1.2不等式的基本性质(2)ppt课件

合集下载

新人教版数学七年级下册第九章《9.1.2不等式的性质(2)》公开课课件PPT

新人教版数学七年级下册第九章《9.1.2不等式的性质(2)》公开课课件PPT

例3 解不等式 3(1-x)>2(1-2x)
解: 去括号,得 3-3 x >2-4x 移项,得 -3x +4x >-3+2 合并同类项,得 x >-1 ∴原不等式的解集是x >-1
比一比,谁做得又快又好!
解下列不等式,并把它们的解集在数轴上 表示出来。
(1)x+4>3
(2)7x+6 ≥ 6x+3
学科网
不等式的基本性质1: 如果a >b,那么a±c>b±c. 就是说,不等式两边都加上 (或减去)同一个数(或式子), 不等号方向不变。
不等式基本性质2:
a b 如果a >b,c > 0 ,那么 ac>bc(或 c c )
就是说不等式的两边都乘以(或除以)同一个 正数,不等号的方向不变。 不等式基本性质3:
(3)7x-1 ≤ 6x+1 (4)3-5x < 2(2-3x)
例如 解不等式3+3x>2+4x 解:移项,得
-4x+3x>2- 3 合并同类项,得 -x>-1
∴ 原不等式的解集是
x<1
写不等式的解集时,要把表示未知数 的字母写在不等号的左边。
思考
1、求不等式
3(x-3)+6 < 2x+1的正整数 解。
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
问题1:实心小圆点和空心小圆圈分别在什么时候适用
例2
解一元一次不等式 8x-2≤7x+3, 并把它的解在数轴上表示出来。
解:移项,得 8x- 7x ≤3+2 ∴ x ≤5
这个不等式的解集在数轴上表示如下:
-1 0 1 2 3 4 5 6 7
5 x 3m m 5 m为何值时,方程 4 2 4 的解是非正数.

5.1.2不等式的基本性质(2) 课件 (人教A版选修4-5)

5.1.2不等式的基本性质(2) 课件 (人教A版选修4-5)

A、A<B<C<D; C、D<B<A<C;
B、D<A<B<C; D、B<D<A<C
【解题回顾】本题采用了赋值法,使问题得以简化、明
朗.赋值法是解选择题、开放题等常用的方
法.它将复杂的问题简单化,是我们常用的 数学方法.
作业
• P10 1 、 3 、 4
(1)1-x (2)x(1-x) 解题回顾:同向不等式可以做加法运算,异向不等式可以 做减法运算。当同向不等式两边都为正时,可以做乘法运 算。本题常见的错误是将取值范围扩大。 变式:设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的 取值范围.
1 1 1 a 0, A 1 a 2 , B 1 a 2 , C ,D , 1 a 1 a 例5、已知 2 则A、、B、C、 的大小关系是 ( )
不等式的基本性式的概念: 同向不等式; 异向不等式; 同解不等式.
2、比较两个实数大小的主要方法:
(1)作差比较法:作差——变形——定号——下结论; (2)作商比较法:作商——变形——与1比较大小——下
结论. 大多用于比较幂指式的大小.
探究!
类比等式的基本性质,不等 式有哪些基本性质呢?
a b 0 a b; a b 0 a b; a b 0 a b.
问题
上述结论是用类比的方法得到的,它们一 定是正确的吗?你能够给出它们的证明吗?
注意
1、注意公式成立的条件,要特别注意 “符号问题”; 2、要会用自然语言描述上述基本性质;
3、上述基本性质是我们处理不等式问题 的理论基础。
不等式的基本性质

《不等式的基本性质》ppt课件

《不等式的基本性质》ppt课件

x< -3
题 组 训 练 一

1、已知x>y,下列各式成立吗?
(1)x-6<y-6
(3) -2x<-2y
(2) 3x<3y (4) 2x+1>2y+1
2、设 a<b ,用“<”或“>”号填空 (1)a+1__b+1
(2) a-3__b-3 (4) -a__-b
(3)3a__3b
(5)
2a 3 __ 2b 3
归 纳
不等式基本性质1
不等式的两边都加上(或减去)同 一个整式,不等号的方向不变.
等式基本性质2:等式的两边都 乘以(或除以)同一个不为0的 数,等式仍然成立.
用刚才的方法研究:不 等式有没有这样的性 质?
不等式应Hale Waihona Puke 有什么样 类似的性质?探 究
3 < 7
3×2 < 7×2 3×0.5 < 7×0.5
不等式的基本性质
你还记得: 等式的基本性质吗?
等式基本性质1:等式的两边都加 整式 上(或减去)同一个整式,等式仍 然成立
可能是正数也可能是负数
想一想:
加减正数
3+2_7+2 3-5__ 7-5 3+a__ 7+a
3< 7
加减负数
3+(-2)__ 7+(-2) 3-(-5)__ 7- ( -5) 3-a__ 7-a
巩固知识
典型例题
例 5 已知 a b 0 , c d 0 ,求证 ac bd .
证明 因为 a b, c 0 , 由不等式的性质 3 知, ac bc , 同理由于 c d , b 0 ,故 bc bd . 因此,由不等式的性质 1 知

