(完整版)一元一次方程应用题之行程问题两次课

合集下载

一元一次方程应用题(很系统,附答案)

一元一次方程应用题(很系统,附答案)

一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。

一元一次方程实际应用:行程问题

一元一次方程实际应用:行程问题

一元一次方程实际应用:行程问题年级七年级学科数学版本通用版课程标题一元一次方程实际应用:行程问题一、基本公式:路程=速度×时间二、问题分类1. 相遇问题:甲路程+乙路程=总路程2. 追及问题:追前距离+前者路程=后者路程3. 环形跑道问题①反向相遇:甲路程+乙路程=跑道长度②同向相遇:快者路程-慢者路程=跑道长度4. 水流问题:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度例题1 一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?解析:本题是追及问题,由“追前距离+前者路程=后者路程”得:程比为1:3,则两次相遇时甲的总路程比也为1:3。

例题3 某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?解析:解应用题先找等量关系,本题根据预定时间不变列方程。

由“时间=路程速度”可得所求方程。

答案:解:设从家到学校有x 千米,15分钟=14小时 依题意得:15x +14=9x -1412x+45=20x-45,8x=90解得:x=11.25,答:从家里到学校的路程有11.25千米。

点拨:由题目中的“每小时行15千米”可得时间单位为小时,因此需要先把15分钟化为14小时。

在有些相向而行的应用题(或者追及的应用题)中,如果最后只给出两者的距离,应该分两种情况加以讨论:①相遇前距离(或者追上前距离)。

②相遇后距离(或者追上后超过的距离)。

例题A、B两地相距150千米.一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?解析:设经过x小时,两车相距30千米,此题要分两种情况进行讨论:①A、B相遇前两车相距30千米,即两车共行驶150-30=120千米时,②A、B相遇后两车相距30千米,即两车共行驶150+30=180千米时,根据两种情况分别列出方程即可。

一元一次方程 行程问题

一元一次方程 行程问题

西安(慢车)
(快车)武汉
慢车路程
快车路程
练习:西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,
一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?
画出示意图:
西安
65km/h
慢车
武汉
1500
65
85
85km/h
快车
两车相遇时,两车所走的路程与西安站和武汉站的距离有什么关系?
乙出发1小时后刚好追上甲
追上甲


• 路程
• 速度 +30
• 时间 +3
===• 路程来自• 速度• 时间
=
1
练习:已知、两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的
公路由 地匀速行驶到 地,乙每小时比甲多行30千米,甲比乙早出发3小时,
乙出发1小时后刚好追上甲,求甲的速度?


用了2.5小时。 已知水流的速度是3千米/时,求船在静水中的速度?两码头之间的距离?
用时2h


行船方向
水流方向

用时2.5h

行船方向
水流方向
例题:一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头返回甲码头逆流行驶,
用了2.5小时。 已知水流的速度是3千米/时,求船在静水中的速度?两码头之间的距离?
速度、路程、时间之间的关系?
900km/h
4.5km/s
一元一次方程的应用——行程问题
速度、路程、时间之间的关系?
路程=
速度×时间
速度=
路程÷时间
时间=
路程÷速度
应用场景
1

