(﹣2,3);(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为π.【分析】(1)利用旋转的性质得出A1,B1的位置,即可得出所要图形;(2)利用关于原点对称点的坐标性质得出即可;(3)利用(1)中图形得出点A1的坐标;(4)利用弧长公式的求出弧BB1的长.【解答】解:(1)如图所示:(2)∵点A的坐标为(3,2),∴点A关于O点中心对称的点的坐标为:(﹣3,﹣2);故答案为:(﹣3,﹣2);(3)由(1)得:点A1的坐标为(﹣2,3);故答案为:(﹣2,3);(4)∵B的坐标为(1,3),∴BO=,∴在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为:=.故答案为:π.22.(8分)如图,在△ABC中,AE是它的角平分线,∠C=90°,∠B=30°,D在AB边上,AD=4,以AD为直径的圆O经过点E.(1)求证:BC是⊙O的切线;(2)求图中阴影部分的面积.【分析】(1)直接利用角平分线的性质结合等腰三角形的性质得出∠CAE=∠OEA,进而得出∠OEB=90°,即可得出答案;(2)首先求出EO,BE的长,进而利用阴影部分的面积=S△EOB﹣S扇形EOD,进而得出答案.【解答】(1)证明:连接OE,∵AE平分∠CAB,∴∠CAE=∠EAB,∵AO=EO,∴∠OAE=∠AEO,∴∠CAE=∠OEA,∴AC∥EO,∵∠C=90°,∴∠OEB=90°,∴BC是⊙O的切线;(2)解:∵∠B=30°,∠OEB=90°,∴EO=BO,∠EOB=60°,∵AD=4,∴EO=2,DO=2,∴BO=4,∴BE=2,图中阴影部分的面积为:×EO×BE﹣=2﹣π.23.(9分)某商店在2017年至2019年期间销售一种礼盒,2017年,该商店用3500元购进了这种礼盒并且全部售完;2019年这种礼盒的进价比2017年下降了11元/盒,该商店用2400元购进了与2017年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2017年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同问年增长率是多少?【分析】(1)设2017年这种礼盒的进价是x元/盒,则2019年这种礼盒的进价是(x﹣11)元/盒,根据数量=总价÷单价结合2017年和2019年购入礼盒数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出2017年及2019年购进这种礼盒的数量,设该商店每年销售这种礼盒所获利润的年增长率为y,根据2017年及2019年获得的利润,即可得出关于y的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设2017年这种礼盒的进价是x元/盒,则2019年这种礼盒的进价是(x﹣11)元/盒,依题意,得:=,解得:x=35,经检验,x=35是原方程的解,且符合题意.答:2017年这种礼盒的进价是35元/盒.(2)2017年及2019年购进这种礼盒的数量为3500÷35=100(盒).设该商店每年销售这种礼盒所获利润的年增长率为y,依题意,得:(60﹣35)×100(1+y)2=(60﹣35+11)×100,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店每年销售这种礼盒所获利润的年增长率为20%.24.(9分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD 交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.【分析】(1)连结OC,由C是劣弧AE的中点,根据垂径定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根据切线的判定定理即可得到结论;(2)连结AC、BC,根据圆周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,则∠CDB=90°,根据等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;(3)在Rt△ADF中,由于∠DAF=30°,F A=FC=2,根据含30度的直角三角形三边的关系得到DF =1,AD=,再由AF∥CG,根据平行线分线段成比例得到DA:AG=DF:CF然后把DF=1,AD=,CF=2代入计算即可.【解答】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴=,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:在Rt△ADF中,∠DAF=30°,F A=FC=2,∴DF=AF=1,∴AD=DF=,∵AF∥CG,∴DA:AG=DF:CF,即:AG=1:2,∴AG=2.25.在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为,OA:OB=3:4,BC=,①求AB的长;②求直线AC的解析式;(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.【分析】(1)已知点O到直线AB的距离为,且OA:OB=3:4,从O点作AB的垂线,利用三角函数关系求出OA、OB和OB的关系,利用△AOB的面积公式可求出AB的长度;根据三角函数分别求出A、C的坐标.利用待定系数法可求得直线AC的解析式;(2)设△AOB的内切圆分别切OA、OB、AB于点P、Q、T,则d+AB=OQ+OP+QB+P A=OA+OB,由此即可解决问题.【解答】解:(1)如图1,过O作OG⊥AB于G,则OG=,∵OA:OB=3:4,设OA=3k,OB=4k,∴AB=5k,∵OA•OB=AB•OG=2S△AOB,即3k×4k=5k×,∴k=1,∴AB=5;∴A(3,0).∵∠AOB=90°,∴AB是⊙O1的直径.∵AC切⊙O1于A,∴BA⊥AC,∴∠BAC=90°.∵BC=.∴OC=BC﹣OB=.∴C(0,﹣).设直线AC的解析式为y=kx+b,则,∴k=.∴直线AC的解析式为y=x﹣;(2)结论:d+AB的值不会发生变化,设△AOB的内切圆分别切OA、OB、AB于点P、Q、T,如图2所示.∴BQ=BT,AP=AT,OQ=OP=.∴BQ=BT=OB﹣,AP=AT=OA﹣.∴AB=BT+AT=OB﹣+OA﹣=OA+OB﹣d.则d+AB=d+OA+OB﹣d=OA+OB.在x轴上取一点N,使AN=OB,连接OM、BM、AM、MN.∵M(2,2),∴OM平分∠AOB,∴OM=2,∴∠BOM=∠MON=45°,∴AM=BM,又∵∠MAN=∠OBM,OB=AN,∴△BOM≌△ANM,∴∠BOM=∠ANM=45°,∠ANM=∠MON,∴OM=NM,∠OMN=90°,∴OA+OB=OA+AN=ON=×OM=×2=4.∴d+AB的值不会发生变化,其值为4.26.(10分)已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A,B两点(点A在点B左侧),与y轴交于点C、设直线CM与x轴交于点D.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.(3)设直线y=kx+2与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.【分析】(1)设解析式为y=a(x﹣1)2+4,根据待定系数法,可得函数解析式;(2)根据根据勾股定理,可得P A的长,PQ的长,根据圆的半径相等,可得关于u的方程,根据解方程,可得答案.(3)如图,设P(x1,y1),Q(x2,y2),PQ的中点为w.因为原点O在以QR为直径的圆外,可知2OW>PQ,由此构建不等式,解不等式即可解决问题;【解答】(1)解:由抛物线的顶点是M(1,4),设解析式为y=a(x﹣1)2+4(a<0),又∵抛物线经过点N(2,3),∴3=a(2﹣1)2+4,解得a=﹣1.故所求抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)解:如图:假设在x轴上方存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,设P(1,u)其中u>0,则P A是圆的半径且P A2=u2+22,过P做直线CD的垂线,垂足为Q,则PQ=P A时以P为圆心的圆与直线CD相切.由第(2)小题易得:△MDE为等腰直角三角形,故△PQM也是等腰直角三角形,由P(1,u)得PE=u,PM=|4﹣u|,PQ=PM.由PQ2=P A2得方程:(4﹣u)2=u2+22,解得u=﹣4+2,u=﹣4﹣2所以,满足题意的点P存在,其坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)如图,设R(x1,y1),Q(x2,y2),PQ的中点为w.由,消去y得到:x2+(k﹣2)x﹣1=0,∴x1+x2=2﹣k,x1•x2=﹣1,∴y1+y2=k(x1+x2)+4=﹣k2+2k+4,y1y2=k2(x1x2)+2k(x1+x2)+4=﹣3k2+4k+4,∴W(,),RQ==∵原点O在以QR为直径的圆外,∴2OW>PQ,∴2•>整理得:3k2﹣4k﹣3<0,解得<k<.。
湖南省长沙市2019-2020学年中考数学三月模拟试卷含解析