数学上册2.1《不等式的基本性质》课件(2)

数学上册2.1《不等式的基本性质》课件(2)
时时吹来一阵风,
把它吹得如烟,如雾,如尘。
小练习:
1.背诵全诗 2.学习了这篇诗歌,有什么感受,
请同学们课下互相交流,谈一 谈。
同学们,再见
作业: 第26页 习题3 4
5 瀑布
叶圣陶(1894年- 1988年),原名叶 绍钧,字秉臣,汉族 人,江苏苏州人,著 名作家、教育家、编 辑家、文学出版家和
社会活动家。
想一想
5瀑 布
叶圣陶
Байду номын сангаас
瀑布
还没看见瀑布, 先听见瀑布的声音, 好像叠叠的浪涌上岸滩, 又像阵阵的风吹进松林。
山路忽然一转, 啊!望见了瀑布的全身!
这般景象没法比喻, 千丈青山衬着一道白银。
站在瀑布脚下仰望, 好伟大呀,一座珍珠的屏!
时时吹来一阵风, 把它吹得如烟,如雾,如尘。
瀑布
还没看见瀑布, 先听见瀑布的声音, 好像叠叠的浪涌上岸滩, 又像阵阵的风吹进松林。
山路忽然一转, 啊!望见了瀑布的全身! 这般景象没法比喻, 千丈青山衬着一道白银。
站在瀑布脚下仰望, 好伟大呀,一座珍珠的屏! 时时吹来一阵风, 把它吹得如烟,如雾,如尘。


站在瀑布脚下仰望, 好伟大呀,一座珍珠的屏! 时时吹来一阵风, 把它吹得如烟,如雾,如尘。
世 界 上 最 宽 的 瀑 布 伊 瓜 苏 瀑 布
------
世界上最高的瀑布-----安赫尔瀑布
世界第一瀑布----维多利亚瀑布
观察上面的题的大小比较,你能得到怎样的结论?
对于两个实数a,b,它 们都具有如下性质
a-b>0a>b a-b<0a<b a-b=0a=b
做差比较法:是一种常见的 比较两个实数大小的方法, 一般步骤是:把要比较的 两个实数作差,然后进行 化解,判断最终化解结果 的符号,从而判断出这两 个实数的大小。

《不等式的基本性质》PPT课件

《不等式的基本性质》PPT课件

方法归纳
将下列不等式化成“x>a”或“x<a”的形式,实质是利 用不等式的性质对不等式进行变形,把不等式的右边 化成常数,左边化成只含有系数1的未知数的一次式的 形式.
练一练
将下列不等式化成“x>a”或“x<a”的形式:
(1) x 1 2;
x>3
(2) x 5 ; 6
(3) 1 x 3. 2
成立
不成立
(3) 2x 2y;
(4) 2x 1 2 y 1.
成立
成立
2.若a>b,且c为任意实数,下列各式:
①ac≥bc;②ac≤bc;③ac2>bc2;④ac2≥bc2;⑤
a c
<b c
.
一定成立的有
(A )
A.1个 B.2个 C.3个 D.4个
解析:①当c≤0时,不成立,故①错误;当c>0时,②不成立, 故②错误;当c=0时,③不成立,故③错误;当c为任意实数时, ④均成立,故④正确,当c<0时,⑤不成立,故⑤错误.故选A
(乙) 100+20>50+20
120>70
一 不等式的基本性质
观察与思考 问题1 水果店的小王从水果批发市场购进100kg梨和84kg苹果. 在卖出a kg梨和a kg苹果后,又分别各购进了b kg的梨和苹果.
请用“>”或“<”填空: 100 -a > 84 -a
100 –a+b > 84 –a+b
不等式的性质1,2
(6)(m2+1)a__>__ (m2+1)b(m为常数) 不等式的性质2
方法归纳
利用不等式的性质1对不等式进行变形,相当于移项, 不改变不等号的方向;利用不等式的性质2,3进行变形 时,以乘数或除数的正负决定是否改变不等号的方向.