一元一次方程应用——行程问题含答案

一元一次方程应用——行程问题含答案

一元一次方程应用——行程问题1.A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米?2.一列火车匀速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.3.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?4.小明从家里骑自行车到学校,每小时骑20km,可早到15分钟,每小时骑15km就会迟到10分钟.问他家到学校的路程是多少km?5.汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?6.某中学学生步行到郊外旅行.七年级(1)班学生组成前对,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距2千米?7.小亮和哥哥在离家2千米的同一所学校上学,哥哥以4千米/时的速度步行去学校,小亮因找不到书籍耽误了15分钟,而后骑自行车以12千米/时的速度去追哥哥.(1)到校前小亮能追上哥哥吗?(2)如果小亮追上哥哥,此时离学校有多远?8.老师带着两名学生到离学校33千米远的博物馆参观.老师乘一辆摩托车,速度25千米/小时.这辆摩托车后座可带乘一名学生,带人后速度为20千米/小时.学生步行的速度为5千米/小时.请你设计一种方案,使师生三人同时出发后都到达博物馆的时间不超过3小时.9.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?10.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?11.一条环形公路长42千米,甲、乙两人在公路上骑自行车,速度分别是21千米/时、14千米/时.(1)如果两人同时同地反方向出发,那么经过几小时两人首次相遇;(2)如果两人同时同地同向出发,那么经过几小时两人首次相遇;(3)如果从同一地点同向前进,乙出发1小时后甲出发,那么甲经过几小时后追上乙.12.李明和王强周末约好去宜春花博园游玩,李明家在王强家与花博园两地之间,距王强家2千米,距花博园3千米.当王强以140米/分的速度从家先走10分钟后才打电话给李明,李明立即以100米/分的速度往花博园走,两人同向而行:(1)王强从家出发后多久追上李明?(2)王强能在李明到达花博园前追上李明吗?说明理由.13.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?14.为赴某地考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆轿车(平均速度为60千米/小时)从家里出发赶往距家45千米的某机场,此时距规定到达机场的时间仅剩90分钟,7点30分小颖发现爸爸忘了带身份证,急忙通知爸爸返回,同时她乘坐出租车以40千米/小时的平均速度直奔机场,与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返回,结果不到30分钟就遇上小颖(打电话,拿身份证及上出租车的时间忽略不计),并立即按原速赶往机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了千米,爸爸返回了千米(均用含x的代数式表示);(2)求小颖从7点30分出发经过多少时间与爸爸相遇;(3)小颖的爸爸能否在规定的时间内赶到机场?15.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析1.【分析】应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.【解答】解:设第一次相距50千米时,经过了x小时.(120+80)x=450﹣50x=2.设第二次相距50千米时,经过了y小时.(120+80)y=450+50y=2.5经过2小时或2.5小时相距50千米.【点评】本题考查理解题意能力,关键知道相距50千米时有两次以及知道路程=速度×时间,以路程做为等量关系可列方程求解.2.【分析】设这列火车的长度是x米,根据火车行驶的速度不变由行程问题的数量关系路程÷时间=速度建立方程求出其解是关键.【解答】解:设这列火车的长度是x米,由题意,得,解得:x=300.答:火车长300米.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,行程问题的数量关系的运用,解答时根据火车行驶的速度不变建立方程是关键.3.【分析】若设王强以6米/秒的速度跑了x米,则根据总时间=以6米/秒的速度跑的时间+以4米/秒的速度跑的时间列出方程即可.【解答】解:解法1:设王强以6米/秒速度跑了x米,那么以4米/秒速度跑了(3000﹣x)米.根据题意列方程:去分母得:2x+3(3000﹣x)=10×60×12.去括号得:2x+9000﹣3x=7200.