2012年_随机过程试题
随机过程2012A卷及答案
河北科技大学2012——2013 学年第一学期《应用随机过程》试卷(A )学院 理学院 班级 姓名 学号一.概念简答题(每题5分,共40分)1. 已知随机过程{}(t)=Xsin t,t (-,+)X ω∈∞∞,其中X 为随机变量,服从正态分布2(,)Nμσ。
(1)按物理结构分,(t)X 属哪一类随机过程;(2)按概率结构分,(t)X 又属哪一类随机过程。
2. 什么是时齐的独立增量过程?3. 简述Poisson 过程的随机分流定理4. 简述Markov 链与Markov 性质的概念5. 简述Markov 状态分解定理6.简述HMM 要解决的三个主要问题7. 设随机变量12X ,,,n X X 相互独立且服从同一正态分布2(,)N μσ,试求=11=nkk X X n∑的分布。
8.设更新过程 {}(),0N t t ≥的更新时间距k T 的概率密度函数为2(),0t f t te t λλ-=≥ 求证:均值函数211()(1)24tN m t t eλλ-=--,并求其更新强度()t λ。
二.综合题(每题10分,共60分)1.二阶矩过程{}(t),0t<1X ≤的相关函数为 2121212(t ,t )=,0,<11-X R t t t t σ≤此过程是否均方连续、均方可微,若可微,则求12(t ,t )X R '和12(t ,t )XX R '。
2. 已知随机变量Y 的密度函数为47,01(),0,Y y y f y ⎧<<=⎨⎩其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为2|3,01(|),0,X Y x x y f x y ⎧<<<=⎨⎩其他试求随机变量X 和Y 的联合分布密度函数(,)f x y .3. 设随机过程{}(t)=cos t,t T X Φ∈,其中Φ是服从区间(0,2)π上均匀分布随机变量,试证:(1)当{}|0,1,2,T n n ==±± 时,{}(),X t t T ∈为平稳序列。
随机过程试题及答案说课材料
随机过程试题及答案收集于网络,如有侵权请联系管理员删除1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t t X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ijp ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程习题及部分解答【直接打印】
随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。
2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。
习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。
3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。
4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。
习题三1. 试证3.1节均方收敛的性质。
2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。
随机过程习题
一.填空题〔每空2分,共20分〕2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t0≥对应的一个等待时间序列,则n W 服从Γ分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t2t,;e,e ⎫⎬⎭。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑。
8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,假设ii f1<,称状态i 为非常返的。
9.非周期的正常返状态称为遍历态。
三.计算题〔每题10分,共50分〕1.抛掷一枚硬币的试验,定义一随机过程:cos t H X(t)=t Tπ⎧⎨⎩ ,t (-,+)∈∞∞,设1p(H)=p(T)=2,求〔1〕{}X(t),t (,)∈-∞+∞的样本函数集合;〔2〕一维分布函数F(x;0),F(x;1)。
解:〔1〕样本函数集合为{}cos t,t ,t (-,+)π∈∞∞; 〔2〕当t=0时,{}{}1P X(0)=0P X(0)=12==, 故0x<01F(x;0)=0x<12x 11⎧⎪⎪≤⎨⎪≥⎪⎩;同理0x<-11F(x;1)=1x<12x 11⎧⎪⎪-≤⎨⎪≥⎪⎩2.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2分钟内到达的顾客不超过3人的概率。
3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。
随机过程2012A'卷及答案
河北科技大学2012——2013 学年第一学期《应用随机过程》试卷(A ′)学院 理学院 班级 姓名 学号一.概念简答题(每题5分,共40分)1. 什么是随机过程,随机序列?2. 随机过程2{()(),,(,)}X t A t t T A N ϕμσ=∈ 是否为正态过程,试求其有限维分布的协方差阵。
3. 设()X t 为二阶矩过程,212()12(,)t t X R t t e --=,若()()()dY t X t X t dt=+,试求12(,)Y R t t 。
4.设某设备的使用期限为10年,在前5年平均2.5年需要维修一次,后5年平均2年维修一次,试求在使用期限内只维修过一次的概率。
5. 已知平稳过程()X t的功率谱密度为2424()109XwS ww w+=++,试求其自相关函数()XRτ。
6.一书亭用邮寄订阅销售杂志,订阅的顾客数是强度为6的一个泊松过程,每位顾客订阅1年,2年,3年的概率分别为111,,236,彼此如何订阅是相互独立的,每订阅一年,店主即获利5元,设()Y t是[0,)t时段内,店主从订阅中所获得总收入。
试求:(1)[()]E Y t(即[0,)t时段内总收入的平均收入);(2)[()]D Y t。
7. 写出卡尔曼滤波的算法公式8.写出ARMA(p,q)模型的定义二.综合题(每题10分,共60分)1.设二维随机变量(,)X Y的概率密度为(,)f x y=2,01,01 0,x y x y--<<<<⎧⎨⎩其他试求p{x<3y}2. 设到达某图书馆的读者组成一泊松流,平均每30min 到达10位。
假定每位读者借书的概率为13,且与其它读者是否借书相互独立,若令{(),0}Y t t ≥是借书读者流,试求:(1)在[0,)t (0)t ≥内到达图书馆的读者数()N t 的概率分布; (2)平均到达图书馆的读者人数; (3)借书读者数()Y t 的概率分布。
2012年随机过程试卷答案
故 3,1, 是非常返且非周期, 因此, I 可分解为
I = K + J = {1, 3} ∪ {0, 2, 4}.
