江苏版高考数学一轮复习:专题2.2函数定义域、值域讲解附答案.doc

合集下载

【优化方案】高考数学一轮复习 第2章第二节 函数的定义域、值域和最值课件 文 苏教

【优化方案】高考数学一轮复习 第2章第二节 函数的定义域、值域和最值课件 文 苏教

(5)令 x= 5sinθ(-π2≤θ≤π2),
得 y= 5sinθ+ 5- 5sinθ2 = 5sinθ+ 5cosθ= 10sin(θ+π4). ∵-π2≤θ≤π2,∴-π4≤θ+π4≤34π.
于是- 22≤sin(θ+π4)≤1, 则- 5≤ 10sin(θ+π4)≤ 10, 即- 5≤y≤ 10. ∴所求值域为[- 5, 10].
解析:分别画出三个函数 y=-x+3,y=32x+12, y=x2-4x+3 的图象(如图),得到三个交点 A(0,3),B(1,2),C(5,8).
从图象观察可得函数 f(x)的表达式:
x2-4x+3x≤0, -x+30<x≤1,
f(x)=
32x+211<x≤5, x2-4x+3x>5.
f(x)的 图 象 是
∴f(x)的值域为[-52,-2]∪[-32,32].
【名师点评】 求某个函数的最值或值域时,首 先要仔细、认真地观察其解析式的特征,然后再 选择恰当的方法,一般优先考虑直接法、函数的 单调性法.
互动探究4 例4条件不变,设函数g(x)=ax-2, x∈[-2,2],若对于任意的x1∈[-2,2],总存 在x0∈[-2,2],使得g(x0)=f(x1)成立,求实数a 的取值范围.
3.函数值域的主要求法 (1)利用函数的单调性 若y=f(x)是[a,b]上的单调增(减)函数,则f(a)、 f(b)分别是f(x)在区间[a,b]上的最_小__(_大__)值, 最_大__(_小__) 值. (2)利用配方法
将函数配成一个完全平方式与一个常量和形式, 用此种方法,特别要注意对于x在定义域内的 值是否能使完全平方式取得__零__.__
第二节 函数的定义域、值域和最值


高考数学(文科,大纲)一轮复习配套课件:2.2函数的定义域、值域

高考数学(文科,大纲)一轮复习配套课件:2.2函数的定义域、值域

§2.2函数的定义域、值域本节目录知能演练轻松闯关考向瞭望把脉高考考点探究讲练互动教材回顾夯实双基基础梳理1.函数的定义域函数的定义域是指使函数有意义的变里的取值范围.2.函数的值域⑴定义在函数y=/(Q中,与自变量r的值对应的y的值叫函数值,函数值的集合叫函数的值域・(2)基本初等函数的值域思考探究函数为整式、分式、根式、指数或对数函数时,定义域有什么特点?提示:⑴整式的定义域是实数集R;分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1.2.函数的最值与值域有何联系?提示:函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但有了函数的最大(小)值,未必能求出函数的值域.课前热身1.(教材改编)函数尸伍二+占的定义域为()A.(—8, —2]B.(一8, 2]C.(一8, -1)U(-1,2]D.[2, +8)答案:C解析:选A.要使加:)有意义,需1 ogl(2x+l)>0=logll,2 2・・.0V2x+lVl, .\-|<x<0.2・若/(兀)=,则/(兀)的定义域为(log ;(2x+l)D. (0, +8)3. (2012-高考江西卷)下列函数中,与函数y=/~定义域相同的\[x 函数为()A・y=.smx B. j-lnXXC. y=xe x sinxX解析:选D•函数丿=7-的定义域为仪IxHO},选项A中由sinxHOFH乃r, kj故A不对;选项B中x>0,故B不对; 选项C中xGR,故C不对;选项D中由正弦函数及分式型函数的定义域确定方法可知定义域为{xlx^O},故选D.4.函数f(x)=Y^p(x^R)的值域为答案:(0,1]X2—x+1 (x<l)5-函数他+ (5)的值域是答案:(0, 4-00)考点1求具体函数的定义域求函数定义域的问题类型(1)若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需解不等式(组)即可.(2)实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义•求下列函数的定义域:2⑵尸玄丙+0-4)。

【精品含答案】高考一轮复习2.2函数的定义域、值域基础训练题(理科)

【精品含答案】高考一轮复习2.2函数的定义域、值域基础训练题(理科)

2009届高考一轮复习2.2函数的定义域、值域基础训练题(理科)注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试时间45分钟。

第Ⅰ卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 函数x 21)x (f -=的定义域是( )(A )]0,(-∞(B )),0[+∞ (C ))0,(-∞ (D )),(+∞-∞2.(2008·长沙模拟)若函数1x 2)x (f -=的定义域是)5,2[)1,( -∞,则其值域为( ) (A ))0,(-∞ (B )]2,(-∞(C )]21,0( (D )]2,21()0,( -∞ 3. 二次函数c bx ax y 2++=和)c a ,0ac (a bx cx y 2≠≠++=的值域分别是M 和N ,则集合M ,N 必定有( )(A )N M ⊆(B )M N ⊆(C )N M =(D )≠N M 4. 若函数1mx mx )x (f 2++=的定义域为R ,则实数m 的取值范围是( )(A )4m 0<<(B )4m 0≤≤ (C )4m ≥ (D )4m 0≤< 5.(思维拓展题)已知函数x 2x )x (g |,x |23)x (f 2-=-=。

构造函数)x (F y =,定义如下:当)x (g )x (f ≥时,)x (g )x (F =;当)x (g )x (f <时,)x (f )x (F =,那么)x (F ( )(A )有最大值3,最小值1-(B )有最大值3,无最小值(C )有最大值727-,无最小值(D )无最大值,也无最小值6.(2007·浙江高考)设⎩⎨⎧<≥=1|x |x1|x |x )x (f 2,)x (g 是二次函数,若))x (g (f 的值域是),0[+∞,则)x (g 的值域是( )(A )),1[]1,(+∞--∞(B )),0[]1,(+∞--∞(C )),0[+∞(D )),1[+∞第Ⅱ卷(非选择题部分 共64分)二、填空题(本大题共3小题,每小题6分,共18分。

2018年高考数学一轮复习(讲+练+测): 专题2.2 函数定义域、值域(讲)

2018年高考数学一轮复习(讲+练+测): 专题2.2 函数定义域、值域(讲)

专题2.2 函数定义域、值域【考纲解读】【直击考点】题组一 常识题1.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是________.A .y =xB .y =lg xC .y =2xD .y =1x【答案】D 【解析】y =10lg x=x ,定义域与值域均为(0,+∞),只有选项D 满足题意.2.已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤0,52 【解析】 由x ∈[-2,3],得x +1∈[-1,4],由2x -1∈[-1,4],得x ∈⎣⎢⎡⎦⎥⎤0,52 3.[教材改编] 函数f (x )=8-xx +3的定义域是________. 【答案】(-∞,-3)∪(-3,8]【解析】要使函数有意义,则需8-x ≥0且x +3≠0,即x ≤8且x ≠-3,所以其定义域是(-∞,-3)∪(-3,8]. 题组二 常错题4.函数y =f (cos x )的定义域为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+2π3(k ∈Z ),则函数y =f (x )的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤-12,1【解析】 由于函数y =f (cos x )的定义域是⎣⎢⎡⎦⎥⎤2k π-π6,2k π+2π3(k ∈Z ),所以u =cos x 的值域是⎣⎢⎡⎦⎥⎤-12,1,所以函数y =f (x )的定义域是⎣⎢⎡⎦⎥⎤-12,1.5.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ∈[0,1],92-32x ,x ∈(1,3],当t ∈[0,1]时,f [f (t )]∈[0,1],则实数t 的取值范围是______________. 【答案】⎣⎢⎡⎦⎥⎤log 373,1【解析】 因为t ∈[0,1],所以f (t )=3t ∈[1,3],所以f [f (t )]=f (3t)=92-32·3t ∈[0,1],即73≤3t≤3,所以log 373≤t ≤1.6.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.【答案】⎣⎢⎡⎭⎪⎫0,34. 【解析】函数的定义域为R ,即mx 2+4mx +3≠0恒成立.①当m =0时,符合题意;②当m ≠0时,Δ=(4m )2-4×m ×3<0,即m (4m -3)<0,解得0<m <34.综上所述,实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.题组三 常考题7.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y =x 2,值域为{1,4}的“同族函数”共有________个. 【答案】98. 函数f (x )=lg(x 2+x -6)的定义域是________. 【答案】{x |x <-3或x >2}【解析】 要使函数有意义,则需x 2+x -6>0,解得x <-3或x >2.9.设函数f (x )在区间[0,1]上有意义,若存在x ∈R 使函数f (x -a )+f (x +a )有意义,则a 的取值范围为________. 【答案】 [-2,-1].【知识清单】1 函数的定义域1.已知函数解析式,求定义域,其主要依据是使函数的解析式有意义,主要形式有:(1)分式函数,分母不为0;(2)偶次根式函数,被开方数非负数; (3)一次函数、二次函数的这定义域为R ; (4)0x 中的底数不等于0; (5)指数函数x y a =的定义域为R ;(6)对数函数log a y x =的定义域为{}|0x x >; (7)sin ,cos y x y x ==的定义域均为R ;(8)tan y x =的定义域均为|,2x x k k z ππ⎧⎫≠+∈⎨⎬⎩⎭; 2.求抽象函数的定义域:(1)由()y f x =的定义域为D ,求[()]y f g x =的定义域,须解()f x D ∈; (2)由[()]y f g x =的定义域D ,求()y f x =的定义域,只须解()g x 在D 上的值域就是函数()y f x = 的定义域;(3)由[()]y f g x =的定义域D ,求[()]y f h x =的定义域.3.实际问题中的函数的定义域,除了使解析式本身有意义,还要使实际问题有意义. 2 函数的值域 函数值域的求法:(1)利用函数的单调性:若y=f(x)是 [a,b]上的单调增(减)函数,则f(a),f(b)分别是f(x)在区间[a,b]上取得最小(大)值,最大(小)值.(2)利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围. (3)利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-.(4)利用“分离常数”法:形如y=ax b cx d ++ 或2ax bx ey cx d++=+ (a,c 至少有一个不为零)的函数,求其值域可用此法.(5)利用换元法:形如y ax b =+,可用此法求其值域. (6)利用基本不等式:(7)导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域【考点深度剖析】定义域是函数的灵魂,高考中考查的定义域多以填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,难度中等.【重点难点突破】考点1 函数的定义域 【1-1】函数y(+)的定义域为_________.【答案】(-∞,-1)∪(-1,0).【1-2】函数22-25+1+)cos (=x x log y 的定义域为_________.【答案】33x x ππ⎧⎫-≤≤⎨⎬⎩⎭【解析】由已知条件,自变量x 需满足22log cos 10250x x +≥⎧⎨-≥⎩得1cos 22,23355x k x k k Z x ππππ⎧≥⇒-+≤≤+∈⎪⎨⎪-≤≤⎩ 所以33x ππ-≤≤故而所求函数定义域为33x x ππ⎧⎫-≤≤⎨⎬⎩⎭.【1-3】设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为________.【答案】()()2,11,2 --【解析】由202x x +>-得,()f x 的定义域为{}|22x x -<<.故22,222 2.xx⎧-<<⎪⎪⎨⎪-<<⎪⎩,解得()()4,11,4x ∈--.故⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为()()2,11,2 -- 【1-4】若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 【答案】[-1,0]【思想方法】(1)已知具体函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.【温馨提醒】对于含有字母参数的函数定义域,应注意对参数取值的讨论;对于实际问题的定义域一定要使实际问题有意义;而分段函数的定义域是各段区间的并集、各个段上的定义域交集为空集,即各个段的端点处不能重复. 考点2 函数的值域【2-1】求函数y =x +4x(x <0)的值域.【答案】(-∞,-4].【解析】∵x <0,∴x +4x=-⎝ ⎛⎭⎪⎫-x -4x ≤-4,当且仅当x =-2时等号成立. ∴y ∈(-∞,-4]. ∴函数的值域为(-∞,-4].【2-2】 求函数y =x 2+2x (x ∈[0,3])的值域. 【答案】[0,15].【解析】(配方法)y =x 2+2x =(x +1)2-1,∵y =(x +1)2-1在[0,3]上为增函数, ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. 【2-3】 求函数y =1-x21+x 2的值域.【答案】(-1,1].【2-4】 求函数f (x )=x -1-2x .的值域.【答案】1(,]2-∞.【解析】法一:(换元法)令1-2x =t ,则t ≥0且x =1-t22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是1(,]2-∞.法二:(单调性法)容易判断f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以11()22y f ≤=即函数的值域是1(,]2-∞.【2-5】 求函数y =x 2-xx 2-x +1的值域.【答案】1[,1)3-【思想方法】求函数值域常用的方法(1)配方法,多适用于二次型或可转化为二次型的函数. (2)换元法. (3)基本不等式法. (4)单调性法. (5)分离常数法.【温馨提醒】求函数值域的方法多样化,需结合函数解析式的特点选用恰当的方法【易错试题常警惕】分段函数的参数求值问题,一定要注意自变量的限制条件. 如:已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()11f a f a -=+,则a 的值为_______.【分析】当0a >时,11a -<,11a +>,由()()11f a f a -=+得2212a a a a -+=---,解得32a =-,不合题意;当0a <时,11a ->,11a +<,由()()11f a f a -=+得 1222a a a a -+-=++,解得34a =-.所以a 的值为34-.【易错点】没有对a 进行讨论,以为11a -<,11a +>直接代入求解而致误;求解过程中忘记检验所求结果是否符合要求而致误. 【练一练】函数f (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,4x ,x ≤0,则f (f (-1))的值为________.【答案】-2【解析】∵f (-1)=4-1=14,∴f (f (-1))=f ⎝ ⎛⎭⎪⎫14=log 2 14=-2.。

