2016年上海市高三数学一模普陀及答案
2016届高三年级第一次综合诊断考试理数答案
2016届高三年级第一次综合诊断考试理数答案一、选择题 (本大题共12小题,每小题5分,满分60分.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C A B D B C A BDAC二、填空题(本大题共4小题,每小题5分,满分20分.)13. 35 14.2211612x y += 15. 1(0,)216. 2015 三、解答题(本大题共6小题,满分70分.) 17、【解】 (Ⅰ).1)6sin(22)cos(12)sin(3)(m x m x x x f +-+=+-⋅-=πωωω依题意函数.32,32,3)(==ωπωππ解得即的最小正周期为x f 所以.1)632sin(2)(m x x f +-+=π分所以依题意的最小值为所以时当6.1)632sin(2)(.0,.)(,1)632sin(21,656326,],0[ -π+==≤π+≤π≤π+≤ππ∈x x f m m x f x x x (Ⅱ).1)632sin(,11)632sin(2)(=+∴=-+=ππC C C f 22252,..863663622,,2sin cos cos(),2152cos sin sin 0,sin .102510sin 1,sin .122Rt C C C ABC A B B B A C A A A A A A πππππππ<+<+==∆+==+--±∴--==-<<∴= 而所以解得分在中解得分分18、∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB∴EF AE ⊥,EF BE ⊥ 又A E E B ⊥∴,,EB EF EA 两两垂直以点E 为坐标原点,,,EB EF EA 分别为轴 建立如图所示的空间直角坐标系由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0)∴(2,2,0)EG = ,(2,2,2)BD =-,,x y z∴22220BD EG ⋅=-⨯+⨯=∴B D E G ⊥-----------------6分()2由已知得(2,0,0)EB = 是平面DEF 的法向量,设平面DEG 的法向量为(,,)n x y z =∵(0,2,2),(2,2,0)ED EG ==∴00ED n EG n ⎧⋅=⎪⎨⋅=⎪⎩ ,即00y z x y +=⎧⎨+=⎩,令1x =,得(1,1,1)n =- 设平面DEG 与平面DEF 所成锐二面角的大小为θ则||23cos |cos ,|3||||23n EB n EB n EB θ=<>===∴平面DEG 与平面DEF 所成锐二面角的余弦值为33----------------12分 19.(本题满分12分) 解:(1)众数:8.6; 中位数:8.75 ;……………2分(2)设i A 表示所取3人中有i 个人是“极幸福”,至多有1人是“极幸福”记为事件A ,则140121)()()(3162121431631210=+=+=C C C C C A P A P A P ; …………6分(3)ξ的可能取值为0,1,2,3.6427)43()0(3===ξP ;6427)43(41)1(213===C P ξ; 64943)41()2(223===C P ξ;641)41()3(3===ξP ………………10分 所以ξ的分布列为:ξE 27279101230.7564646464=⨯+⨯+⨯+⨯=. ……………12分另解:ξ的可能取值为0,1,2,3.则1~(3,)4B ξ,3313()()()44k k kP k C ξ-==.所以ξE =75.0413=⨯. 20.(本小题满分12分) 解:(Ⅰ)∵错误!未找到引用源。
上海市普陀区2016届高三数学下学期质量调研试题
2015学年第二学期普陀区高三数学质量调研卷2016.4 考生注意:1. 答卷前,考生务必在答题纸上将姓名、考试号填写清楚,并在规定的区域贴上条形码.2. 本试卷共有23题,满分150分,考试时间120分钟.3. 本试卷另附答题纸,每道题的解答必须写在答题纸相应位置,本卷上的任何解答都不作评分依据. 一 填空题(本大题共有14题,满分56分)考生应在答题及纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 若集合{}R x x y x A ∈-==,1|,{}R x x x B ∈≤=,1|||,则=B A .2. 若函数xx f 11)(+=()0>x 的反函数为)(1x f -,则不等式2)(1>-x f 的解集为 . 3.【理科】若53sin =α且α是第二象限角,则=⎪⎭⎫⎝⎛-42cot πα . 【文科】【理科】若53sin =α且α是第二象限角,则=⎪⎭⎫ ⎝⎛-4tan πα .4. 若函数)(x f 是定义在R 上的奇函数,且满足)()2(x f x f -=+,则=)2016(f .5. 在831⎪⎭⎫ ⎝⎛-x x 的展开式中,其常数项的值为 .6.若函数x x f 2sin )(=,⎪⎭⎫⎝⎛+=6)(πx f x g ,则函数)(x g 的单调递增区间为 . 7.【理科】设P 是曲线⎪⎩⎪⎨⎧==θθtan sec 22y x (θ为参数)上的一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹的普通方程为 .【文科】设P 是曲线1222=-y x 上的一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹 方程为 .8.【理科】在极坐标系中,O 为极点,若⎪⎭⎫ ⎝⎛6,1πA ,⎪⎭⎫⎝⎛32,2πB ,则△AOB 的面积为 . 【文科】不等式组⎪⎩⎪⎨⎧≥+-≥+≤0203y x y x x 所表示的区域的面积为 .9.【理科】袋中装有5只大小相同的球,编号分别为5,4,3,2,1,现从该袋中随机地取出3只,被取出的球中最大的号码为ξ,则=ξE .【文科】袋中装有5只大小相同的球,编号分别为5,4,3,2,1,若从该袋中随机地取出3只,则被取出的球 的编号之和为奇数的概率是 (结果用最简分数表示).10.若函数x x f 5log )(=(0>x ),则方程1)3()1(=-++x f x f 的解=x .11.某同学用球形模具自制棒棒糖.现熬制的糖浆恰好装满一圆柱形容器(底面半径为3cm ,高为10cm ),共做了20颗完全相同的棒棒糖,则每个棒棒糖的表面积为 2cm (损耗忽略不计). 12. 如图所示,三个边长为2的等边三角形有一条边在同一直线上,边33C B 上有10个不同的点1021,,,P P P ,记i i AP AB M ⋅=2 (10,,2,1 =i ),则=+++1021M M M .13.设函数⎩⎨⎧>-≤+=-0),1(0,2)(x x f x a x f x ,记x x f x g -=)()(,若函数)(x g 有且仅有两个零点,则实数a 的取值范围是 .14. 已知*N n ∈,从集合{}n ,,3,2,1 中选出k (N k ∈,2≥k )个数k j j j ,,,21 ,使之同时满足下面两个条件:①n j j j k ≤<<≤ 211; ②m j j i i ≥-+1(1,,2,1-=k i ),则称数组()k j j j ,,21为从n 个元素中选出k 个元素且限距为m 的组合,其组合数记为()m k nC ,. 例如根据集合{}3,2,1可得()31,23=C .给定集合{}7,6,5,4,3,2,1,可得()=2,37C .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15. 若a 、b 表示两条直线,α表示平面,下列命题中的真命题为( ) (A )若α⊥a ,b a ⊥,则α//b (B )若α//a ,b a ⊥,则α⊥b (C )若α⊥a ,α⊆b ,则b a ⊥ (D )若α//a ,α//b ,则b a //16.过抛物线x y 82=的焦点作一条直线与抛物线相交于A 、B 两点,且这两点的横坐标之和为9,则满足条件的直线( )(A )有且只有一条 (B )有两条 (C )有无穷多条 (D )必不存在 17.若z C ∈,则“1Im ,1Re ≤≤z z ”是“1||≤z ”成立的 条件.( )(A )充分非必要 (B )必要非充分 (C )充要 (D )既非充分又非必要18. 对于正实数α,记αM 是满足下列条件的函数)(x f 构成的集合:对于任意的实数R x x ∈21,且21x x <,都有()()121212)()(x x x f x f x x -<-<--αα成立.下列结论中正确的是( )(A )若21)(,)(ααM x g M x f ∈∈,则21)()(αα⋅∈⋅M x g x f (B )若21)(,)(ααM x g M x f ∈∈且0)(≠x g ,则21)()(ααM x g x f ∈ (C )若21)(,)(ααM x g M x f ∈∈,则21)()(αα+∈+M x g x f(D )若21)(,)(ααM x g M x f ∈∈且21αα>,则21)()(αα-∈-M x g x f三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 【文科】在正四棱柱1111D C B A ABCD -中,底面边长为1,体积为2,E 为AB 的中点,证明:E A 1与B C 1是异面直线,并求出它们所成的角的大小(结果用反三角函数值表示).【理科】在正四棱柱1111D C B A ABCD -中,底面边长为1,B C 1与底面ABCD 所成的角的大小为2arctan ,如果平面11C BD 与底面ABCD所成的二面角是锐角,求出此二面角的大小(结果用反三角函数值)20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 【理科】已知函数x x x f cos 3sin 2)(⋅⎪⎭⎫⎝⎛+=π 【文科】已知函数)(x f x x x 2cos 3cos sin += (1)若20π≤≤x ,求函数)(x f 的值域;(2)设ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,,若A 为锐角且23)(=A f ,2=b ,3=c ,求)cos(B A -的值.1 AA1A21.(本题满分14分)本题共有3个小题,第1小题满分6分,第2小题满分8分,某企业参加A 项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A 项目中调出x 人参与B 项目的售后服务工作,每人每年可以创造利润⎪⎭⎫⎝⎛-500310x a 万元(0>a ),A 项目余下的工人每人每年创造利润需要提高%2.0x(1)若要保证A 项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出 多少人参加B 项目从事售后服务工作?(2)在(1)的条件下,当从A 项目调出的人数不能超过总人数的%40时,才能使得A 项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a 的取值范围.22.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.已知椭圆Γ:14522=+y x 的中心为O ,一个方向向量为),1(k =的直线l 与Γ只有一个公共点M (1)若1=k 且点M 在第二象限,求点M 的坐标;(2)若经过O 的直线1l 与l 垂直,求证:点M 到直线1l 的距离25-≤d ;(3)若点N 、P 在椭圆上,记直线ON 的斜率为1k ,且为直线OP 的一个法向量,且541=k k 求22OP ON +的值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知各项不为零的数列{}n a 的前n 项和为n S ,且11=a ,121+⋅=n n n a a S (*N n ∈) (1)求证:数列{}n a 是等差数列; (2)设数列{}n b 满足:122+-=n n a a n b ,且()3841lim 1211=+++++++∞→n n k k k k n b b b b b b ,求正整数k 的值; (3)若m 、k 均为正整数,且2≥m ,m k <,在数列{}k c 中,11=c ,11++-=k k k a mk c c ,求m c c c +++ 21.2015学年第二学期普陀区高三数学质量调研评分细则二 填空题(本大题共有14题,满分56分)考生应在答题及纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.{}1 2. ⎪⎭⎫ ⎝⎛231, 3.【理科】2 【文科】7- 4. 0 5. 286.⎥⎦⎤⎢⎣⎡+-12,125ππππk k ,z k ∈7.14822=-y x .8.【理科】1.【文科】16 9.【理科】29【文科】5210.4. 11.π9. 12. 180 13. 2->a 14. 10二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 【文科】【解】根据已知条件,C C 1为正四棱柱1111D C B A ABCD -的高底面四边形11ABB A 是正方形,且面积为1, 故由sh V =2=,可得21=C C .……2分假设E A 1与B C 1不是异面直线,则它们在同一平面内 由于点1A 、E 、B 在平面11ABB A 内,则点1C 也在平面11ABB A 内,这是不可能的,故E A 1与B C 1是异面直线.…………5分取11B A 的中点为E ,连接BE ,1EC ,所以E A BE 1//,1EBC ∠或其补角,即为异面直线E A 1与B C 1所成的角.……7分在1BEC ∆,51=BC ,217=BE ,251=EC ,……9分 由余弦定理得,8585821752454175cos 1=⨯-+=∠EBC 0>,即85858arccos 1=∠EBC ,…11分1 A所以异面直线E A 1与B C 1所成的角的大小为85858arccos.……12分 【理科】【解】根据题意,可得⊥C C 1底面ABCD ,所以BC 是B C 1在平面ABCD 上的射影,故BC C 1∠即为直线B C 1与 底面ABCD 所成的角,即BC C 1∠=2arctan .……2分 在BC C RT 1∆中,2tan 11=∠⋅=BC B BC C C ……3分以D 为坐标原点,以射线1,,DD DC DA 所在的直线分别为z y x ,,轴, 建立空间直角坐标系,如图所示:由于D D 1⊥平面ABCD ,故1DD 是平面的一个法向量,且1DD ()2,0,0=……5分()0,1,1B ,()1,0,01D ,()2,1,01C ,故()2,1,11--=BD ,()2,0,11-=BC ……7分设()z y x ,,=是平面11C BD 的一个法向量,所以⎪⎩⎪⎨⎧=⋅=⋅0011BC n BD ,即⎩⎨⎧=-=-+0202z x z y x ,不妨取1=z ,则⎩⎨⎧==02y x ,即()1,0,2=……9分设平面11C BD 与底面ABCD 所成的二面角为θ,则5552120002cos =⨯⨯+⨯+⨯==θ, 即55arccos=θ……11分 所以平面11C BD 与底面ABCD 所成的二面角大小为55arccos.