……………15 分
……………18 分
转移状态图如下:
北方工业大学试卷
第5页
共 10 页
五、 (20 分)
设随机过程X (t ) = A cos(ωt + Θ), 其中A是服从瑞利分布的随机变量,其概率密度为
为常返态.
……………10 分
北方工业大学试卷
第3页
共 10 页
又因为
(1) (2) μ0 = f 00 + 2 f 00 =
3 1 < ∞, 并且 p00 = > 0, 易得 d1 = d 0 = 1, 所以状态 1,0 均为非周期、 2 2
正常返.
3
……………13 分 ……………15 分
由π = π P 和 ∑π i = 1,
n=0,1,2,3,…}是两个状态的马氏链, 这说明 n 个中继站具有无记忆性, 所以 { X(n),
状态空间为 I ={0,1}, ……………5 分
而其一步转移概率矩阵为
北方工业大学试卷
第8页
共 10 页
⎛ p 1− p ⎞ ⎛ p P=⎜ ⎟=⎜ p ⎠ ⎝q ⎝1 − p
q⎞ ⎟. p⎠
……………8 分
(2) P( X (0) = 1) p11 (2) (2) + P( X (0) = 1) p11 P( X (0) = 0) p01
=
1 {β [1 − ( p − q ) 2 ] + α [1 + ( p − q) 2 ]} 2 α + α ( p − q)2 = , 1 + (α − β )( p − q ) 2 进一步,由
12-13随机过程试题B卷答案
华中师范大学 2012 –2013 学年第 1 学期 期末考试试卷(B 卷答案)
课程名称 应用随机过程
课程编号 83610101 任课教师 李波
题型 一 二 三 四 五
总分
分值 10 26 30 24 10
100
得分
学号:
学生姓名:
年级:
得分 评阅人
一、判断题:(共 5 题,每题 2 分)
1. 设 Bt 是标准布朗运动, Yt Bt a 也是标准布朗运动。
N (t)
N (t)
E(W (t)) E{ (t k )} E{E[ (t k ) | N(t)]}
k 1
k 1
N (t)
n
E[ (t k ) | N(t) n] nt E[k | N(t) n]
k 1
k 1
由定理在 N(t)=n 条件下 n 个k 的联合分布等价与[0,t]上 n 个相互独立服从均匀分布的随机变量
/
k !} e(ts) ((t et (t)n / n!
s))nk
/
(n
k)!
n! sk (t s)nk k !(n k)! tn
Cnk
s k t
1
s t
nk
。
8.试证连续时间马氏链的向后微分方程, P(t) QP(t) 。
n1
.