高考数学一轮复习第二章基本初等函数导数的应用第2讲函数的定义域与值域课件文

高考数学一轮复习第二章基本初等函数导数的应用第2讲函数的定义域与值域课件文
所以12≤x<1,故函数 g(x)的定义域为12,1.
(1)求函数的定义域,其实质就是以函数解析式所含运算有意 义为准则,列出不等式或不等式组,然后求出它们的解集. (2)已知 f(x)的定义域是[a,b],求 f[g(x)]的定义域,是指满足 a≤g(x)≤b 的 x 的取值范围,而已知 f[g(x)]的定义域是 [a,b],指的是 x∈[a,b].
2.已知函数 f(x)的定义域是[0,2],则函数 g(x)=fx+12+ fx-12的定义域是__12_,__32___.
[解析] 因为函数 f(x)的定义域是[0,2],
所以函数 g(x)=fx+12+fx-12中的自变量 x 需要满足
0≤x+12≤2, 0≤x-12≤2,
F(x)=f(x)+f(1x)的
[解析] 令 t=f(x),则12≤t≤3.
易知函数 g(t)=t+1t 在区间12,1上是减函数,在(1,3]上是
增函数.
又因为 g12=52,g(1)=2,g(3)=130.
可知函数 F(x)=f(x)+f(1x)的值域为2,130.
3.已知函数 f( x+2)=x+ 2 x,则函数 f(x)的值域为 _[0_,__+__∞__)__. [解析] 令 2+ x=t,则 x=(t-2)2(t≥2). 所以 f(t)=(t-2)2+2(t-2)=t2-2t(t≥2). 所以 f(x)=x2-2x(x≥2). 所以 f(x)=(x-1)2-1≥(2-1)2-1=0, 即 f(x)的值域为[0,+∞).
2.已知等腰△ABC 的周长为 10,底边长 y 关于腰长 x 的函 数关系为 y=10-2x,则函数的定义域为___x_|_52_<_x_<_5_______.
[解析] 由题意知x21>x0- >0,120x->20, x,即52<x<5.

(江苏专版)高考数学一轮复习第二章第2讲函数的定义域与值域分层演练直击高考文

(江苏专版)高考数学一轮复习第二章第2讲函数的定义域与值域分层演练直击高考文

第2讲 函数的定义域与值域1.函数f (x )=x -4|x |-5的定义域为________.[解析] 由⎩⎪⎨⎪⎧x -4≥0,|x |-5≠0,得x ≥4且x ≠5.[答案] {x |x ≥4,且x ≠5}2.若x 有意义,则函数y =x 2+3x -5的值域是________. [解析] 因为x 有意义,所以x ≥0.又y =x 2+3x -5=⎝ ⎛⎭⎪⎫x +322-94-5,所以当x =0时,y min =-5. [答案] [-5,+∞) 3.函数y =1x 2+2的值域为________. [解析] 因为x 2+2≥2,所以0<1x 2+2≤12. 所以0<y ≤12.[答案] ⎩⎨⎧⎭⎬⎫y |0<y ≤124.(2018·南京四校第一学期联考)函数f (x )=x 2-5x +6lg (2x -3)的定义域为________.解析:要使f (x )有意义,必须⎩⎪⎨⎪⎧2x -3>0lg (2x -3)≠0x 2-5x +6≥0,所以⎩⎪⎨⎪⎧x >32x ≠2x ≥3或x ≤2,所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫32,2∪[3,+∞).答案:⎝ ⎛⎭⎪⎫32,2∪[3,+∞)5.若函数y =f (x )的定义域是[0,2 014],则函数g (x )=f (x +1)x -1的定义域是________.[解析] 令t =x +1,则由已知函数y =f (x )的定义域为[0,2 014]可知,0≤t ≤2 014,故要使函数f (x +1)有意义,则0≤x +1≤2 014,解得-1≤x ≤2 013,故函数f (x +1)的定义域为[-1,2 013].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 013,x -1≠0,解得-1≤x <1或1<x ≤2 013.故函数g (x )的定义域为[-1,1)∪(1,2 013]. [答案] [-1,1)∪(1,2 013]6.函数y =x -x (x ≥0)的最大值为________. [解析] y =x -x =-(x )2+x =-⎝⎛⎭⎪⎫x -122+14, 即y max =14.[答案] 147.(2018·南昌模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.[解析] 由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6].故当x ∈[-2,2]时,f (x )∈[-4,6].[答案] [-4,6]8.已知集合A 是函数f (x )=1-x 2+x 2-1x的定义域,集合B 是其值域,则A ∪B 的子集的个数为________.[解析] 要使函数f (x )的解析式有意义,则需⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0,x ≠0,解得x =1或x =-1,所以函数的定义域A ={-1,1}.而f (1)=f (-1)=0,故函数的值域B ={0},所以A ∪B ={1,-1,0},其子集的个数为23=8.[答案] 89.已知二次函数f (x )=ax 2-x +c (x ∈R )的值域为[0,+∞),则c +2a +a +2c的最小值为________.[解析] 由二次函数的值域是[0,+∞),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a >0,4ac -14a =0,从而c =14a >0.又c +2a +a +2c =⎝ ⎛⎭⎪⎫2a +8a +⎝ ⎛⎭⎪⎫14a 2+4a 2≥2×4+2=10,当且仅当⎩⎪⎨⎪⎧2a =8a ,14a 2=4a 2,即a =12时取等号,故所求的最小值为10.[答案] 1010.函数y =2x -1-13-4x 的值域为________. [解析] 法一:(换元法)设13-4x =t , 则t ≥0,x =13-t24,于是y =g (t )=2·13-t24-1-t=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数, 所以g (t )≤g (0)=112,因此函数的值域是⎝⎛⎦⎥⎤-∞,112. 法二:(单调性法)函数的定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小, 所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是单调递增函数, 所以当x =134时,函数取得最大值f ⎝ ⎛⎭⎪⎫134=112,故函数的值域是⎝ ⎛⎦⎥⎤-∞,112.[答案] ⎝⎛⎦⎥⎤-∞,11211. (1)求函数f (x )=lg (x 2-2x )9-x2的定义域. (2)已知函数f (2x)的定义域是[-1,1],求f (x )的定义域.[解] (1)要使该函数有意义,需要⎩⎪⎨⎪⎧x 2-2x >0,9-x 2>0,则有⎩⎪⎨⎪⎧x <0或x >2,-3<x <3,解得-3<x <0或2<x <3, 所以所求函数的定义域为(-3,0)∪(2,3).(2)因为f (2x)的定义域为[-1,1], 即-1≤x ≤1,所以12≤2x≤2,故f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2. 12.已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.[解] (1)f (x )=x +1x +3,x ∈[0,a ](a >0). (2)函数f (x )的定义域为⎣⎢⎡⎦⎥⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎢⎡⎦⎥⎤1,32,f (x )=F (t )=tt 2-2t +4=1t +4t-2, 当t =4t 时,t =±2∉⎣⎢⎡⎦⎥⎤1,32,又t ∈⎣⎢⎡⎦⎥⎤1,32时,t +4t 单调递减,F (t )单调递增,F (t )∈⎣⎢⎡⎦⎥⎤13,613.即函数f (x )的值域为⎣⎢⎡⎦⎥⎤13,613.1.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),则a =________,b =________.[解析] 因为f (x )=12(x -1)2+a -12,所以其对称轴为x =1.即[1,b ]为f (x )的单调递增区间. 所以f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b ,②由①②解得⎩⎪⎨⎪⎧a =32,b =3.[答案] 3232.(2018·徐州质检)已知一个函数的解析式为y =x 2,它的值域为{1,4},这样的函数有________个.[解析] 列举法:定义域可能是{1,2}、{-1,2}、{1,-2}、{-1,-2}、{1,-2,2}、{-1,-2,2}、{-1,1,2}、{-1,1,-2}、{-1,1,-2,2}.[答案] 93.已知函数f (x )=log 13(-|x |+3)的定义域是[a ,b ](a 、b ∈Z ),值域是[-1,0],则满足条件的整数对(a ,b )有________对.[解析] 由f (x )=log 13(-|x |+3)的值域是[-1,0],易知t (x )=|x |的值域是[0,2],因为定义域是[a ,b ](a 、b ∈Z ),所以符合条件的(a ,b )有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5对.[答案] 54.(2018·常州调研)设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是________.[解析] 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f (x )≤f (-1),即-94≤f (x )≤0,故函数f (x )的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).[答案] ⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞) 5.若函数f (x )= (a 2-1)x 2+(a -1)x +2a +1的定义域为R ,求实数a 的取值范围.[解] 由函数的定义域为R ,可知对x ∈R ,f (x )恒有意义,即对x ∈R ,(a 2-1)x 2+(a -1)x +2a +1≥0恒成立. ①当a 2-1=0,即a =1(a =-1舍去)时,有1≥0,对x ∈R 恒成立,故a =1符合题意;②当a 2-1≠0,即a ≠±1时,则有⎩⎪⎨⎪⎧a 2-1>0,Δ=(a -1)2-4(a 2-1)×2a +1≤0,解得1<a ≤9. 综上,可得实数a 的取值范围是[1,9].6.已知二次函数f (x )=ax 2+bx (a 、b 为常数,且a ≠0)满足条件:f (x -1)=f (3-x ),且方程f (x )=2x 有等根.(1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ]?如果存在,求出m 、n 的值;如果不存在,说明理由.[解] (1) f (x )=-x 2+2x .(2)由f (x )=-x 2+2x =-(x -1)2+1,知f (x )max =1,所以4n ≤1,即n ≤14<1.故f (x )在[m ,n ]上为增函数,所以⎩⎪⎨⎪⎧f (m )=4m ,f (n )=4n ,解得⎩⎪⎨⎪⎧m =-2,n =0,所以存在m =-2,n=0,满足条件.7.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. [解] (1)因为函数的值域为[0,+∞), 所以Δ=16a 2-4(2a +6)=0 ⇒2a 2-a -3=0⇒a =-1或a =32.(2)因为对一切x ∈R 函数值均为非负数, 所以Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.所以a +3>0.所以g (a )=2-a |a +3|=-a 2-3a +2 =-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32. 因为二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, 所以g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.所以g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4.。