……12分20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 20.【解】(1)()x x x x f cos cos 3sin )(+=x x x 2cos 3cos sin +=232cos 232sin 21++=x x 2332sin +⎪⎭⎫ ⎝⎛+=πx …………2分A1A由20π≤≤x 得,34323πππ≤+≤x ,132sin 23≤⎪⎭⎫ ⎝⎛+≤-πx …………4分 2312332sin 0+≤+⎪⎭⎫ ⎝⎛+≤πx ,所以函数)(x f 的值域为⎥⎦⎤⎢⎣⎡+231,0………6分(2)由232332sin )(=+⎪⎭⎫⎝⎛+=πA A f 得,032sin =⎪⎭⎫ ⎝⎛+πA 又由20π<<A 得,34323πππ<+<A ,只有ππ=+32A ,故3π=A .…………8分 在ABC ∆中,由余弦定理得,A bc c b a cos 2222-+=73cos 32294=⨯⨯⨯-+=π,故7=a …………10分由正弦定理得,BbA a sin sin =,所以721sin sin ==a A b B 由于a b <,所以772cos =B …………12分 ()B A B A B A sin sin cos cos cos +=-14757212377221=⨯+⨯=……14分21.(本题满分14分)本题共有3个小题,第1小题满分6分,第2小题满分8分, 【解】(1)根据题意可得,()()≥⨯+-%2.010101000x x 101000⨯……3分 展开并整理得,05002≤-x x ……5分解得5000≤≤x ,最多调出的人数为500人……6分(2)⎩⎨⎧⨯≤≤≤%4010005000x x ,解得4000≤≤x ……7分()()%2.010101000500310x x x x a ⨯+⋅-≤⨯⎪⎭⎫ ⎝⎛-,对于任意的[]400,0∈x 恒成立……9分即%210201010005031022x x x x ax --+⨯≤- 即10002502++≤x x ax 对于任意的[]400,0∈x 恒成立……10分 当0=x 时,不等式显然成立;当4000≤<x 时,1250000250111000250+⎪⎭⎫⎝⎛+=++≤x x x x a ……11分 令函数xx x f 250000)(+=,可知函数)(x f 在区间[]400,0上是单调递减函数……12分 故()1025400)(min ==f x f ,故1.511000250≥++xx ……13分故1.50≤<a ,所以实数a 的取值范围是1.50≤<a ……14分22.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分. 【解】(1)设直线l :m x y +=,根据题意可得:……1分⎪⎩⎪⎨⎧=++=14522yx mx y ,消去y 并整理得()04510922=-++m bx x ……①…………2分 ()()045941022=-⨯⨯-=∆b b ,解得92=m ,因为M 在第二象限,故3=m ,……3分代入①得0253092=++x x ,解得35-=x ,进而34=y ,故⎪⎭⎫⎝⎛-34,35M .……4分 (2)根据题意可得,直线1l :0=+ky x ……5分设直线l :m kx y +=(0≠m ),则⎪⎩⎪⎨⎧=++=14522y x mkx y ……5分 消去y 得()()0451054222=-+++m kmx xk……6分()()()0454*******=-⋅+-=∆m k km ,解得04522=+-m k ,即4522+=k m ……7分且4552+-=k km x ,4542+=k m y ,故⎪⎭⎫ ⎝⎛++-454,45522k m k kmM ……8分 点M 到直线1l 的距离222221451454455kk km kk km k km d ++=++++-=()()22541k k k++=① 当0=k 时,0=d ;……9分 ② 当0≠k 时,=d 25945122-≤++kk ,当且仅当454±=k 时等号成立. 综上①②可得,点M 到直线1l 距离25-≤d .……10分(3)根据条件可得直线OP 的斜率kk 12-=,……11分 由于541=k k ,则直线ON 的斜率的k k 541=……12分 于是直线ON 的方程为kx y 54=,由⎪⎪⎩⎪⎪⎨⎧==+kxy y x 5414522,可得224525k x +=……13分 设点),(11y x P ,则222122121245162525161k kx k y x OP ++=⎪⎭⎫ ⎝⎛+=+=……14分 同理2ON ()22222245120kk y x ++=+=……15分 22ON OP +=22451625k k +++()2245120k k ++945364522=++=k k ……16分23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 【解】(1)当1=n 时,121211==a a S ,11=a ,故22=a ;……1分 当2≥n 时,=-=-1n n n S S a -⋅+121n n a a n n a a ⋅-121变形得()112-+-⋅=n n n n a a a a ,由于0≠n a ,所以211=--+n n a a ……2分所以1212-=-n a n ,n a n 22=,*N n ∈,于是n a n =,*N n ∈.……3分由于11=-+n n a a ,所以数列{}n a 是以1首项,1为公差的等差数列.…………4分 (2)由(1)得n a n =,所以122+-=n n a a n b nn n ⎪⎭⎫⎝⎛⋅==+-21412)1(2……5分 52121++⎪⎭⎫ ⎝⎛=⋅n n n b b ,且128121=b b ,当2≥n 时,4111=-+n n n n b b b b …………7分故数列{}1+n n b b 是以1281为首项,41为公比的等比数列.……8分 于是()=+++++++∞→1211lim n n k k k k n b b b b b b =-+4111k k b b 3841,即912-+=⋅k k b b ……9分k kk k b b 251241321--+=⎪⎭⎫⎝⎛=⋅,故92522---=k ,解得2=k .…………10分 (3)则由(1)得k a k =,11++-=k k k a m k c c 1+-=k m k ,12211c cc c c c c k k k k k ⋅⋅⋅=--- ……12分 ()()km k k k C mk k k m k m c 1112)1()2)(1(111⋅-=⋅⋅-⋅+-+-⋅-=-- …………14分m c c c +++ 21()[]m mm m m m C C C C m 132111--+-+-=…………16分 ()()[]m C C C C m m m m m m m 1111210=-+-+--= 故m c c c +++ 21m1=.……18分。
普陀区一模高三数学试卷
普陀区一模高三数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,为奇函数的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x2. 已知等差数列{a_n}的前三项分别为1,4,7,则该数列的公差d为()A. 2B. 3C. 4D. 53. 函数y = 2x - 3与x轴的交点坐标为()A. (1, 0)B. (3, 0)C. (-3/2, 0)D. (0, -3)4. 已知圆心在原点,半径为5的圆的方程为()A. x^2 + y^2 = 25B. x^2 + y^2 = 16C. x^2 + y^2 = 9D. x^2 + y^2 = 495. 已知抛物线y^2 = 4px(p > 0)的焦点坐标为()A. (p, 0)B. (-p, 0)C. (0, p)D. (0, -p)6. 已知直线l的方程为y = 2x + 1,直线m的方程为x - y + 3 = 0,直线l与直线m的交点坐标为()A. (-1, -3)B. (1, 3)C. (-1, 1)D. (1, -1)7. 已知复数z = 1 + i,那么|z| =()A. √2B. 2C. √3D. 18. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的数量积为()A. 4B. -1C. 1D. 79. 已知函数f(x) = x^3 - 3x^2 + 2x,那么f'(x) =()A. 3x^2 - 6x + 2B. 3x^2 - 6x - 2C. x^2 - 6x + 2D. x^2 - 6x - 210. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),且f(-1) = 0,f(1) = 0,则函数f(x)的图像与x轴的交点个数为()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,每小题4分,共20分。
2016年上海市黄浦区高考一模数学试卷(理科)【解析版】
2016年上海市黄浦区高考数学一模试卷(理科)一、填空题(共14小题,每小题4分,满分56分)1.(4分)不等式|x﹣1|<1的解集用区间表示为.2.(4分)函数y=cos2x﹣sin2x的最小正周期T=.3.(4分)直线=3的一个方向向量可以是.4.(4分)两个半径为1的铁球,熔化后铸成一个大球,这个大球的半径为.5.(4分)若无穷等比数列中任意一项均等于其之后所有项的和,则其公比为.6.(4分)若函数y=a+sin x在区间[π,2π]上有且只有一个零点,则a=.7.(4分)若函数f(x)=+为偶函数且非奇函数,则实数a的取值范围为.8.(4分)若对任意不等于1的正数a,函数f(x)=a x+2的反函数的图象都经过点P,则点P的坐标是.9.(4分)在(a+b)n的二项展开式中,若奇数项的二项式系数的和为128,则二项式系数的最大值为(结果用数字作答).10.(4分)在△ABC中,若cos(A+2C﹣B)+sin(B+C﹣A)=2,且AB=2,则BC=.11.(4分)为强化安全意识,某学校拟在未来的连续5天中随机抽取2天进行紧急疏散演练,那么选择的2天恰好为连续2天的概率是(结果用最简分数表示).12.(4分)已知k∈Z,若曲线x2+y2=k2与曲线xy=k无交点,则k=.13.(4分)已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若=2,且||=||,则m=.14.(4分)若非零向量,,满足+2+3=,且•=•=•,则与的夹角为.二、选择题(共4小题,每小题5分,满分20分)15.(5分)已知复数z,“z+=0”是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件16.(5分)已知x∈R,下列不等式中正确的是()A.>B.>C.>D.>17.(5分)已知P为直线y=kx+b上一动点,若点P与原点均在直线x﹣y+2=0的同侧,则k,b满足的条件分别为()A.k=1,b<2B.k=1,b>2C.k≠1,b<2D.k≠1,b>2 18.(5分)已知a1,a2,a3,a4是各项均为正数的等差数列,其公差d大于零,若线段l1,l2,l3,l4的长分别为a1,a2,a3,a4,则()A.对任意的d,均存在以l1,l2,l3为三边的三角形B.对任意的d,均不存在以为l1,l2,l3三边的三角形C.对任意的d,均存在以l2,l3,l4为三边的三角形D.对任意的d,均不存在以l2,l3,l4为三边的三角形三、解答题(共5小题,满分74分)19.(12分)已知三棱柱ABC﹣A′B′C′的底面为直角三角形,两条直角边AC和BC的长分别为4和3,侧棱AA′的长为10.(1)若侧棱AA′垂直于底面,求该三棱柱的表面积;(2)若侧棱AA′与底面所成的角为60°,求该三棱柱的体积.20.(12分)如图,已知点A是单位圆上一点,且位于第一象限,以x轴的正半轴为始边,OA为终边的角设为α,将OA绕坐标原点逆时针旋转至OB.(1)用α表示A,B两点的坐标;(2)M为x轴上异于O的点,若MA⊥MB,求点M横坐标的取值范围.21.(14分)如图,某地要在矩形区域OABC内建造三角形池塘OEF,E,F分别在AB,BC边上,OA=5米,OC=4米,∠EOF=,设CF=x,AE=y.(1)试用解析式将y表示成x的函数;(2)求三角形池塘OEF面积S的最小值及此时x的值.22.(18分)已知椭圆Γ:+=1(a>b>0),过原点的两条直线l1和l2分别与Γ交于点A、B和C、D,得到平行四边形ACBD.(1)当ACBD为正方形时,求该正方形的面积S;(2)若直线l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,当d12+d22为定值时,求此时直线l1和l2的斜率及该定值.(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.23.(18分)已知a1,a2,…,a n是由n(n∈N*)个整数1,2,…,n按任意次序排列而成的数列.数列{b n}满足b k=n+1﹣a k(k=1,2,…,n),c1,c2,…,c n是1,2,…,n按从大到小的顺序排列而成的数列,记S n=c1+2c2+…+n c n.(1)证明:当n为正偶数时,不存在满足a k=b k(k=1,2,…,n)的数列{a n};(2)写出c k(k=1,2,…,n),并用含n的式子表示S n;(3)利用(1﹣b1)2+(2﹣b2)2+…+(n﹣b n)2≥0,证明:b1+2b2+…+nb n≤n(n+1)(2n+1)及a1+2a2+…+na n≥S n.(参考:12+22+…+n2=n(n+1)(2n+1))2016年上海市黄浦区高考数学一模试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题4分,满分56分)1.(4分)不等式|x﹣1|<1的解集用区间表示为(0,2).【解答】解:不等式|x﹣1|<1等价为:﹣1<x﹣1<1,解得,0<x<2,即原不等式的解集为{x|0<x<2},用区间表示为:(0,2),故答案为:(0,2).2.(4分)函数y=cos2x﹣sin2x的最小正周期T=π.【解答】解:y=cos2x﹣sin2x=cos2x,∴函数y=cos2x﹣sin2x的最小正周期T==π.故答案为:π.3.(4分)直线=3的一个方向向量可以是(﹣2,﹣1)..【解答】解:∵直线=3,∴x﹣2y﹣3=0.∴直线=3的一个方向向量可以是(﹣2,﹣1).故答案为:(﹣2,﹣1).4.(4分)两个半径为1的铁球,熔化后铸成一个大球,这个大球的半径为.【解答】解:设大球的半径为r,则根据体积相同,可知,即.故答案为:.5.(4分)若无穷等比数列中任意一项均等于其之后所有项的和,则其公比为.