移项得:2x﹣3x=7200﹣9000.合并同类项得:﹣x=﹣1800.化系数为1得:x=1800.解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60﹣x)秒.根据题意列方程6x+4(10×60﹣x)=3000,去括号得:6x+2400﹣4x=3000.移项得:6x﹣4x=3000﹣2400.合并同类项得:2x=600.化系数为1得:x=300,6x=6×300=1800.答:王强以6米/秒的速度跑了1800米.【点评】找出题中的等量关系列出方程是解题的关键.注意时间单位要统一.4.【分析】10分钟=小时,15分钟=小时.方法一:设他家到学校的路程为xkm.根据“每小时骑20km所用的时间+15分钟=每小时骑15km所用的时间﹣10分钟”列出方程;方法二:设小明到学校的时间为x小时.根据路程不变列出方程,并解答.【解答】解:10分钟=小时,15分钟=小时.方法一:设他家到学校的路程为xkm,依题意得:,解得x=25.答:他家到学校的路程是25km;方法二:设小明到学校的时间为x小时,,解得x=1.5.他家到学校的路程为(千米).答:他家到学校的路程是25km.【点评】本题考查了由实际问题列一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.5.【分析】方法1:可设原计划行驶的时间是x小时,根据路程是一定的,列出方程求解即可;方法2:如果在准时的时间内,用每小时50千米的速度汽车多行50×0.5=25千米,用每小时45千米的速度汽车少行45×0.5=22.5千米,两次相差25+22.5=47.5千米;速度差为:50﹣45=5千米;那么原计划开的时间为:47.5÷5=9.5小时;甲、乙两地的距离:50×(9.5﹣5)=450(千米);据此解答.【解答】解:30分钟=0.5小时,方法1:设原计划行驶的时间是x小时,依题意有45(x+0.5)=50(x﹣0.5),解得x=9.5;方法2:(50×0.5+45×0.5)÷(50﹣45)=47.5÷5=9.5(小时);50×(9.5﹣0.5)=450(千米).答:甲、乙两地的距离是450千米,原计划行使9.5小时.【点评】本题的解答思路是:通过比较已知条件,找出两个相关的差数,一是路程差,二是速度差,将这两个差相除,就可求出原计划行使的时间,然后再根据基本关系式:总差额÷每份的差额=总份数解答.6.【分析】(1)设后队追上前队需要x小时,根据后队比前队快的速度×时间=前队比后队先走的路程可列出方程,解出即可得出时间;(2)先计算出联络员所走的时间,再由路程=速度×时间即可得出联络员走的路程.(3)要分两种情况讨论:①当(2)班还没有超过(1)班时,相距2千米;②当(2)班超过(1)班后,(1)班与(2)班再次相距2千米,分别列出方程,求解即可.【解答】解:(1)设后队追上前队需要x小时,由题意得:(6﹣4)x=4×1,解得:x=2.故后队追上前队需要2小时;(2)后队追上前队时间内,联络员走的路程就是在这2小时内所走的路,所以10×2=20(千米).答:后队追上前队时间内,联络员走的路程是20千米;(3)要分三种情况讨论:①当(1)班出发半小时后,两队相距4×=2(千米)②当(2)班还没有超过(1)班时,相距2千米,设(2)班需y小时与(1)相距2千米,由题意得:(6﹣4)y=2,解得:y=1;所以当(2)班出发1小时后两队相距2千米;③当(2)班超过(1)班后,(1)班与(2)班再次相距2千米时(6﹣4)y=4+2,解得:y=3.答当0.5小时或1小时后或3小时后,两队相距2千米.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.【分析】(1)先设小亮走了x时追上哥哥,求出追上需要的时间,再求出小亮走的路程与全程比较,大于全程不能追上,小于全程就可以追上.从而得出答案.(2)由(1)的时间就可以求出小亮走的路程,总路程﹣小亮走的路程就是小亮追上哥哥时离学校的距离.【解答】解:(1)设小亮走了x时追上哥哥根据题意得:4×+4x=12x解得x=×12=1.5∵2千米>1.5千米∴小亮能追上哥哥(2)∵2﹣1.5=0.5(千米),∴小亮追上哥哥时离学校的距离为0.5千米.【点评】本题考查了列一元一次方程解生活中的实际问题中的追击问题的运用,列一元一次方程的方法的运用.解答时求出追上的时间是关键.8.【分析】由于让学生甲先步行,老师带乘学生乙,到达距博物馆一定地方,放下乙,让其步行,而老师再去接甲,最后三人同时到达,所以甲乙步行的路程相等,都设为x千米,根据乙步行的时间等于老师返回接甲并到达的时间列出方程,求出x的值即可.【解答】解:由于让学生甲先步行,老师带乘学生乙,到达距博物馆一定地方,放下乙,让其步行,而老师再去接甲,最后三人同时到达,所以甲乙步行的路程相等,都设为x千米根据乙步行的时间等于老师返回接甲并到达的时间得:=+,去分母得20x=4(33﹣2x)+5(33﹣x),解得x=9,所以共用时间+=3小时.【点评】本题考查的是一元一次方程的应用,解答此题的关键是熟知甲乙步行的路程相等列出方程.9.