湖南省长沙市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是02.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10 %3.已知二次函数2y ax bx c =++的x 与y 的不符对应值如下表:x3- 2-1-1 2 3y111 1- 1- 1 5且方程20ax bx c ++=的两根分别为1x ,2x 12()x x <,下面说法错误的是( ). A .2x =-,5y = B .212x << C .当12x x x <<时,0y >D .当12x =时,y 有最小值 4.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( )A .532410⨯B .632.410⨯C .73.2410⨯D .80.3210⨯.5.抛物线223y x +=(﹣)的顶点坐标是( ) A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)6.如图是由5个相同的正方体搭成的几何体,其左视图是( )A.B.C.D.7.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°8.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)12 13 14 15 16人数 1 2 2 5 2A.2,14岁B.2,15岁C.19岁,20岁D.15岁,15岁9.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=kx的图象恰好经过点A′、B,则k的值是()A.9 B.133C.16915D.310.下列计算正确的有()个①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4 ④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.311.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--12.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB=10,BC=15,MN=3,则AC 的长是( )A .12B .14C .16D .18二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.将点P (﹣1,3)绕原点顺时针旋转180°后坐标变为_____.14.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 1,S △BQC =15cm 1,则图中阴影部分的面积为_____cm 1.15.分解因式: 22a b ab b -+=_________.16.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数是_____.17.计算:a 6÷a 3=_________.18.如图所示,D 、E 之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD 和AE 上选择了测量点B ,C ,已知测得AD =100,AE =200,AB =40,AC =20,BC =30,则通过计算可得DE 长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x 1+5x+6,翻开纸片③是3x 1﹣x ﹣1.解答下列问题求纸片①上的代数式;若x 是方程1x =﹣x ﹣9的解,求纸片①上代数式的值.20.(6分)按要求化简:(a ﹣1)÷22111a a a ab-+⋅+,并选择你喜欢的整数a ,b 代入求值.小聪计算这一题的过程如下: 解:原式=(a ﹣1)÷2(1)(1)a a ab+-…① =(a ﹣1)•2(1)(1)ab a a +-…② =21ab a +…③ 当a =1,b =1时,原式=12…④ 以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____; 还有第_____步出错(填序号),原因:_____. 请你写出此题的正确解答过程.21.(6分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息: ①该产品90天售量(n 件)与时间(第x 天)满足一次函数关系,部分数据如下表: 时间(第x 天) 1 2 3 10 … 日销售量(n 件)198196194?…②该产品90天内每天的销售价格与时间(第x 天)的关系如下表: 时间(第x 天) 1≤x <50 50≤x≤90 销售价格(元/件)x+60100(2)设销售该产品每天利润为y 元,请写出y 关于x 的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.22.(8分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;从中任意抽取1个球恰好是红球的概率是;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.23.(8分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?24.(10分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD 的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.25.(10分)先化简,再求值:222x x11x x x2x1-⎛⎫-÷⎪+++⎝⎭,其中x的值从不等式组1214xx-⎧⎨-<⎩…的整数解中选取.26.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.27.(12分)解不等式组3122324xx x⎧-≥⎪⎨⎪+<⎩请结合题意填空,完成本题的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.2.C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4100%50=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.3.C【解析】【分析】分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.【详解】A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y=1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=12时,y有最小值,故此选项正确,不合题意.所以选C.【点睛】此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.4.C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】32400000=3.24×107元.故选C.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.A【解析】【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.6.A【解析】【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.7.B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣12(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.8.D 【解析】 【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【详解】解:数据1出现了5次,最多,故为众数为1; 按大小排列第6和第7个数均是1,所以中位数是1. 故选D . 【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数. 9.C 【解析】 【分析】设B (2k,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC =13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k .【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°, ∴OC 222232OD CD ++13 由翻折得,AA′⊥OC ,A′E =AE , ∴sin ∠COD =AE CDOA OC=,∴AE=2kCD OAOC⨯⋅,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE=EF ODAE OC==sin∠OCD,∴EF=313 OD AEk OC⋅==,∵cos∠OAE=AF CDAE OC==cos∠OCD,∴213CDAF AE k OC=⋅==,∵EF⊥x轴,A′G⊥x轴,∴EF∥A′G,∴12 EF AF AEA G AG AA==='',∴6213A G EF k'==,4213AG AF k==,∴14521326 OG OA AG k k k =-=-=,∴A′(526k,613k),∴562613k k k⋅=,∵k≠0,∴169=15 k,故选C.【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.10.C【解析】【分析】根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解.【详解】①(﹣2a2)3=﹣8a6,错误;②(x﹣2)(x+3)=x2+x﹣6,错误;③(x﹣2)2=x2﹣4x+4,错误④﹣2m3+m3=﹣m3,正确;⑤﹣16=﹣1,正确.计算正确的有2个.故选C.【点睛】考查了积的乘方,多项式乘多项式,完全平方公式,合并同类项,乘方,关键是熟练掌握计算法则正确进行计算.11.B【解析】【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合.故选:B.【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).12.C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(1,﹣3)【解析】【分析】画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.14.41【解析】试题分析:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.考点:1、三角形面积,1、平行四边形15.【解析】先提取公因式b,再利用完全平方公式进行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)16.32°【解析】【分析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=32°,∴∠BCD=32°,故答案为32°.17.a1【解析】【分析】根据同底数幂相除,底数不变指数相减计算即可【详解】a6÷a1=a6﹣1=a1.故答案是a1【点睛】同底数幂的除法运算性质18.1.