【解答】解:设数列中的任意一项为a,由无穷等比数列中的每一项都等于它后面所有各项的和,得a=,即1﹣q=q∴q=.故答案为:.6.(4分)若函数y=a+sin x在区间[π,2π]上有且只有一个零点,则a=1.【解答】解:作函数y=sin x在区间[π,2π]上的图象如下,,结合图象可知,若函数y=a+sin x在区间[π,2π]上有且只有一个零点,则a﹣1=0,故a=1;故答案为:1.7.(4分)若函数f(x)=+为偶函数且非奇函数,则实数a的取值范围为a>1.【解答】解:∵函数f(x)=+为偶函数且非奇函数,∴f(﹣x)=f(x),且f(﹣x)≠﹣f(x),又,∴a≥1.a=1,函数f(x)=+为偶函数且奇函数,故答案为:a>1.8.(4分)若对任意不等于1的正数a,函数f(x)=a x+2的反函数的图象都经过点P,则点P的坐标是(1,﹣2).【解答】解:∵当x+2=0,即x=﹣2时,总有a0=1,∴函数f(x)=a x+2的图象都经过点(﹣2,1),∴其反函数的图象必经过点P(1,﹣2)故答案为:(1,﹣2)9.(4分)在(a+b)n的二项展开式中,若奇数项的二项式系数的和为128,则二项式系数的最大值为70(结果用数字作答).【解答】解:在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,∴2n=256,解得n=8,展开式共n+1=8+1=9项,据中间项的二项式系数最大,故展开式中系数最大的项是第5项,最大值为=70.故答案为:70.10.(4分)在△ABC中,若cos(A+2C﹣B)+sin(B+C﹣A)=2,且AB=2,则BC=2.【解答】解:∵cos(A+2C﹣B)+sin(B+C﹣A)=2,cos(A+2C﹣B)≤1,sin (B+C﹣A)≤1,∴cos(A+2C﹣B)=1,sin(B+C﹣A)=1,∵A,B,C∈(0,π),∴A+2C﹣B∈(﹣π,3π),B+C﹣A∈(﹣π,2π),∴由正弦函数,余弦函数的图象和性质可得:A+2C﹣B=0或2π,B+C﹣A=,∴结合三角形内角和定理可得:①,或②,由①可得:A=,B=,C=,由②可得:A=,B=﹣,C=,(舍去),∴由AB=2,利用正弦定理可得:,解得:BC=2.故答案为:2.11.(4分)为强化安全意识,某学校拟在未来的连续5天中随机抽取2天进行紧急疏散演练,那么选择的2天恰好为连续2天的概率是(结果用最简分数表示).【解答】解:某学校拟在未来的连续5天中随机抽取2天进行紧急疏散演练,基本事件总数为n==10,选择的2天恰好为连续2天包含的基本事件个数m=4,∴选择的2天恰好为连续2天的概率p=.故答案为:.12.(4分)已知k∈Z,若曲线x2+y2=k2与曲线xy=k无交点,则k=±1.【解答】解:曲线x2+y2=k2,令x=k cosθ,y=k sinθ,代入曲线xy=k,曲线x2+y2=k2与曲线xy=k无交点,可得k2sinθcosθ=k,不成立.即sin2θ=不成立,1,k∈Z,可得k=±1.故答案为:±1.13.(4分)已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若=2,且||=||,则m=.【解答】解:由题意可知:F(1,0),由抛物线定义可知A(x1,y1),可知B(x2,y2),∵=2,可得:2(x2﹣1,y2)=(1﹣x1,﹣y1),可得y2=﹣,x2=,,解得x1=2,y1=±2.||=||,可得|m﹣1|=,解得m=.故答案为:.14.(4分)若非零向量,,满足+2+3=,且•=•=•,则与的夹角为.【解答】解:由+2+3=,得,代入•=•,得,即.再代入•=•,得,即.∴cos===﹣.∴与的夹角为.故答案为:.二、选择题(共4小题,每小题5分,满分20分)15.(5分)已知复数z,“z+=0”是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件【解答】解:对于复数z,若z+=0,z不一定为纯虚数,可以为0,反之,若z 为纯虚数,则z+=0.∴“z+=0”是“z为纯虚数”的必要非充分条件.故选:B.16.(5分)已知x∈R,下列不等式中正确的是()A.>B.>C.>D.>【解答】解:取x=0可得=1=,故A错误;取x=0可得=1=,故B错误;取x=1可得==,故D错误;选项C,∵x2+2>x2+1>0,∴>,故正确.故选:C.17.(5分)已知P为直线y=kx+b上一动点,若点P与原点均在直线x﹣y+2=0的同侧,则k,b满足的条件分别为()A.k=1,b<2B.k=1,b>2C.k≠1,b<2D.k≠1,b>2【解答】解:∵P为直线y=kx+b上一动点,∴设P(x,kx+b),∵点P与原点均在直线x﹣y+2=0的同侧,∴(x﹣kx﹣b+2)(0﹣0+2)>0,即2[(1﹣k)x+2﹣b]>0恒成立,即(1﹣k)x+2﹣b>0恒成立,则1﹣k=0,此时2﹣b>0,得k=1且b<2,故选:A.18.(5分)已知a1,a2,a3,a4是各项均为正数的等差数列,其公差d大于零,若线段l1,l2,l3,l4的长分别为a1,a2,a3,a4,则()A.对任意的d,均存在以l1,l2,l3为三边的三角形B.对任意的d,均不存在以为l1,l2,l3三边的三角形C.对任意的d,均存在以l2,l3,l4为三边的三角形D.对任意的d,均不存在以l2,l3,l4为三边的三角形【解答】解:A:对任意的d,假设均存在以l1,l2,l3为三边的三角形,∵a1,a2,a3,a4是各项均为正数的等差数列,其公差d大于零,∴a2+a3>a1,a3+a1=2a2>a2,而a1+a2﹣a3=a1﹣d不一定大于0,因此不一定存在以为l1,l2,l3三边的三角形,故不正确;B:由A可知:当a1﹣d>0时,存在以为l1,l2,l3三边的三角形,因此不正确;C:对任意的d,由于a3+a4,>a2,a2+a4=2a1+4d=a1+2d+a3>0,a2+a3﹣a4=a1>0,因此均存在以l2,l3,l4为三边的三角形,正确;D.由C可知不正确.故选:C.三、解答题(共5小题,满分74分)19.(12分)已知三棱柱ABC﹣A′B′C′的底面为直角三角形,两条直角边AC和BC的长分别为4和3,侧棱AA′的长为10.(1)若侧棱AA′垂直于底面,求该三棱柱的表面积;(2)若侧棱AA′与底面所成的角为60°,求该三棱柱的体积.【解答】解:(1)因为侧棱AA′⊥底面ABC,所以三棱柱的高h等于侧棱AA′的长,而底面三角形ABC的面积S=AC•BC=6,周长c=4+3+5=12,于是三棱柱的表面积S全=ch+2S△ABC=132.(2)如图,过A作平面ABC的垂线,垂足为H,A′H为三棱柱的高.因为侧棱AA′与底面ABC所长的角为60°,所以∠A′AH=60°,又底面三角形ABC的面积S=6,故三棱柱的体积V=S•A′H=6×=30.20.(12分)如图,已知点A是单位圆上一点,且位于第一象限,以x轴的正半轴为始边,OA为终边的角设为α,将OA绕坐标原点逆时针旋转至OB.(1)用α表示A,B两点的坐标;(2)M为x轴上异于O的点,若MA⊥MB,求点M横坐标的取值范围.【解答】解:(1)点A是单位圆上一点,且位于第一象限,以x轴的正半轴为始边,OA为终边的角设为α,α∈(0,)可得A(cosα,sinα),将OA绕坐标原点逆时针旋转至OB.可得B(cos(),sin()),即B(﹣sinα,cosα).(2)设M(x,0),x≠0,=(cosα﹣x,sinα),=(﹣sinα﹣x,cosα).MA⊥MB,可得(cosα﹣x)(﹣sinα﹣x)+sinαcosα=0.x sinα﹣x cosα+x2=0,可得﹣x=sinα﹣cosα=sin()∈(﹣1,1).综上x∈(﹣1,0)∪(0,1).点M横坐标的取值范围:(﹣1,0)∪(0,1).21.(14分)如图,某地要在矩形区域OABC内建造三角形池塘OEF,E,F分别在AB,BC边上,OA=5米,OC=4米,∠EOF=,设CF=x,AE=y.(1)试用解析式将y表示成x的函数;(2)求三角形池塘OEF面积S的最小值及此时x的值.【解答】解:(1)由∠EOF=,可得∠COF+∠AOE=,即有tan∠COF=,tan∠AOE=,则tan(∠COF+∠AOE)==1,即有y=,由y≤4,解得x≥,则函数的解析式为y=,(≤x≤4);(2)三角形池塘OEF面积S=S矩形OABC ﹣S△AOE﹣S△COF﹣S△BEF=4×5﹣×5y﹣×4x﹣×(4﹣y)(5﹣x)=20﹣•﹣2x﹣(5﹣x)•=20+(≤x≤4),令t=x+4(≤t≤8),即有S=20+(5t+﹣80)≥20+(2﹣80)=20﹣20.当且仅当5t=即t=4,此时x=4﹣4,△OEF的面积取得最小值,且为20﹣20.22.(18分)已知椭圆Γ:+=1(a>b>0),过原点的两条直线l1和l2分别与Γ交于点A、B和C、D,得到平行四边形ACBD.(1)当ACBD为正方形时,求该正方形的面积S;(2)若直线l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,当d12+d22为定值时,求此时直线l1和l2的斜率及该定值.(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.【解答】解:(1)∵ACBD为正方形,∴直线l1和l2的方程为y=x和y=﹣x,设点A、B的坐标为(x1,y1)、(x2,y2),解方程组,得==,由对称性可知,S=4=;(2)由题意,不妨设直线l1的方程为y=kx,则直线l2的方程为y=﹣kx,设P(x0,y0),则+=1,又∵d1=,d2=,∴+=+=,将=b2(1﹣)代入上式,得+=,∵d12+d22为定值,∴k2﹣=0,即k=±,于是直线l1和l2的斜率分别为和﹣,此时+=;(3)设AC与圆x2+y2=1相切的切点坐标为(x0,y0),则切线AC的方程为:x0x+y0y=1,点A、C的坐标为(x1,y1)、(x2,y2)为方程组的实数解.①当x0=0或y0=0时,ACBD均为正方形,椭圆均过点(1,1),于是有+=1;②当x0≠0或y0≠0时,将y=(1﹣x0x)代入+=1,整理得:(a2+b2)x2﹣2a2x0x﹣a2(1+b2)=0,由韦达定理可知x1x2=,同理可知y1y2=,∵ACBD为菱形,∴AO⊥CO,即x1x2+y1y2=0,∴+=0,整理得:a2+b2=a2b2(+),又∵+=1,∴a2+b2=a2b2,即+=1;综上所述,a,b满足的关系式为+=1.23.(18分)已知a1,a2,…,a n是由n(n∈N*)个整数1,2,…,n按任意次序排列而成的数列.数列{b n}满足b k=n+1﹣a k(k=1,2,…,n),c1,c2,…,c n是1,2,…,n按从大到小的顺序排列而成的数列,记S n=c1+2c2+…+n c n.(1)证明:当n为正偶数时,不存在满足a k=b k(k=1,2,…,n)的数列{a n};(2)写出c k(k=1,2,…,n),并用含n的式子表示S n;(3)利用(1﹣b1)2+(2﹣b2)2+…+(n﹣b n)2≥0,证明:b1+2b2+…+nb n≤n(n+1)(2n+1)及a1+2a2+…+na n≥S n.(参考:12+22+…+n2=n(n+1)(2n+1))【解答】解:(1)证明:当n为正偶数时,存在满足a k=b k(k=1,2,…,n)的数列{a n},由b k=n+1﹣a k(k=1,2,…,n),可得a k=,由n为正偶数,可得n+1为奇数,不为整数,a k为整数,故不成立,则当n为正偶数时,不存在满足a k=b k(k=1,2,…,n)的数列{a n};(2){c k}:n,n﹣1,n﹣2, (1)=3+,n 由S1=1,S2﹣S1=3,S3﹣S2=6,S4﹣S3=10,…,S n﹣S n﹣1>1.累加可得,S n=1+3+6+10+…+[3+]=(12+22+…+n2)+(1+2+…+n)]=×n(n+1)(2n+1)+n(n+1)=n(n+1)(n+2);(3)证明:由(1﹣b1)2+(2﹣b2)2+…+(n﹣b n)2≥0,可得12+22+…+n2﹣2(b1+2b2+…+nb n)+(b12+b22+…+b n2)≥0,即有b1+2b2+…+nb n≤[(12+22+…+n2)+(b12+b22+…+b n2)]=12+22+…+n2=n(n+1)(2n+1);由排序定理可得,乱序之和不小于倒序之和,由a1+2a2+…+na n为乱序之和,S n=c1+2c2+…+n c n为倒序之和.即可得到a1+2a2+…+na n≥S n.。
上海市宝山区2016届高考数学一模试卷(解析版)讲解
2016年上海市宝山区高考数学一模试卷一.填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.方程4x﹣2x﹣6=0的解为.2.已知:(i是虚数单位),则z=.3.以点(1,2)为圆心,与直线4x+3y﹣35=0相切的圆的方程是.4.数列所有项的和为.5.已知矩阵A=,B=,AB=,则x+y=.6.等腰直角三角形的直角边长为1,则绕斜边旋转一周所形成的几何体的体积为.7.若(x﹣)9的展开式中x3的系数是﹣84,则a=.8.抛物线y2=12x的准线与双曲线的两条渐近线所围成的三角形的面积等于.9.已知ω,t>0,函数的最小正周期为2π,将f(x)的图象向左平移t个单位,所得图象对应的函数为偶函数,则t的最小值为.10.两个三口之家,共4个大人,2个小孩,约定星期日乘“奥迪"、“捷达”两辆轿车结伴郊游,每辆车最多只能乘坐4人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是.11.向量,满足,,与的夹角为60°,则=.12.数列,则是该数列的第项.13.已知直线(1﹣a)x+(a+1)y﹣4(a+1)=0(其中a为实数)过定点P,点Q在函数的图象上,则PQ连线的斜率的取值范围是.14.如图,已知抛物线y2=x及两点A1(0,y1)和A2(0,y2),其中y1>y2>0.过A1,A2分别作y 轴的垂线,交抛物线于B1,B2两点,直线B1B2与y轴交于点A3(0,y3),此时就称A1,A2确定了A3.依此类推,可由A2,A3确定A4,….记A n(0,y n),n=1,2,3,….给出下列三个结论:①数列{y n}是递减数列;②对∀n∈N*,y n>0;③若y1=4,y2=3,则.其中,所有正确结论的序号是.二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的.必须用2B铅笔将正确结论的代号涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.15.如图,该程序运行后输出的结果为()A.1 B.2 C.4 D.1616.P是△ABC所在平面内一点,若,其中λ∈R,则P点一定在()A.△ABC内部B.AC边所在直线上C.AB边所在直线上D.BC边所在直线上17.若a,b是异面直线,则下列命题中的假命题为()A.过直线a可以作一个平面并且只可以作一个平面α与直线b平行B.过直线a至多可以作一个平面α与直线b垂直C.唯一存在一个平面α与直线a、b等距D.可能存在平面α与直线a、b都垂直18.王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)网络月租费本地话费长途话费甲:联通130 12元0.36元/分0。