所以状态 0
是正常返的,
又
p(1) 0,0
p0,0
1 2
0, 从而
0
是非周期的,因此
0
是遍历的。因为整个状态空间 E
是连通的,所以,
对任意的状态i ,它都是遍历的。
2011-2012学年北京交通大学第一学期随机过程期末考试试卷答案
北 京 交 通 大 学2011~2012学年第一学期随机过程期末考试试卷(A 卷)答案一.(本题满分30分)写出以下概念的定义(共6道小题,每道小题满分5分) (1) 函数()x g 在区间[]b a ,上关于()x F 的Riemann-Stieltjes 积分;(2) 计数过程(){}0≥t t N ,是强度函数为()0>t λ()0≥t 的非齐次Poisson 过程; (3) 计数过程(){}0≥t t N :为更新过程; (4) 更新方程;(5) Markov 链中的状态i 是零常返状态;(6) 随机变量T 是关于随机变量序列{}0≥n X n ,的停时. 解:(1) 设()x g 与()x F 都是有限区间[]b a ,上的实值函数,b x x x a n =<<<= 10为区间[]b a ,上的一个分割,令()()()1--=∆i i i x F x F x F ,[]i i i x x ,1-∈ξ,()n i ≤≤1,()11max -≤≤-=i i ni x x λ,如果当0→λ时,极限()()∑=→∆ni i i x F g 10lim ξλ存在,而且其极限值与区间[]b a ,上的分割以及[]i i i x x ,1-∈ξ的取法无关,则称该极限值为函数()x g 关于()x F 在区间[]b a ,上的Riemann-Stieltjes 积分,记为()()()()∑⎰=→∆=ni iibax F g x dF x g 1lim ξλ. (2) 计数过程(){}0≥t t N ,称作强度函数为()0>t λ()0≥t 的非齐次Poisson 过程,如果 ⑴ ()00=N ; ⑵ 过程有独立增量;⑶ 对任意的实数0≥t ,0≥s ,()()t N s t N -+为具有参数()()()⎰+=-+st tdu u t m s t m λ的Poisson 过程.(3) 设{} ,2,1=n X n :是一串独立同分布的非负随机变量,分布函数为()x F ,令∑==ni i n X T 1,()1≥n ,00=T .我们把由(){}t T n t N n ≤=:sup定义的计数过程称为更新过程.(4) 称如下形式的积分方程为更新方程:()()()()⎰-+=ts dF s t K t H t K 0,其中()t H ,()t F 为已知,且当0<t 时,()t H ,()t F 均为0.(5) 设i 是Markov 链{}n X 中的一个状态,以()n ij f 记从i 出发,经过n 步后首次到达j 的概率,()∑∞==1n n ij ij f f ,如果1=jj f ,称状态j 为常返状态.对于常返状态i ,记()∑∞==1n n ii i nf μ,若+∞=i μ,则称i 为零常返状态.(6) 设{}0≥n X n :是一个随机变量序列,T 是一个随机变量,如果T 的取值范围是{}∞+,,2,1,0 , 而且对于每一个0≥n ,{}()n X X X n T ,,,10 σ∈=.二.(本题满分10分)已知随机过程(){}T t t X ∈:的均值函数()t X μ和协方差函数()21,t t X γ,再设()t ϕ是一个非随机的函数,试求随机过程()()(){}t t X t Y ϕ+=的均值函数和协方差函数. 解:三.(本题满分10分)设(){}t N 是参数为λ的Poisson 过程,再设10<<i p ,()2,1=i ,且121=+p p .当每次事件发生时,甲、乙两人分别以概率1p 与2p 独立地进行记录,并且每一事件发生与被记录之间也相互独立.令()t N 1表示到t 时刻甲记录的事件数目,()t N 2表示到t 时刻乙记录的事件数目.证明:(){}t N 1与(){}t N 2是相互独立的参数分别是1p λ与2p λ的Poisson 过程. 证明:四.(本题满分10分)设(){}0≥t t N ,是一个更新过程,{}1≥n X n ,是其更新间隔,{}1≥n T n ,是其更新时刻,1X 的分布函数为()x F ,更新函数为()t M ,证明:(){}()()()⎰-+=≤st N y dM y t F t F s T P 0,其中(){}t X P t F >=1. 证明:()t N T 表示t 时刻之前最后一次更新的时刻,因此对任意的0≥≥s t ,有 (){}(){}()(){}∑∞==≤==≤0n t N t N n t N s T P n t N P s T P()(){}∑∞==<=0,n t N n t N s T P{}(){}∑∞=+><+>≤=1110,,n n t N t T s T P t T s T P {}(){}∑∞=+><+>=111,n n t N t T s T P t X P(){}()∑⎰∞=+∞+=><+=101,n n n n n y dF y T t T s T P t F(){}()∑⎰∞=+∞+->-<+=101,n n n n n y dF y t T T s T P t F(){}()∑⎰∞=->+=101n sn y dF y t X P t F()()()∑⎰∞=-+=10n sn y dF y t F t F()()()⎪⎭⎫ ⎝⎛-+=∑⎰∞=10n n sy F d y t F t F()()()y dM y t F t F s⎰-+=0.