【解析】【分析】先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.【详解】∵401201,20051005 AB ACAE AD====,∴AB AC AE AD=,又∵∠A=∠A,∴△ABC∽△AED,∴15 BC ABDE AE==,∵BC=30,∴DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)7x1+4x+4;(1)55.【解析】【分析】(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;(1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.【详解】解:(1)纸片①上的代数式为:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入纸片①上的代数式得7x1+4x+4=7×(-3)²+4×(-3)+4=63-11+4=55即纸片①上代数式的值为55.【点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.20.①, 运算顺序错误;④,a等于1时,原式无意义.【解析】【分析】由于乘法和除法是同级运算,应当按照从左向右的顺序计算,①运算顺序错误;④当a=1时,211aa-+等于0,原式无意义.【详解】①运算顺序错误;故答案为①,运算顺序错误;④当a=1时,211a a -+等于0,原式无意义. 故答案为a 等于1时,原式无意义.()22111,1a a a a ab-+-÷⋅+ ()()()2111,11a a a a a ab++=-⋅⋅-+ 21.a ab += 当2,1a b ==时,原式2213.212+==⨯ 【点睛】 本题考查了分式的化简求值,注意运算顺序和分式有意义的条件.21.(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y 元,则当1≤x <50时,y=﹣2x 2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n 与x 成一次函数,∴设n=kx+b ,将x=1,m=198,x=3,m=194代入,得:1983194k b k b +=⎧⎨+=⎩, 解得:2200k b =-⎧⎨=⎩, 所以n 关于x 的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1. (2)设销售该产品每天利润为y 元,y 关于x 的函数表达式为:221604000150120120005090y x x x y x x ⎧=-++≤⎨=-+≤≤⎩(<)() 当1≤x <50时,y=-2x 2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y 有最大值,最大值是7200;当50≤x≤90时,y=-120x+12000,∵-120<0,∴y 随x 增大而减小,即当x=50时,y 的值最大,最大值是6000;综上所述:当x=40时,y 的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.22.(1)必然,不可能;(2)35;(3)此游戏不公平.【解析】【分析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:35;故答案为35;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:82 205;则选择乙的概率为:35,故此游戏不公平.【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键.23.(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析. 【解析】【分析】(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.【详解】(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,由题意,得239035145x y x y +⎧⎨+⎩==, 解得:1520x y ⎧⎨⎩==. 答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)设购买“最美东营人”文化衫m 件,则购买“最美志愿者”文化衫(90-m )件,由题意,得1520(90)159590m m m m +-⎧⎨-⎩<<, 解得:41<m <1.∵m 是整数,∴m=42,43,2.则90-m=48,47,3.答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.【点睛】本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.24.(I )65°;(II )72°【解析】【分析】(I )如图①,连接OB ,先利用切线的性质得∠OBF=90°,而OA ⊥CD ,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF 的度数;(II )如图②,连接OB ,BO 的延长线交AC 于H ,利用切线的性质得OB ⊥BF ,再利用AC ∥BF 得到BH ⊥AC ,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG 的度数.【详解】解:(I )如图①,连接OB ,∵BF 为⊙O 的切线,∴OB ⊥BF ,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=12(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如图②,连接OB,BO的延长线交AC于H,∵BF为⊙O的切线,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=12(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.25.-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.试题解析:原式=()()()()22x+1x-1x x x+1x+1-÷ =x x+1x+1x-1-⨯=x x-1- 解1{214x x -≤-<得-1≤x<52, ∴不等式组的整数解为-1,0,1,2若分式有意义,只能取x=2,∴原式=-221-=-2 【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.26.(1)=;(2)结论:AC 2=AG•AH .理由见解析;(3)①△AGH 的面积不变.②m 的值为83或2或8﹣..【解析】【分析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG ; (2)结论:AC 2=AG•AH .只要证明△AHC ∽△ACG 即可解决问题;(3)①△AGH 的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD 是正方形,∴AB =CB =CD =DA =4,∠D =∠DAB =90°∠DAC =∠BAC =43°,∴AC∵∠DAC =∠AHC+∠ACH =43°,∠ACH+∠ACG =43°,∴∠AHC =∠ACG .故答案为=.(2)结论:AC 2=AG•AH .理由:∵∠AHC =∠ACG ,∠CAH =∠CAG =133°,∴△AHC ∽△ACG , ∴AH AC AC AG=, ∴AC 2=AG•AH .(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(42)2=1.∴△AGH的面积为1.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴12 BC BEAH AE==,∴AE=23AB=83.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,设BM=BE=m,则CM=EM2m,∴m+2m=4,∴m=4(2﹣1),∴AE=4﹣4(2﹣1)=8﹣42,综上所述,满足条件的m的值为83或2或8﹣42.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.27.(I)x≥1;(Ⅱ)x>2;(III)见解析;(Ⅳ)x≥1.【解析】【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【详解】(I)解不等式(1),得x≥1;(Ⅱ)解不等式(2),得x>2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为x≥1.【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.。
湖南省长沙市湘郡培粹实验中学2019-2020学年初三年级下学期数学周检测试卷3月28日(PDF版,无答案)
)
A.
B.a0=1
C.-2+|-2|=0
D.
6.下列事件是随机事件的是( )
A.画一个三角形,其内角和是 360
B.射击运动员射击一次,命中靶心
C.投掷一枚正六面体骰子,朝上一面的点数小于 7 D.在只装了红球的不透明袋子里,摸出黑球
7.我国明代数学读本《算法统宗》一书中有这么一道题:“一支竿子一条索,索比竿子长一托,对折索子
14.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球 6 只,且摸出红球
3
的概率为 ,则袋中共有小球_____只.
5
15.若抛物线 y=2x2+6x+m 与 x 轴有两个交点,则 m 的取值范围是_____.
16.圆内接正六边形的边长为 6,则该正六边形的边心距为_____.
17.已知
1 kx 2x
2x 3 x2
为分式方程,有增根,则
k
_____.
18.一个圆锥的侧面积是底面积的 3 倍,则这个圆锥侧面展开图的圆心角为__________ .
三、解答题(共 66 分)
19(6 分). 2
2 3
1 2
1
2
2 tan 30o 2019 0 ;
20(6
分).先化简,再求值: 1
标;若不存在,请说明理由.
第4页
a a
b ba2ຫໍສະໝຸດ b b2,其中 a
3 2,b 5
3.