【分析】等量关系为:哥哥所走的路程=弟弟和妈妈所走的路程.【解答】解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.【点评】难点是得到弟弟和妈妈所用的时间,关键是找到相应的等量关系.10.【分析】(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.根据“总共行驶了198km”列方程;(2)AB段的路程为3×36=108(km),BC段的路程为.则往返时间=两段时间之和.【解答】解:(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.据题意可得,.解得x=2.∴水流的速度为2km/h.(2)由(1)可知,顺流航行速度为40km/h,逆流航行的速度为36km/h.∴AB段的路程为3×36=108(km),BC段的路程为.故原路返回时间为:.答:游艇用同样的速度原路返回共需要5小时12分.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.【分析】(1)根据“行驶路程的和等于42千米”列出方程计算;(2)根据“行驶路程的差等于42千米”列出方程计算;(3)根据“两人行驶的路程相等”列出方程计算;【解答】解:(1)设x小时相遇,根据题意得:(21+14)x=42解得:x=答:经过小时两车相遇;(2)设经过y小时两车相遇,根据题意得:(21﹣14)y=42,解得:y=6小时;答:经过6小时两人首次相遇;(3)设经过z小时甲追上乙,根据题意得:21z=14(z+1),解得:z=2,答:甲经过2小时后追上乙.【点评】本题考查了一元一次方程的应用,解题的关键是了解路程、速度和时间之间的关系.12.【分析】(1)设王强从家出发后x分钟追上李明,则李明走的时间为(x﹣10)分钟,根据题意列出方程,求出方程的解即可得到结果;(2)王强能在李明到达花博园前追上李明,理由为:求出李明走的路程,比较即可得到结果.【解答】解:(1)设王强从家出发后x分钟追上李明,则李明走的时间为(x﹣10)分钟,根据题意得:140x=2000+100(x﹣10),解得:x=25,答:王强从家出发后25分钟追上李明;(2)王强能在李明到达花博园前追上李明,理由:从李明走(25﹣10)分钟的路程分析,(25﹣10)×100=1500(米),∵1500米<3000米,∴王强能在李明到达花博园前追上李明.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.13.【分析】由(1)得v下=(v上+1)千米/小时.由(2)得S=2v上+1由(3)、(4)得2v上+1=v下+2.根据S=vt求得计划上、下山的时间,然后可以得到共需的时间为:上、下上时间+山顶游览时间.【解答】解:设上山的速度为v,下山的速度为(v+1),则2v+1=v+1+2,解得v=2.即上山速度是2千米/小时.则下山的速度是3千米/小时,山高为5千米.则计划上山的时间为:5÷2=2.5(小时),计划下山的时间为:1小时,则共用时间为:2.5+1+1=4.5(小时),所以出发时间为:12:00﹣4小时30分钟=7:30.答:孔明同学应该在7点30分从家出发.【点评】本题考查了应用题.该题的信息量很大,是不常见的应用题.需要进行相关的信息整理,只有理清了它们的关系,才能正确解题.14.【分析】(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了40 x千米,爸爸返回了(60x﹣5)千米.(2)设小颖从7点30分出发经过x小时与爸爸相遇,以路程和时间做为等量关系列出方程求解.(3)根据(2)中得到时间与90分钟作比较即可得到结论.【解答】解:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了40x千米,爸爸返回了(60x﹣5)千米(均用含x的代数式表示).故答案是:40x;(60x﹣5);(2)设小颖从7点30分出发经过x小时与爸爸相遇,根据题意得,40x+60(x﹣)=60×40x+60x﹣5=35x=,答:小颖从7点30分出发经过小时与爸爸相遇;(3)小颖的爸爸赶到机场共花时间:=(小时)=83分钟<90分钟.答:小颖的爸爸能在规定的时间内赶到机场.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.【分析】(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;(2)设x秒时原点恰好在A、B的中间,根据两点离原点的距离相等建立方程求出其解即可;(3)先根据追击问题求出A、B相遇的时间就可以求出C行驶的路程.【解答】解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.【点评】本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.。