江苏版高考数学 2.2 函数的基本性质

江苏版高考数学  2.2 函数的基本性质

2.2 函数的基本性质挖命题【考情探究】分析解读函数的基本性质是研究函数的基础,是高考的重点和热点.通常会考查函数的单调性及其应用,填空和解答题都会涉及.对于奇偶性,则会结合单调性和周期性一起进行考查.破考点【考点集训】考点一函数的奇偶性与周期性1.(2019届江苏宝应中学检测)已知f(x)为定义在R上的奇函数,当x≥0时, f(x)=2x+m,则f(-2)= . 答案-32.已知函数f(x)=(m-2)x2+(m-1)x+3是偶函数,则实数m的值为.答案 13.(2018江苏盐城上学期期中,11)设函数f(x)是以4为周期的奇函数,当x∈[-1,0)时, f(x)=2x,则f(log220)= .答案-考点二函数的单调性与最值1.若函数f(x)=(2a-1)x+b是R上的减函数,则a的取值范围为.答案-2.(2018江苏南通中学高三数学练习)已知函数f(x)=-满足对任意x1≠x2,都有--<0成立,则a的取值范围是.答案0<a≤3.(2019届江苏扬州中学检测)函数f(x)=-的最大值为.答案 24.若函数f(x)=在区间[2,a]上的最大值与最小值的和为,则a= .答案 4炼技法【方法集训】方法一用单调性求解与抽象函数有关的不等式的策略1.(2018江苏南京高三年级学情调研)已知函数f(x)是定义在R上的奇函数,且在(- ,0]上为单调增函数.若f(-1)=-2,则满足f(2x-3)≤2的x的取值范围是.答案x≤22.已知函数f(x)为区间[-1,1]上的增函数,则满足f(x)<f的实数x的取值范围为.答案-方法二利用单调性求最值的策略1.(2019届江苏南京外国语学校检测)设函数f(x)=-在区间[3,4]上的最大值和最小值分别为M,m,则= .答案2.函数f(x)=-在[-2,0]上的最大值与最小值之差为.答案方法三已知函数奇偶性求参数(求值)1.已知f(x)是定义在R上的偶函数,并且f(x+2)=-,当2≤x≤3时, f(x)=x,则f(105.5)= .答案 2.52.(2019届江苏启东中学检测)已知函数f(x)=---若g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a= .答案-过专题【五年高考】统一命题、省(区、市)卷题组考点一函数的奇偶性与周期性1.(2018课标全国Ⅲ文,16,5分)已知函数f(x)=ln(-x)+1, f(a)=4,则f(-a)= .答案-22.(2018课标全国Ⅱ理改编,11,5分)已知f(x)是定义域为(- ,+ )的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)= .答案 23.(2015课标Ⅰ,13,5分)若函数f(x)=xln(x+)为偶函数,则a= .答案 14.(2017课标全国Ⅱ文,14,5分)已知函数f(x)是定义在R上的奇函数,当x∈(- ,0)时, f(x)=2x3+x2,则f(2)= .答案125.(2016四川,14,5分)已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时, f(x)=4x,则f-+f(1)= .答案-2考点二函数的单调性与最值1.(2018北京理,13,5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.答案f(x)=sin x,x∈[0,2](答案不唯一)2.(2017课标全国Ⅰ理改编,5,5分)函数f(x)在(- ,+ )单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x 的取值范围是.答案[1,3]3.(2017课标全国Ⅱ文改编,8,5分)函数f(x)=ln(x2-2x-8)的单调递增区间是.答案(4,+ )4.(2015课标Ⅱ改编,12,5分)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是. 答案5.(2017天津文改编,6,5分)已知奇函数f(x)在R上是增函数.若a=-f,b=f(log24.1),c=f(20.8),则a,b,c 的大小关系为.(用“<”连接)答案c<b<aC组教师专用题组1.(2014湖北改编,10,5分)已知函数f(x)是定义在R上的奇函数,当x≥0时, f(x)=(|x-a2|+|x-2a2|-3a2).若∀x∈R, f(x-1)≤f(x),则实数a的取值范围为.答案-2.(2015天津改编,7,5分)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数.记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为.答案b>a>c3.(2011全国改编,9,5分)设f(x)是周期为2的奇函数,当0≤x≤1时, f(x)=2x(1-x),则f-= .答案-【三年模拟】一、填空题(每小题5分,共50分)1.(2019届江苏邗江中学检测)函数y=x2+x+1(x∈R)的递减区间是.答案--2.(2019届江苏扬中高级中学检测)偶函数y=f(x)的定义域为[t-4,t],则t= .答案 23.(2019届江苏教育学院附属中学检测)如果函数y=-是奇函数,则f(x)= .答案2x+34.(2019届江苏木渎中学检测)若f(x)=ln(e3x+1)+ax是偶函数,则a= .答案-5.(2019届江苏宜兴高级中学检测)函数f(x)=-在区间[a,b]上的最大值是1,最小值是,则a+b= . 答案 66.(2018江苏姜堰中学高三期中)若函数f(x)=-(a∈R)为奇函数,则f(a)= .答案07.(2017江苏镇江高三检测)若函数f(x)=--(a>0且a≠1)在R上单调递减,则实数a的取值范围是.答案8.(2019届江苏武进高级中学检测)已知f(x)满足f(x+4)=f(x),当x∈(-2,0)时, f(x)=2x2,则f(2 019)= . 答案 29.(2019届江苏羊尖高级中学检测)定义在R上的奇函数y=f(x)在(0,+ )上递增,且f=0,则满足f(x)>0的x 的集合为.答案-或10.(2019届江苏苏大附中检测)奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)= . 答案 2二、解答题(共30分)11.(2019届江苏沙溪高级中学检测)已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+ )上是增函数;(2)若f(x)在上的值域是,求a的值.解析(1)设任意x2>x1>0,则x2-x1>0,x1x2>0.因为f(x2)-f(x1)=---=-=->0,所以f(x2)>f(x1),所以f(x)在(0,+ )上是增函数.(2)因为f(x)在上的值域是,又由(1)得f(x)在上是单调增函数,所以f=, f(2)=2,易知a=.12.(2019届江苏启东检测)已知函数f(x)=-的定义域为R.(1)当a=2时,求函数f(x)的值域;(2)若函数f(x)是奇函数,①求a的值;②解不等式f(3-m)+f(3-m2)>0.解析(1)当a=2时, f(x)=-=1-,又3x+2>2,所以0<<,所以-1<1-<1,所以函数f(x)的值域为(-1,1).(2)①因为f(x)是奇函数,所以f(x)+f(-x)=0,即-+---=0,化简得a=±1.因为f(x)的定义域为R,所以a=1.②由①知, f(x)=-=1-,所以f '(x)=>0,所以f(x)在R上是增函数.又因为函数f(x)是奇函数, f(3-m)+f(3-m2)>0, 所以f(3-m)>f(m2-3),所以3-m>m2-3,即m2+m-6<0,解得-3<m<2.。

高考数学一轮复习讲义(提高版) 专题2.2 函数的单调性(解析版)

高考数学一轮复习讲义(提高版) 专题2.2 函数的单调性(解析版)

第二讲函数的单调性1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M (3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【套路秘籍】---千里之行始于足下考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间 . (4)求函数f (x )=x -ln x 的单调区间 .(5)函数33y x x =-的单调增区间为__________. 【答案】见解析【解析】(1)只有y =2-x与y =x 的定义域为R ,且y =2-x是减函数,y =x 是增函数.选B (2)由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数. 要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.∵函数t =x 2-2x -8的单调递增区间为(4,+∞),∴函数f (x )的单调递增区间为(4,+∞).故选D. (3)先作出函数y =x 2-4x +3的图象,由于绝对值的作用,把x 轴下方的部分翻折到上方,可得函数y =|x 2-4x +3|的图象.如图所示.由图可知f (x )在(-∞,1]和[2,3]上为减函数,在[1,2]和[3,+∞)上为增函数,故f (x )的增区间为[1,2],[3,+∞),减区间为(-∞,1],[2,3].(4)由题意,得x >0.y ′=1-1x =x -1x.由y ′=0解得x =1.【修炼套路】---为君聊赋《今日诗》,努力请从今日始列表如下:由上表可知,函数的单调递增区间为(1,+∞),单调递减区间为(0,1).(5)21119033y x x '=->∴-<< ,即单调增区间为11,33⎛⎫- ⎪⎝⎭【举一反三】1.下列函数中,在(0,+∞)上单调递减的是( )A . f(x)=lnxB . f(x)=(x −1)2C . f(x)=2−xD . f(x)=x 3 【答案】C【解析】根据题意,依次分析选项:对于A ,函数f(x)=lnx 为对数函数,在(0,+∞)上为增函数,不符合题意.【套路总结】一.函数单调性的判断方法有 ①定义法; ②图象法;③利用已知函数的单调性; ④导数法.二.复合函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.对于B ,函数f(x)=(x −1)2为二次函数,在(−∞,1)上为减函数,在(1,+∞)上为增函数,不符合题意. 对于C ,函数f(x)=2−x =(12)x 为指数函数,在(0,+∞)上单调递减,符合题意.对于D ,函数y =x 3为幂函数,在(0,+∞)上为增函数,不符合题意.故选C . 2.函数f (x )=log 2(4+3x −x 2)的单调递减区间是( ) A . (−∞,32] B . [32,+∞) C . (−1,32] D . [32,4) 【答案】D【解析】函数f (x )=log 2(4+3x-x 2),令t=4+3x-x 2>0,求得-1<x <4,即函数的定义域为(-1,4),且f (x )=log 2t ,即求函数t 在定义域内的减区间.再利用二次函数的性质可得t=4+3x-x 2在定义域内的减区间为[32,4).故选D . 3.函数()| g x x =的单调递增区间是 ( )A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞, 【答案】A【解析】任取120,x x >> 则120,x x -> ()()()()121212120,g x g x x x x x g x g x ->-=->> ,所以函数()| g x x =的单调递增区间是[)0+∞,,故选A.考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3) 【答案】A【解析】 ∵对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数,又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数,∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A.【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b ) D.f (b )<f (c )<f (a )【答案】B【解析】易知f (x )=2x -2-x在(-∞,+∞)上是增函数,又a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715=b >0,c =log 279<0,∴f (a )>f (b )>f (c ).2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【套路总结】(1)比较大小:县判断出函数的单调性,再根据自变量的大小判断出函数值的大小关系。