第2页
21(8 分).为了解某校九年级男生 1000 米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为
A 、 B 、 C 、 D 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:
2019-2020-1长郡集团九上第三次月考物理试卷含答案
长郡教育集团初中课程中心2019-2020学年度初三第三次限时检测物理考试时间:2019年12月9日7:50-9:50注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共四大题,考试时量60分钟,满分100分。
一、单项选择题(每题3分,共15小题,共45分)1.用分子热运动的观点解释下列现象,解释不正确的是()A.氧气被压缩装入钢瓶——分子间有间隙B.花气袭人知骤暖(温度升高)——分子运动加剧C.两块表面平滑的铅块紧压后会结合起来——分子间存在引力D.破镜不能重圆——分子间存在斥力2.关于内能的下列说法正确的是()A.物体内能增加,一定是吸收了热量B.物体吸收热量,温度一定升高C.物体内能增加,可能是物体对外做功(不考虑吸热、放热)D.“钻木取火”是通过做功使木头的温度升高3.下列对能量转化的描述不正确的是()A.蓄电池充电:电能→化学能B.电热水器烧水时:电能→内能C.太阳能电池板工作:太阳能→化学能D.内燃机工作:化学能→内能→机械能4.如图所示,小华同学用与丝绸摩擦过的玻璃棒接触验电器的金属球,看到验电器的金属箔张开,此时()A.玻璃棒和验电器都带上了负电荷B.玻璃棒带正电荷,验电器带负电荷C.接触的过程中电荷从验电器转移到了玻璃棒上D.金属箔张开是因为异种电荷相互排斥5.如图所示的电路,将M、N两端连接在一起并闭合开关,灯L发光;接着将M、N分开,在M,N之间分别接入下列物体:(1)橡皮擦、(2)铅笔芯、(3)电压表、(4)电流表;闭合开关,灯泡仍会发光的是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)6.如图所示,在“探究串联电路中电压的规律”时,小华同学用电压表测出U ab=3V,U bc=3V,U ac=6V,在表格中记录数据后,下一步应该做的是()A.整理器材、分析数据,得出结论B.对换L1和L2的位置,再测出一组电压值C.改变电源电压,再测出几组电压值D.换用不同规格的小灯泡,再测出几组电压值7.为了提高行车的安全性,有的汽车装有日间行车灯,当汽车启动时,S1闭合,日间行车灯L1立即亮起,再闭合S2,车前大灯L2才亮,在下图所示的电路图中符合这一情况的是()A B C D8.小华同学利用如图所示的电路做“伏安法测电阻”的实验,已知电源电压恒为6V,滑动变阻器标有“20Ω1A”字样,实验中该同学填写的实验数据如表所示。
湖南省长沙市长郡教育集团2019-2020学年九年级第二学期(第六次限时检测)期中考试数学试卷
长郡教育集团初中课程中心2019-2020学年度初三第六次限时检测数学考试时间:2020年6月1日7:50—9:50注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,负数是()A.-(-2) B.-||-2C.(-2)2D.(-2)02.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个3.下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2 C.-3(a-1)=3-3a D.239 11a 39a⎛⎫=⎪⎝⎭4.估计35的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.已知点P (a -3,2-a )关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( )6.如图所示几何体的左视图是( )7.如图,直线l 1∥l 2,∠1=30°,则∠2+∠3=( ) A .150° B .180° C .210° D .240°8.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( )A .1,11B .7,53C .7,61D .6,509.一次函数y =ax +b 与反比例函数y =cx 的图象如图所示,则二次函数y =ax 2+bx +c 的大致图象是( )10.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC CB =13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2) B.55 22⎛⎫ ⎪⎝⎭, C.8833⎛⎫ ⎪⎝⎭, D .(3,3)11.如图,在△ABC 中,O 是AB 边上的点,以O 为圆心,OB 为半径的⊙O 与AC 相切于点D ,BD 平分∠ABC ,AD =3OD ,AB =12,CD 的长是( )A .2 3B .2C .3 3D .4312.如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC ′,DC ′与AB 交于点E ,连结AC ′,若AD =AC ′=2,B 到AC 的距离为332,求点D 到BC ′的距离为( )A.7B.13C.332D.3217二、填空题(本大题共6个小题,每小题3分,共18分) 13.在函数y =2x +1x -1中,自变量x 的取值范围是____________. 14.分解因式:3a 3-6a 2+3a =__________. 15.若关于x 的分式方程x x -2+2m 2-x=2m 有增根,则m 的值为________. 16.如图,直线y =kx +b (k <0)经过点A (3,1),当kx +b <13x 时,x 的取值范围为____________.17.如图,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F ,若AD =1,BD =2,BC =4,则EF =________.18.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y =4x(x >0)的图象上,则y 1+y 2+…+y 100的值为________.三、解答题(共66分)19.(6分)计算:()-13+9-(π-112)0-23tan 60°.20.(6分)先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数,且满足不等式组11522x x ->⎧⎨-≥-⎩21.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.22.(8分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50 cm,拉杆BC的伸长距离最大时可达35 cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38 cm时,点C到水平面的距离CE为59 cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80 cm,∠CAF=64°.求此时拉杆BC的伸长距离.(精确到1 cm,参考数据:sin 64°≈0.90,cos 64°≈0.39,tan 64°≈2.1)23.(9分)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG =2∠C .(1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC =35,⊙O 的半径是3,求AF 的长.24.(9分)湖南素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值;(2)设这批淡水鱼放养t 天后的质量为m (kg),销售单价为y 元/kg ,根据以往经验可知:m 与t 的函数关系为m =⎩⎪⎨⎪⎧20000(0≤t ≤50),100t +15000(50<t ≤100); y 与t 的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)25.(10分)定义:点P 是△ABC 内部或边上的点(顶点除外),在△P AB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 是△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线y =33x (x >0)上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P 是OM 上一点,∠ONP =∠M ,试说明点P 是△MON 的自相似点;当点M 的坐标是(3,3),点N 的坐标是(3,0)时,求点P 的坐标;(2)如图3,当点M 的坐标是(3,3),点N 的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M 和点N ,使△MON 无自相似点?若存在,请求出这两点的坐标;若不存在,请说明理由.26.(10分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y 轴交于点C(0,-3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠P AB=2∠ACO.求点P的坐标;第11页共11页。
19级长郡初三数学第3次月考试卷
长郡教育集团初中课程中心2017—2018学年度初三第三次限时检测数学考试时间:2018年12月9日14:00—16:00注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列实数中,有理数是A B .0.123C D .2π2.下列平面图形中,既是轴对称图形,又是中心对称图形的是AB C D3.下列计算正确的是A 2=±B .()031-=C .()224224a b a b -=-D .()3322a a a ÷-=-4.抛物线()223y x =++的顶点坐标是A .()2,3-B .()2,3C .()2,3--D .()2,3-5.若40110ABC A B C A B '''∠=︒∠=︒△∽△,,,则C '∠=A .40°B .110°C .70°D .30°6.一个多边形的内角和为900°,则这个多边形是()边形.A .五B .六C .七D .八7.在正方形网格中,α∠的位置如图所示,则cos α的值是A .5B .12C .5D .28.下列命题中,正确的是A .AB ,CD 是⊙O 的弦,若AB CD =,则AB//CD B .垂直于弦的直径平分弦,并且平分弦所对的弧C .在同圆或等圆中,同弦或等弦所对的圆周角相等D .圆是轴对称图形,对称轴是圆的每一条直径9.用配方法解方程2670x x --=,下列配方正确的是A .()2316x -=B .()2316x +=C .()237x -=D .()232x -=10.顺次连结对角线相等的四边形各边中点所得的四边形必是A .菱形B .矩形C .正方形D .无法确定11.如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的仰角为60°,则物体AB 的高度为A .米B .10米C .米D .3米12.在同一坐标系中,一次函数y ax b =+与二次函数2y bx a =+的图象可能是A B C D二、填空题(本大题共6个小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13有意义的x 的取值范围是__________.14.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,5cm AC =,则△ABC 的周长是__________cm .15.如图,AE 是⊙O 的直径,弦CD AB ⊥于点E ,若108AB CD ==,,则BE =__________.16.已知关于x 的—元二次方程()2220x x m +-+=有实数根,则m 的取值范围是__________.17.