上海师大附中2016届高三模拟考试数学试题 精品
2016届上海师大附中高三数学摸底考试试题一、填空题1、设复数i z 21+=,则=-z z 22; 2、集合},1|{2R x x y y M ∈-==,集合}3|{2x y x N -==,则=N M ;3、PC PB PA 、、是从P 点引出的三条射线,每两条夹角都是60,那么直线PC 与平面PAB 所成角的余弦值是 ;4、设)(x f 是定义在R 上的偶函数,其图像关于直线1x =对称,对任意121,0,2x x ⎡⎤∈⎢⎥⎣⎦,有1212()()(),(1)16f x x f x f x f +=⋅=,则11()()24f f ⋅= ;5、设a 为函数sin ()y x x x R =∈的最大值,则二项式6(的展开式中含2x 项的系数是 ;6、已知数列{}n a 是等差数列,若468212a a a ++=,则该数列前11项的和为 ;7、已知命题“存在,12x R x a x ∈-++≤”是假命题,则实数a 的取值范围是 ;8、已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,若函数()f x 图像上的一个对称中心到对称轴的距离的最小值为3π,则ω的值为 ; 9、正方形ABCD 的边长为2,点,E F 分别在边,AB BC 上,且11,2AE BF ==,将此正方形沿,DE DF 折起,使点,A C 重合于点P ,则三棱锥P DEF -的体积是 ;10、设12,F F 是双曲线2214x y -=的两个焦点,点P 在双曲线上且满足01260F PF ∠=,则12PF F ∆的面积为 ;11、在ABC ∆中,已知,,a b c 分别为,,A B C ∠∠∠所对的边,S 为ABC ∆的面积,若向量222(4,),(1,)p a b c q S =+-=满足p q ∥,则C ∠= ;12、若,m n 为两条不重合的直线,,αβ为两个不重合的平面,则下列命题中的真命题个数是①若,m n 都平行于平面,αβ,则,m n 一定不是相交直线; ②若,m n 都垂直于平面,αβ,则,m n 一定是平行直线; ③已知,αβ互相垂直,,m n 互相垂直,若m α⊥,则n β⊥; ④,m n 在平面α内的射影互相垂直,则,m n 互相垂直。
上海普陀区2016届高三数学调研测试(理科word版含答案)
普陀区2016届高三数学调研测试卷(理科) 2015.11命 题 高福如 (同济大学第二附属中学)说明:本试卷满分150分,考试时间120分钟。
本套试卷另附答题纸,..........填空题和选择题直接填..........在相应的位置......,.每道..解答..题的解答必须写在的相..........应.区域内...。
.一、填空题(本大题满分56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中.每个空格填对得4分,填错或不填在正确的位置一律得零分.1、集合{3,2}aA =,{,}B a b =,若 2 B A ,则 B A .2、函数2()1(1)f x x x =-≤-的反函数=-)(1x f.3、函数22sin y x ω=-的最小正周期为π,则实数ω的值为 .4、已知数列{}n a 的前n 项的和2nn S a =-(a R ∈).则8a =________.5、若1sin 4α=,且α是第二象限的角.则3sin()2πα+=__________. 6、不等式a x <-1成立的充分条件是40<<x ,则实数a 的取值范围是____________. 7、已知圆锥的侧面展开图是圆心角为23π、半径为6的扇形.则该圆锥的体积为 . 8、函数23()(1)(N )3n n n f x x n n n *+⎛⎫=++∈ ⎪+⎝⎭,当1 2 3 n =,,,时,()n f x 的零点依次 记作123 x x x ,,,,则lim n n x →∞= . 9、设22()23,()(1)f x ax x g x x a x a =+-=+--,{}{}()0,()0M x f x P x g x =≤=≥. 若MP R =,则实数a 的取值集合为 . 10、不等式12sin x a y x+≥-+对一切非零实数,x y 均成立,则实数a 的范围为 .11、如果用反证法证明“数列{}n a 的各项均小于2”,有下列四种不同的假设: ① 数列{}n a 的各项均大于2 ; ② 数列{}n a 的各项均大于或等于2 ; ③ 数列{}n a 中存在一项k a ,2k a ≥ ; ④ 数列{}n a 中存在一项,2k k a a >. 其中正确的序号为 .(填写出所有假设正确的序号)12、在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,若2015120a BC b CA c AB ⋅+⋅+⋅=,则ABC∆•••()n n a Sn78O0.4- 0.8-0.7的最小角等于 .13、如果定义在R 上的函数()f x 对任意两个不等的实数12,x x 都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“Z 函数”.给出函数:①31y x =-+;②2xy = ;③ln ||,00,0x x y x ≠⎧=⎨=⎩ ;④224,0,0x x x y x x x ⎧+≥=⎨-+<⎩.以上函数为“Z 函数”的序号为 . 14、已知等比数列{}n a 的首项为43,公比为13-,其前n 项和记为S ,又设13521,,,,2482n nn B -⎧⎫=⎨⎬⎩⎭(),2n N n *∈≥,n B 的所有非空子集中的最小元素的和为T ,则22015S T +≥的最小正整数n 为 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号涂在答题纸相应的位置上. 每题选对得5分,不选、选错或选出的代号超过一个一律得零分.15、在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:()1232sin 100,3cos 100+4y t y t π⎛⎫=π=π ⎪⎝⎭,则这两个声波合成后(即21y y y +=)的声波的振幅为 ( )A . 62B .6C . 23D .3 16、若a 、b 为两条异面直线,且分别在两个平面α、β内,若l αβ=,则直线l ( )A. 分别与a 、b 相交B. 与a 、b 都不相交C. 至少与a 、b 中的一条相交D. 至多与a 、b 中的一条相交17、设等差数列{}n a 的前n 项和为n S .在同一个坐标系中,()n a f n =及()n S g n =的部分图像如图所示(图中的三个点).根据图中所提供的信息,下列结论正确的是 ( )A.当3n =时,n S 取得最大值B.当4n =时,n S 取得最大值C.当3n =时,n S 取得最小值D.当4n =时,n S 取得最小值ABCE 1A 1B 1C DxyOP R18、已知函数2|log |,02(),210sin()4x x f x x x π⎧<<⎪=⎨≤≤⎪⎩ ,若存在实数1x 、2x 、3x 、4x ( 1234x x x x <<< ) 满足1234()()()()f x f x f x f x ===.则3412(2)(2)x x x x --⋅的取值范围是 ( )A .(0,12)B .(4,16)C .(9,21)D .(15,25)三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸规定的方框内写出必要的步骤.19、 (本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.在直三棱柱111A B C ABC -中,AC BC ⊥, D 、E 分别为AB 、AC 中点. (1)求证:11//DE BCC B 面;(2)若1CB =,3AC =,13AA =.求异面直线1A E 和CD 所成角的大小.20、(本题满分14分) 本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数()3sin f x x ω=(0,0)A ω>>的部分图像如图所示.P 、Q 分别是图像上相邻的一个最高点和最低点,R 为图像与x 轴的交点,且四边形OQRP 为矩形. (1)求()f x 的解析式; (2)将()y f x =的图像向右平移12个单位长度后,得到函数()y g x =的图像. 已知:3()3g α=,35(,)22α∈,求()f α的值.21、(本题满分14分) 本题共有2个小题,第1小题满分7分,第2小题满分7分.某中学为了落实 “阳光运动一小时”活动,计划在一块直角三角形ABC 的空地上修建一个占地面积为S 的矩形AMPN 健身场地.如图,点M 在AC 上,点N 在AB 上,且P 点在斜边BC 上,已知60=∠ACB 且30||=AC 米,=AM x 米,]20,10[∈x .(1)试用x 表示S ,并求S 的取值范围;(2)若在矩形AMPN 以外(阴影部分)铺上草坪.已知:矩形AMPN 健身场地每平方米的造价为S k 37,草坪的每平方米的造价为Sk12(k 为正常数).设总造价T 关于S 的函数为)(S f T =,试问:如何选取||AM 的长,才能使总造价T 最低.22、(本题满分16分)第(1)小题4分,第(2)小题6分,第(3)小题6分.已知函数()2f x x b =+,2()g x x bx c =++,其中b 、c R ∈,设()()()g x h x f x =. (1)如果()h x 为奇函数,求实数b 、c 满足的条件;(2)在(1)的条件下,若函数()h x 在区间[2,)+∞上为增函数,求c 的取值范围; (3)若对任意的R x ∈恒有()()x g x f ≤成立.证明:当0≥x 时,()()2c x x g +≤成立.23、(本题满分18分)第(1)小题4分,第(2)小题6分,第(3)小题8分.定义:对于数列}{n x ,如果存在常数p ,使对任意正整数n ,总有1()()0n n x p x p +--<成立,那么我们称数列}{n x 为“-p 摆动数列”.(1)设12-=n a n ,n n q b =(01<<-q ),*∈N n ,判断数列}{n a 、}{n b 是否为“-p 摆动数列”,并说明理由;(2)已知“-p 摆动数列”}{n c 满足:111+=+n n c c ,11=c .求常数p 的值; (3)设(1)(21)n n d n =-⋅-,*∈N n ,且数列}{n d 的前n 项和为n S .求证:数列}{n S 是“-p 摆动数列”,并求出常数p 的取值范围.NABCE1A 1B 1C DF普陀区2016届高三数学调研测试卷(理)参考答案 2015.11一、填空题1、{}1,2,3;2、0)x ≥;3、1±;4、128;5、4;6、[3,)+∞;7、3; 8、2-;9、{}1-;10、[]1,3;11、③;12、4arccos 5, 13、②④,;14、45,二、选择题15、D 16、C 17、B 18、A三、解答题19、(1)证明: D 、E 分别为AB 、AC 中点//DE BC ∴ ………………………1分11BC BCC B ⊆面 ………………………………3分11DE BCC B ⊄面 ………………………………5分 ∴11//DE BCC B 面 ………………………………6分 (注:如用空间向量证明,参照评分)(2)(方法1)取AD 的中点F ,连EF ,1A F//EF CD1A EF ∴∠为异面直线1A E 和CD 所成角(或其补角)……8分在1A EF ∆中,1AE =,12EF =,1A F = 1cos A EF ∴∠= (101)A EF ∴∠为异面直线1A E 和CD 所成角为cos10arc 12分(方法2)建立如图坐标系:1(A E ∴=- 31(,0)2CD = ………………8分设异面直线1A E 和CD 所成角为θ1115cos A E CD A E CDθ⋅∴==⋅………………10分 1A EF ∴∠为异面直线1A E 和CD 所成角为cos10arc ………12分20、解:(1)设函数()f x 的最小正周期为T , (1)分则(4T P 、3(,4TQ ……………2分四边形OQRP 为矩形,OP OQ ∴⊥, …………4分233016OP OQ T ∴⋅=-= ……………5分 4T ∴=, 2πω∴= (6)分()2f x x π∴=……………7分(2)()sin()24g x x ππ=-……………9分1()sin()243g ππαα=∴-= ……………11分35(,),cos()2224ππαα∈∴-= ……………12分()sin[()]244f πππαα∴=-+=……………14分 21、解:(1)在PMC Rt ∆中,显然x MC -=30||, 60=∠PCM ,∴)30(3tan ||||x PCM MC PM -=∠⋅=, …………2分矩形AMPN 的面积)30(3||||x x MC PM S -=⋅=,[10,20]x ∈ ………4分于是32253200≤≤S 为所求. ………………6分 (2) 矩形AMPN 健身场地造价=1T S k 37 …………………………………7分又ABC ∆的面积为3450,即草坪造价=2T )3450(12S Sk-,………8分 由总造价21T T T +=,∴)3216(25SS k T +=,32253200≤≤S .…10分 36123216≥+SS ,………………………………………………11分 当且仅当SS 3216=即3216=S 时等号成立,………………………12分 此时3216)30(3=-x x ,解得12=x 或18=x ,所以选取||AM 的长为12米或18米时总造价T 最低.……………………14分22、解:(1)2()2x bx ch x x b++=+,设的定义域为为奇函数,∴ 对于任意,成立.…1分即:2222x bx c x bx cx b x b-+++=--++ 化简得:20bx bc -= ……3分因对于任意x D ∈都成立 ∴ 0b bc =⎧⎨=⎩ 即0,b c R =∈ …………4分(2)由(1)知,1()22ch x x x∴=+…………5分在上为增函数,∴任取,时,2121121()()()(1)02cf x f x x x x x -=-->恒成立. …………6分 即任取,,成立,也就是成立. …………8分∴,即的取值范围是(,4]-∞. …………10分(3) 因为任意的恒有成立,所以对任意的,即恒成立. ……………11分所以,从而,∴,且, ……………13分因此 (1)0c c -≥ 且 . ……………14分故 当时,有. ………15分即 当时,. ……………16分23、解:(1)假设数列}{n a 是“-p 摆动数列”,即存在常数p ,总有1212+<<-n p n 对任意n 成立,不妨取1=n 时则31<<p ,取2=n 时则53<<p ,显然常数p 不存在, 所以数列}{n a 不是“-p 摆动数列”; ………………………………………2分由n n q b =,于是0121<=++n n n qb b 对任意n 成立,其中0=p . 所以数列}{n b 是“-p 摆动数列”. ……………………………………………4分 (2)由数列}{nc 为“-p 摆动数列”, 11=c 212=⇒c , 即存在常数121<<p ,使对任意正整数n ,总有0))((1<--+p c p c n n 成立; 即有0))((12<--++p c p c n n 成立.则0))((2>--+p c p c n n ,………………………………………………………6分 所以p c p c p c n >⇒⇒>>⇒>-1231 . …………………………………7分 同理p c p c p c n <⇒⇒<⇒<242 . ………………………………………8分所以122-<<n n c p c ⇒121211--<+n n c c ,解得21512->-n c 即215-≤p .…9分 同理n n c c 2211>+,解得2152-<n c ;即215-≥p . 综上215-=p .………………………………………………………………10分 (3)证明:由)12()1(-⋅-=n d n n n S nn ⋅-=⇒)1(,……………………………12分显然存在0=p ,使对任意正整数n ,总有0)1()1(121<+⋅-=++n n S S n n n 成立, 所以数列}{n S 是“-p 摆动数列”; ………………………………………14分 当n 为奇数时n S n -=递减,所以11-=≤S S n ,只要1->p 即可当n 为偶数时n S n =递增,22=≥S S n ,只要2<p 即可 ………17分 综上21<<-p ,p 的取值范围是)2,1(-.……………………………………18分。