高考数学一轮复习 第二章 函数 2

高考数学一轮复习 第二章 函数 2

高考数学一轮复习 第二章 2.6 指数与指数函数考试要求 1.理解有理数指数幂的含义,了解实数指数幂的意义,掌握指数幂的运算性质. 2.通过实例,了解指数函数的实际意义,会画指数函数的图象.3.理解指数函数的单调性、特殊点等性质,并能简单应用.知识梳理 1.根式(1)如果x n =a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. (2)式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数. (3)(na )n =a .当n 为奇数时,na n =a ,当n 为偶数时,n a n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂正数的正分数指数幂,m na =na m (a >0,m ,n ∈N *,n >1). 正数的负分数指数幂,m n a-=1m na=1nam(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于0,0的负分数指数幂没有意义. 3.指数幂的运算性质a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r (a >0,b >0,r ,s ∈R ). 4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,(2)指数函数的图象与性质a >10<a <1图象定义域 R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1;当x <0时,0<y <1 当x <0时,y >1;当x >0时,0<y <1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数常用结论1.指数函数图象的关键点(0,1),(1,a ),⎝⎛⎭⎫-1,1a . 2.如图所示是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则c >d >1>a >b >0,即在第一象限内,指数函数y =a x (a >0且a ≠1)的图象越高,底数越大.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)4-44=-4.( × )(2)2a ·2b =2ab .( × ) (3)函数y =3·2x 与y =2x+1都不是指数函数.( √ )(4)若a m <a n (a >0,且a ≠1),则m <n .( × )1.化简3234[(5)]-的结果为( )A .5 B. 5 C .- 5 D .-5答案 B解析 原式=22333132334442(5)(5)55⨯==== 5.2.函数f (x )=a x -1+2(a >0且a ≠1)的图象恒过定点________. 答案 (1,3)3.已知a =1335-⎛⎫ ⎪⎝⎭,b =1435-⎛⎫ ⎪⎝⎭,c =3432-⎛⎫⎪⎝⎭,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵y =⎝⎛⎭⎫35x是R 上的减函数, ∴1335-⎛⎫ ⎪⎝⎭>1435-⎛⎫⎪⎝⎭>⎝⎛⎭⎫350,即a >b >1, 又c =3432-⎛⎫⎪⎝⎭<⎝⎛⎭⎫320=1, ∴c <b <a .题型一 指数幂的运算例1 (1)(2022·沧州联考)113211332(4)14(0.1)()ab a b ----⎛⎫⎪⎝⎭⋅⋅a >0,b >0)=________.答案 85解析 原式=33322233222410a b a b--⋅=85. (2)若12x +12x -=3(x >0),则33222232x x x x --+-+-=________.答案 13解析 由12x +12x-=3,两边平方,得x +x -1=7, 再平方得x 2+x -2=47, ∴x 2+x -2-2=45.3311332222()()x xx x --+=+=1122()x x -+(x -1+x -1)=3×(7-1)=18.∴33222232x x x x --+-+-=13.教师备选(2022·杭州模拟)3322114423()a b ab ba b a⋅(a >0,b >0)的结果是( )A.b aB.a bC.a 2bD.b 2a 答案 B解析1133322632111111443342423()()a baba b a bba b a ba b a-⋅=⋅⋅⋅3111111226333a b+-++--==ab -1=a b.思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加. ②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.跟踪训练1 (1)已知a >0,则1132aa a 化为( )A .112a B .512a C .56a D .13a答案 B解析 原式=1111133222aa a a a ⋅=⋅1552612.a a ⨯==(2)计算:238-⎝⎛⎭⎫-780+43-π4+162[(2)]-=________.答案 π+8解析 原式=233(2)-1+|3-π|+162(2)=4-1+π-3+23=π+8.题型二 指数函数的图象及应用例2 (1)函数y =x|x |a x (0<a <1)的图象的大致形状是( )答案 D解析 因为y =xa x |x |=⎩⎪⎨⎪⎧a x,x >0,-a x ,x <0,且0<a <1,所以根据指数函数的图象和性质, 当x ∈(0,+∞)时函数是减函数; 当x ∈(-∞,0)时函数是增函数,所以函数在(0,+∞)上单调递减,在(-∞,0)上单调递增,故选D. (2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 答案 (0,2)解析 在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.∴当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. ∴b 的取值范围是(0,2). 教师备选在同一直角坐标系中,指数函数y =⎝⎛⎭⎫b a x,二次函数y =ax 2-bx 的图象可能是( )答案 B解析 指数函数y =⎝⎛⎭⎫b a x的图象位于x 轴上方,据此可区分两函数图象.二次函数y =ax 2-bx =(ax -b )x ,有零点b a,0.A ,B 选项中,指数函数y =⎝⎛⎭⎫b a x 在R 上单调递增,故ba >1,故A 错误,B 正确. C ,D 选项中,指数函数y =⎝⎛⎭⎫b a x 在R 上单调递减,故0<b a<1,故C ,D 错误. 思维升华 (1)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论. (2)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解. 跟踪训练2 (1)(2022·陕西汉台中学月考)已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )答案 A解析由图象可知,b<-1,0<a<1,所以函数g(x)=a x+b是减函数,g(0)=1+b<0,所以选项A符合.(2)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0答案 D解析由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.又f(0)=a-b<a0,所以-b>0,即b<0.题型三指数函数的性质及应用命题点1比较指数式的大小例3(1)(2022·永州模拟)若a=0.30.7,b=0.70.3,c=1.20.3,则a,b,c的大小关系是() A.a>b>c B.c>b>aC.b>c>a D.a>c>b答案 B解析∵函数y=0.3x在R上是减函数,∴0<0.30.7<0.30.3<0.30=1,又∵幂函数y=x0.3在(0,+∞)上单调递增,0.3<0.7,∴0<0.30.3<0.70.3,∴0<a<b<1,而函数y=1.2x是R上的增函数,∴c=1.20.3>1.20=1,∴c>b>a.(2)(2020·全国Ⅱ)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0 B.ln(y-x+1)<0C.ln|x-y|>0 D.ln|x-y|<0答案 A解析设函数f(x)=2x-3-x.因为函数y=2x与y=-3-x在R上均单调递增,所以f(x)在R上单调递增.原式等价于2x-3-x<2y-3-y,即f(x)<f(y),所以x<y,即y-x>0,所以A正确,B不正确.因为|x-y|与1的大小关系不能确定,所以C,D不正确.命题点2解简单的指数方程或不等式例4(1)(2022·长岭模拟)已知y=4x-3·2x+3的值域为[1,7],则x的取值范围是() A.[2,4] B.(-∞,0)C.(0,1)∪[2,4] D.(-∞,0]∪[1,2]答案 D解析∵y=4x-3·2x+3的值域为[1,7],∴1≤4x-3·2x+3≤7.∴-1≤2x≤1或2≤2x≤4.∴x≤0或1≤x≤2.(2)当0<x <12时,方程a x =1x (a >0且a ≠1)有解,则实数a 的取值范围是______.答案 (4,+∞)解析 依题意,当x ∈⎝⎛⎭⎫0,12时,y =a x 与y =1x 有交点,作出y =1x的图象,如图,所以1212a a ⎧⎪⎨⎪⎩>,>,解得a >4.命题点3 指数函数性质的综合应用 例5 已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上单调递增,则m 的取值范围是________. 答案 (-∞,4]解析 令t =|2x -m |,则t =|2x -m |在区间⎣⎡⎭⎫m 2,+∞上单调递增,在区间⎝⎛⎦⎤-∞,m2上单调递减.而y =2t 是增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4]. 教师备选1.下列各式比较大小不正确的是( )A .1.72.5>1.73B.2433122-⎛⎫⎪⎝⎭> C .1.70.3>0.93.1D.32432334⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭< 答案 A解析 ∵y =1.7x 为增函数,∴1.72.5<1.73,故A 不正确;443312=2-⎛⎫ ⎪⎝⎭,y =⎝⎛⎭⎫12x 为减函数, ∴24433311=222-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,故B 正确; ∵1.70.3>1,而0.93.1∈(0,1),∴1.70.3>0.93.1,故C 正确;∵y =⎝⎛⎭⎫23x 为减函数,∴32432233⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 又y =23x 在(0,+∞)上单调递增, ∴22332334⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, ∴322433223334⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,故D 正确. 2.(2022·泸州模拟)已知函数f (x )=e x -1e x ,若f (a -2)+f (a 2)≤0,则实数a 的取值范围是______. 答案 [-2,1]解析 因为f (x )=e x -1e x ,定义域为R , f (-x )=e -x -1e-x =1e x -e x =-f (x ), 所以f (x )=e x -1e x 为奇函数. 又因为f (x )=e x -1e x 在R 上为增函数, 所以f (a -2)+f (a 2)≤0⇒f (a -2)≤-f (a 2)⇒f (a -2)≤f (-a 2),即a -2≤-a 2,a 2+a -2≤0,解得-2≤a ≤1.思维升华 (1)利用指数函数的性质比较大小或解方程、不等式,最重要的是“同底”原则,比较大小还可以借助中间量.(2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.跟踪训练3 (1)设m ,n ∈R ,则“m <n ”是“⎝⎛⎭⎫12m -n >1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 ⎝⎛⎭⎫12m -n >1,即⎝⎛⎭⎫12m -n >⎝⎛⎭⎫120,∴m -n <0,∴m <n .故“m <n ”是“⎝⎛⎭⎫12m -n >1”的充要条件.(2)已知函数f (x )=24313ax x -+⎛⎫ ⎪⎝⎭,若f (x )有最大值3,则a 的值为________.答案 1解析 令g (x )=ax 2-4x +3,则f (x )=⎝⎛⎭⎫13g (x ),∵f (x )有最大值3,∴g (x )有最小值-1, 则⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1.课时精练1.(2022·佛山模拟)已知a=432,b=254,c=135,则()A.c<b<a B.a<b<c C.b<a<c D.c<a<b 答案 A解析因为a=432=234,b=254,所以a=234>254=b,因为b=254=1615(4)=1154096,c=135=1515(5)=1153125,则b>c.综上所述,a>b>c.2.若函数f(x)=a x-b的图象如图所示,则()A.a>1,b>1 B.a>1,0<b<1 C.0<a<1,b>1 D.0<a<1,0<b<1 答案 D解析根据图象,函数f(x)=a x-b是单调递减的,所以指数函数的底数a∈(0,1),根据图象的纵截距,令x=0,y=1-b∈(0,1),解得b∈(0,1),即a∈(0,1),b∈(0,1).3.下列函数中,与函数y =2x -2-x 的定义域、单调性与奇偶性均一致的是( )A .y =sin xB .y =x 3C .y =⎝⎛⎭⎫12xD .y =log 2x答案 B解析 y =2x -2-x 是定义域为R 的单调递增函数,且是奇函数,y =sin x 不是单调递增函数,不符合题意;y =⎝⎛⎭⎫12x 是非奇非偶函数,不符合题意;y =log 2x 的定义域是(0,+∞),不符合题意;y =x 3是定义域为R 的单调递增函数,且是奇函数,符合题意.4.(2022·福建三明一中检测)函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值是最小值的2倍,则a 的值是( )A.12或 2B.12或2C.12D .2 答案 B解析 当a >1时,函数单调递增,f (x )max =2f (x )min ,∴f (2)=2f (1),∴a 2=2a ,∴a =2;当0<a <1时,函数单调递减,f (x )max =2f (x )min ,∴f (1)=2f (2),∴a =2a 2,∴a =12, 综上所述,a =2或a =12. 5.函数y =a x -1a (a >0,且a ≠1)的图象可能是( )答案 D解析 当a >1时,y =a x -1a 为增函数,且在y 轴上的截距为0<1-1a<1,此时四个选项均不对;当0<a <1时,函数y =a x -1a 是减函数,且其图象可视为是由函数y =a x 的图象向下平移1a ⎝⎛⎭⎫1a >1个单位长度得到,选项D 适合.6.(2020·新高考全国Ⅰ)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A .1.2天B .1.8天C .2.5天D .3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38. 由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即20.38et =10.382e t , 所以210.38()e t t -=2,即0.38(t 2-t 1)=ln 2,所以t 2-t 1=ln 20.38≈0.690.38≈1.8.7.已知a >0,b >0,则12323651a a b b ab -⎛⎫⋅⋅⋅ ⎪⎝⎭=________. 答案 1 解析 12323651a a b b ab -⎛⎫⋅⋅⋅ ⎪⎝⎭ =211113322156()()a b a bab --⋅⋅⋅ =111133221566a b a ba b -⋅⋅⋅⋅=111115236326a b --+-⋅=1.8.已知函数f (x )=⎩⎪⎨⎪⎧-⎝⎛⎭⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________. 答案 [-3,0)解析 当0≤x ≤4时,f (x )∈[-8,1],当a ≤x <0时,f (x )∈⎣⎡⎭⎫-12a ,-1, 所以⎣⎡⎭⎫-12a ,-1[-8,1], 即-8≤-12a <-1,即-3≤a <0. 所以实数a 的取值范围是[-3,0).9.已知函数f (x )=b ·a x (其中a ,b 为常数,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)求f (x )的解析式;(2)若不等式⎝⎛⎭⎫1a x +⎝⎛⎭⎫1b x -m ≥0在(-∞,1]上恒成立,求实数m 的取值范围.解 (1)因为f (x )的图象过点A (1,6),B (3,24),所以⎩⎪⎨⎪⎧b ·a =6,b ·a 3=24.所以a 2=4, 又a >0,所以a =2,b =3.所以f (x )=3·2x .(2)由(1)知a =2,b =3,则当x ∈(-∞,1]时,⎝⎛⎭⎫12x +⎝⎛⎭⎫13x -m ≥0恒成立, 即m ≤⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上恒成立.又因为y =⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫13x 在(-∞,1]上均单调递减,所以y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上也单调递减,所以当x =1时,y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 有最小值56,所以m ≤56,即m 的取值范围是⎝⎛⎦⎤-∞,56. 10.已知定义域为R 的函数f (x )=a x -(k -1)a -x (a >0且a ≠1)是奇函数.(1)求实数k 的值;(2)若f (1)<0,判断函数f (x )的单调性,若f (m 2-2)+f (m )>0,求实数m 的取值范围. 解 (1)∵f (x )是定义域为R 的奇函数,∴f (0)=a 0-(k -1)a 0=1-(k -1)=0,∴k =2,经检验k =2符合题意,∴k =2.(2)f (x )=a x -a -x (a >0且a ≠1),∵f (1)<0,∴a -1a<0,又a >0,且a ≠1, ∴0<a <1,而y =a x 在R 上单调递减,y =a -x 在R 上单调递增,故由单调性的性质可判断f (x )=a x -a -x 在R 上单调递减,不等式f (m 2-2)+f (m )>0可化为f (m 2-2)>f (-m ),∴m 2-2<-m ,即m 2+m -2<0,解得-2<m <1,∴实数m 的取值范围是(-2,1).11.已知0<a <b <1,则( )A .1(1)b a ->(1-a )bB .(1-a )b >2(1)ba -C .(1+a )a >(1+b )bD .(1-a )a >(1-b )b答案 D解析 因为0<a <1,所以0<1-a <1,所以y =(1-a )x 是减函数,又0<b <1,所以1b >b ,b >b 2, 所以1(1)b a -<(1-a )b ,(1-a )b <2(1)b a -, 所以A ,B 均错误;又1<1+a <1+b ,所以(1+a )a <(1+b )a <(1+b )b ,所以C 错误;因为0<1-b <1-a <1,所以(1-a )a >(1-a )b >(1-b )b ,所以D 正确.12.(2022·南京模拟)若直线y =2a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a的取值范围是( )A.⎝⎛⎭⎫0,12∪(1,+∞)B.⎝⎛⎭⎫0,12C.⎝⎛⎭⎫12,1D .(1,+∞)答案 B解析 ①当a >1时,由图象得0<2a <1,∴0<a <12, ∵a >1,∴此种情况不存在;②当0<a <1时,由图象得0<2a <1,∴0<a <12, ∵0<a <1,∴0<a <12.13.(2022·西安模拟)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也称取整函数,例如:[-3.7]=-4,[2.3]=2.已知f (x )=e x -1e x +1-12,则函数y =[f (x )]的值域为( )A .{0}B .{-1,0}C .{-2,-1,0}D .{-1,0,1}答案 C解析 f (x )=e x -1e x +1-12=e x +1-2e x +1-12 =-2e x +1+12, ∵e x >0,∴e x +1>1,∴0<2e x +1<2, ∴-2<-2e x +1<0, ∴f (x )∈⎝⎛⎭⎫-32,12, ∴[f (x )]为-2或-1或0.14.如果函数y =a 2x +2a x -1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.答案 3或13解析 令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈⎣⎡⎦⎤1a ,a ,又函数y =(t +1)2-2在⎣⎡⎦⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈⎣⎡⎦⎤a ,1a , 又函数y =(t +1)2-2在⎣⎡⎦⎤a ,1a 上单调递增,则y max =⎝⎛⎭⎫1a +12-2=14,解得a =13(负值舍去). 综上知a =3或a =13.15.(2022·定远模拟)对于函数f (x ),若在定义域内存在实数x 0满足f (-x 0)=-f (x 0),则称函数f (x )为“倒戈函数”.设f (x )=3x +m -1(m ∈R ,m ≠0)是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是________.答案 ⎣⎡⎭⎫-23,0 解析 ∵f (x )=3x +m -1是定义在[-1,1]上的“倒戈函数”,∴存在x 0∈[-1,1]满足f (-x 0)=-f (x 0),∴03x -+m -1=03x --m +1,∴2m =0033x x ---+2,构造函数y =0033x x ---+2,x 0∈[-1,1],令t =03x ,t ∈⎣⎡⎦⎤13,3,y =-1t-t +2=2-⎝⎛⎭⎫t +1t 在⎣⎡⎦⎤13,1上单调递增, 在(1,3]上单调递减,∴t =1取得最大值0,t =13或t =3取得最小值-43,y ∈⎣⎡⎦⎤-43,0, ∴-43≤2m <0,∴-23≤m <0. 16.(2022·上海模拟)已知函数f (x )=2x +a ·2-x (a 为常数,a ∈R ).(1)讨论函数f (x )的奇偶性;(2)当f (x )为偶函数时,若方程f (2x )-k ·f (x )=3在x ∈[0,1]上有实根,求实数k 的取值范围.解 (1)∵函数f (x )=2x +a ·2-x 的定义域为x ∈R ,又∵f (-x )=2-x +a ·2x ,∴①当f (-x )=f (x ),即2-x +a ·2x =2x +a ·2-x 时,可得a =1,即当a =1时,函数f (x )为偶函数;②当f (-x )=-f (x ),即2-x +a ·2x =-(2x +a ·2-x )=-2x -a ·2-x 时,可得a =-1,即当a =-1时,函数f (x )为奇函数.(2)由(1)可得,当函数f (x )为偶函数时,a =1,即f (x )=2x +2-x ,f (2x )=22x +2-2x =(2x +2-x )2-2, 由题可得,(2x +2-x )2-2-k (2x +2-x )=3⇔(2x +2-x )2-k (2x +2-x )-5=0, 令t =2x +2-x ,则有t 2-kt -5=0,∵x ∈[0,1],∴2x ∈[1,2],根据对勾函数的性质可知,2x +2-x ∈⎣⎡⎦⎤2,52, 即t ∈⎣⎡⎦⎤2,52, 方程t 2-kt -5=0在t ∈⎣⎡⎦⎤2,52上有实数根, 则k =t 2-5t =t -5t, 令φ(t )=t -5t ,∴φ(t )在⎣⎡⎦⎤2,52上单调递增, 且φ(2)=-12,φ⎝⎛⎭⎫52=12, ∴-12≤k ≤12, ∴实数k 的取值范围是⎣⎡⎦⎤-12,12.。

专题2.2 函数的定义域、值域及函数的解析式(预测)-2014年高考数学(理)一轮复习精品资料(解析版)