在△ABC 中,2//3DE DE BC BC =,,△ADE 的面积是8,则△ABC 的面积为__________.18.如图,在平面直角坐标系中,90OA AB OAB =∠=︒,,反比例函数()0ky x x=>的图象经过A ,B 两点.若点A 的坐标为(),1n ,则k 的值为__________.三、解答题(本大题共8小题,第19、20题每小题6分;第21、22每小题8分;第23、24题每小题9分;第25、26题每小题10分,共66分.)19.()521324sin 602tan 45-+-︒+︒.20.先化简,再求值:224441x x x -++⎛⎫-÷- ⎪-+⎝⎭,其中22150x x +-=.21.在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.回答下列问题.(1)甲成绩的平均数是________,乙成绩的平均数是________;(2)经计算知22642s s ==甲乙,.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.22.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP AC=,点Q在CE上,CQ AB=,求证:(1)AP AQ=;(2)AP AQ⊥.23.如图,Rt△ABC中,90∠=︒,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于C点D,与BC交于另一点E.(1)求证:AOC AOD△△;≅(2)若13,,求⊙O的半径及图中阴影部分的面积S.(结果保留π)BE BD==24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m 件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.抛物线()240y ax bx a =++≠过点()()1,1,5,1A B --,与y 轴交于C .(1)求抛物线的函数解析式;(2)如图1,连接CB ,以CB 为边平行四边形CBPQ .若点P 在直线BC 上方的抛物线上,Q 为坐标平面内的一点,且平行四边形CBPQ 的面积为30,求点P 的坐标;(3)如图2,1O 过A 、B 、C 三点,AE 为直径,点M 为1O 上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值.图1图226.定义:若存在实数对(),x y 同时满足一次函y px q =+数和反比例函数ky x=,则二次函数2y px qx k =+-为一次函数和反比例函数的“联姻”函数.(1)试判断(需要写出判断过程):一次函数3y x =-+和反比例函数2y x=是否存在“联姻”函数,若存在,写出它们的“联姻”函数和实数对坐标;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122y n x m =+++与反比例函数2015y x=存在“联姻”函数()()2102015y m t x m t x =++--,求m 的值.(3)若同时存在两组实数对坐标()11,x y 和()22,x y 使一次函数2y ax b =+和反比例函数c y x=-为“联姻”函数,其中,实数0a b c a b c >>++=,,设12L x x =-,求L 的取值范围.。
2020年湖南省长沙市长郡滨江中学中考数学3月模拟试题(word无答案)
2020年湖南省长沙市长郡滨江中学中考数学3月模拟试题(word无答案)一、单选题(★) 1 . 化简的结果是()A.2B.4C.2D.4(★) 2 . 已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2B.4C.6D.8(★★) 3 . 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ ABC相似的是()A.B.C.D.(★) 4 . 下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.(★★) 5 . 如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC 的值是( )A.B.C.D.(★★) 6 . 在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.则△ABC的面积为()A.1B.C.D.2(★) 7 . 下列几何体中,俯视图为三角形的是()A.B.C.D.(★★) 8 . 《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线长恰好相等.问门高、宽和对角线的长各是多少?设门对角线的长为 x尺,下列方程符合题意的是()A.(x+2)2+(x﹣4)2=x2B.(x﹣2)2+(x﹣4)2=x2C.x2+(x﹣2)2=(x﹣4)2D.(x﹣2)2+x2=(x+4)2(★★) 9 . 某车间有28名工人生产螺钉和螺母,每人每小时平均能生产螺钉12个或螺母18个,1个螺钉需要配2个螺母,若安排名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为()A.B.C.D.(★) 10 . 以原点 O为位似中心,作△ ABC的位似图形△ A' B' C',△ ABC与△ A' B' C'相似比为1:3,若点 C的坐标为(4,1),则点C’的坐标为()A.(12,3)B.(﹣12,3)或(12,﹣3)C.(﹣12,﹣3)D.(12,3)或(﹣12,﹣3)(★★) 11 . 如图,已知⊙ O的半径为5,弦 AB=8, CD=6,则图中阴影部分面积为()A.π–24B.9πC.π–12D.9π–6(★★★★) 12 . 如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是()A.(-8,0)B.(0,8)C.(0,8)D.(0,16)二、填空题(★) 13 . 使代数式有意义的实数 x的取值范围为_____.(★★) 14 . 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是 __________ .(★) 15 . 某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,计划在2019年投入资金2880万元.设年平均增长率为,根据题意可列出方程为_______________.(★★) 16 . 已知圆锥的底面半径为,母线长为,则圆锥侧面积是________.(★★) 17 . 如图,在▱ABCD中,E为CD上一点,连接AE,BD交于点F,S △DEF:S △ABF=4:25,则DE:EC= .(★) 18 . 如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2 时,阴影部分的面积为________三、解答题(★) 19 . 计算:(★) 20 . 先化简,再求值:,其中满足.(★★) 21 . 为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.(★★) 22 . 如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点A.⑴求证:四边形BEDF为菱形;⑵如果∠A=100°,∠C=30°,求∠BDE的度数.(★★) 23 . 一商店销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价 a元,则平均每天销售数量为件.(用含 a的代数式表示)(2)当每件商品降价多少元时,该商店每天销售利润为1200元.(★) 24 . 如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC、AB相交于点D、E,连接AD,已知∠CA D=∠A.(1)求证:AD是⊙O的切线;(2)若∠B=30°,AC=,求劣弧BD与弦BD所围阴影图形的面积;(3)若AC=4,BD=6,求AE的长.(★★★★) 25 . 定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A(1,0),点A经过n次斜平移得到点B,点M是线段AB的中点.(1)当n=3时,点B的坐标是,点M的坐标是;(2)如图1,当点M落在的图像上,求n的值;(3)如图2,当点M落在直线上,点C是点B关于直线的对称点,BC与直线相交于点N .①求证:△ABC是直角三角形②当点C的坐标为(5,3)时,求 MN的长.(★★★★★) 26 . 类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形中,点是边上的中点,点是线段上一点,的延长线交射线于点,若,求的值.(1)尝试探究在图1中,过点作交于点,则和的数量关系是______,和的数量关系是______,的值是______;(2)类比延伸如图2,在原题的条件下,当时,参照问题(1)的研究结论,请你猜想的值(用含的代数式表示),并证明你的猜想;(3)拓展迁移如图3,梯形中,,点是延长线上一点,和相交于点,当,时,请你求出的值(用含、的代数式表示).。
_湖南省长沙市长郡教育集团2019届九年级(上)第一次限时检测数学试卷
第1页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………湖南省长沙市长郡教育集团2019届九年级(上)第一次限时检测数学试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 若﹣x 3y a 与x b y 是同类项,则a+b 的值为()A .2B .3C .4D .52. 下列运算正确的是( )A .x 2+x 3=x 5B .(x ﹣2)2=x 2﹣4C .(x 3)4=x 7D .2x 2⋅x 3=2x 5 3. 已知水星的半径约为2440000米,用科学记数法表示为( )米. A .0.244×107B .2.44×107C .2.44×106D .24.4×1054. 如图所示图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .5. 不等式组的解集在数轴上表示正确的是( ) A .B .C .D .6. 若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为 ( )A .120°B .180°C .240°D .300°7. 下列事件是必然事件的是( )A .某种彩票的中奖率是10%,则买这种彩票100张一定中奖B .如果有两个角是同位角,那么这两个角一定相等C .三角形的内角和180°答案第2页,总8页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………D .打开电视机,它正在播放动画片8. 一次函数y=(m+1)x+5中,y 的值随x 的增大而减小,则m 的取值范围是( )A .m <﹣1B .m >﹣1C .m >0D .m <09. 如图,A 、B 、C 三点都在⋅O 上,点D 是AB 延长线上一点,⋅AOC="140°," ⋅CBD 的度数是( )A.40°B.50°C.70°D.110° 10. 如图,已知是的角平分线,是的垂直平分线,,,则的长为( )A .6B .5C .4D .11. 已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(﹣2,0)、(x 1,0),且1<x 1<2,与y 轴正半轴的交点在(0,2)的下方,在原点的上方.下列结论:①4a ﹣2b+c=0;②2a ﹣b <0;③2a ﹣b >﹣1;④2a+c <0;⑤b >a ;其中正确结论的个数是( )A .2B .3C .4D .5 12. 下列各数中,哪个是无理数( )A .0B .C .D .﹣3.14第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 若二次根式有意义,则x 的取值范围是_____2. 把多项式ax 2+2axy+ay 2分解因式的结果是_____.。
长郡滨江2020中学初中毕业班3月份限时检
A.