上海市普陀区高三数学一模试卷(含解析)
2016年上海市普陀区高考数学一模试卷一、填空题(本大题56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中,每小空格填对得4分,填错或不正确的位置一律得零分.1.若全集U=R,集合M={x|x(x﹣2)≤0},N={1,2,3,4},则N∩∁U M= .2.若函数,,则f(x)+g(x)= .3.在(2x﹣1)7的二项展开式中,第四项的系数为.4.在,则函数y=tanx的值域为.5.若数列{a n}中,a1=1,a n+1=2a n+1(n∈N*),则数列的各项和为.6.若函数f(x)=(x≥0)的反函数是f﹣1(x),则不等式f﹣1(x)>f(x)的解集为.7.设O为坐标原点,若直线与曲线相交于A、B点,则扇形AOB的面积为.8.若正六棱柱的底面边长为10,侧面积为180,则这个棱柱的体积为.9.若在北纬45°的纬度圈上有A、B两地,经度差为90°,则A、B两地的球面距离与地球半径的比值为.10.方程的解x= .11.设P是双曲线上的动点,若P到两条渐近线的距离分别为d1,d2,则d1•d2= .12.如图,已知正方体ABCD﹣A1B1C1D,若在其12条棱中随机地取3条,则这三条棱两两是异面直线的概率是(结果用最简分数表示)13.若F是抛物线y2=4x的焦点,点P i(i=1,2,3,…,10)在抛物线上,且,则= .14.若函数最大值记为g(t),则函数g(t)的最小值为.二、选择题(本大题20分)本大题共有4小题,每小题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中,每题选对得5分,不选、选错或选出的代号超过一个(不论是否都写在空格内),或者没有填写在题号对应的空格内,一律得零分. 15.下列命题中的假命题是()A.若a<b<0,则 B.若,则0<a<1C.若a>b>0,则a4>b4D.若a<1,则16.若集合,则“x∈A”是“x∈B”成立的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也不必要条件17.如图,在四面体ABCD中,AB⊥BD,CD⊥DB,若AB与CD所成的角的大小为60°,则二面角C﹣BD﹣A的大小为()A.60°或90°B.60° C.60°或120°D.30°或150°18.若函数,关于x的方程f2(x)﹣(a+1)f(x)+a=0,给出下列结论:①存在这样的实数a,使得方程由3个不同的实根;②不存在这样的实数a,使得方程由4个不同的实根;③存在这样的实数a,使得方程由5个不同的实数根;④不存在这样的实数a,使得方程由6个不同的实数根.其中正确的个数是()A.1个B.2个C.3个D.4个三、解答题(本大题74分)本大题共有5小题,解答下列各题必须在答题纸规定的方框内写出必要的步骤.19.如图,椭圆+=1的左、右两个焦点分别为F1、F2,A为椭圆的右顶点,点P在椭圆上且∠PF1F2=arccos(1)计算|PF1|的值x(2)求△PF1A的面积.20.某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为24πcm,高为30cm,圆锥的母线长为20cm.(1)求这种“笼具”的体积(结果精确到0.1cm3);(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?21.已知函数f(x)=2sin2x+sin2x﹣1.(1)求函数f(x)的单调递增区间;(2)设,其中0<x0<π,求tanx0的值.22.已知n∈N*,数列{a n}的前n项和为S n,且2a n﹣S n=1.(1)求证:数列{a n}是等比数列,并求出通项公式;(2)对于任意a i、a j∈{a1,a2,…,a n}(其中1≤i≤n,1≤j≤n,i、j均为正整数),若a i和a j的所有乘积a i•a j的和记为T n,试求的值;(3)设,若数列{c n}的前n项和为C n,是否存在这样的实数t,使得对于所有的n都有成立,若存在,求出t的取值范围;若不存在,请说明理由.23.已知集合M是满足下列性制的函数f(x)的全体,存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,称数对(a,k)为函数f(x)的“伴随数对”.(1)判断f(x)=x2是否属于集合M,并说明理由;(2)若函数f(x)=sinx∈M,求满足条件的函数f(x)的所有“伴随数对”;(3)若(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,当1≤x<2时,f(x)=cos (x);当x=2时,f(x)=0,求当2014≤x≤2016时,函数y=f(x)的解析式和零点.2016年上海市普陀区高考数学一模试卷参考答案与试题解析一、填空题(本大题56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中,每小空格填对得4分,填错或不正确的位置一律得零分.1.若全集U=R,集合M={x|x(x﹣2)≤0},N={1,2,3,4},则N∩∁U M= {3,4} .【考点】交、并、补集的混合运算.【分析】求解一元二次不等式化简M,求出其补集,再由交集运算得答案.【解答】解:∵M={x|x(x﹣2)≤0}={x|0≤x≤2},∴∁U M={x|x<0或x>2},又N={1,2,3,4},∴N∩∁U M={3,4}.故答案为:{3,4}.2.若函数,,则f(x)+g(x)= 1(0≤x≤1).【考点】函数解析式的求解及常用方法.【分析】容易求出f(x),g(x)的定义域,求交集便可得出f(x)+g(x)的定义域,并可求得f(x)+g(x)=.【解答】解:;解得,0≤x≤1;∴(0≤x≤1).故答案为:.3.在(2x﹣1)7的二项展开式中,第四项的系数为﹣560 .【考点】二项式系数的性质.【分析】直接利用二项式定理写出结果即可即可.【解答】解:在(2x﹣1)7的二项展开式中,第四项的系数为: =﹣560.故答案为:﹣560.4.在,则函数y=tanx的值域为[﹣1,1] .【考点】正切函数的图象.【分析】根据正切函数的图象与性质,求出x∈[﹣,]时函数y=tanx的值域即可.【解答】解:∵,∴﹣1≤tanx≤1,∴函数y=tanx的值域为[﹣1,1].故答案为:[﹣1,1].5.若数列{a n}中,a1=1,a n+1=2a n+1(n∈N*),则数列的各项和为1﹣.【考点】数列的求和.【分析】a1=1,a n+1=2a n+1(n∈N*),变形为a n+1+1=2(a n+1),利用等比数列的通项公式可得:1+a n,再利用等比数列的前n项和公式可得的前n项和.【解答】解:a1=1,a n+1=2a n+1(n∈N*),∴a n+1+1=2(a n+1),∴数列{a n+1}是等比数列,首项为2,公比为2.∴1+a n=2n,∴=,∴数列的首项为,公比为.∴数列的各项和为: =1﹣.故答案为:1﹣.6.若函数f(x)=(x≥0)的反函数是f﹣1(x),则不等式f﹣1(x)>f(x)的解集为{x|x>1} .【考点】反函数.【分析】由y=f(x)=(x≥0),求出f﹣1(x)=x3,x≥0,由此能求出不等式f﹣1(x)>f(x)的解集.【解答】解:设y=f(x)=(x≥0),则x=y3,x,y互换,得f﹣1(x)=x3,x≥0,∵f﹣1(x)>f(x),∴,∴x9>x,∴x8>1,解得x>1.∴不等式f﹣1(x)>f(x)的解集为{x|x>1}.故答案为:{x|x>1}.7.设O为坐标原点,若直线与曲线相交于A、B点,则扇形AOB的面积为.【考点】直线与圆的位置关系;扇形面积公式.【分析】通过曲线方程确定曲线表示单位圆在x轴上方的部分(含于x轴的交点),y=时,∠AOB=π,即可求出扇形AOB的面积.【解答】解:由曲线,得x2+y2=1(y≥0)∴曲线表示単位圆在x轴上方的部分(含于x轴的交点)y=时,∠AOB=π,扇形AOB的面积为=.故答案为:.8.若正六棱柱的底面边长为10,侧面积为180,则这个棱柱的体积为450.【考点】棱柱、棱锥、棱台的体积.【分析】根据侧面积公式求出棱柱的高,根据底面边长求出底面积,代入体积公式得出体积.【解答】解:设棱柱的底面边长为a,高为h,则S侧=6ah=60h=180,解得h=3.S底==150.∴正六棱柱的体积V=S底h=450.故答案为:450.9.若在北纬45°的纬度圈上有A、B两地,经度差为90°,则A、B两地的球面距离与地球半径的比值为.【考点】球面距离及相关计算.【分析】求出球心角,然后A、B两点的距离,求出两点间的球面距离,即可求出A、B两地的球面距离与地球半径的比值.【解答】解:地球的半径为R,在北纬45°,而AB=R,所以A、B的球心角为:,所以两点间的球面距离是:,所以A、B两地的球面距离与地球半径的比值为;故答案为:.10.方程的解x= log23 .【考点】对数的运算性质.【分析】化简可得4x﹣5=4(2x﹣2),从而可得(2x)2﹣4•2x+3=0,从而解得.【解答】解:∵,∴4x﹣5=4(2x﹣2),即(2x)2﹣4•2x+3=0,∴2x=1(舍去)或2x=3;∴x=log23,故答案为:log23.11.设P是双曲线上的动点,若P到两条渐近线的距离分别为d1,d2,则d1•d2=.【考点】双曲线的简单性质.【分析】先确定两条渐近线方程,设双曲线C上的点P(x,y),求出点P到两条渐近线的距离,结合P在双曲线C上,即可求d1•d2的值.【解答】解:由条件可知:两条渐近线分别为x±y=0设双曲线C上的点P(x,y),则点P到两条渐近线的距离分别为d1=,d2=所以d1•d2=•==.故答案为:.12.如图,已知正方体ABCD﹣A1B1C1D,若在其12条棱中随机地取3条,则这三条棱两两是异面直线的概率是(结果用最简分数表示)【考点】列举法计算基本事件数及事件发生的概率;空间中直线与直线之间的位置关系.【分析】正方体ABCD﹣A1B1C1D,在其12条棱中随机地取3条,先求出基本事件总数,再求出这三条棱两两是异面直线包含的基本事件个数,由此能求出这三条棱两两是异面直线的概率.【解答】解:正方体ABCD﹣A1B1C1D,在其12条棱中随机地取3条,基本事件总数n==220,这三条棱两两是异面直线包含的基本事件个数m=8,∴这三条棱两两是异面直线的概率是p===.故答案为:.13.若F是抛物线y2=4x的焦点,点P i(i=1,2,3,…,10)在抛物线上,且,则= 200 .【考点】抛物线的简单性质.【分析】根据抛物线的定义得抛物线上的点到焦点的距离等于该点到准线的距离,因此求出抛物线的准线方程,结合题中数据加以计算,即可得到本题答案.【解答】解:∵抛物线y2=4x的焦点为F(1,0),准线为x=﹣1,∴根据抛物线的定义,P i(i=1,2,3,…,2015)到焦点的距离等于P i到准线的距离,即|P i F|=x i+1,,可得1﹣x1+1﹣x2+…+1﹣x100=0,∴x1+x2+…+x100=100∴|P1F|+|P2F|+…|P100F|=(x1+1)+(x2+1)+…+(x100+1)=(x1+x2+…+x100)+100=100+100=200.故答案为:200.14.若函数最大值记为g(t),则函数g(t)的最小值为.【考点】函数的最值及其几何意义.【分析】化简sinx+=sinx+3+﹣3,从而可得0≤sinx+3+﹣3≤,从而求得g(t)=f max(x)=,从而求值.【解答】解:∵sinx+=sinx+3+﹣3,∵﹣1≤sinx≤1,∴2≤sinx+3≤4,∴3≤sinx+3+≤,∴0≤sinx+3+﹣3≤,∴g(t)=f max(x)=,∴当t=时,函数g(t)有最小值为;故答案为;.二、选择题(本大题20分)本大题共有4小题,每小题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中,每题选对得5分,不选、选错或选出的代号超过一个(不论是否都写在空格内),或者没有填写在题号对应的空格内,一律得零分. 15.下列命题中的假命题是()A.若a<b<0,则 B.若,则0<a<1C.若a>b>0,则a4>b4D.若a<1,则【考点】命题的真假判断与应用.【分析】正确选项进行证明,不正确选项,举出反例即可.【解答】解:对于A,a<b<0,则•a<•b,∴,正确对于B,,则>0,∴0<a<1,正确对于C,a>b>0,a4>b4,正确;对于D,a=, =2>1,不正确,故选:D.16.若集合,则“x∈A”是“x∈B”成立的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先分别求出集合A,B,然后根据必要条件、充分条件和充要条件的定义进行判断.【解答】解:∵≥0,∴0≤x<3,∴A=(0,3],∵lg|2x﹣3|<0=lg1,∴|2x﹣3|<1,且2x﹣3≠0,∴1<x<2,且x≠∴B=(1,)∪(,2),∴“x∈A”是“x∈B”成立的必要非充分条件,故选:B.17.如图,在四面体ABCD中,AB⊥BD,CD⊥DB,若AB与CD所成的角的大小为60°,则二面角C﹣BD﹣A的大小为()A.60°或90°B.60° C.60°或120°D.30°或150°【考点】二面角的平面角及求法.【分析】过D在平面ABD内作AB的平行线DE,则∠CDE或∠CDE的补角为二面角C﹣BD﹣A 的平面角,由此能求出二面角C﹣BD﹣A的大小.【解答】解:过D在平面ABD内作AB的平行线DE,∵在四面体ABCD中,AB⊥BD,CD⊥DB,∴DE⊥BD,∴∠CDE或∠CDE的补角为二面角C﹣BD﹣A的平面角,∵AB与CD所成的角的大小为60°,∴∠CDE=60°或∠CDE=120°,∴二面角C﹣BD﹣A的大小为60°或120°.