五.(本题满分10分)设(){}0≥t t N :是一个更新过程,{}1≥n X n ,是其更新间隔,{}1≥n T n ,是其更新时刻,1X 的分布函数为()x F ,()+∞<=μ1X E .再令()()t T t r t N -=+1,⑴ 解释()t r 的意义;⑵ 求极限分布(){}y t r P t >+∞→lim .解:设:()(){}y t r P t R y >=,对第一次更新时刻1X 取条件,则有(){}()⎪⎩⎪⎨⎧≤<-+≤<+>==>t x x t R y t x t yt x x X y t r P y0011 .由全概率公式,得 ()(){}y t r P t R y >=(){}()⎰+∞=>=01x dF x X y t r P(){}()(){}()(){}()⎰⎰⎰+∞++=>+=>+=>=yt yt t t x dF x X yt r P x dF x X yt r P x dF x X y t r P 1101()()()()⎰⎰⎰+∞++⋅+⋅+-=yt yt tty x dF x dF x dF x t R 100()()()⎰-++-=ty x dF x t R y t F 01这是一个更新方程.它的解为()()()()()⎰-+-++-=ty x dM x y t F y t F t R 011.由假设,()+∞<=1X E μ,得()()()⎰⎰+∞+∞-==1dx x F x xdF μ,所以有,()()()()+∞<-=+-⎰⎰+∞+∞ydz z F dt y t F 110,因此()y t F +-1满足关键更新定理的条件.于是 (){}()()()⎰+∞+∞→+∞→-==>yy t t dz z F t R y t r P 11lim lim μ.六.(本题满分10分)设i 与j 是Markov 链中的两个状态,而且j i ↔,则i 与j 同为常返状态或非常返状态. 解:因为j i ↔,所以存在正整数m 与n ,使得()0>m ij p 及()0>n ji p成立.所以,对任何自然数l ,由C-K 方程,得()()()()n ji l jj m ij n l m ii p p p p ≥++, ()()()()m ij l ii n ji m l n jj p p p p ≥++,上面两个式子分别对l 求和,有()()()()()()()∑∑∑∞=∞=∞=++=≥000l ljjn jim ij l n ji l jj m ij l n l m iip p p p p p p,()()()()()()()∑∑∑∞=∞=∞=++=≥00l l ii m ijn ji l m ij l ii n ji l m l n jjp p p p p p p ,上式表明级数()∑∞=0l l jj p 与()∑∞=0l l ii p 相互控制,因此级数()∑∞=0l l jj p 与()∑∞=0l l ii p 同为无穷或者有限.而状态i 为常返状态的充分必要条件是级数()+∞=∑∞=0l l jj p ,因此状态i 与j 同为常返状态或者同为非常返状态.七.(本题满分10分)设一Markov 链的转移矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=03.01.06.02.03.04.01.04.04.02.005.0005.0P ,试求该Markov 链的不变分布. 解:八.(本题满分10分)设{}n X 是一独立的随机变量序列,而且对每一个n ,()0=n X E .再设00=S ,∑==nk k n X S 1,证明:{}n S 是关于{}n X 的鞅. 解:。
随机过程试题及答案
随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。
答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。
答案:相关性3. 随机游走过程是一类具有________性质的随机过程。
答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。
答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。
答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。
数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。
2. 描述布朗运动的三个基本性质。
答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。
3. 什么是平稳随机过程?请给出其数学定义。
随机过程试题及答案
一.填空题(每空2分,共20分)分)1.设随机变量X 服从参数为l 的泊松分布,则X 的特征函数为it (e -1)el 。