(完整版)一元一次方程应用题专题训练行程问题

(完整版)一元一次方程应用题专题训练行程问题

(完整版)一元一次方程应用题专题训练行程问题一元一次方程应用题专题讲解【解题思路】1、审——读懂题意,找出等量关系.2、设-—巧设未知数.3、列——根据等量关系列方程。

4、解——解方程,求未知数地值。

5、答——检验,写答案(注意写清单位和答话).6、练——勤加练习,熟能生巧。

触类旁通,举一反三.第一讲 行程问题【基本关系式】(1) 行程问题中地三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(2) 基本类型① 相遇问题:快行距+慢行距=原距② 追及问题:快行距-慢行距=原距③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水地路程 = 逆水地路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变地特点考虑相等关系.常见地还有:相背而行;环形跑道问题.【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车地后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等地含义,弄清行驶过程。

故可结合图形分析. (1)分析:相遇问题,画图表示为: 等量关系是:慢车走地路程+快车走地路程=480公里。

(2)分析:相背而行,画图表示为: 等量关系是:两车所走地路程和+480公里=600公里。

(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里.甲 乙600甲 乙(完整版)一元一次方程应用题专题训练行程问题(4)分析:追及问题,画图表示为:等量关系为:快车地路程=慢车走地路程+480公里.甲乙(5)分析:追及问题,等量关系为:快车地路程=慢车走地路程+480公里。

一元一次方程应用题【行程问题】

一元一次方程应用题【行程问题】

学校:______________ 班级:______________ 姓名:_______________ 考号:_______________ ······················密························封·······························线······································一元一次方程应用题【板块一:相遇问题】1、甲、乙两人从相距为 180 千米的 A 、B 两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。

3.2.3一元一次方程的应用(行程问题)

3.2.3一元一次方程的应用(行程问题)


400米 80x米
学 校
180x米
追 及 地
小明先行路程 + 小明后行路程 =爸爸的路程
精讲
例题



学 校
例2、小明每天早 上要在7:50之前赶到距 离家1000米的学校上学, 400米 80x米 一天,小明以80米/分 追 的速度出发,5分后, 小明的爸爸发现他忘了 及 180x米 带语文书,于是,爸爸 地 立即以180米/分的速度 去追小明,并且在途中 (1)解:设爸爸要 x分钟才追上小明, 追上他。 依题意得: (1)爸爸追上小明用 180x = 80x + 5×80 了多少时间? (2)追上小明时,距 解得 x=4 离学校还有多远? 答:爸爸追上小明用了4分钟。
小王、叔叔在400米 长的环形跑道上练习跑 步,小王每秒跑4米,叔 叔每秒跑7.5米。
(1)若两人同时同地反 向出发,多长时间两人
(2)同向
小王
首次相遇?
(2)若两人同时同地同 向出发,多长时间两人 首次相遇?
相等关系:
小王路程 + 400 = 叔叔路程
精讲
例题


例4 为了适应经 济发展,铁路运输再 次提速。如果客车行 驶的平均速度增加 40km/h,提速后由合 肥到北京1110km的路 程只需行驶10h。那 么,提速前,这趟客 车平均每时行驶多少 千米?
长时间后与A车相遇?
答:设B车行了3小时后与A车相遇。
精讲
例题


例1、 A、B两车分 别停靠在相距240千米 的甲、乙两地,甲车每
线段图分析: A
甲 第一种情况: A车路程+B车路程+相距80千米=
50 x
80千米

一元一次方程的应用行程问题

一元一次方程的应用行程问题

一元一次方程的应用行程问题
一元一次方程在日常生活中有很多应用,比如用来解决行程问题。

例如,假设小明骑自行车去学校,他以每小时10公里的速度骑行,如果他离开家的时候已经骑行了1个小时,那么离学校还有多远?
我们可以用一元一次方程来解决这个问题。

设小明离学校的距离为x公里,根据题意,我们可以列出方程式,10x=10。

这个方程表示小明骑行的速度乘以时间等于距离。

解这个方程得到x=1,所以小明离学校还有1公里的距离。

这就是一元一次方程在行程问题中的应用。

通过建立方程,我们可以用数学方法解决实际生活中的问题,帮助我们更好地理解和处理各种情境。

行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。

6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。

乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。

(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。

一元一次方程应用题-行程问题

一元一次方程应用题-行程问题

03 相遇与追及问题
相遇问题建模与求解
• 相遇问题的基本等量关系:甲走的路程+乙走的路程=甲 乙相距的总路程。
相遇问题建模与求解
相遇问题的建模步骤
根据题意,列出一元 一次方程。
设未知数,一般为时 间或速度。
相遇问题建模与求解
解方程,求出未知数。 检验解的合理性,并作答。
相遇问题的常见类型
相遇问题建模与求解
实例分析
01
例1
02
运动员在400米的环形跑道上练 习跑步,他每分钟跑160米,问 他5分钟后跑了多少圈?