故选:C.18.若函数,关于x的方程f2(x)﹣(a+1)f(x)+a=0,给出下列结论:①存在这样的实数a,使得方程由3个不同的实根;②不存在这样的实数a,使得方程由4个不同的实根;③存在这样的实数a,使得方程由5个不同的实数根;④不存在这样的实数a,使得方程由6个不同的实数根.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】根的存在性及根的个数判断.【分析】由f2(x)﹣(a+1)f(x)+a=0可解得f(x)=1或f(x)=a,作函数的图象,从而讨论求解.【解答】解:∵f2(x)﹣(a+1)f(x)+a=0,∴f(x)=1或f(x)=a,作函数的图象如下,,当a=1时,方程有3个不同的实根,故①正确;当a>1或a≤﹣1时,方程有6个不同的实根,故④不正确;当﹣1<a<1时,方程有5个不同的实根,故③正确;综上可知,不存在这样的实数a,使得方程由4个不同的实根;故②正确;故选:C.三、解答题(本大题74分)本大题共有5小题,解答下列各题必须在答题纸规定的方框内写出必要的步骤.19.如图,椭圆+=1的左、右两个焦点分别为F1、F2,A为椭圆的右顶点,点P在椭圆上且∠PF1F2=arccos(1)计算|PF1|的值x(2)求△PF1A的面积.【考点】椭圆的简单性质.【分析】(1)根据椭圆的性质,可得|PF1|=x,则|PF2|=10﹣x,|F1F2|=2=8,结合已知可余弦定理构造方程,解得x值;(2)由出sin∠PF1F2,进而计算△PF1F2的面积,可得P到x轴的距离d,结合△PF1A的底边|F1A|=a+c=9,可得三角形面积.【解答】解:(1)∵椭圆+=1的左、右两个焦点分别为F1、F2,P为椭圆上一点,|PF1|=x,则|PF2|=10﹣x,|F1F2|=2=8,∵∠PF1F2=arccos,故cos∠PF1F2==,解得:x=6,(2)由∠PF1F2=arccos,可得:sin∠PF1F2==,故△PF1F2的面积S=(5+)•(5﹣)•=,故P到x轴的距离d==,由|F1A|=a+c=9,可得△PF1A的面积为:×=20.某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为24πcm,高为30cm,圆锥的母线长为20cm.(1)求这种“笼具”的体积(结果精确到0.1cm3);(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?【考点】棱柱、棱锥、棱台的体积.【分析】(1)笼具的体积等于圆柱的体积减去圆锥的体积;(2)求出笼具的表面积即可,笼具的表面积包括圆柱的侧面,上底面和圆锥的侧面.【解答】解:(1)设圆柱的底面半径为r,高为h,圆锥的母线长为l,高为h1,则2πr=24π,解得r=12cm.h1=cm.∴笼具的体积V=πr2h﹣=π×=3552π≈11158.9cm3.(2)圆柱的侧面积S1=2πrh=720cm2,圆柱的底面积S2=πr2=144πcm2,圆锥的侧面积为πrl=240πcm2.故笼具的表面积S=S1+S2+S3=1104πcm2.故制造50个这样的笼具总造价为:元.答:这种笼具的体积约为11158.9cm3,生产50个笼具需要元.21.已知函数f(x)=2sin2x+sin2x﹣1.(1)求函数f(x)的单调递增区间;(2)设,其中0<x0<π,求tanx0的值.【考点】三角函数中的恒等变换应用;三角函数的最值.【分析】(1)利用三角函数的关系结合辅助角公式进行化简,即可求函数f(x)的单调递增区间;(2)化简条件,利用同角的三角函数的关系式建立方程关系进行求解即可.【解答】解:(1)f(x)=2sin2x+sin2x﹣1=sin2x﹣cos2x=sin(2x﹣).由2kπ﹣≤2x﹣≤2kπ+,k∈Z,得2kπ≤x≤2kπ,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,即函数f(x)的单调递增区间是[kπ﹣,kπ+],k∈Z;(2)cos(+α)cos(﹣α)+sin2α=(cos cosα)2﹣(sin sinα)2+sin2α= cos2α﹣sin2α+sin2α=,即f()=sin(2×﹣)=sin(x0﹣)=,即sinx0﹣cosx0=,①平方得2sinx0cosx0=,∵0<x0<π,∴cosx0>0,则sinx0+cosx0==②,由①②得sinx0=,cosx0=,则tanx0==.22.已知n∈N*,数列{a n}的前n项和为S n,且2a n﹣S n=1.(1)求证:数列{a n}是等比数列,并求出通项公式;(2)对于任意a i、a j∈{a1,a2,…,a n}(其中1≤i≤n,1≤j≤n,i、j均为正整数),若a i和a j的所有乘积a i•a j的和记为T n,试求的值;(3)设,若数列{c n}的前n项和为C n,是否存在这样的实数t,使得对于所有的n都有成立,若存在,求出t的取值范围;若不存在,请说明理由.【考点】数列与不等式的综合;等比数列的通项公式;数列的极限.【分析】(1)当n≥2时通过2a n﹣S n=1与2a n﹣1﹣S n﹣1=1作差,进而计算可得结论;(2)通过(1)可得T n的表达式,进而计算即得结论;(3)通过(1)可知数列{c n}的通项公式,利用并项相加、分n为奇数、偶数两种情况讨论即可.【解答】(1)证明:∵2a n﹣S n=1,∴当n≥2时,2a n﹣1﹣S n﹣1=1,两式相减,整理得:a n=2a n﹣1(n≥2),又∵2a1﹣S1=1,即a1=1,∴数列{a n}是首项为1、公比为2的等比数列,∴a n=2n﹣1;(2)解:∵T n=(1+2+22+…+2n﹣1)(1+2+22+…+2n﹣1)=•=4n﹣2•2n+1,∴==1;(3)结论:存在这样的实数t,使得对于所有的n都有成立.理由如下:由(1)可知,1+b n=3log2a n=3n﹣3,即b n=3n﹣4,b n+1=3n﹣1,故c n=(﹣1)n+1b n•b n+1=(﹣1)n+1(3n﹣4)(3n﹣1),c n+1=(﹣1)n+2(3n﹣1)(3n+2),特别地,当n为奇数时,有n+1为偶数,此时c n+c n+1=(3n﹣4)(3n﹣1)﹣(3n﹣1)(3n+2)=﹣6(3n﹣1),①若n为偶数,则C n=(c1+c2)+(c3+c4)+…+(c n﹣1+c n)=﹣6×[2+8+…+(3n﹣4)]=﹣n(3n﹣2),由可知t≤﹣(3﹣)对所有正偶数n都成立,故t≤﹣;②若n为奇数,则C n=C n﹣1+c n(n≥2),由①可知C n=﹣(n﹣1)(3n﹣5)+(3n﹣4)(3n﹣1)=n2﹣3n﹣,其中C1=﹣2满足上式;由①②可得实数t的取值范围是:t≤﹣,所以存在这样的实数t,使得对于所有的n都有成立.23.已知集合M是满足下列性制的函数f(x)的全体,存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,称数对(a,k)为函数f(x)的“伴随数对”.(1)判断f(x)=x2是否属于集合M,并说明理由;(2)若函数f(x)=sinx∈M,求满足条件的函数f(x)的所有“伴随数对”;(3)若(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,当1≤x<2时,f(x)=cos (x);当x=2时,f(x)=0,求当2014≤x≤2016时,函数y=f(x)的解析式和零点.【考点】函数的值.【分析】(1)f(x)=x2的定义域为R.假设存在实数a、k(k≠0),对于定义域内的任意x 均有f(a+x)=kf(a﹣x)成立,则(a+x)2=k(a﹣x)2,化为:(k﹣1)x2﹣2a(k+1)x+a2(k﹣1)=0,由于上式对于任意实数x都成立,可得,解得k,a.即可得出.(2)函数f(x)=sinx∈M,可得:sin(a+x)=ksin(a﹣x),展开化为:sin(x+φ)=0,由于∀x∈R都成立,可得k2+2kcos2a+1=0,变形cos2a=,利用基本不等式的性质与三角函数的单调性即可得出.(3)由于(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,可得f(1+x)=f(1﹣x),f(2+x)=﹣f(2﹣x),因此f(x+4)=f(x),T=4.对x分类讨论可得:即可得出解析式,进而得出零点.【解答】解:(1)f(x)=x2的定义域为R.假设存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,则(a+x)2=k(a﹣x)2,化为:(k﹣1)x2﹣2a(k+1)x+a2(k﹣1)=0,由于上式对于任意实数x都成立,∴,解得k=1,a=0.∴(0,1)是函数f(x)的“伴随数对”,f(x)∈M.(2)∵函数f(x)=sinx∈M,∴sin(a+x)=ksin(a﹣x),∴(1+k)cosasinx+(1﹣k)sinacosx=0,∴sin(x+φ)=0,∵∀x∈R都成立,∴k2+2kcos2a+1=0,∴cos2a=,≥2,∴|cos2a|≥1,又|cos2a|≤1,故|cos2a|=1.当k=1时,cos2a=﹣1,a=nπ+,n∈Z.当k=﹣1时,cos2a=1,a=nπ,n∈Z.∴f(x)的“伴随数对”为(nπ+,1),(nπ,﹣1),n∈Z.(3)∵(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,∴f(1+x)=f(1﹣x),f(2+x)=﹣f(2﹣x),∴f(x+4)=f(x),T=4.当0<x<1时,则1<2﹣x<2,此时f(x)=f(2﹣x)=﹣cos;当2<x<3时,则1<4﹣x<2,此时f(x)=﹣f(4﹣x)=﹣cos;当3<x<4时,则0<4﹣x<1,此时f(x)=﹣f(4﹣x)=cos.∴f(x)=.∴f(x)=.∴当2014≤x≤2016时,函数y=f(x)的零点为2014,2015,2016.。
2016上海各区县数学一模填空选择难题解析
宝山12. 数列1212312341213214321⋅⋅⋅,,,,,,,,,,,则98是该数列的第 128 项. 解析:有理数按对角线排序,是等差数列求和(1+2+……+15)+814. 如图,已知抛物线2y x =及两点11(0,)A y 和22(0,)A y ,其中120y y >>.过1A ,2A 分别作y 轴的垂线,交抛物线于1B ,2B 两点,直线12B B 与y 轴交于点33(0,)A y ,此时就称1A ,2A 确定了3A .依此类推,可由2A ,3A 确定4A ,L .记(0,)n n A y ,1,2,3,n =L .给出下列三个结论: ① 数列{}n y 是递减数列; ② 对任意*n ∈N ,0n y >; ③ 若14y =,23y =,则523y =. 其中,所有正确结论的序号是_____.解析:11(0,),(0,)n n n n A y A y ++,则22111(,),(,)n n n n n n B y y B y y +++ 直线1n n B B +为211()n n n n y x y y y y +=-+,可得到121n n n n n y y y y y +++=+,数学归纳法可证明①②,可验证③成立 崇明1. 已知数列{}n a 的各项均为正整数,对于⋅⋅⋅=,3,2,1n ,有1135,2n n n n n n kk a a a a a a +++⎧⎪=⎨⎪⎩为奇数为偶数.其中为使为奇数的正整数,,.若存在*m ∈N ,当n m >且n a 为奇数时,n a 恒为常数p ,则p 的值为 .1或5解析:由题意,可知,当n a 取值某个奇数时,其后的所有奇数都相等 设21n a m =-,则123162,2n n km a m a +++=+=(存在自然数k ,使2n a +为奇数),可知31212km m +-=即31221k m m +=-,1m =时1n a =;1m >时,31321m m +<-,只能是31221m m +=-,此时3m =,5n a =2. 设函数y f x =()的定义域为D ,如果存在非零常数T ,对于任意x ∈D ,都有•()f x T T f x +=(),则称函数y f x =()是“似周期函数”,非零常数T 为函数y f x =()的“似周期”.现有下面四个关于“似周期函数”的命题: ①如果“似周期函数”y f x =()的“似周期”为﹣1,那么它是周期为2的周期函数; ②函数f x x =()是“似周期函数”;③函数2x f x =﹣()是“似周期函数”; ④如果函数f x cos x ω=()是“似周期函数”,那么“k k Z ωπ=∈,”.其中是真命题的序号是 .(写出所有满足条件的命题序号)解析:①③④正确,①③容易判断,④易漏选cos()cos()x T T x ωωω+=,1T =±1,2;1,T k T k ωπωπ===-=(定义中是存在T 即可)3. 若a b ,是函数()()200f x x px q p q =-+>>,的两个不同的零点,且2a b -,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( D )(A)1 (B)4 (C)5 (D)9解析:a b ,为正,所以4ab =,不妨设2a b -<<,等差数列22a b =-,解出1,4a b == 奉贤13、不等式()()21430x x x +-+>有多种解法,其中有一种方法如下,在同一直角坐标系中作出11y x =+和2243y x x =-+的图像然后进行求解,请类比求解以下问题: 设,a b Z ∈,若对任意0x ≤,都有2(2)(2)0ax x b ++≤,则a b +=___-1_______. 解析:一定存在0x ≤,使得2ax +为正,因此0b <。
上海市普陀区高三数学一模卷【附答案】