专题2.2 函数的定义域、值域及函数的解析式(预测)-2014年高考数学(理)一轮复习精品资料(解析版)

名师预测1.函数y =(13)x 2的值域是( )A .(0,+∞)B .(0,1)C .(0,1]D .[1,+∞)2.函数f (x )=log 2(3x -1)的定义域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)3.函数y =x x -1-lg 1x 的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1或x <0}D .{x |0<x ≤1}4.下列函数中值域为正实数集的是( ) A .y =-5xB .y =(13)1-xC .y =12x-1D .y =1-2x5.已知函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[1,2],则a 的值为( ) A.22B .2 C. 2D.136.设f (x )=⎩⎪⎨⎪⎧x 2, |x |≥1,x , |x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)7.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧⎭⎬⎫x |52<x <58.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(-∞,0)∪⎝⎛⎦⎤12,2 B .(-∞,2] C.⎝⎛⎭⎫-∞,12∪[2,+∞)D .(0,+∞)9.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2,2] 10.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数f (x )=|log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值与最小值的差为________.11.函数y =16-x -x 2的定义域是________.12.函数f (x )=x +x x -2的定义域是________. 13.设函数f (x )=12(x +|x |),则函数f [f (x )]的值域为________.14.函数y =x +1+x -10lg 2-x 的定义域是________.15.函数y =x -x (x ≥0)的最大值为________.16.已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为____________,值域为__________.17.求下列函数的值域.(1)y =1-x 2x +5;(2)y =2x -1-13-4x .18.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.19.已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ). (1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.20.求下列函数的定义域: (1)y =25-x 2+lgcos x ; (2)y =log 2(-x 2+2x ).21.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl x的值域.22.已知函数f (x )=x 2+4ax +2a +6. (1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域.23.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.答案:B13.解析:先去绝对值,当x≥0时,f(x)=x,故f[f(x)]=f(x)=x,当x<0时,f(x)=0,故f[f(x)]=f(0)=0,即f [f (x )]=⎩⎨⎧xx ≥00x <0,易知其值域为[0,+∞).答案:[0,+∞)(2)法一:(换元法)设13-4x =t ,则t ≥0,x =13-t 24,于是y =g (t )=2·13-t 24-1-t ,=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数,又t ∈⎣⎡⎦⎤1,32时,t +4t 单调递减, F (t )单调递增,F (t )∈⎣⎡⎦⎤13,613.即函数f (x )的值域为⎣⎡⎦⎤13,613.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝⎛⎭⎫a +322+174⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,。