2.设随机过程X(t)=Acos( t+),-<t<w F ¥¥ 其中w 为正常数,A 和F 是相互独立的随机变量,且A 和F 服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2w w 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1l的同一指数分布。
的同一指数分布。
4.设{}n W ,n 1³是与泊松过程{}X(t),t 0³对应的一个等待时间序列,则n W 服从G 分布。
分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量ïîïíì=时取得白球如果时取得红球如果t t te tt X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33ìüíýîþ。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为(n)nP P =。
7.设{}n X ,n 0³为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p Î=×å。
8.在马氏链{}n X ,n 0³中,记中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=¹££==³ (n)ij ij n=1f f ¥=å,若ii f 1<,称状态i 为非常返的。
随机过程试题及答案
1. 设随机变量X 服从参数为A 的泊松分布,则X 的特征函数为2. 设随机过程X(t)二Acos( a t+①),-ocvtv 处 其中为正常数,A 和①是相互独立的随机变量,且A 和①服从在区间[0,1]上的均匀分布,则X(t)的数学期望 为 。
3. 强度为入的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4. _ 设{W n ,n >1}是与泊松过程{x(t),t >0}对应的一个等待时间序列,则 W n 服 从 分布。
程的状态空间6 .设马氏链的一步转移概率矩阵P=(p jj ),n 步转移矩阵P ⑺=(pj),二者之间 的关系为 7.设{X n ,n >0}为马氏链,状态空间I ,初始概率P i = P(X 0=i),绝对概率 P j (n) = P {X n =j }, n 步转移概率p jn),三者之间的关系为 ___________ 。
9. 更新方程K (t )=H (t )+J ;K (t -sdF (s )解的一般形式为_ 10. 记卩=EX n,对一切 a>0,当 t TK 时,M (t+a )—M (t 户、证明题(本大题共4道小题,每题8分,共32 分)1. 设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量X(t) 3’ L e t ,如果t 时取得红球,则这个随机过 如果t 时取得白球2. 设{X(t), E>0}是独立增量过程,且X(0)=0,证明{X(t), t30}是一个马尔科夫过程。
8 .设{X(t),t > 0}是泊松过程,且对于任意t^>0则P{X (5) =6|X (3) = 4} =3. 设{X n ,n >0}为马尔科夫链,状态空间为I ,则对任意整数n>0,1W l vn 和 i,产I , n 步转移概率p j n)=2 P 聘p kj -l),称此式为切普曼一科尔莫哥洛夫方程,证明并说明其意义。
北邮研究生概率论与随机过程-试题及标准答案
北邮研究生概率论与随机过程-试题及答案———————————————————————————————————————————————————————————————— 作者:作者: ———————————————————————————————————————————————————————————————— 日期:日期:北京邮电大学20122012——————20132013学年第1学期《概率论与随机过程》期末考试试题答案考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。
在答题纸上写上你的班号和选课单上的学号,班内序号!一. 单项选择题和填空题:(每空3分,共30分)1. 1.设设A 是定义在非空集合Ω上的集代数上的集代数,,则下面正确的是则下面正确的是 .A ((A )若A B ∈∈A,A ,则A B -∈A ; ((B )若A A B ∈⊂A,,则B ∈A ;((C )若12n A n =∈⋯A,,,,则1n n A ∞=∈U A ; ((D )若12n A n =∈⋯A,,,,且123A A A ⊃⊃⊃L ,则1n n A ∞=∈I A .2.2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是确的是 .c(A )若A B ∈∈F,F ,则()()()P A B P A P B -=-;(B )若12n A n =∈⋯F,,,,,且123A A A ⊃⊃⊃L ,则1li ()()m n n n n P A A P ∞→∞==I ;(C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++U U ;(D )若12n A n =∈⋯F,,,,,且,i j A i j A =∅∀=/,11()()n n n n P P A A ∞∞===∑U .3.3.