2015-2016学年第一学期普陀区高三质量教研卷理科数学2015.12.23一、填空题(本大题56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中,每小空格填对得4分,填错或不正确的位置一律得零分)1.若全集U R =,集合{|(2)0}M x x x =-≤,{1,2,3,4}N =,则U NM =ð_______. 2.若函数()1f x x =-,()1g x x x =-+,则()()f x g x +=________. 3.在7(21)x -的二项展开式中,第四项的系数为__________.4.在44x ππ-≤≤,则函数tan y x =的值域为__________.5.在数列{}n a 中,11a =,*121()n n a a n N +=+∈, 则数列11n a ⎧⎫⎨⎬+⎩⎭的各项和为______. 6.若函数3()(0)f x x x =≥的反函数是1()f x -,则不等式1()()f x f x ->的解集为_______.7.设O 为坐标原点,若直线1:02l y -=与曲线2:10x y τ--=相交于A B 、点,则扇形AOB 的面积为_________.8.若正六棱柱的底面边长为10,侧面积为180,则这个棱柱的体积为_________.9.若在北纬45的纬度圈上有A B 、两地,经度差为90,则A B 、两地的球面距离与地球半径的比值为________.10.方程22log (45)2log (22)x x -=+-的解x =________.11.设P 是双曲线22142x y -=上的动点,若P 到两条渐近线的距离分别为12,d d ,则12d d ⋅=_________.12.如图,已知正方体111ABCD A B C D - ,若在其12条棱中随机地取3条,则这三条棱两两是异面直线的概率是___________(结果用最简分数表示)13.若F 是抛物线24y x =的焦点,点(1,2,3,...,10)i P i =在抛物线上,且12100...0PF P F P F +++= ,则12100||||...||PF P F P F +++=________.AB CD 1A 1B 1C 1D14.若函数2()|sin |(,)3sin f x x t x t R x=++∈+ 最大值记为()g t ,则函数()g t 的最小值为__________.二、选择题(本大题20分,共4小题,每小题5分)15.下列命题中的假命题是( )A. 若0a b <<,则11a b >B. 若11a >,则01a <<C. 若0a b >>,则44a b >D. 若1a <,则11a < 16.若集合{},R ,lg 230,R 3x A x y x B x x x x ⎧⎫⎪⎪==∈=-<∈⎨⎬-⎪⎪⎩⎭,则“x A ∈”是“x B ∈”成立的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件17.如图,在四面体ABCD ,AB CD =,,M N 分别是,BC AD 的中点,若AB 与CD 所成的角的大小为60︒,则MN 和CD 所成的角的大小为( )A. 30B. 60︒C. 30或60︒D. 15或60︒18、若函数()()lg 1,1sin ,12x x f x a x x π⎧->⎪=⎨⎛⎫≤⎪ ⎪⎝⎭⎩,关于x 的方程()()()210f x a f x a -++=,给出下列结论:①存在这样的实数a ,使得方程由3个不同的实根;②不存在这样的实数a ,使得方程由4个不同的实根;③存在这样的实数a ,使得方程由5个不同的实数根;④不存在这样的实数a ,使得方程由6个不同的实数根.其中正确的个数是( ).A 1个 .B 2个 .C 3个 .D 4个MN A B CD三、解答题:(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸规定的方框内写出必要的步骤.19.(本题满分12分)本题共2个小题,第1小题满分6分,第二小题满分6分 如图,椭圆221259x y +=的左、右两个焦点分别为12,F F ,A 为椭圆的右顶点,点P 在椭圆上且127cos 8PF F ∠=. (1)计算1PF 的值;(2)求1PF A ∆的面积.20.(本题满分14分)本题共2个小题,第1小题满分6分,第二小题满分8分某种“笼其”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为24cm π,高为30cm ,圆锥的母线长为20cm .(1)求这种“笼其”的体积(结果精确到0.13cm );(2)现要使用一种纱网材料制作50个“笼其”,该材料的造价为每平方米8元,共需多少元?O x A y P 1F21.(本题满分14分)本题共2个小题,第1小题满分6分,第二小题满分8分 已知函数()22sin sin 21f x x x =+-.(1)求函数()f x 的单调递增区间;(2)设20cos cos sin 266x f ππααα⎛⎫⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中00x π<<,求0tan x 的值.22.(本题满分16分)本题共有3个小题,第1小题4分,第2小题6分,第3小题6分 已知*n N ∈,数列{}n a 的前n 项和为n S ,且21n n a S -=.(1)求证:数列{}n a 是等比数列,并求出通项公式;(2)对于任意{}12,,,i j n a a a a a ∈、(其中1i n ≤≤,1j n ≤≤,i j 、均为正整数),若i a 和j a 的所有乘积i j a a ⋅的和记为n T ,试求lim4n n x T →∞的值; (3)设()12113log ,1n n n n n n b a c b b +++==-⋅,若数列{}n c 的前n 项和为n C ,是否存在这样的实数t ,使得对于所有的n 都有2n C tn ≥成立,若存在,求出t 的取值范围;若不存在,请说明理由.23.(本题满分18分)本题共有3个小题,第1小题4分,第2小题6分,第3小题8分 已知集合M 是满足下列性质的函数()f x 的全体,存在实数()0a k k ≠、,对于定义域内的任意x 均有()()f a x kf a x +=-成立,称数对(),a k 为函数()f x 的“伴随数对”(1)判断()2f x x =是否属于集合M ,并说明理由;(2)若函数()sin f x x M =∈,求满足条件的函数()f x 的所有“伴随数对”;(3)若()()1,1,2,1-都是函数()f x 的“伴随数对”,当12x ≤<时,()cos 2f x x π⎛⎫= ⎪⎝⎭; 当2x =时,()0f x =.求当20142016x ≤≤时,函数()y f x =的解析式和零点.参考答案。
普陀区2016学年第一学期高三数学质量调研2016
普陀区2016学年第一学期高三数学质量调研2016、12一、填空题(本大题共12小题,满分54分,前6题每题4分,后6题每题5分) 1、若集合{}{}2,,sin ,A x y x y R B y y x x R ==∈==∈,则A B = 。
2、若3,sin 225ππαα-<<=,则cot 2α= 。
3、函数()()21log 1f x x x =+≥的反函数()1f x -= 。
4、若()52501251x a a x a x a x +=++++ ,则125a a a +++= 。
5、设k R ∈,若2212y x k k -=-表示焦点在y 轴上的双曲线,则半焦距的取值范围是 。
6、设m R ∈,若函数()()2311f x m x mx =+++是偶函数,则()f x 的单调区间是 7、方程()()22log 952log 32xx-=+-的解x = 。
8、已知圆()222:220C x y kx y k k R ++++=∈和定点()1,1P -,若果P 可以作两条直线与圆C 相切,则k 的取值范围是 。
9、如图,在直三棱柱111ABC A B C -中,90,A B C A BB C ∠=== ,若1AC 与平面11B BCC 所成的角为6π,则三棱锥1A ABC -的体积为 。
10、掷两颗骰子得两个数,若两数的差为d ,则{}2,1,0,1,2d ∈--出现的概率最大值为 。
(结果用最简分数表示)11、设地球半径为R ,若A 、B 两地均位于北纬45,R ,则A 、B 之间的球面距离是 。
(结果用含有R 的代数式表示) 12、已知定义域为R 的函数()y f x =满足()()2fx f x +=,且11x -≤<时,()21f x x=-,函数()lg ,01,0x x g x x ⎧≠=⎨=⎩,若()()()F x f x g x =-,则[]5,10x ∈-,函数()F x 零点的个数是 。
上海市青浦区2016届高三第一学期期终学习质量调研测试数学试题 含解析
2016年上海市青浦区高考数学一模试卷一。
填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.方程组的增广矩阵是.2.已知3i﹣2是关于x的方程2x2+px+q=0的一个根,则实数p+q= .3.设函数f(x)=若f(a)>a,则实数a的取值范围是.4.已知函数f(x)=sin(2x+φ),0<φ≤π图象的一条对称轴是直线,则φ=.5.函数f(x)=lg(2x﹣3x)的定义域为.6.已知函数f(x)=|x2﹣2|,若f(a)=f(b),且0<a <b,则ab的取值范围是.7.设集合M={(x,y)|y=x+b},N={(x,y)|y=3﹣},当M∩N≠∅时,则实数b的取值范围是.8.执行如图所示的程序框图,输出结果为.9.平面直角坐标系中,方程|x|+|y|=1的曲线围成的封闭图形绕y轴旋转一周所形成的几何体的体积为.10.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m,记第二颗骰子出现的点数是n,向量,向量,则向量的概率是.11.已知平面向量、、满足,且,,则的最大值是.12.如图,将自然数按如下规则“放置"在平面直角坐标系中,使其满足条件:①每个自然数“放置"在一个“整点"(横纵坐标均为整数的点)上;②0在原点,1在(0,1)点,2在(1,1)点,3在(1,0)点,4在(1,﹣1)点,5在(0,﹣1)点,…,即所有自然数按顺时针“缠绕”在以“0”为中心的“桩”上,则放置数字(2n+1)2,n∈N*的整点坐标是.13.设△ABC的内角A、B、C所对的边a、b、c成等比数列,则的取值范围.14.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若∀x∈R,f (x﹣1)≤f(x),则实数a的取值范围为.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.是“直线(a+1)x+3ay+1=0与直线(a﹣1)x+(a+1)y﹣3=0相互垂直”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件16.复数(a∈R,i是虚数单位)在复平面上对应的点不可能位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限17.已知{a n}是等比数列,给出以下四个命题:①{2a3n }是等比数列;②{a n+a n+1}是等比数列;③{a n a n+1}﹣1是等比数列;④{lg|a n|}是等比数列,下列命题中正确的个数是()A.1个B.2个 C.3个 D.4个18.已知抛物线y2=2px(p>0)与双曲线有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,若l为双曲线一、三象限的一条渐近线,则l的倾斜角所在的区间可能是( ) A.B.C.D.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD且2AB=CD,PD=PA,点H为线段AD的中点,若,PB与平面ABCD所成角的大小为45°.(1)证明:PH⊥平面ABCD;(2)求四棱锥P﹣ABCD的体积.20.已知椭圆M的对称轴为坐标轴,且抛物线y2=4x 的焦点F是椭圆M的一个焦点,以F为圆心,以椭圆M的短半轴长为半径的圆与直线相切.(1)求椭圆M的方程;(2)已知直线y=x+m与椭圆M交于A、B两点,且椭圆M上存在点P满足,求m的值.21.如图,有一块平行四边形绿地ABCD,经测量BC=2百米,CD=1百米,∠BCD=120°,拟过线段BC上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将绿地分为面积之比为1:3的左右两部分,分别种植不同的花卉,设EC=x百米,EF=y 百米.(1)当点F与点D重合时,试确定点E的位置;(2)试求x的值,使路EF的长度y最短.22.设数列{a n}的所有项都是不等于1的正数,{a n}的前n项和为S n,已知点在直线y=kx+b上(其中常数k≠0,且k≠1)数列,又.(1)求证数列{a n}是等比数列;(2)如果b n=3﹣n,求实数k、b的值;(3)若果存在t,s∈N*,s≠t使得点(t,b s)和(s,b t)都在直线在y=2x+1上,是否存在自然数M,当n >M(n∈N*)时,a n>1恒成立?若存在,求出M的最小值;若不存在,请说明理由.23.已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+α),其中α是常数.(1)设f(x)=cosx+sinx,,求g(x)的解析式;(2)设计一个函数f(x)及一个α的值,使得;(3)当f(x)=|sinx|+cosx,时,存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1﹣x2|的最小值.2016年上海市青浦区高考数学一模试卷参考答案与试题解析一。
上海市普陀区2016学年第二次高考模拟高三数学试卷--含答案
2016学年第二学期普陀区高三数学质量调研2017.4考生注意:1. 本试卷共4页,21道试题,满分150分. 考试时间120分钟.2. 本考试分试卷和答题纸. 试卷包括试题与答题要求. 作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1. 计算:=⎪⎭⎫⎝⎛+∞→311lim n n .2. 函数⎪⎭⎫⎝⎛-=x y 11log 2的定义域为 . 3. 若παπ<<2,53sin =α,则=2tan α. 4. 若复数()21i i z ⋅+=(i 表示虚数单位),则=z . 5. 曲线C :⎩⎨⎧==θθtan sec y x (θ为参数)的两个顶点之间的距离为 .6. 若从一副52张的扑克牌中随机抽取2张,则在放回抽取的情形下,两张牌都是K 的概率为 (结果用最简分数表示).7. 若关于x 的方程0cos sin =-+m x x 在区间⎥⎦⎤⎢⎣⎡2,0π上有解,则实数m 的取值范围是 . 8. 若一个圆锥的母线与底面所成的角为6π,体积为π125,则此圆锥的高为 . 9. 若函数1log log )(222+-=x x x f (2≥x )的反函数为)(1x f-,则)3(1-f= .10. 若三棱锥ABC S -的所有的顶点都在球O 的球面上,⊥SA 平面ABC ,2==AB SA ,4=AC ,3π=∠BAC ,则球O 的表面积为 .11.设0<a ,若不等式01cos )1(sin 22≥-+-+a x a x 对于任意的R ∈x 恒成立,则a 的取值范围是 .12.在△ABC 中,D 、E 分别是AB 、AC 的中点,M 是直线DE 上的动点.若△ABC 的面积为1,则2BC MC MB +⋅的最小值为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 动点P 在抛物线122+=x y 上移动,若P 与点()1,0-Q 连线的中点为M ,则动点M 的轨迹方程为……………………………………………………………………………………………………………( ))A ( 22x y = ()B 24x y = ()C 26x y = ()D 28x y =14. 若α、β∈R ,则“βα≠”是“βαtan tan ≠”成立的……………………………………( ))A (充分非必要条件 ()B 必要非充分条件()C 充要条件 ()D 既非充分也非必要条件15. 