专题2.3 函数的定义域与值域重难点题型精讲-高中数学一轮复习【新高考地区专用】

专题2.3 函数的定义域与值域重难点题型精讲-高中数学一轮复习【新高考地区专用】

专题2.3 函数的定义域与值域-重难点题型精讲1.函数的三要素 (1)定义域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域. (2)值域与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (3)对应关系f :A →B .【题型1 求具体函数的定义域】【例1】(2021•浙江模拟)函数y =√−x 2+x +6+1x−1的定义域为( ) A .[﹣2,3]B .[﹣2,1)∪(1,3]C .(﹣∞,﹣2]∪[3,+∞)D .(﹣2,1)∪(1,3)【解题思路】根据二次根式的性质以及分母不为0,求出函数的定义域即可.【解答过程】解:由题意得:{−x 2+x +6≥0x −1≠0,解得:﹣2≤x <1且1<x ≤3, 故选:B .【变式1-1】(2021•天河区校级模拟)函数f (x )=√32x−1−1的定义域是( ) A .[1,+∞)B .[12,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)【解题思路】根据二次根式的性质求出函数的定义域即可. 【解答过程】解:由题意得:32x ﹣1﹣1≥0,故32x ﹣1≥1=30,故2x ﹣1≥0,解得:x ≥12,故函数f (x )的定义域是[12,+∞),故选:B .【变式1-2】(2020•新乡三模)函数f (x )=√−x 2+3x+4lnx的定义域是( )A .(0,1)∪(1,4]B .(0,4]C .(0,1)D .(0,1)∪[4,+∞)【解题思路】根据函数的解析式,列出使函数有意义的不等式组,求出解集即可. 【解答过程】解:函数f (x )=√−x 2+3x+4lnx中,令{−x 2+3x +4≥0x >0lnx ≠0,得{x 2−3x −4≤0x >0x ≠1,解得{−1≤x ≤4x >0x ≠1,即0<x ≤4且x ≠1;所以函数f (x )的定义域是(0,1)∪(1,4]. 故选:A .【变式1-3】(2020•荔湾区校级模拟)函数f (x )=lg 3−x x+1cosx的定义域为( )A .(0,3)B .{x |x <3且x ≠π2} C .(0,π2)∪(π2,3)D .{x |x <0或x >3}【解题思路】由对数式的真数大于0,分式的分母不为0联立不等式组求解.【解答过程】解:由{3−x x >0cosx ≠0,得{0<x <3x ≠π2+kπ,k ∈Z ,∴0<x <3且x ≠π2. ∴函数f (x )=lg 3−x x+1cosx的定义域为(0,π2)∪(π2,3).故选:C .【题型2 求抽象函数的定义域】【例2】(2021春•开封期末)已知函数f (2x ﹣1)的定义域为(﹣1,2),则函数f (2﹣3x )的定义域为 . 【解题思路】由题意先求出2x ﹣1的范围,可得2﹣3x 的范围,从而得出x 的范围,即为函数f (2﹣3x )的定义域.【解答过程】解:函数f (2x ﹣1)的定义域为(﹣1,2),故﹣3<2x ﹣1<3, ∴对于函数f (2﹣3x ),﹣3<2﹣3x <3,求得−13<x <53, 故对于函数f (2﹣3x ),它的定义域为(−13,53),故答案为:(−13,53),【变式2-1】(2020秋•蚌埠期末)已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x −12)的定义域是( ) A .[12,1]B .[12,2]C .[12,32]D .[1,32]【解题思路】由函数f (x )的定义域是[0,2]可得:要使函数g (x )=f (x +12)+f (x −12)的解析式有意义,则{x +12∈[0,2]x −12∈[0,2],解不等式可得答案. 【解答过程】解:∵函数f (x )的定义域是[0,2], 要使函数g (x )=f (x +12)+f (x −12)的解析式有意义, 则{x +12∈[0,2]x −12∈[0,2],解得:x ∈[12,32],故函数g (x )=f (x +12)+f (x −12)的定义域是[12,32],故选:C .【变式2-2】(2021•襄城区校级模拟)已知函数y =f (x 2+2x−1x 2+x−1)的定义域是[1,+∞),则函数y =f (x )的定义域是 .【解题思路】利用换元法,设t =x 2+2x−1x 2+x−1,x ∈[1,+∞),求出t 的值域即可.【解答过程】解:设t =x 2+2x−1x 2+x−1,x ∈[1,+∞),则t =1+xx 2+x−1=1+1x−1x+1, 再设g (x )=x −1x +1,x ∈[1,+∞),则g (x )是定义域上的单调增函数,且g (x )min =g (1)=1, 所以1g(x)∈(0,1],所以t ∈(1,2];所以函数y =f (x 2+2x−1x 2+x−1)的定义域是[1,+∞)时,函数y =f (x )的定义域是(1,2].故答案为:(1,2].【变式2-3】(2021•荆州区校级四模)定义域是一个函数的三要素之一,已知函数Jzzx (x )定义域为[211,985],则函数shuangyiliu (x )=Jzzx (2018x )+Jzzx (2021x )的定义域为( ) A .[2112018,9852021] B .[2112021,9852018] C .[2112018,9852018] D .[2112021,9852021] 【解题思路】由2018x ∈[211,985]且2021x ∈[211,985]可求得定义域.【解答过程】解:根据题意得{211≤2018x ≤985211≤2021x ≤985,解得:x ∈[2112018,9852021].故选:A .【题型3 已知函数定义域求参数】【例3】(2020春•兴庆区校级期末)若函数y =√的定义域为R ,则实数a 的取值范围是( )A .(0,12]B .(0,12)C .[0,12]D .[0,12)【解题思路】根据题意即可得出,不等式ax 2﹣4ax +2>0的解集为R ,然后可讨论a 是否为0:a =0时,显然满足题意;a ≠0时,可得出{a >0△=16a 2−8a <0,然后解出a 的范围即可.【解答过程】解:根据题意,ax 2﹣4ax +2>0的解集为R , ①a =0时,2>0恒成立,满足题意; ②a ≠0时,{a >0△=16a 2−8a <0,解得0<a <12,综上得,实数a 的取值范围是[0,12). 故选:D .【变式3-1】(2020秋•解放区校级月考)已知函数f (x )=5√a+1−x的定义域为M ,集合N ={x |x ≥9},若M ∩N =∅,则实数a 的取值范围是( ) A .(4,8]B .(﹣∞,8]C .(﹣∞,4]D .[8,+∞)【解题思路】根据条件可得出M ⊆{x |x <9},可求出f (x )的定义域为M ={x |x <a +1},从而得出a +1≤9,然后解出a 的范围即可.【解答过程】解:∵N ={x |x ≥9},M ∩N =∅, ∴M ⊆{x |x <9},∵M ={x |x <a +1},∴a +1≤9,解得a ≤8, ∴实数a 的取值范围是(﹣∞,8]. 故选:B .【变式3-2】(2020秋•宝山区校级期末)若函数f (x )=lg [(a 2﹣1)x 2+(a +1)x +1]的定义域为R ,则实数a 的取值范围是 .【解题思路】根据对数函数的定义域为R ,转化为不等式恒成立进行求解即可. 【解答过程】解:∵f (x )的定义域为R , ∴(a 2﹣1)x 2+(a +1)x +1>0恒成立, 当a 2﹣1=0,即a =1或a =﹣1,当a =1时,不等式等价为2x +1>0,此时x >−12,不恒成立,不满足条件. 当a =﹣1时,不等式等价为1>0,恒成立,满足条件. 当a ≠±1时,要使不等式恒成立,则{a 2−1>0△=(a +1)2−4(a 2−1)<0,即{a >1或a <−1(a +1)(−3a +5)<0,得{a >1或a <−1a >53或a <−1,即a >53或a <﹣1, 综上a >53或a ≤﹣1, 故答案为:a >53或a ≤﹣1.【变式3-3】(2020秋•太原期中)若函数f (x )=√|2x +1|−|x +1|−a 的定义域为R ,则实数a 的取值范围为 .【解题思路】由题意,|2x +1|﹣|x +1|≥a 恒成立,利用分段函数求得f (x )=|2x +1|﹣|x +1|的最小值,可得a 的范围.【解答过程】解:∵函数f (x )=√|2x +1|−|x +1|−a 的定义域为R ,∴|2x +1|﹣|x +1|≥a 恒成立. 令f (x )=|2x +1|﹣|x +1|={x ,x ≥−12−3x −2,−1≤x <−12−x ,x <−1,则f (x )取得最小值大于或等于a .根据f (x )的单调性,当x =−12时,f (x )取得最小值为−12, ∴a ≤−12,故答案为:(﹣∞,−12].【题型4 利用函数单调性求函数的值域】【例4】(2020秋•上高县校级期末)下列各函数中,值域为(0,+∞)的是( ) A .y =log 2(x 2+2x −3) B .y =√1−2x C .y =2﹣2x +1D .y =31x+1【解题思路】根据函数的性质分别求出函数的值域进行判断即可.【解答过程】解:x 2+2x ﹣3=(x +1)2﹣4≥﹣4,∴y =log 2(x 2+2x −3)的值域是R ,不满足条件. ∵0≤1﹣2x <1,则函数的值域为[0,1),不满足条件. y =2﹣2x +1>0,即函数的值域为(0,+∞),满足条件.y =31x+1∈(0,1)∪(1,+∞),不满足条件.故选:C .【变式4-1】(2021•3月份模拟)函数f (x )=√2−x +√x 2−6x +10的值域为 . 【解题思路】先求出函数的定义域和单调性,从而得到函数的值域.【解答过程】解:∵函数f (x )=√2−x +√x 2−6x +10,∴{2−x ≥0x 2−6x +10≥0,求得x ≤2,故函数的定义域为(﹣∞,2].且y =√2−x 和y =√x 2−6x +10在定义域内都是减函数,故f (x )在其定义域内是减函数, 故当x =2时,函数f (x )取得最小值为√2,当x 趋于﹣∞时,函数f (x )趋于无穷大, 故f (x )的值域为[√2,+∞), 故答案为:[√2,+∞).【变式4-2】(2021•松山区校级模拟)已知函数f (x )=log 3(x ﹣2)的定义域为A ,则函数g (x )=(12)2﹣x(x ∈A )的值域为( )A .(﹣∞,0)B .(﹣∞,1)C .[1,+∞)D .(1,+∞)【解题思路】根据对数函数的性质先求出f (x )的定义域,结合指数函数的单调性,求g (x )的值域即可.【解答过程】解:要使函数有意义,则x ﹣2>0得x >2,即函数f (x )的定义域为(2,+∞),即A =(2,+∞),g (x )=(12)2﹣x =14•2x ,为增函数,则g (x )>g (2)=14•22=1,即g (x )的值域为(1,+∞), 故选:D .【变式4-3】(2021•全国模拟)已知函数f (x )对任意x ∈R ,都有f(x)=−12f(x +2),当x ∈[0,2]时,f (x )=﹣x 2+2x ,则函数f (x )在[﹣2,6]上的值域为( ) A .[0,1]B .[−12,0]C .[﹣2,0]D .[﹣2,4]【解题思路】x ∈[0,2]时,f (x )=﹣x 2+2x ,则利用f(x)=−12f(x +2),将区间[﹣2,0],[2,4],[4,6]的自变量x 利用加减转化到区间[0,2]上,从而进行值域的求解.【解答过程】解:当x ∈[0,2]时,f (x )=x (2﹣x )=1﹣(x ﹣1)2∈[0,1], 则当x ∈[﹣2,0]时,即x +2∈[0,2],所以f(x)=−12f(x +2)∈[−12,0]; 当x ∈[2,4]时,即x ﹣2∈[0,2],由f(x)=−12f(x +2),得f (x +2)=﹣2f (x ),从而f (x )=﹣2f (x ﹣2)∈[﹣2,0]; 当x ∈[4,6]时,即x ﹣2∈[2,4],则f (x )=﹣2f (x ﹣2)∈[0,4]. 综上得函数f (x )在[﹣2,6]上的值域为[﹣2,4]. 故选:D .【题型5 利用换元法求函数的值域】【例5】(2020•重庆模拟)已知函数f (x )=2x ,则函数f (f (x ))的值域是( ) A .(0,+∞)B .(1,+∞)C .[1,+∞)D .R【解题思路】利用指数函数的性质容易求出值域.【解答过程】解:由指数函数的性质可知,函数f (x )=2x 的值域为(0,+∞), 令t =2x ,则t >0,∴f (f (x ))=f (t )=2t >20=1,即所求函数的值域为(1,+∞). 故选:B .【变式5-1】(2020秋•瑶海区校级期中)函数y =2x +√1−3x 的值域是( ) A .(﹣∞,23]B .[2524,+∞) C .[−∞,2524] D .[23,+∞)【解题思路】设t =√1−3x ,则x =1−t 23且t ≥0,然后代入后结合二次函数的性质可求. 【解答过程】解:设t =√1−3x ,则x =1−t 23且t ≥0,y =2x +√1−3x =2−2t 23+t =−23t 2+t +23开口向下,对称轴t =34,结合二次函数的性质可知,当t =34时函数取得最大值2524.故函数的值域(﹣∞,2524].故选:C .【变式5-2】(2020秋•道里区校级月考)函数f (x )=1x 2−2x+2的值域为()A .(0,1]B .(0,12]C .(0,1)D .(0,12)【解题思路】只需求解t =x 2﹣2x +2的范围,结合反比例函数的性质可得值域;【解答过程】解:设t =x 2﹣2x +2=(x ﹣1)2+1, 可得t ∈[1,+∞), 则y =1t ∈(0,1]. 即函数f (x )=1x 2−2x+2的值域为(0,1].故选:A .【变式5-3】(2021春•水富市校级月考)函数f (x )=x 2﹣1的定义域为[0,4],则函数y =f (x 2)+[f (x )]2的值域为( ) A .[−12,992]B .[−12,24]C .[−12,4]D .[−12,4−2√2]【解题思路】先根据f (x )的定义域求出y =f (x 2)+[f (x )]2的定义域,再换元利用二次函数的性质即可求出.【解答过程】解:∵f (x )=x 2﹣1的定义域为[0,4],∴y =f (x 2)+[f (x )]2中,{0≤x 2≤40≤x ≤4,解得0≤x ≤2,即y =f (x 2)+[f (x )]2的定义域为[0,2],令t =x 2,则t ∈[0,4],则y =f(x 2)+[f(x)]2=x 4−1+(x 2−1)2=2x 4−2x 2=2t 2−2t =2(t −12)2−12, ∴当t =12时,y min =−12;当t =4时,y max =24, ∴y =f (x 2)+[f (x )]2的值域为[−12,24]. 故选:B .【题型6 利用分离常数法求函数的值域】【例6】(2021•海淀区校级模拟)若函数f(x)=x−1x+1的定义域是[0,+∞),则f (x )的值域是 . 【解题思路】由已知利用分离常数,然后结合反比例函数的性质可求. 【解答过程】解:当x ≥0时,∈[﹣1,1). f (x )=x−1x+1=x+1−2x+1=1−2x+1∈[﹣1,1). 故答案为:[﹣1,1).【变式6-1】(2020秋•泉山区校级期中)函数y =2+x4−3x 的值域是( )A.(﹣∞,+∞)B.(﹣∞,−12)∪(12,+∞)C.(﹣∞,−13)∪(13,+∞)D.(﹣∞,−13)∪(−13,+∞)【解题思路】分离常数即可得出y=−13+103(4−3x),从而得出y≠−13,进而得出该函数的值域.【解答过程】解:y=2+x4−3x=−13(4−3x)+1034−3x=−13+103(4−3x),∴y≠−1 3,∴该函数的值域为(−∞,−13)∪(−13,+∞).故选:D.【变式6-2】(2020•武汉模拟)函数y=2lnx−1lnx+1的值域为()A.{y|0<y<2}B.{y|y>0且y≠2}C.{y|y≠2}D.{y|y>2}【解题思路】由已知利用分离法,结合反比例函数的性质即可求解.【解答过程】解:因为y=2lnx−1lnx+1=2(lnx+1)−3lnx+1=2−31+lnx≠2.故选:C.【变式6-3】(2020秋•成都期末)设x∈R,用[x]表示不超过x的最大整数,例如:[﹣3.2]=﹣4,[4.3]=4,已知函数f(x)=2×3x1+3x−32,则函数y=[f(x)]的值域是()A.{﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0}D.{﹣2,﹣1,0,1}【解题思路】由已知结合指数函数的性质先求出f(x)的值域,然后结合已知定义即可求解.【解答过程】解:∵f(x)=2×3x1+3x−32=4⋅3x−3−3⋅3x2(1+3x)=3x−32(3x+1)=12−23x+1,∵3x+1>1,∴0<21+3x<2,∴−32<12−21+3x<12,故y=[f(x)]的值域是{﹣2,﹣1,0}.故选:B.【题型7 已知函数的值域求参数】【例7】(2020•柯城区校级模拟)已知函数f(x)=√x 2+tx 2−1的值域为[0,+∞),则实数t 的取值范围是 .【解题思路】设y =x 2+t x 2−1,先分类求y =x 2+t x 2−1的值域A ,再根据[0,+∞)为A 的子集来求t 的取值范围.【解答过程】解:令y =x 2+tx 2−1, ①当t <0时,y =x 2+t x2−1,设m =x 2>0,则y =m +tm −1在(0,+∞)上单调递增, ∴y 的值域为R ,∵[0,+∞)⊆R ,∴t <0符合题意; ②当t =0时,y =x 2+tx2−1=x 2﹣1≥﹣1, ∵[0,+∞)⊆[﹣1,+∞),∴t =0符合题意; ③当t >0时,y =x 2+t x 2−1≥2√x 2⋅t x2−1=2√t −1,当且仅当|x |=√t 4时,等号成立, ∵[0,+∞)⊆[2√t −1,+∞), ∴2√t −1≤0,解得0<t ≤14,综上所述,实数t 的取值范围是(﹣∞,14].故答案为:(﹣∞,14].【变式7-1】(2020•青秀区校级模拟)已知函数f (x )=lg (3x +43x +m )的值域是全体实数R ,则实数m 的取值范围是( ) A .(﹣4,+∞)B .[﹣4,+∞)C .(﹣∞,﹣4)D .(﹣∞,﹣4]【解题思路】由题意可知3x +43x +m 能取遍所有正实数,结合基本不等式可求. 【解答过程】解:由题意可知3x +43x +m 能取遍所有正实数, 因为3x +43x +m ≥m +4, 则m +4≤0,即m ≤﹣4. 故选:D .【变式7-2】(2020•一模拟)已知函数f (x )=lnx −12ax 2+(a ﹣1)x +a (a >0)的值域与函数f (f (x ))的值域相同,则a 的取值范围为( ) A .(0,1]B .(1,+∞)C .(0,43]D .[43,+∞)【解题思路】求出f (x )的单调区间和值域,从而得出f (x )的最大值与单调区间端点的关系,从而得出a 的范围【解答过程】解:函数f (x )=lnx −12ax 2+(a ﹣1)x +a (a >0),其定义域满足:x >0. 则f ′(x )=1x −ax +(a ﹣1)(a >0) 令f ′(x )=0,可得x =−1a(舍去),x =1.当x ∈(0,1)时,f ′(x )>0,f (x )在区间(0,1)递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )在区间(1,+∞)递减; ∴当x =1时,f (x )取得最大值为32a −1;f (x ))的值域为(﹣∞,32a −1],∴函数f (f (x ))的值域为(﹣∞,32a −1],则32a −1≥1;解得:a ≥43.则a 的取值范围为[43,+∞);故选:D .【变式7-3】(2020•南岗区校级四模)已知函数f(x)={(1−a)x +a ,x >0ln(x +2),−2<x ≤0的值域为R ,则实数a 的取值范围是( ) A .a <ln 2B .a ≤ln 2C .a >0D .ln 2<a <1【解题思路】由已知求出﹣2<x ≤0时函数的值域,把函数f (x )的值域为R 转化为当x >0时,f (x )=(1﹣a )x +a 的值域包含(ln 2,+∞),由此列关于a 的不等式组求解. 【解答过程】解:当﹣2<x ≤0时,0<x +2≤2,f (x )=ln (x +2)∈(﹣∞,ln 2]; 要使函数f(x)={(1−a)x +a ,x >0ln(x +2),−2<x ≤0的值域为R ,则当x >0时,f (x )=(1﹣a )x +a 的值域包含(ln 2,+∞).则需{1−a >0a ≤ln2,即a ≤ln 2.∴实数a 的取值范围是a ≤ln 2. 故选:B .【题型8 函数的定义域与值域综合】【例8】[多选题](2021•锡山区校级三模)一般地,若函数f (x )的定义域为[a ,b ],值域为[ka ,kb ],则称为的“k 倍跟随区间”;若函数的定义域为[a ,b ],值域也为[a ,b ],则称[a ,b ]为f (x )的“跟随区间”.下列结论正确的是( )A .若[1,b ]为f (x )=x 2﹣2x +2的跟随区间,则b =2B .函数f (x )=1+1x 存在跟随区间C .若函数f (x )=m −√x +1存在跟随区间,则m ∈(−14,0]D .二次函数f (x )=−12x 2+x 存在“3倍跟随区间”【解题思路】(1)易由已知可得函数在区间上单调递增,进而可以求解b 的值,(2)假设存在跟随区间,则根据跟随区间的条件求解a ,b 的值,若有解则存在,反之不存在,(3)先设跟随区间为[a ,b ],则根据跟随区间满足的条件建立方程组,找出a ,b 的关系,然后统一变量表示出m ,列出关于m 的关系式,利用方程思想求解m 的取值范围,(4)若存在3倍跟随区间,则设定义域为[a ,b ],值域为[3a ,3b ],由此建立方程组,再 等价转化为一个方程有两个不相等的实数根,进而可以求解.【解答过程】解:选项A :由已知可得函数f (x )在区间[1,b ]上单调递增,则有f (b )=b 2﹣2b +2=b ,解得b =2或1(舍),所以b =2,A 正确;选项B :若存在跟随区间[a ,b ](a <b ),又因为函数在单调区间上递减,则有{f(a)=bf(b)=a ,解得a =b =1,显然不成立,B 错误;选项C :由已知函数可得:函数在定义域上单调递减,若存在跟随区间[a ,b ](﹣1≤a <b ), 则有{f(a)=b f(b)=a ,即{b =m −√a +1a =m −√b +1,两式做差得:a ﹣b =√a +1−√b +1,即(a ﹣b )(√a +1+√b +1)=a +1﹣(b +1)=a ﹣b ,又﹣1≤a <b ,所以√a +1+√b +1=1,易得0≤√a +1<√b +1≤1, 所以m =a +√b +1=a +1−√a +1,设√a +1=t ∈(0,12),则m =t 2﹣t ,即t 2﹣t ﹣m =0在区间(0,12)上有两个不相等的实数根,只需:{△=1+4m >0−m ≥0,解得−14<m ≤0,C 正确;选项D :若函数存在3倍跟随区间,设定义域为[a ,b ],值域为[3a ,3b ], 当a <b ≤1时,易得函数在定义域上单调递增,则a ,b 是方程−12x 2+x =3x 的两个不相等的实数根,解得x =0或﹣4, 故存在定义域为[﹣4,0]使得值域为[﹣12,0],D 正确, 故选:ACD .【变式8-1】(2021春•越秀区校级期中)一般地,若f (x )的定义域为[a ,b ],值域为[λa ,λb ],则称[a ,b ]为f (x )的“λ倍跟随区间”;特别地,若f (x )的定义域为[a ,b ],值域也为[a ,b ],则称[a ,b ]为f (x )的“跟随区间”.(1)若[1,b ]为f (x )=x 2﹣2x +2的跟随区间,则b = .(2)若函数f (x )=m −√x +1存在跟随区间,则m 的取值范围是 . 【解题思路】(1)结合f (x )=x 2﹣2x +2图象和跟随区间定义可解此问题;(2)根据跟随区间定义与函数f (x )=m −√x +1是在[﹣1,+∞)上是减函数可解此问题.【解答过程】解:(1)∵[1,b ]为f (x )=x 2﹣2x +2的跟随区间,∴函数值域为[1,b ].∵二次函数f (x )=x 2﹣2x +2的对称轴方程为:x =1,∴函数f (x )在[1,b ]上单调递增.∴{f(b)=b 2−2b +2=bb >1f(1)=12−2×1+2=1,解得:b =2,故b 的值为2;(2)设跟随区间为:[a ,b ].∵函数f (x )=m −√x +1的定义域为:[﹣1,+∞),∴﹣1≤a <b . ∵函数f (x )=m −√x +1是定义域上的减函数且定义域、值域都是[a ,b ], ∴{f(b)=m −√b +1=af(a)=m −√a +1=b,∴√b +1−√a +1=b −a ,∴√b +1−√a +1=b −a ==(b +1)﹣(a +1)=(√b +1−√a +1)(√b +1+√a +1),又∵√b +1>√a +1, ∴√b +1+√a +1=1,∴√b +1=1−√a +1,代入m −√b +1=a 得:m =a +1−√a +1,同理:m =b +1−√b +1,∴可令m =t 2﹣t (0≤t ≤1),∴方程m =t 2﹣t 在0≤t ≤1范围内有两个不等实根,∴函数y =m 与函数y =t 2﹣t (0≤t ≤1)有两个交点,又∵函数y =t 2﹣t (0≤t ≤1)的值域[−14,0], ∴由二者图象可知:m ∈(−14,0].故答案为:(−14,0],【变式8-2】(2021春•宝山区校级期末)设函数y =f (x )的定义域为D ,对于非空集合Y ⊆R ,称集合{x |f (x )∈Y ,x ∈D }为集合Y 的原像集,记作f ﹣1(Y ),设f (x )=2sin (ωx +2π3),x ∈[0,π],其中ω为实常数,且ω>0,若函数y =f (x )在集合f ﹣1([0,2])的值域恰为闭区间[0,2],则ω的取值范围是 .【解题思路】由所给的信息可得函数f (x )的值域,由函数f (x )的定义域,求出ωx +23π的范围,进而求出ω的范围.【解答过程】解:因为x ∈[0,π],所以ωx +23π∈[23π,ωπ+23π],令t =ωx +23π∈[23π,ωπ+23π],所以y =2sin t ,t ∈[23π,ωπ+23π],因为f ﹣1([0,2])的值域恰为闭区间[0,2],所以f ﹣1([0,2])={x |f (x )∈[0,2],x ∈R },所以2sin t ∈[0,2],因为t =ωπ+23π≥2π+π2,所以可得ω≥116, 故答案为:[116,+∞).【变式8-3】(2021•青羊区校级模拟)函数f (x )的定义域为D ,若满足: (1)f (x )在D 内是单调函数;(2)存在[m 2,n 2]⊆D ,使得f (x )在[m 2,n 2]上的值域为[m ,n ],那么就称函数f (x )为“梦想函数”. 若函数f(x)=log a (a x +t)(a >0,a ≠1)是“梦想函数”,则t 的取值范围是 .【解题思路】根据复合函数单调性的关系先判断函数f (x )是单调递增函数,然后根据值域关系建立方程,然后转化为方程根的个数问题即可.【解答过程】解:(1)设u (x )=a x +t ,则y =log a u ,当a >1时,u (x )=a x +t 为增函数,y =log a u 也是增函数,则y =log a (a x +t )为增函数, 当0<a <1时,u (x )=a x +t 为减函数,y =log a u 也是减函数,则y =log a (a x +t )为增函数, 综上可得:y =log a (a x +t )为增函数,即f (x )在D 内是单调函数. (2)∵f (x )是单调递增函数,∴若f (x )=log a (a x +t )为“梦想函数”, 则有{f(m2)=log a (a m2+t)=m f(n2)=log a (a n 2+t)=n,即方程a x 2+t =a x 有两个不同的正数解,即可得(a x2)2﹣ax2−t=0有两个不同的正数解,则有{△=1+4t>0x1+x2=1>0x1x2=−t>0,即{t>−14t<0,可得−14<t<0,即t的取值范围为(−14,0),故答案为:(−14,0).。