设设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100()k A k f kI ω==,其中100,,i j n n i j A A A ==∅∀=Ω/=U ,则fdP Ω= ;若已知100100!1!(100)()!2k k k P A -=,则2f dP Ω=⎰ . 0210(),25502525kk kP A =+=∑4. 设二维随机变量(,)X Y 的概率密度的概率密度2,01,0,(,)0,x y x f x y <<<<⎧=⎨⎩其他,则[[|]]E E X Y = .2/35. 设随机过程,}{()cos X t X t t ω-∞<<+∞=,其中随机变量X 服从参数为1的指数分布,(0,/2)ωπ∈为常数,则(1)(1)X 的概率密度(;1)f x = ;(2)20(())E X t dt π=⎰.,0,(;1)01,x cos x e cos f x ωω-⎧>⎪=⎨⎪⎩其他,20(1())E X t dt πω=⎰ 6. 设{(),0}W t t ≥是参数为2()0σσ>的维纳过程,令1()()X t W t =,则相关函数2(1,(1,2)2)2X R σ=.7. 7. 设齐次马氏链的状态空间为设齐次马氏链的状态空间为{1,2,3}E =,一步转移概率为一步转移概率为0.50.500.50.500.20.30.5P ⎛⎫ ⎪= ⎪ ⎪⎝⎭则(1)()11lim n n p→∞= ;(2)()33n n p ∞==∑. 1/2,2二. 概率题(共30分)1.(10分) ) 设设(,)X Y 的概率密度为的概率密度为22122221(,)2x x f x y eσπσ+-=,令22,U X Y V Y =+=, (1)求(,)U V 的概率密度(,)g u v ;(2)求U 的边缘概率密度()U g u .解解.(1) 解方程22,,u x y v y ⎧=+⎨=⎩得22,||,,v u x u v y v ⎧⎪=±⎨⎪⎩≤=- 所以雅可比行列式22222222201u uJ u vu v u vv±==±---m, 故222221,||,(,)(,)||20,uu e v u g u v f x y J u v σπσ-⎧≤⎪==⎨-⎪⎩其他其他..……5分((2)对0u >,222221(,))2(u u Uuu g u eg u v d d u v v v σπσ-∞-∞-=-=⎰⎰22222222212u u uuedv eu v uu σσπσσ---==-⎰,故222,0,()20,.uU eu u g u σσ-⎧>⎪=⎨⎪⎩其他……10分2.2.((10分)设(,)U V 的概率密度的概率密度,0,0,(,)0,ue u v v g u v -⎧->>=⎨⎩其他,(1)求{1}|1()0V U E I>=,其中{1}{1,(}),10V V Iωω>∈>⎧=⎨⎩,其他,(2)(|)D V U . 解 U 的边缘概率密度为的边缘概率密度为0,0,,0,()(,)0,,0,,u u uu U e dv u e u u u v d u g v g --⎧⎧>>⎪===⎨⎨⎩⎪⎩⎰⎰其他其他 所以条件概率密度所以条件概率密度|1,0,(,)(|)()0,V U U v u g u v v u u g g u ⎧<<⎪==⎨⎪⎩其他其他.. ……4分(1)101{1}|1111()(1|10).102|10(|10)V V UE I P V U U v u gdv dv >===>====⎰⎰……7分(2)因为21(|)2D V U u u ==,所以2(|)12D U U V =。
2012年_随机过程试题[新版]
0002010级计算机应用技术专业研究生《随机过程》课程试题0001 设电话总机在(0,t )内接到电话呼叫数X (t )是具有强度(每分钟)为 的泊松过程,求0000(1) 两分钟内接到3次呼叫的概率;0000(2) “第二分钟内收到第三次呼叫”的概率。
00002 设到达某路口的绿、黑、灰色汽车的到达率分别为 l , 2, 3,且均为怕松过程,它们相互独立。
若把这些汽车合并成单个输出过程(假定无长度,无延时),求000(1) 相邻绿色汽车之间的不同到达时间间隔的概率密度;0000(2) 汽车之间的不同到达时刻的间隔概率密度。
00003 某商店每日8时开始营业,从8时到11时平均顾客到达率线性增加,在8时顾客平均到达率为5人/时,11时到达率达最高峰20人/时。
从11时到13时,平均顾客到达率维持不变,为20人/时,从13时到17时,顾客到达率线性下降,到17时顾客到达率为12人。
假定在不相重叠的时间间隔内到达商店的顾客数是相互独立的,问在8:30一9:30问无顾客到达商店的概率是多少?在这段时间内到达商店的顾客数的数学期望是多少?000第3章2600004 设移民到某地区定居的户数是一泊松过程,平均每周有2户定居,即 =2。
如果每户的人口数是随机变量,一户四人的概率为1/6,一户三人的概率为1/3,一户二人的概率为1/3,一户一人的概率为1/6,并且每户的人口数是相互独立的,求在五周内移民到该地区人口的数学期望与方差。