B.
C.
D.
4.下列四个腾讯软件图标中,属于轴对称图形的是( )
A.
B.
C.
D.
5.如图,在 6×6 的正方形网格中,△ABC 的顶点都在小正方形的顶点上,则 tan∠BAC 的值是( )
(5)
(6)
4
A.
5
4
B.
3
3
C.
4
3
D.
5
1
6.在△ABC 中,AD 是 BC 边上的高,∠C=45°,sinB= ,AD=1.则△ABC 的面积为( )
要配 2 个螺母,若安排 m 名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为( )
A.12 m 18 (28 m) 2
B.12 (28 m) 18 m 2
C.12 m 2 18 (28 m)
D.12 (28 m) 2 18 m
10.以原点 O 为位似中心,作△ABC 的位似图形△A'B'C',△ABC 与△A'B'C'相似比为 1:3,若点 C 的
计划在 2019 年投入资金 2880 万元.设年平均增长率为 x ,根据题意可列出方程为_______________. 16.已知圆锥的底面半径为10 ,母线长为 30 ,则圆锥侧面积是________.
17.如图,在▱ ABCD 中,E 为 CD 上一点,连接 AE,BD 交于点 F,S△DEF:S△ABF=4:25,则 DE: EC= .
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数 a 的值为
,所抽查的学生人数为
.
(2)求出平均睡眠时间为 8 小时的人数,并补全频数直方图.
长郡2019-2020学年(秋)九上第三次月考-数学试卷版
17.如图,在平面直角坐标系中,已知 A(1, 0) , D (3, 0) , ABC 与 DEF 位似,原点 O 是位似中心,若
AB = 1.5 ,则 DE = __________. 18.如图,在 RtABC 中,ABC = 90 , AB = 6 , BC = 8, P 是 BC 边上的动点,设 BP = x ,若能在 AC 边上找到一点 Q ,使 BQP = 90 ,则 x 的取值范围是__________.
22.(8 分)如图,点 E 为□ ABCD 的边 BC 延长线上一点, AE 与 BD 交于点 F ,与 DC 交于点 G . (1)求证: ABE∽GDA; (2)若 BC = 2CE , BD = 15 ,求 DF 的长度.
23.(9
分)如图,曲线
y1
=
k1 x
(
x
0) 与直线
y2
=
k2 x
2 所表示的方程组中 x 的值为 3 ,则被墨水所覆盖的图形为( )
A.
B.
C.
D.
12.在平面直角坐标系中,已知反比例函数 y = 2k (k 0) 满足:当 x 0 时, y 随 x 的增大而减小.若该反
x
比例函数的图象与直线 y = −x + 3k 都经过点 P ,且 OP = 7 ,则满足条件的实数 k 的值有( )
4.若点 A(1, a) 和点 B (4,b) 在直线 y = −2x + m 上,则 a 与 b 的大小关系是( )
A. a b
B. a b
5.关于函数 y = 6 的说法不正确的是( ) x
A.经过点 (−2, −3)
C. a = b
D.与 m 的取值有关
B.图象在第一、三象限
湖南省长沙市2019-2020学年中考数学质量跟踪监视试题
2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于( )A .2﹣2B .1C .2D .2﹣l2.若直线y=kx+b 图象如图所示,则直线y=−bx+k 的图象大致是( )A .B .C .D .3.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( )A .3,2B .3,4C .5,2D .5,44.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定5.一个正多边形的内角和为900°,那么从一点引对角线的条数是( )A .3B .4C .5D .66.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D .13137.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n 个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n 的值约为( )A .20B .30C .40D .508.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .AD AE DB EC = B .AB AC AD AE = C .AC EC AB DB = D .AD DE DB BC= 9.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 10.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )11.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=_____.12.太阳半径约为696000千米,数字696000用科学记数法表示为千米.13.如图,在Rt ABC中,CM平分ACB∠交AB于点M,过点M作MN//BC交AC于点N,且MN 平分AMC∠,若AN1=,则BC的长为______.14.如图,点A在双曲线kyx=上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.15.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.16.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.17.不等式组32132x xx->⎧⎪⎨≤⎪⎩的解是____.18.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点三、解答题(本题包括8个小题)19.(6分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?20.(6分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.21.(6分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.22.(8分)如图所示,一次函数y=kx+b与反比例函数y=mx的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.23.(8分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.24.(10分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.26.(12分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=22AC′=1,∴DC′=AC′-AD=2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×(2-1)2=2-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.2.A【解析】【分析】根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.【详解】解:∵一次函数y=kx+b的图象可知k>1,b<1,∴-b>1,∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b <1,一次函数y=kx+b图象过原点⇔b=1.3.B试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.4.B【解析】【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=1,设抛物线与x轴交于点A、B,2∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.5.B【解析】【分析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出设这个正多边形的边数是n ,则(n-2)•180°=900°,解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.6.B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,∴cos13BF EBF BE ∠===. 故选B .【点睛】 本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 7.A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得:.n 0430n=+ , 计算得出:n=20,故选A.点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.8.D【解析】【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得: AD AE DB EC =,AB AC AD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D .【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.9.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S ABCD 矩形-S ABE -S EBF 扇形,求出答案.【详解】∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE −S EBF 扇形 =1×2−123-24π 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式10.B【解析】【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值.【详解】解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, ∴△EFC 为直角三角形,又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=5,EF=10,由勾股定理可知CE 2+CF 2=EF 2=1.故选:B .【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF 为直角三角形.二、填空题(本题包括8个小题)11.1【解析】试题分析:在Rt △ACB 中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∴AE=5﹣4=1.考点:全等三角形的性质;勾股定理12.56.9610⨯ .【解析】试题分析:696000=6.96×1,故答案为6.96×1.考点:科学记数法—表示较大的数.13.1【解析】【分析】根据题意,可以求得∠B 的度数,然后根据解直角三角形的知识可以求得NC 的长,从而可以求得BC 的长.【详解】∵在Rt △ABC 中,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC , ∴∠AMN=∠NMC=∠B ,∠NCM=∠BCM=∠NMC ,∴∠ACB=2∠B ,NM=NC ,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.-4【解析】:由反比例函数解析式可知:系数k x y =⋅,∵S △AOB =2即122k x y =⋅=,∴224k xy ==⨯=; 又由双曲线在二、四象限k <0,∴k=-415.1【解析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:1445180π⨯=4π; 这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.16.【解析】试题解析:∵四边形ABCD 是矩形,∴OB=OD ,OA=OC ,AC=BD ,∴OA=OB ,∵AE 垂直平分OB ,∴AB=AO ,∴OA=AB=OB=3,∴BD=2OB=6,∴==.