设l 、m 是不同的直线,α、β是不同的平面,下列命题中的真命题为…………………………( ))A ( 若α//l ,β⊥m ,m l ⊥,则βα⊥ ()B 若α//l ,β⊥m ,m l ⊥,则 βα//()C 若α//l ,β⊥m ,m l //,则βα⊥ ()D 若α//l ,β⊥m ,m l //,则βα//16. 关于函数x y 2sin =的判断,正确的是……………………………………………………………( ))A (最小正周期为π2,值域为[]1,1-,在区间⎥⎦⎤⎢⎣⎡-2,2ππ上是单调减函数()B 最小正周期为π,值域为[]1,1-,在区间⎥⎦⎤⎢⎣⎡2,0π上是单调减函数()C 最小正周期为π,值域为[]1,0,在区间⎥⎦⎤⎢⎣⎡2,0π上是单调增函数()D 最小正周期为π2,值域为[]1,0,在区间⎥⎦⎤⎢⎣⎡-2,2ππ上是单调增函数三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分在正方体1111D C B A ABCD -中,E 、F 分别是BC 、11D A 的中点. (1)求证:四边形EDF B 1是菱形;(2)求异面直线C A 1与DE 所成角的大小 (结果用反三角函数值表示) .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知函数x b x a x f cos sin )(+=(a 、b 为常数且0≠a ,R ∈x ).当4π=x 时,)(x f 取得最大值.(1)计算⎪⎭⎫⎝⎛411πf 的值; (2)设⎪⎭⎫⎝⎛-=x f x g 4)(π,判断函数)(x g 的奇偶性,并说明理由.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分某人上午7时乘船出发,以匀速v 海里/小时(54≤≤v )从A 港前往相距50海里的B 港,然后乘汽车以匀速ω千米/小时(10030≤≤ω)自B 港前往相距300千米的C 市,计划当天下午4到9时到达C 市.设乘船和汽车的所要的时间分别为x 、y 小时,如果所需要的经费()()y x P -+-+=853100(单位:元)(1)试用含有v 、ω的代数式表示P ;(2)要使得所需经费P 最少,求x 和y 的值,并求出此时的费用.20. (本题满分16分)本题共有3小题,第1小题4分,第2小题6分,第3小题6分.1A 1B 1C 1D B D A C EF xyo已知曲线Γ:13422=+y x ,直线l 经过点()0,m P 与Γ相交于A 、B 两点. (1)若()3,0-C 且2=PC ,求证:P 必为Γ的焦点;(2)设0>m ,若点D 在Γ上,且PD 的最大值为3,求m 的值; (3)设O 为坐标原点,若3=m ,直线l 的一个法向量为()k n ,1=,求∆AOB 面积的最大值.21.(本题满分18分)本题共有3小题,第1小题4分,第2小题6分,第3小题8分.已知数列{}n a (*N ∈n ),若{}1++n n a a 为等比数列,则称{}n a 具有性质P .(1)若数列{}n a 具有性质P ,且3,1321===a a a ,求4a 、5a 的值; (2)若()nn n b 12-+=,求证:数列{}n b 具有性质P ;(3)设=+++n c c c 21n n +2,数列{}n d 具有性质P ,其中11=d ,123c d d =-,232c d d =+,若310>m d ,求正整数m 的取值范围.2016学年第二学期普陀区高三数学质量调研一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.12. ()()+∞∞-,10,3.34. i +-15.26.1691 7. 21≤≤m . 8. 5 9. 4 10.π20 11. 2-≤a 12. 3二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 【解】设正方体的棱长为1,建立空间直角坐标系,如图所示:则()1,0,11B ,⎪⎭⎫ ⎝⎛0,21,1E ,()0,1,0D ,⎪⎭⎫⎝⎛1,21,0F ……1分⎪⎭⎫⎝⎛-=0,21,1,⎪⎭⎫ ⎝⎛-=0,21,11FB ……2分所以1FB =,即1//FB DE 且1FB DE =,故四边形EDF B 1是平行四边形……3分又因为⎪⎭⎫ ⎝⎛-=1,21,01E B ,25==……5分 故平行四边形EDF B 1是菱形……6分(2)因为()0,1,11=A ()()1,1,101,0--=-,⎪⎭⎫⎝⎛-=0,21,1……8分 设异面直线C A 1与DE 所成的角的大小为θ……9分cos =θ……10分()()15152111110121)1(11222222=+⎪⎭⎫ ⎝⎛-+⋅+-+-⨯+⎪⎭⎫⎝⎛-⨯-+⨯-=……12分所以1515arccos=θ……13分, 故异面直线C A 1与DE 所成的角的大小为1515arccos ……14分 18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 【解】(1)x b x a x f cos sin )(+=()ϕ++=x b a sin 22,其中abarctan =ϕ……2分根据题设条件可得,224b a f +=⎪⎭⎫⎝⎛π 即()2222b a b a +=+ ……4分 化简得()()2222b a b a +=+,所以0222=+-b ab a即()02=-b a ,故0=-b a ……………5分所以()022411cos 411sin411=-=+=⎪⎭⎫⎝⎛b a b a f πππ……………6分 (2)由(1)可得,b a =,即()⎪⎭⎫ ⎝⎛+=+=4sin 2cos sin )(πx a x x a x f ……8分故x a x a x a x f x g cos 22sin 244sin 24)(=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛-=ππππ所以x a x g cos 2)(=(R ∈x )…………10分对于任意的R ∈x ,x a x a x g cos 2)cos(2)(=-=-(0≠a )……12分即)()(x g x g =-,所以)(x g 是偶函数.…………14分19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分【解】(1)v x 50=,204≤≤v ,得22510≤≤x ……2分 ω300=y ,10030≤≤ω,得103≤≤y ……4分()()y x P -+-+=853100⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=ω30085053100v所以ω300150123--=v P (其中204≤≤v ,10030≤≤ω)……6分 (2)()()y x P -+-+=853100)3(123y x +-=其中⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤10322510149y x y x ,……9分x令目标函数y x k +=3, 可行域的端点分别为()3,11,)10,4(,⎪⎭⎫ ⎝⎛10,25,⎪⎭⎫⎝⎛213,25,()3,6 …12分 则当3,11==y x 时,36333max =+=k 所以8736123min =-=P (元),此时115050==x v ,1003300==ω答:当3,11==y x 时,所需要的费用最少,为87元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市普陀区2016届高三一模数学试卷
2015.12
一. 填空题(本大题共14题,每题4分,共56分)
1. 若全集U R =,集合{|(2)0}M x x x =-≤,{1,2,3,4}N =,则U N C M = ;
2. 若函数()1f x =()g x ()()f x g x += ;
3. 在7(21)x -的二项展开式中,第四项的系数是 ;
4. 若4
4
x π
π
-
≤≤
,则函数tan y x =的值域为 ;
5.(文)若数列{}n a 中,11a =,12n n a a +=*()n N ∈,则1
{}n
a 的各项和为 ; (理)若数列{}n a 中,11a =,121n n a a +=+*()n N ∈,则1
{}1n
a +的各项和为 ;
6. 若函数()f x =
(0)x ≥的反函数1()f x -,
则不等式1
()()f x f x ->的解集为 ;
7. 设O 为坐标原点,若直线1
:02
l y -=与曲线0y Γ=相交于A 、B 点,则扇 形AOB 的面积为 ;
8. 若正六棱柱的底面边长为10,侧面积为180,则这个棱柱的体积为 ;
9. 若在北纬45︒
的纬线圈上有A 、B 两地,经度差为90︒
,则A 、B 两地的球面距离与地 球半径的比值为 ;
10. 方程22log (45)2log (22)x x -=+-的解x = ;
11. 设P 是双曲线
22
142
x y -=上的动点,若P 到两条渐 近线的距离分别为1d 、2d ,则12d d = ;
12. 如图,已知正方体1111ABCD A B C D -,若在其12 条棱中随机地取3条,则这三条棱两两是异面直线的概 率为 ;(结果用最简分数表示)
13. 若F 是抛物线2
4y x =的焦点,点i P (1,2,3,...,100)i =在抛物线上,且12...PF P F ++ 1000P F += ,则12100||||...||PF P F P F +++= ;
14. 若函数2
()|sin |3sin f x x t x
=+++(,)x t R ∈的最大值记为()g t ,则函数()g t 的最小
值为 ;
二. 选择题(本大题共4题,每题5分,共20分)
15. 下列命题中的假命题是( )
A. 若0a b <<,则
11a b > B. 若1
1a
>,则01a << C. 若0a b >>,则44
a b > D. 若1a <,则11a
<
16.
若集合{|}A x y x R ==∈,{|lg |23|0,}B x x x R =-<∈,则“x A ∈”是
“x B ∈”成立的( )
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 既非充分也非必要条件
17.(文)如图,在四面体ABCD 中,AB CD =,M 、N 分别是BC 、AD 的中点,若AB 与CD 所成的角的大小为60︒
,则MN 与CD 所成的角的大小为( ) A. 30︒
B. 60︒
C. 30︒
或60︒
D. 60︒
或15︒
(理)如图,在四面体ABCD 中,AB BD ⊥,CD DB ⊥,若AB 与CD 所成的角的大小为60︒
,则二面角C BD A --的大小为( )
A. 60︒
或90︒
B. 60︒
C. 60︒
或120︒
D. 30︒
或150︒
18. 若函数lg(||1)||1()sin()||12
x x f x a x x π
->⎧⎪
=⎨≤⎪⎩,关于x 的方程2()(1)()0f x a f x a -++=,给出 下列结论:①存在这样的实数a ,使得方程有3个不同的实根;②不存在这样的实数a ,使
得方程有4个不同的实根;③存在这样的实数a ,使得方程有5个不同的实根;④不存在这样的实数a ,使得方程有6个不同的实根;其中正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个
三. 解答题(本大题共5题,共12+14+14+16+18=74分)
19. 如图,椭圆
22
1259
x y +=的左、右两个焦点分别为1F 、2F ,A 为椭圆的右顶点,点P 在 椭圆上且127
cos 8
PF F ∠=;
(1)计算1||PF 的值;(2)求△1PF A 的面积;
20. 某种“笼具”由内、外两层组成,无下底面,内层和外层分别是一个圆锥和一个圆柱,其中圆柱和圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为24cm π,高为30cm ,圆锥的母线长为20cm ; (1)求这种“笼具”的体积;(结果精确到3
0.1cm )
(2)现要使用一种纱网材料制作50个“笼具”,该材料造价为每平方米8元,共需多少元?
21. 已知2
()2sin sin 21f x x x =+-; (1)求函数()f x 的单调递增区间; (2)(文)设20()cos()cos()sin 266
x f ππ
ααα=+-+,求0sin 2x 的值; (理)设20()cos()cos()sin 266
x f ππ
ααα=+-+,其中00x π<<,求0tan x 的值;
22. 已知*
n N ∈,数列{}n a 的前n 项和为n S ,且21n n a S -=; (1)求证:数列{}n a 是等比数列,并求出通项公式;
(2)对于任意的12,{,,...,}i j n a a a a a ∈(其中1i n ≤≤,1j n ≤≤,,i j 均为正整数),若i a 和j a 的所有的乘积i j a a 的和为n T ,试求lim 4n
n
n T →∞的值;
(3)设2
13l o g
n n b a +=,11(1)n n n n c b b ++=-⋅,若存在{}n c 的前n 项和n C ,是否存在这样
的实数t ,使得对于所有的n 都有2n C tn >成立,若存在,求出t 的取值范围,若不存在,请说明理由;
23. 已知集合M 是满足下列性质的函数()f x 的全体:存在实数a 、k (0)k ≠,对于定义域内的任意x ,均有()()f a x kf a x +=-成立,称数对(,)a k 为函数()f x 的“伴随数对”; (1)判断函数2
()f x x =是否属于集合M ,并说明理由;
(2)若函数()sin f x x M =∈,求满足条件的函数()f x 的所有“伴随数对”; (3)若(1,1)、(2,1)-都是函数()f x 的“伴随数对”,当12x ≤<时,()cos()2
f x x π
=;
当2x =时,()0f x =,求当20142016x ≤≤时,函数()f x 的解析式和零点;
参考答案
一. 填空题
1. {3,4};
2. 1(01)x ≤≤;
3. 560-;
4. [1,1]-;
5.(文)2;(理)1;
6. (1,)+∞;
7. 3π;
8. 9. 3
π
; 10. 2log 3; 11. 43; 12. 255
; 13. 200; 14. 3
4
二. 选择题
15. D ; 16. B ; 17.(文)C ;(理)C ; 18. C ;
三. 解答题 19.(1)6;(2
)
8
; 20.(1)3
355211158.9cm π≈;(2)
110425
π
元; 21.(1)3[,]8
8k k π
πππ-
+
,k Z ∈;(2)(文)716;
(理)167
+; 22.(1)12n n a -=*()n N ∈;(2)1;(3)9
2
t ≤-
; 23.(1)属于;(2)(,1)2n ππ+和(,1)n π-,n Z ∈;(3)cos ,201420152cos ,2015201620,2014,2015,2016x x x x x ππ⎧
-<<⎪⎪
⎪
<<⎨⎪
=⎪⎪⎩。