江苏省2014届一轮复习数学试题选编2:函数的定义域、值域、解析式及图像(教师版)

江苏省2014届一轮复习数学试题选编2:函数的定义域、值域、解析式及图像(教师版)

江苏省2014届一轮复习数学试题选编2:函数的定义域、值域、解析式及图像填空题错误!未指定书签。

.(2011年高考(江苏卷))已知实数0≠a ,函数2(1)()2(1)x a x f x x a x +<⎧=⎨--≥⎩,若)1()1(a f a f +=-,则a 的值为________【答案】【命题立意】本题考查了分段函数,主要考查了学生分类讨论的数学思想.43-【解析】当0a >时,2(1)(1)2a a a -=-+-,解之,3a =-(舍);当0a <时,2(1)(1)2a a a a ++=---,解之34a =-. 错误!未指定书签。

.(苏州市第一中学2013届高三“三模”数学试卷及解答)已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实数a 的取值范围是________.【答案】 2a <错误!未指定书签。

.(江苏省泰兴市2013届高三上学期期中调研考试数学试题)函数21sin π,10;(),0x x x f x e x -⎧-<<=⎨⎩≥,满足(1)()2f f a +=,则a = ________. 【答案】a =2-1或.错误!未指定书签。

.(江苏省苏南四校2013届高三12月月考试数学试题)函数)(log 1321-=x y 的定义域为_____________【答案】12(,]33错误!未指定书签。

.(江苏省南京市四区县2013届高三12月联考数学试题 )函数)2lg()(x x f -=的定义域为________________.【答案】(]1,∞-错误!未指定书签。

.(江苏省姜堰市2012—2013学年度第一学期高三数学期中调研(附答案) )定义在R 上的函数f (x )满足⎩⎨⎧>---≤-=0),2()1(0),1(log )(2x x f x f x x x f ,则f (5)=_____. 【答案】1;错误!未指定书签。

高考数学 第二章 函数与基本初等函数 2.2 函数的定义域与值域 理

高考数学 第二章 函数与基本初等函数 2.2 函数的定义域与值域 理
第42页
高考调研 ·高三总复习 ·数学 (理)
(4)方法一:单调性法 定义域为{x|x≤12},函数 y=x,y=- 1-2x均在(-∞,12] 上递增,故 y≤12- 1-2×12=12.
第43页
高考调研 ·高三总复习 ·数学 (理)
方法二:换元法 令 1-2x=t,则 t≥0,且 x=1-2 t2. ∴y=-12(t+1)2+1≤12(t≥0). ∴y∈(-∞,12]. ∴函数值域为(-∞,12].
第25页
高考调研 ·高三总复习 ·数学 (理)
思考题 1 (1)(2014·山东理)函数 f(x)= (log21x)2-1的 定义域为( )
A.0,12 C.0,12∪(2,+∞)
B.(2,+∞) D.0,12∪[2,+∞)
第26页
高考调研 ·高三总复习 ·数学 (理)
【解析】 (log2x)2-1>0,即 log2x>1 或 log2x<-1,解得 x>2 或 0<x<12,故所求的定义域是0,12∪(2,+∞).
第29页
高考调研 ·高三总复习 ·数学 (理)
例 2 (1)若函数 f(x)的定义域为[0,1],求 f(2x-1)的定义域. (2)若函数 f(2x-1)的定义域为[0,1],求 f(x)的定义域.
第30页
高考调研 ·高三总复习 ·数学 (理)
【解析】 (1)由 0≤2x-1≤1,得12≤x≤1,∴函数 f(2x-1) 的定义域为[12,1].
第18页
高考调研 ·高三总复习 ·数学 (理)
授人以渔
第19页
高考调研 ·高三总复习 ·数学 (理)
题型一 函数的定义域 例 1 (1)函数 y= log0.5(1 x-1)的定义域为________. 【解析】 由 log0.5(x-1)>0,得 0<x-1<1,∴1<x<2,∴定义 域为(1,2). 【答案】 (1,2)

高考数学一轮复习考点知识专题讲解4---函数的概念及其表示

高考数学一轮复习考点知识专题讲解4---函数的概念及其表示

高考数学一轮复习考点知识专题讲解函数的概念及其表示考点要求1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y=f(x),x∈A.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集. 3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×) (2)函数y =f (x )的图象可以是一条封闭曲线.(×) (3)y =x 0与y =1是同一个函数.(×) (4)函数f (x )=⎩⎨⎧x -1,x ≥0,x 2,x <0的定义域为R .(√)教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是()答案C2.下列各组函数相等的是()A .f (x )=x 2-2x -1(x ∈R ),g (s )=s 2-2s -1(s ∈Z )B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案C3.(2022·长沙质检)已知函数f (x )=⎩⎨⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12等于() A .-1B .2C.3D.12答案D解析∵f ⎝ ⎛⎭⎪⎫12=log 312<0,∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域 例1(1)函数f (x )=lg(x -1)+1x -2的定义域为() A .(1,+∞) B .(1,2)∪(2,+∞) C .[1,2)∪(2,+∞) D .[1,+∞) 答案B解析要使函数有意义,则⎩⎨⎧x -1>0,x -2≠0,解得x >1且x ≠2,所以f (x )的定义域为(1,2)∪(2,+∞).(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案[1,3]解析∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是() A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案B解析由题意,得⎩⎨⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞). 2.已知函数f (x )=x 1-2x,则函数f (x -1)x +1的定义域为() A .(-∞,1) B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案D解析令1-2x >0, 即2x <1,即x <0.∴f (x )的定义域为(-∞,0). ∴函数f (x -1)x +1中,有⎩⎨⎧x -1<0,x +1≠0,解得x <1且x ≠-1. 故函数f (x -1)x +1的定义域为(-∞,-1)∪(-1,1). 思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1(1)函数f (x )=11-4x2+ln(3x -1)的定义域为() A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12 C.⎣⎢⎡⎭⎪⎫-12,14D.⎣⎢⎡⎦⎥⎤-12,12 答案B解析要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎨⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12.(2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________. 答案[-1,0]解析由条件可知,函数的定义域需满足⎩⎨⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2(1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为______.答案f (x )=lg 2x -1(x >1)解析令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________.答案x 2+2x +1解析设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b , ∴2ax +b =2x +2, 则a =1,b =2. ∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1. 教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案-2x 3-43x解析∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x ,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x. 思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2(1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案-x 2+2x ,x ∈[0,2] 解析令t =1-sin x , ∴t ∈[0,2],sin x =1-t , ∴f (t )=1-sin 2x =1-(1-t )2 =-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝ ⎛⎭⎪⎫x 2+1x 2=x 4+1x 4,则f (x )=__________.答案x 2-2,x ∈[2,+∞) 解析∵f ⎝ ⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3(1)已知f (x )=⎩⎨⎧cosπx ,x ≤1,f (x -1)+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值为()A.12B .-12C .-1D .1 答案D解析f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3 =cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知函数f (x )=⎩⎨⎧log 2x ,x ≥1,-x +1,x <1.若f (a )=2,则a 的值为________; 若f (a )<2,则a 的取值范围是________. 答案4或-1(-1,4) 解析若f (a )=2,则⎩⎨⎧a ≥1,log 2a =2或⎩⎨⎧a <1,-a +1=2,解得a =4或a =-1, 若f (a )<2,则⎩⎨⎧a ≥1,log 2a <2或⎩⎨⎧a <1,-a +1<2,解得1≤a <4或-1<a <1,即-1<a <4. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于()A .-32B.22C.32D. 2 答案B解析f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22.2.(2022·百校联盟联考)已知函数f (x )=⎩⎨⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案0解析当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)(2022·河北冀州一中模拟)设f (x )=⎩⎨⎧x +2x -3,x ≥1,x 2+1,x <1.则f (f (-1))=_______,f (x )的最小值是_______. 答案022-3 解析∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3. (2)(2022·重庆质检)已知函数f (x )=⎩⎨⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________. 答案⎝ ⎛⎭⎪⎫-12,+∞ 解析当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立. 综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是() A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3] 答案D解析∵f (x )=3-xlg x,∴⎩⎨⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()答案B解析A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2].3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎨⎧4x -12,x <1,a x,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于() A.12B.34C .1D .2 答案D解析f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫78=f (3)=a 3, 得a 3=8,解得a =2.4.下列函数中,与y =x 是相等函数的是() A .y =(x )2B .y =x 2 C .y =lg10x D .y =10lg x 答案C解析y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =(x )2=x 的定义域为[0,+∞),故不是相等函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是相等函数; 对于C 选项,函数y =lg10x =x ,且定义域为R ,故是相等函数;对于D 选项,y =10lg x =x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是相等函数.5.设函数f (x -2)=x 2+2x -2,则f (x )的表达式为() A .x 2-2x -2B .x 2-6x +6 C .x 2+6x -2D .x 2+6x +6 答案D解析令t =x -2,∴x =t +2,∴f (t )=(t +2)2+2(t +2)-2=t 2+6t +6, ∴f (x )=x 2+6x +6.6.函数f (x )=⎩⎨⎧2x-5,x ≤2,3sin x ,x >2,则f (x )的值域为()A .[-3,-1]B .(-∞,3]C .(-5,3]D .(-5,1] 答案C解析当x ≤2时,f (x )=2x -5, ∴0<2x ≤4,∴f (x )∈(-5,-1], 当x >2时,f (x )=3sin x , ∴f (x )∈[-3,3], ∴f (x )的值域为(-5,3].7.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是()答案A解析由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.8.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是() ①f (x )=x -1x ;②f (x )=ln 1-x1+x;③f (x )=1ex x-;④f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.A .②③B.①②④ C .②③④D.①④ 答案D解析对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意; 对于②,f (x )=ln1-x1+x, 则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =111exx-=e x -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于④,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足“倒负”变换.9.已知f (x 5)=lg x ,则f (100)=________. 答案25解析令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案(1,4]解析依题意⎩⎨⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.已知函数f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是________. 答案⎣⎢⎡⎭⎪⎫-1,12解析∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0). 故⎩⎨⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎨⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案[-2,0)∪(0,1] 解析当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.(2018·全国Ⅰ)设函数f (x )=⎩⎨⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是()A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案D解析当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎨⎧x +1<0,2x <0,2x <x +1或⎩⎨⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0. 14.设函数f (x )=⎩⎨⎧-x +λ,x <1(λ∈R ),2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案[2,+∞) 解析当a ≥1时,2a ≥2.∴f (f (a ))=f (2a )=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a , ∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.已知函数f (x +1)的定义域为(-2,0),则f (2x -1)的定义域为() A .(-1,0) B .(-2,0) C .(0,1) D.⎝ ⎛⎭⎪⎫-12,0答案C解析由题意,知-1<x +1<1,则f (x )的定义域为(-1,1).令-1<2x -1<1,得0<x <1.∴f (2x -1)的定义域为(0,1).16.若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中不具有H 性质的是() A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0)D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2答案B解析若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝ ⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝ ⎛⎭⎪⎫其中a =f ⎝ ⎛⎭⎪⎫x 1+x 22,b =f (x 1)+f (x 2)2.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.。