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.17.16x <≤【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】32132x x x >①②-⎧⎪⎨≤⎪⎩ 解不等式①,得x >1,解不等式②,得x≤1,所以不等式组的解集是1<x≤1,故答案是:1<x≤1.【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.10【解析】【分析】首先证明△ABP∽△CDP,可得ABBP=CDPD,再代入相应数据可得答案.【详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴ABBP =CD PD,∵AB=2米,BP=3米,PD=15米,∴23=15 CD,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.三、解答题(本题包括8个小题)19.(1) 每次下调10% (2) 第一种方案更优惠.【解析】【分析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x,根据题意得5000×(1-x)2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%.(2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元),396900<401400,所以第一种方案更优惠.答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键. 20.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.21.(1)答案见解析;(2)220cm【解析】【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论. 【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=12AB·DE=20cm2.掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键. 22.(1)反比例函数解析式为y=8x ,一次函数解析式为y=x+2;(2)△ACB 的面积为1. 【解析】【分析】(1)将点A 坐标代入y=m x 可得反比例函数解析式,据此求得点B 坐标,根据A 、B 两点坐标可得直线解析式;(2)根据点B 坐标可得底边BC=2,由A 、B 两点的横坐标可得BC 边上的高,据此可得.【详解】解:(1)将点A (2,4)代入y=m x,得:m=8,则反比例函数解析式为y=8x , 当x=﹣4时,y=﹣2,则点B (﹣4,﹣2),将点A (2,4)、B (﹣4,﹣2)代入y=kx+b ,得:2442k b k b +=⎧⎨-+=-⎩, 解得:12k b =⎧⎨=⎩,则一次函数解析式为y=x+2; (2)由题意知BC=2,则△ACB 的面积=12×2×1=1. 【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.23. (1)抛物线的解析式是223y x x =--.直线AB 的解析式是3y x =-.(2) 278. (3)P 点的横坐标是3212+或3212-. 【解析】【分析】(1)分别利用待定系数法求两函数的解析式:把A (3,0)B (0,﹣3)分别代入y=x 2+mx+n 与y=kx+b ,得到关于m 、n 的两个方程组,解方程组即可;(2)设点P 的坐标是(t ,t ﹣3),则M (t ,t 2﹣2t ﹣3),用P 点的纵坐标减去M 的纵坐标得到PM 的长,即PM=(t ﹣3)﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,然后根据二次函数的最值得到当t=﹣=时,PM 最长为=,再利用三角形的面积公式利用S △ABM =S △BPM +S △APM(3)由PM ∥OB ,根据平行四边形的判定得到当PM=OB 时,点P 、M 、B 、O 为顶点的四边形为平行四边形,然后讨论:当P 在第四象限:PM=OB=3,PM 最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t 2﹣2t ﹣3)﹣(t ﹣3)=3;当P 在第三象限:PM=OB=3,t 2﹣3t=3,分别解一元二次方程即可得到满足条件的t 的值.【详解】解:(1)把A (3,0)B (0,-3)代入2y x mx n =++,得 093{3m n n =++-=解得2{3m n =-=- 所以抛物线的解析式是223y x x =--.设直线AB 的解析式是y kx b =+,把A (3,0)B (0,3-)代入y kx b =+,得 03{3k b b =+-=解得1{3k b ==- 所以直线AB 的解析式是3y x =-. (2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM=22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p = ABM BPM APM S S S =+=19324⨯⨯=278. (3)若存在,则可能是:①P 在第四象限:平行四边形OBMP ,PM=OB=3, PM 最长时94PM =,所以不可能. ②P 在第一象限平行四边形OBPM : PM=OB=3,233p p -=,解得13212p +=,23212p =(舍去),所以P 点的横坐标是3212+. ③P 在第三象限平行四边形OBPM :PM=OB=3,233p p -=,解得13212p +=(舍去), ①2321p -=,所以P 321-所以P 点的横坐标是3212或3212. 24.见解析【分析】先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.【详解】①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;②分别以D、E为圆心,以大于12DE为半径画圆,两圆相交于F点;③连接AF,则直线AF即为∠ABC的角平分线;⑤连接AC,分别以A、C为圆心,以大于12AC为半径画圆,两圆相交于F、H两点;⑥连接FH交BF于点M,则M点即为所求.【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.25.(1) 反比例函数的解析式为y=6x,一次函数的解析式为y=﹣12x+1.(2)2.【解析】【分析】(1)根据反比例函数y2=mx的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.【详解】(1)∵反比例函数y2=mx的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=6x,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:2361k bk b+=⎧⎨+=⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1.(2)如图,设直线y=﹣12x+1与x轴交于C,则C(2,0).S△AOB=S△AOC﹣S△BOC=12×2×3﹣12×2×1=12﹣1=2.【点睛】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B 点坐标以及得出S △AOB =S △AOC ﹣S △BOC 是解题的关键.26.(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解析】【分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天). 设乙队单独施工需要x 天完成该项工程,则 301515190x++=, 去分母,得x+1=2x .解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y 天完成该项工程,则 1-363090y ≤ 解得y≥2.答:乙队至少施工l8天才能完成该项工程.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等2.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac <0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个4.在平面直角坐标系中,点(2,3)所在的象限是()A.第一象限B.第二象限 C.第三象限D.第四象限5.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.66.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P 截得的弦AB的长为2a的值是()A.4 B.3+2C.32D.33+7.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=55,那么点C的位置可以在()A.点C1处B.点C2处C.点C3处D.点C4处8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()10.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠. B .m 1=. C .m 1≥ D . m 0≠.二、填空题(本题包括8个小题)11.如图,△ABC ≌△ADE ,∠EAC =40°,则∠B =_______°.12.若2a ﹣b=5,a ﹣2b=4,则a ﹣b 的值为________.13.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .14.分解因式:2x y 4y -= .15.在直角坐标系中,坐标轴上到点P (﹣3,﹣4)的距离等于5的点的坐标是 .16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为_____.17.如图,一下水管道横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面宽为80cm ,则水位上升______cm .18.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x 里,依题意,可列方程为________.19.(6分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i=的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)20.(6分)先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.21.(6分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.22.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.求证:AD是⊙O的切线.若BC=8,tanB=12,求⊙O 的半径.23.(8分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?24.(10分)已知关于x 的方程x 2-(m +2)x +(2m -1)=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长郡滨江中学初中毕业班 3 月份限时检测卷
注意事项:
数学
(时间:120 分钟总分:120 分)
审题:初三数学组
1.答题前,请考生先将自己的学校、姓名、班级、学号写在试卷密封线外对应位置上。
2.所有试题答案要按要求写在答题卡对应区域,否则无效。
3. 请使用 0.5 黑色中性笔答题,试卷上不得使用涂改液、涂改胶和贴纸。
一、单选题(每题 3 分,共计36 分)
1.化简的结果是()
A.2 B.4 C.2 D.4
2.已知袋中有若干个球,其中只有2 个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸1
到红球的概率是
4
,则袋中球的总个数是()
A.2 B.4 C.6 D.8
3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()
A. B.C.D.
4.下列四个腾讯软件图标中,属于轴对称图形的是()
A.B.C.D.