设运动员5分钟后跑了$x$圈,则 他跑的总路程为$400x$米。根 据速度和时间的关系,他5分钟 跑的路程是$160 times 5 = 800$米。因此,可以建立方程 $400x = 800$,解得$x = 2$。 所以,运动员5分钟后跑了2圈。
追及问题的建模步骤 设未知数,一般为时间或速度。
根据题意,列出一元一次方程。
追及问题建模与求解
解方程,求出未知数。 检验解的合理性,并作答。 追及问题的常见类型
追及问题建模与求解
同时同地出发的追及问题
两人或两车同时同地出发,一人或一车速度快,经过一段时间追上另一人或车。
同时异地出发的追及问题
两人或两车同时从两地出发,一人或一车速度快,经过一段时间在途中追上另 一人或车。
相遇与追及综合应用
• 相遇与追及的综合应用问题通常涉及到多个对象、多个时间段 和多种运动方式。解决这类问题的关键在于正确识别各个对象 之间的相对运动关系,并根据这些关系建立数学模型。
相遇与追及综合应用
建模步骤
1
2
分析题意,确定各个对象的初始状态和运动方式。

一元一次方程应用题汇总精选全文完整版

一元一次方程应用题汇总精选全文完整版

可编辑修改精选全文完整版一元一次方程应用题归类聚集:(一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,那么列方程为________________。

2.甲、乙两人在相距18千米的两地同时动身,相向而行,1小时48分相遇,若是甲比乙早动身40分钟,那么在乙动身1小时30分时两人相遇,求甲、乙两人的速度。

3. 某人从家里骑自行车到学校。

假设每小时行15千米,可比预定的时刻早到15分钟;假设每小时行9千米,可比预定的时刻晚到15分钟;求从家里到学校的路程有多少千米?800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟.5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相碰到两车尾相离通过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。

若是一列火车从他们背后开来,它通过行人的时刻是22秒,通过骑自行车人的时刻是26秒。

(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。

7.休息日我和妈妈从家里动身一同去外婆家,咱们走了1小时后,爸爸发觉带给外婆的礼物忘在家里,便立刻带上礼物以每小时6千米的速度去追,若是我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上咱们吗?8.一次远足活动中,一部份人步行,另一部份乘一辆汽车,两部份人同地动身。

汽车速度60千米/小时,咱们的速度是5千米/小时,步行者比汽车提早1小时动身,这辆汽车抵达目的地后,再转头接步行这部份人。

动身地到目的地的距离是60千米。

问:步行者在动身后经多少时刻与转头接他们的汽车相遇(汽车掉头的时刻忽略不计)?时钟问题:10.在6点和7点间,时钟分针和时针重合?行船问题:12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

顺流逆流实际问题与一元一次方程7(行程问题二)

顺流逆流实际问题与一元一次方程7(行程问题二)
解决这类问题需要理解并运用水流速度对船只实际速度的影 响,以及如何通过一元一次方程来表示和解决实际问题的数 学模型。
对未来研究方向的展望
随着数学理论和实际应用的不断发展,顺流逆流问题与一元一次方程的应用将更 加广泛和深入。
未来可以进一步研究更复杂的流动环境和多因素影响下的顺流逆流问题,例如不 同船只类型、不同水流条件等,以建立更精确的数学模型和解决方案。
04
顺流逆流问题的实际案例
案例一:河流中的船只行驶问题
总结词
船只在河流中顺流而下或逆流而上时 ,速度和时间的关系
详细描述
船只在河流中行驶时,由于水流的速 度影响,实际速度会比船只本身的速 度快或慢。通过一元一次方程,可以 计算船只的顺流或逆流行驶时间。
案例二:城市公共交通中的顺流逆流问题
总结词
详细描述
飞机在空中飞行时,会遇到各种气流。 气流对飞机的速度和时间产生影响。 通过一元一次方程,可以计算飞机在 气流中的飞行时间和速度。
05
总结与展望
总结顺流逆流问题与一元一次方程的关系
顺流逆流问题是一元一次方程在实际问题中的重要应用之一 ,通过建立一元一次方程,可以解决诸如船只顺流而下和逆 流而上的时间、速度和距离等问题。
逆流问题
当船在河流中逆流而上时,其实际速度等于船在静水中的速 度减去水流速度,因此,逆流问题可以用一元一次方程表示 为:船速 - 水速 = 实际速度。
利用一元一次方程解决顺流逆流问题的方法
建立方程
根据题目描述,建立一元一次方 程,通常涉及船速、水速和距离
等变量。
解方程
通过解方程,求出船速、水速和距 离等变量的值。
通过建立一元一次方程来描述和 解决实际问题中的数量关系。