北师大版八年级数学下册第二章《不等式的基本性质 2》公开课课件

北师大版八年级数学下册第二章《不等式的基本性质 2》公开课课件

聪明的你做 对了吗?
解:(1)因为a>b,根据不等式性质3, 两边同时乘以3得 3a>3b.
(2)因为a>b,根据不等式性质3, 两边同时乘以-1得 -a<-b.
(3)由(2)得 -a<-b,根据不等式性质2 两边同时加上2得 -a+2<-b+2
1.已知a>b,用不等号填空:
(1)2 a __>_2b; 理由是__不__等__式__性__质_3_____
• (1)a-3 b-3;(2)a÷3 b÷3 • (3)0.1a 0.1b; (4) -4a -4b • (5) 2a+3 2b+3; • (6) (m2+1) a (m2+1)b (m为常数)
答案:(1)>、(2)>(3)、> (4)、< (5)、> (6)、>
练习:
2、判断对错: (1)如果a>b,那么ac>bc。 (2)如果a>b,那么ac2>bc2。 (3)如果ac2>bc2,那么a>b。
两边都减去4m,得0>4n-4m, ②
即0>4(n-m),

两边同时除以(n-m),得0>4. ④
是正还是负?
合作与交流
已知a<0,试比较2a与a的大 小.
①运用不等式的基本性质比较大小; ②利用数轴比较大小; ③作差法比较大小.
先×(-3),再+2
先再
1.已知x>y,比较2-3x与2-3y的大小.前 定
先×(-3),再+2
后不 比等
×(a-3)
较号
2.已知m<<n,且(a-3)m>>(a-3)n,求a的范
围.
×(a-3)

2.1(2)不等式的基本性质Ⅱppt课件

2.1(2)不等式的基本性质Ⅱppt课件

(C)a c b c
(D)
a c2 1

b c2 1
5
练习 1、下列结论能成立的是:(_1_)_(_3_)_(_4_)_ (1) a b a b
a (2)
c

b
d


ac

bd
a (3)
cபைடு நூலகம்

b
d


a3

d
3

b3

c3
ab (4)
cd

0 0
证明: 1 1 b a a b ab
b a 0, ab 0
1 1 0 ab
0 1 1
ab
如果a b 0,那么1 ____ 1 ( 0) ab
(同号倒数性质)
4
练习
1、如果x y, m n, 那么下列不等式中正确的是( B )
( A)x m y n (B)x m y n
糖水中加 糖变甜
b ab a 0
又b 0, c 0,b c 0
(b a)c 0 b(b c)
ac a bc b
问: b c __<___ b ?
ac
a
7
例2
a, b R ,比较a5 b5与a3b2 a2b3的大小
解:(a5 b5 ) (a3b2 a2b3 ) a3 (a2 b2 ) b3 (b2 a2 )
iff a b时等号成立
8
练习
ex1、比较两数 (a 1)2与a2 a 1的大小. ex2、比较两数 x2 3与3x的大小.
说明:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解题回顾】本题采用了赋值法,使问题得以简化、明 朗.赋值法是解选择题、开放题等常用的方 法.它将复杂的问题简单化,是我们常用的 数学方法.
11
▪ P10 1 、 3 、 4
作业
12
ab0ab;ab0ab;ab0ab. 4
问题 上述结论是用类比的方法得到的,它们一定是正确的吗?你能够给出它们
的证明吗?
5
注意 1、注意公式成立的条件,要特别注意“符号问题”; 2、要会用自然语言描述上述基本性质; 3、上述基本性质是我们处理不等式问题的理论基础。
6
例1已知ab 0,c d 0,求证 ab . dc
变式:设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的 取值范围.
10
例5、已知 1a0,A1a2,B1a2,C 1 ,D 1 ,
2
1a 1a
A、A<B<C则 <A D;、 、B、B D<、 的 A<BC <大 C;、小 ( 关 ) 系是
C、D<B<A<C;
D、B<D<A<C
3
不等式的基本性质
(1 ) a b b a (对 称 性 ) ; 单向性 (2 ) a b,b c a (c 传 递 性 ); (3 ) a b a c b (c 可 加 性 ); 双向性 a b,c d a cb d ; (4) a b,c0 acbc;a b,c0 acbc; a b0,c d 0 acbd ; (5 ) a b 0,n N ,n 1 a n b n ; (6) a b 0,n N ,n 1 n a n b .
不等式的基本性质 (第二课时)
1
【知识回顾】 1、不等式的概念:
同向不等式; 异向不等式; 同解不等式.
2、比较两个实数大小的主要方法:
(1)作差比较法:作差——变形——定号——下结论; (2)作商比较法:作商——变形——与1比较大小——下 结论. 大多用于比较幂指式的大小.
2
探究! 类比等式的gt;b>0,C<d<0,e<0,求证:
e e ac bd
【解题回顾】在证明不等式时要依据不等式的性质进行,不能 自己“制造”性质来进行.
8
例3:在三角形ABC中,求A-B的取值范围.
9
例4、已知
1 x 2 ,求下列式子的取值范围。
3
3
(1)1-x (2)x(1-x)
解题回顾:同向不等式可以做加法运算,异向不等式可以做减法运算。当同 向不等式两边都为正时,可以做乘法运算。本题常见的错误是将取值范围扩 大。
相关文档
最新文档