0005 已知随机游动的转移概率矩阵为0000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5.005.05.05.0005.05.0P求三步转移概率矩阵P (3)及当初始分布为0000{}{}{}13021000======X P X P X P ,时,经三步转移后处于状态3的概率。
0006 已知本月销售状态的初始分布和转移概率矩阵如下:000(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==6.02.02.02.07.01.01.01.08.0)4.0,2.0,4.0()0(P P T,;000(2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==6.02.01.01.02.06.01.01.01.02.06.01.01.01.01.07.0)3.0,3.0,2.0,2.0()0(P P T ,;000求下一、二个月的销售状态分布。
随机过程答案
随机过程答案2012-2013学年第一学期统计10本《随机过程》期中考试一. 填空题1.设马氏链的一步转移概率矩阵()ij P p =,n 步转移矩阵()()n ij P p =,二者之间的关系为(n)n P P =2.状态i 常返的充要条件为()0n iin p ∞==∑∞。
3.在马氏链{},0n X n ≥中,记()n i jp ={}0,11,n P Xm j m n X j X i ≠≤≤-==,n ≥1.i j p =()1n i j n p ∞=∑,若i j p <1,称状态i 为。
二. 判断题1. S 是一个可数集,{:0n n X ≥}是取值于S 的一列随机变量,若()1011100111111,,...,(,...,)n n n n n n n n n n n n i i S P i X i X i X i P i i -+++--++-?≥?∈X =|====X =|X=并且满足,则{:0n n X ≥}是一个马氏链。
×2. 任意状态都与它最终到达的状态是互通的,但不与它自己是互通的。
×3. 一维与二维简单随机游动时常返的,则三维或更高维的简单随机游动也是常返的。
×4. 若状态i ?状态j ,则i 与j 具有相同的周期。
√5. 一个有限马尔科夫链中不可能所有的状态都是暂态。
√三. 简答题1.什么是随机过程,随机序列答:设T 为[0,+∞)或(-∞,+∞),依赖于t(t ∈T)的一族随机变量(或随机向量){t ξ}通称为随机过程,t 称为时间。
当T 为整数集或正整数集时,则一般称为随机序列。
2 .什么是时齐的独立增量过程答:称随机过程{t ξ:t ≥0}为独立增量过程,如果对于01,0,n n t t t ??≤<<<="" 起始随机变量及其后的增量s="">3.由4个状态组成的马氏链的转移概率矩阵000.50.5100001000010P=??,确定哪些状态是暂态,哪些状态是常返态4.考虑由状态0,1,2,3,4组成的马尔科夫链,而0.50.50000.50.5000000.50.50000.50.500.250.25000.5P=,确定常返态5.设有四个状态{}I=0123,,,的马氏链,它的一步转移概率矩阵1100221100P=22111144440011) 对状态进行分类;2) 对状态空间I 进行分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010级计算机应用技术专业研究生《随机过程》课程试题
1 设电话总机在(0,t )内接到电话呼叫数X (t )是具有强度(每分钟)为λ的泊松过程,求 (1) 两分钟内接到3次呼叫的概率;
(2) “第二分钟内收到第三次呼叫”的概率。
2 设到达某路口的绿、黑、灰色汽车的到达率分别为λl ,λ2,λ3,且均为怕松过程,它们相互独立。
若把这些汽车合并成单个输出过程(假定无长度,无延时),求 (1) 相邻绿色汽车之间的不同到达时间间隔的概率密度; (2) 汽车之间的不同到达时刻的间隔概率密度。
3 某商店每日8时开始营业,从8时到11时平均顾客到达率线性增加,在8时顾客平均到达率为5人/时,11时到达率达最高峰20人/时。
从11时到13时,平均顾客到达率维持不变,为20人/时,从13时到17时,顾客到达率线性下降,到17时顾客到达率为12人。
假定在不相重叠的时间间隔内到达商店的顾客数是相互独立的,问在8:30一9:30问无顾客到达商店的概率是多少?在这段时间内到达商店的顾客数的数学期望是多少? 第3章26
4 设移民到某地区定居的户数是一泊松过程,平均每周有2户定居,即λ=2。
如果每户的人口数是随机变量,一户四人的概率为1/6,一户三人的概率为1/3,一户二人的概率为1/3,一户一人的概率为1/6,并且每户的人口数是相互独立的,求在五周内移民到该地区人口的数学期望与方差。
5 已知随机游动的转移概率矩阵为
⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡=5.005.05.05.0005.05.0P
求三步转移概率矩阵P (3)及当初始分布为
{}{}{}13021000======X P X P X P ,
时,经三步转移后处于状态3的概率。
6 已知本月销售状态的初始分布和转移概率矩阵如下:
(1) ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡==6.02.02.02.07.01.01.01.08.0)4.0,2.0,4.0()0(P P T
,;
(2) ⎥⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡==6.02
.01.01
.02.06.01.01.01.02.06.01
.01.01.01.07.0)3.0,3.0,2.0,2.0()0(P P T ,; 求下一、二个月的销售状态分布。
7 某商品六年共24个季度销售记录如下表(状态l 一畅销,状态2一滞销) 季度 1 2 3 4 5 6 7 8 9 10 11 12 销售状态 1 1 2 1 2 2 1 1 1 2 1 2 季度 13 14 15 16 17 18 19 20 21 22 23 24 销售状态
1
1
2
2
1
1
2
1
2
1
1
1
以频率估计概率。
求(1)销售状态的初始分布;(2)三步转移概率矩阵及三步转移后的销售状态分布。
8 设老鼠在下图所示的迷宫中作随机游动.当它处在某个方格中有k 条通道时.以概率1/k 随机通过任一通道.求老鼠作随机游动的状态空间、转移概率矩阵及状态空间可分解成几个闭集。
9 艾伦菲特斯(Erenfest )链。
设甲乙两个容器共有2N 个球,每隔单位时间从这2N 个球中任取一球放入另一容器中,记X n 为在时刻n 甲容器中球的个数,则{X n , n >=0}是齐次马尔科夫链,称为艾伦菲特斯链。
求该链的平稳分布。
10 设河流每天BOD(生物耗氧量)浓度为齐次马尔可夫鲢,状态空间I ={1.2,3,4}是按BOD 浓度为极低、低、中、高分别表示的,其一步转移概率矩阵(以一天为单位)为
⎥
⎥
⎥⎥⎦
⎤
⎢⎢⎢
⎢⎣⎡=4.04.02.00
1.06.0
2.01.01.02.05.02.001
.04.05.0P 【见笔记】 若BOD 浓度为高,则称河流处于污染状态。
(1) 证明该链是遍历链; (2) 求该链的平稳分布;
(3) 河流再次达到圬染的平均时间μ4。
11 设连续时间马尔科夫链{}0),(≥t t X 具有转移概率
⎪⎪⎩⎪⎪⎨⎧≥--==+-+=+=,
2),(,1,0,),(1,1),()(i j h o i j i j h o h i j h o h h p i
i ij λλ
其中i λ是正数,)(t X 表示一个生物群体在时刻t 的成员总数。
求柯尔莫哥洛夫方程、转移概率)(t p ij 。
(提示:利用以下结果,若)()()(t h t kg t g =+',k 为实数,h (t )为连续函数,b t a ≤≤,则
1 2 3 4 5 6 7
8
9
⎰----+=t
a
a t k s t k e a g ds s h e t g )()()()()(。
)
12 一质点在1.2,3点上作随机游动。
若在时刻t 质点位于这三个点之一,则在[t , t+h )内,它以概率
)(2
1
h o h +分别转移到其它二点之一。
试求质点随机游动的柯尔莫哥洛夫方程、转移概率)(t p ij 及平稳分布。
13 设某车间有M 台车床.由于各种原因车床时而工作,时而停止.假设时刻t ,一台正在工作的车床,在时刻t +h 停止工作的概率为)(h o h +μ,而时刻t 不工作的车床,在时刻t +h 开始工作的概率为)(h o h +λ,且各车床工作情况是相互独立的。
若N (t )表示时刻t 正在工作的车床数。
求 (1)齐次马尔可夫过程{}0),(≥t t N 的平稳分布;
(2)若30,60,10===μλM ,系统处于平稳状态时有一半以上车床在工作的概率。
14 排队问题。
设有一服务台,[0,t )内到达服务台的顾客数是服从泊松分布的随机变量,即顾客流是泊松过程。
单位时间到达服务台的平均人数为λ。
服务台只有一个服务员.对顾客的服务时间是按指数分布的随机变量,平均服务时间为1/μ。
如果服务台空闲时到达的顾客立即接受服务;如果顾客到达时服务员正在为另一顾客服务,则他必须排队等候;如果顾客到达时发现已经有二人在等侯,则他就离开而不再回来。
设X (t )代表在t 时刻系统内的顾客人数(包括正在被服务的顾客和排队等侯的顾客),该人数就是系统所处的状态。
于是这个系统的状态空间为I ={0,1,2,3};又设在t =0时系统处于状态0,即服务员空闲着。
求过程的Q 矩阵及t 时刻系统处于状态j 的绝对概率p j (t )所满足的微分方程。
15 一条电路供m 个焊工用电,每个焊工均是间断用电。
现作如下假设|: ① 若一焊工在t 时用电,而在(t ,t +Δt )内停止用电的概率为μΔt +o (Δt ); ② 若一焊工在t 时没有用电,而在(t ,t +Δt )内用电的概率为λΔt +o (Δt )。
每焊工的工作情况是相互独立的。
设X (t )表示在t 时正在用电的焊工数。
(1) 求该过程的状态空间和Q 矩阵;
(2) 设X (0)=0,求绝对概率p j (t )满足的微分方程; (3) 当t →∞时,求极限分布p j 。
16 设[0,t )内到达的顾客服从泊松分布,参数为λt 。
设有单个服务员,服务时间为指数分布的排队系统(M /M /1),平均服务时间为l/μ.试证明:
(1) 在服务员的服务时间内到达顾客的平均数为λ/μ;
(2) 在服务员的服务时间内无顾客到达的概率为μ/(λ+μ)。