2021版新高考数学一轮复习讲义:第二章第二讲 函数的定义域、值域 (含解析)

2021版新高考数学一轮复习讲义:第二章第二讲 函数的定义域、值域 (含解析)

第二讲 函数的定义域、值域ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测知识梳理知识点一 函数的定义域 函数y =f (x )的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R . (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f (x )=x 0的定义域为{x |x ≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域: 1.y =kx +b (k ≠0)的值域是R . 2.y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a};当a <0时,值域为{y |y ≤4ac -b 24a}.3.y =kx(k ≠0)的值域是{y |y ≠0}.4.y =a x (a >0且a ≠1)的值域是(0,+∞).5.y =log a x (a >0且a ≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集. 3.函数f (x )与f (x +a )(a 为常数a ≠0)的值域相同.双基自测题组一 走出误区1.(多选题)下列结论正确的是( CD )A .若两个函数的定义域与值域相同,则这两个函数相等B .函数y =xx -1定义域为x >1 C .函数y =f (x )定义域为[-1,2],则y =f (x )+f (-x )定义域为[-1,1] D .函数y =log 2(x 2+x +a )的值域为R ,则a 的取值范围为(-∞,14]题组二 走进教材2.(必修1P 17例1改编)函数f (x )=2x -1+1x -2的定义域为( C ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x -1≥0x -2≠0,解得x ≥0且x ≠2,故选C .3.(必修1P 32T5改编)函数f (x )的图象如图,则其最大值、最小值分别为( B )A .f (32),f (-32)B .f (0),f (32)C .f (-32),f (0)D .f (0),f (3)4.(必修1P 39BT1改编)已知函数f (x )=x +9x ,x ∈[2,4]的值域为[6,132].[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为[6,132]. 题组三 考题再现5.(2018·江苏,5分)函数f (x )=log 2x -1的定义域为[2,+∞).[解析] 要使函数f (x )有意义,则log 2x -1≥0,即x ≥2.则函数f (x )的定义域是[2,+∞). 6.(2016·北京,5分)函数f (x )=xx -1(x ≥2)的最大值为2. [解析] 解法一:(分离常数法)f (x )=x x -1=x -1+1x -1=1+1x -1,∴x ≥2,∴x -1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f (x )=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy -y =x ,∴x =y y -1.∵x ≥2,∴y y -1≥2,∴y y -1-2=2-y y -1≥0,解得1<y ≤2,故函数f (x )的最大值为2.解法三:(导数法)∵f (x )=xx -1,∴f ′(x )=x -1-x (x -1)2=-1(x -1)2<0,∴函数f (x )在[2,+∞)上单调递减,故当x =2时,函数f (x )=xx -1取得最大值2.KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点一 求函数的定义域——多维探究角度1 求具体函数的定义域例1 (1)(2015·湖北,5分)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( C )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6](2)(2020·衡中调研卷)函数y =1log 0.5(x -2)+(2x -5)0的定义域为(2,52)∪(52,3).[解析] (1)依题意知,⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧-4≤x ≤4,x >2且x ≠3.即函数的定义域为(2,3)∪(3,4]. (2)使函数有意义满足⎩⎪⎨⎪⎧log 0.5(x -2)>02x -5≠0,解得2<x <3且x ≠52,定义域为(2,52)∪(52,3).角度2 求抽象函数的定义域例2 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( B ) A .(-1,1) B .(-1,-12)C .(-1,0)D .(12,1)[分析] 求抽象函数定义域的关键,f 后面括号内部分取值范围相同.[解析] 由函数f (x )的定义域为(-1,0),则使函数f (2x +1)有意义,需满足-1<2x +1<0,解得-1<x <-12,即所求函数的定义域为(-1,-12).[引申1]若将本例中f (x )与f (2x +1)互换,结果如何?[解析] f (2x +1)的定义域为(-1,0),即-1<x <0,∴-1<2x +1<1,∴f (x )的定义域为(-1,1). [引申2]若将本例中f (x )改为f (2x -1)定义域改为[0,1],求y =f (2x +1)的定义域,又该怎么办?[解析] ∵y =f (2x -1)定义域为[0,1].∴-1≤2x -1≤1,要使y =f (2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x ≤0, 因此y =f (2x +1)定义域为[-1,0].名师点拨 ☞函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 〔变式训练1〕(1)(角度1)(2020·安徽宣城八校联考)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3](2)(角度1)(2020·安徽芜湖检测)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( D )A .-2B .-1C .1D .2(3)(角度2)(2020·广东华南师大附中月考)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( B )A .[0,1]B .(0,1)C .[0,1)D .(0,1][解析] (1)由已知得⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得x ∈(-1,0)∪(0,3].故选B .(2)因为-2x +a >0,所以x <a 2,所以a2=1,得a =2.故选D .(3)由题意,函数f (x )的定义域为[-1,1],即-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1.又g (x )满足1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .考点二 求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x |1+|x |;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】专题2.2 函数定义域、值域【考纲解读】内 容要 求备注A B C函数概念与基本初等函数Ⅰ函数的基本性质√1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.了解简单的分段函数,并能简单应用.【直击考点】题组一 常识题1.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是________.A .y =xB .y =lg xC .y =2xD .y =1x【答案】D 【解析】y =10lg x=x ,定义域与值域均为(0,+∞),只有选项D 满足题意.2.已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤0,52 【解析】 由x ∈[-2,3],得x +1∈[-1,4],由2x -1∈[-1,4],得x ∈⎣⎢⎡⎦⎥⎤0,52 3.[教材改编] 函数f (x )=8-xx +3的定义域是________. 【答案】(-∞,-3)∪(-3,8]【解析】要使函数有意义,则需8-x ≥0且x +3≠0,即x ≤8且x ≠-3,所以其定义域是(-∞,-3)∪(-3,8]. 题组二 常错题4.函数y =f (cos x )的定义域为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+2π3(k ∈Z ),则函数y =f (x )的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤-12,1 【解析】 由于函数y =f (cos x )的定义域是⎣⎢⎡⎦⎥⎤2k π-π6,2k π+2π3(k ∈Z ),所以u =cos x 的值域是⎣⎢⎡⎦⎥⎤-12,1,所以函数y =f (x )的定义域是⎣⎢⎡⎦⎥⎤-12,1.5.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ∈[0,1],92-32x ,x ∈(1,3],当t ∈[0,1]时,f [f (t )]∈[0,1],则实数t 的取值范围是______________. 【答案】⎣⎢⎡⎦⎥⎤log 373,1【解析】 因为t ∈[0,1],所以f (t )=3t ∈[1,3],所以f [f (t )]=f (3t)=92-32·3t ∈[0,1],即73≤3t≤3,所以log 373≤t ≤1.6.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.【答案】⎣⎢⎡⎭⎪⎫0,34. 【解析】函数的定义域为R ,即mx 2+4mx +3≠0恒成立.①当m =0时,符合题意;②当m ≠0时,Δ=(4m )2-4×m ×3<0,即m (4m -3)<0,解得0<m <34.综上所述,实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34. 题组三 常考题7.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y =x 2,值域为{1,4}的“同族函数”共有________个. 【答案】98. 函数f (x )=lg(x 2+x -6)的定义域是________. 【答案】{x |x <-3或x >2}【解析】 要使函数有意义,则需x 2+x -6>0,解得x <-3或x >2.9.设函数f (x )在区间[0,1]上有意义,若存在x ∈R 使函数f (x -a )+f (x +a )有意义,则a 的取值范围为________. 【答案】 [-2,-1].【知识清单】1 函数的定义域1.已知函数解析式,求定义域,其主要依据是使函数的解析式有意义,主要形式有:(1)分式函数,分母不为0;(2)偶次根式函数,被开方数非负数; (3)一次函数、二次函数的这定义域为R ; (4)0x 中的底数不等于0; (5)指数函数xy a =的定义域为R ;(6)对数函数log a y x =的定义域为{}|0x x >; (7)sin ,cos y x y x ==的定义域均为R ;(8)tan y x =的定义域均为|,2x x k k z ππ⎧⎫≠+∈⎨⎬⎩⎭; 2.求抽象函数的定义域:(1)由()y f x =的定义域为D ,求[()]y f g x =的定义域,须解()f x D ∈; (2)由[()]y f g x =的定义域D ,求()y f x =的定义域,只须解()g x 在D 上的值域就是函数()y f x = 的定义域;(3)由[()]y f g x =的定义域D ,求[()]y f h x =的定义域.3.实际问题中的函数的定义域,除了使解析式本身有意义,还要使实际问题有意义. 2 函数的值域 函数值域的求法:(1)利用函数的单调性:若y=f(x)是 [a,b]上的单调增(减)函数,则f(a),f(b)分别是f(x)在区间[a,b]上取得最小(大)值,最大(小)值.(2)利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围. (3)利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-.(4)利用“分离常数”法:形如y=ax bcx d++ 或2ax bx e y cx d ++=+ (a,c 至少有一个不为零)的函数,求其值域可用此法.(5)利用换元法:形如y ax b cx d =+±+型,可用此法求其值域. (6)利用基本不等式:(7)导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域【考点深度剖析】定义域是函数的灵魂,高考中考查的定义域多以填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,难度中等.【重点难点突破】考点1 函数的定义域 【1-1】函数y =x x(+)-的定义域为_________.【答案】(-∞,-1)∪(-1,0).【1-2】函数22-25+1+)cos (=x x log y 的定义域为_________.【答案】33x x ππ⎧⎫-≤≤⎨⎬⎩⎭【解析】由已知条件,自变量x 需满足22log cos 10250x x +≥⎧⎨-≥⎩ 得1cos 22,23355x k x k k Z x ππππ⎧≥⇒-+≤≤+∈⎪⎨⎪-≤≤⎩ 所以33x ππ-≤≤故而所求函数定义域为33x x ππ⎧⎫-≤≤⎨⎬⎩⎭.【1-3】设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为________.【答案】()()2,11,2 --【解析】由202x x +>-得,()f x 的定义域为{}|22x x -<<.故22,222 2.xx⎧-<<⎪⎪⎨⎪-<<⎪⎩,解得()()4,11,4x ∈--.故⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为()()2,11,2 -- 【1-4】若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 【答案】[-1,0]【思想方法】(1)已知具体函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.【温馨提醒】对于含有字母参数的函数定义域,应注意对参数取值的讨论;对于实际问题的定义域一定要使实际问题有意义;而分段函数的定义域是各段区间的并集、各个段上的定义域交集为空集,即各个段的端点处不能重复. 考点2 函数的值域【2-1】求函数y =x +4x(x <0)的值域.【答案】(-∞,-4].【解析】∵x <0,∴x +4x=-⎝ ⎛⎭⎪⎫-x -4x ≤-4,当且仅当x =-2时等号成立.∴y ∈(-∞,-4]. ∴函数的值域为(-∞,-4].【2-2】 求函数y =x 2+2x (x ∈[0,3])的值域. 【答案】[0,15]. 【解析】(配方法)y =x 2+2x =(x +1)2-1,∵y =(x +1)2-1在[0,3]上为增函数, ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. 【2-3】 求函数y =1-x21+x 2的值域.【答案】(-1,1].【2-4】 求函数f (x )=x -1-2x .的值域.【答案】1(,]2-∞.【解析】法一:(换元法)令1-2x =t ,则t ≥0且x =1-t22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是1(,]2-∞.法二:(单调性法)容易判断f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以11()22y f ≤=即函数的值域是1(,]2-∞.【2-5】 求函数y =x 2-xx 2-x +1的值域.【答案】1[,1)3-【思想方法】求函数值域常用的方法(1)配方法,多适用于二次型或可转化为二次型的函数. (2)换元法. (3)基本不等式法. (4)单调性法. (5)分离常数法.【温馨提醒】求函数值域的方法多样化,需结合函数解析式的特点选用恰当的方法【易错试题常警惕】分段函数的参数求值问题,一定要注意自变量的限制条件. 如:已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()11f a f a -=+,则a 的值为_______.【分析】当0a >时,11a -<,11a +>,由()()11f a f a -=+得2212a a a a -+=---, 解得32a =-,不合题意;当0a <时,11a ->,11a +<,由()()11f a f a -=+得1222a a a a -+-=++,解得34a =-.所以a 的值为34-.【易错点】没有对a 进行讨论,以为11a -<,11a +>直接代入求解而致误;求解过程中忘记检验所求结果是否符合要求而致误. 【练一练】函数f (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,4x ,x ≤0,则f (f (-1))的值为________.【答案】-2【解析】∵f (-1)=4-1=14,∴f (f (-1))=f ⎝ ⎛⎭⎪⎪⎫14=log 2 14=-2.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin=, cos = , tg = , ctg = , sec = , csc = 。

相关文档
最新文档