5.如图,在6×6 的正方形网格中,△ABC 的顶点都在小正方形的顶点上,则tan∠BAC 的值是( ) (5)(6)
4 4
A.B.
5 3
3 3
C.D.
4 5
1
6.在△ABC 中,AD 是BC 边上的高,∠C=45°,sinB=
3
,AD=1.则△ABC 的面积为()评卷人得分
8
2 2
2 7.下列几何体中,俯.视.图.
为三角形的是( )
A .
B .
C .
D .
8.《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出 4 尺;竖放,竿比门高长出 2 尺;斜放,竿与门对角线长恰好相等.问门高、宽和对角线的长各是多少?设门对角线的长为 x 尺,下列方程符合题意的是( )
A .(x +2)2+(x -4)2=x 2
B .(x -2)2+(x -4)2=x 2
C .x 2+(x -4)2=(x -4)2
D .(x -2)2+x 2=(x +4)2
9.某车间有 28 名工人生产螺钉和螺母,每人每小时平均能生产螺钉 12 个或螺母 18 个,1 个螺钉需
要配2 个螺母,若安排 m 名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为( )
A .12 ´
m = 18´ (28 - m ) ´ 2 B .12 ´
(28 - m ) = 18´ m ´ 2
C .12 ´
m ´ 2 = 18´ (28 - m ) D .12 ´
(28 - m ) ´ 2 = 18´ m
10.以原点 O 为位似中心,作△ABC 的位似图形△A 'B 'C ',△ABC 与△A 'B 'C '相似比为 1:3,若点 C 的坐标为(4,1),则点 C ’的坐标为( )
A .(12,3)
B .(﹣12,3)或(12,﹣3)
C .(﹣12,﹣3)
D .(12,3)或(﹣12,﹣3)
11.如图,已知⊙O 的半径为 5,弦 AB =8,CD =6,则图中阴影部分面积为( )
(11)
(12)
25 A .
π–24
B .9π
C .
2
25 π–12
D .9π–6
2
12.如图,点 O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1 对角线为边作正方形OA 1 A 2 B 1 ,
再以正方形的对角线OA 2 作正方形OA 1 A 2 B 1 ,…,依此规律,则点
A 8 的坐标是( )
A .(-8,0)
B .(0,8)
C .(0,8 )
D .(0,16)
2
二、填空题(每题 3 分,共计 18 分)
13.使代数式 2x -1 有意义的实数 x 的取值范围为
.
14.有 4 根细木棒,长度分别为 2cm 、3cm 、4cm 、5cm ,从中任选 3 根,恰好能搭成一个三角形的概率是
.
15.某地 2017 年为做好“精准扶贫”,投入资金 1280 万元用于异地安置,并规划投入资金逐年增加,
计划在 2019 年投入资金 2880 万元.设年平均增长率为
x ,根据题意可列出方程为 .
16.已知圆锥的底面半径为10,母线长为30,则圆锥侧面积是
.
17.如图,在▱ ABCD 中,E 为 CD 上一点,连接 AE ,BD 交于点 F ,S △DEF :S △ABF =4:25,则 DE : EC=
.
(17)
(18)
18.如图,在扇形 AOB 中,∠AOB=90°,正方形 CDEF 的顶点 C 是A »B 的中点,点
D 在 OB 上,点
E 在 OB 的延长线上,当正方形 CDE
F 的边长为 2 时,阴影部分的面积为
三、解答题(19 题 6 分,20 题 6 分,21—22 题各 8 分,23—24 题各 9 分,25—26 题各 10 分,共计 66 分)
19
.计算: -22 + 12 -4 +(1
)-1 +2tan60° 3
20.先化简,再求值:
21.为了了解某校初中各年级学生每天的平均睡眠时间(单位:h ,精确到 1h ),抽样调查了部分学生,并
用得到的数据绘制了下面两幅不 完整的统计图.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数 a 的值为 ,所抽查的学生人数为 .
(2)求出平均睡眠时间为 8 小时的人数,并补全频数直方图. (3)求出这部分学生的平均睡眠时间的众数和平均数.
(4)如果该校共有学生 1200 名,请你估计睡眠不足(少于 8 小时)的学生数.
评卷人 得分
评卷人
得分
3
22.如图, BD 是 ABC 的角平分线,过点 D 作 DE //BC 交 AB 于点 E , DF //AB 交 BC 于点 F . (1)求证:四边形 BEDF 为菱形;
23.一商店销售某种商品,平均每天可售出 20 件,每件盈利 40 元,为了扩大销售,增加盈利,该店 采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销售单价每降低 1 元, 平均每天可多售出 2 件.
(1)若降价 a 元,则平均每天销售数量为
件.(用含 a 的代数式表示)
(2)当每件商品降价多少元时,该商店每天销售利润为 1200 元.
24.如图,在 Rt △ABC 中,点 O 在斜边 AB 上,以 O 为圆心,OB 为半径作圆,分别与 BC 、AB 相交于点 D 、E ,连接 AD ,已知∠CAD =∠B .
(1)求证:AD 是⊙O 的切线;
(2)若∠B =30°,AC = ,求劣弧 BD 与弦 BD 所围阴影图形的面积;
(3)若 AC =4,BD =6,求 AE 的长.
25.定义:在平面直角坐标系中,把点先向右平移 1 个单位,再向上平移 2 个单位的平移称为一次斜平移.已知点 A (1,0),点 A 经过 n 次斜平移得到点 B ,点 M 是线段 AB 的中点.
(1)当n=3 时,点B
的坐标是,点M
的坐标是;
(2)如图1,当点M 落在y =
4
的图像上,求n 的值;
x
(3)如图2,当点M 落在直线l 上,点C 是点B 关于直线l 的对称点,BC 与直线l 相交于点N.
①求证:△ABC 是直角三角形
②当点C 的坐标为(5,3)时,求MN 的长.
26.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补
充完整.
原题:如图1,在平行四边形ABCD 中,点E 是BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G.若
AF
EF
= 3 ,求
CD
的值.
CG
(1)尝试探究
在图1 中,过点E 作EH∥AB 交BG 于点H,则AB 和EH 的数量关系是,CG 和EH 的数
CD
量关系是,
CG
(2)类比延伸
的值是.
(3)拓展迁移
如图3,梯形ABCD 中,DC∥AB,点E 是BC 的延长线上的一点,AE 和BD 相交于点F.若AB
= 2,
BC
=
2
,求
AF
的值.
CD BE 3 EF。