初一数学上册:一元一次方程解决应用题【行程问题】

初一数学上册:一元一次方程解决应用题【行程问题】

初一数学上册:一元一次方程解决应用题【行程问题】知识点1、行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2、行程问题基本类型相遇问题:快行距+慢行距=原距追及问题:快行距-慢行距=原距航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系专项练习1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为_____。

解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:X/8-X/40=3.62、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系(1)速度15千米行的总路程=速度9千米行的总路程(2)速度15千米行的时间+15分钟=速度9千米行的时间-15分钟方法一:设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25)方法二:设从家里到学校有x千米,则列出方程是:X/15+15/60=X/9-15/603、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?等量关系:①两种情形下火车的速度相等②两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。

解:⑴行人的速度是:3.6km/时=3600米÷3600秒=1米/秒骑自行车的人的速度是:10.8km/时=10800米÷3600秒=3米/秒⑵方法一:设火车的速度是X米/秒,则26×(X-3)=22×(X-1) 解得X=4方法二:设火车的车长是x米,则(X+22×1)/22=(X+26×3)/264、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

(完整版)一元一次方程行程问题

(完整版)一元一次方程行程问题

1.相遇问题例1.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,几分钟分钟后两人第一次相遇,问:1.第一次相遇时所用时间是多少?2.第三次相遇时,所用时间是多少?例2.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?例3.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?例4.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?例5.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?例6.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。

求两车的速度。

例7.A、B两地间的路程为360km,甲车从A地出发开往B地,每小时72km,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向继续行驶,那么相遇后两车相距100km时,甲车从出发共行驶了多少小时?2.追及问题例1.一队学生去校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?例2一部队从军部出发行军,每小时走40千米,3.5小时后一通讯兵传达一军部命令骑摩托车从军部出发追赶,4小时后追上,则通讯兵每小时比部队多行多少千米例3.甲乙两站相距40千米,一列慢车从甲站开出,每小时行使56千米,同时一列快车由乙站开出,每小时行使72千米,两车同向而行,快车在慢车的后面,经过多少小时快车可追上慢车?例4.甲车在早上5时以每小时32千米的速度由A地向B地行驶,6时30分乙车才开始出发,结果在9时30分时乙车追上了甲车,问乙车的速度是多?例5.一条环行跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?例6.甲乙两人环湖竞走,一周400米,乙每分钟走80米,甲的速度是乙的5/4倍,现在甲在乙的前面100米;多少分钟后两人相遇?例7.一列客车和一列货车在平行的轨道上同向行驶,客车长200米,货车长310米,客货辆车的速度比为4:3,客车从后面追赶货车,从车头赶上到车尾超过的时间为2分钟,求两列火车的速度。

(完整版)一元一次方程应用行程问题

(完整版)一元一次方程应用行程问题

:一元一次方程应用之--------------行程问题专题一、【根本概念】行程类应用题根本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.追及问题:①甲、乙同向不同地,那么:追者走地路程=前者走地路程+两地间地距离.②甲、乙同向同地不同时,那么:追者走地路程=前者走地路程环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地.②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.飞行〔航行〕问题、根本等量关系:①顺风〔顺水〕速度=无风〔静水〕速度+风速〔水速〕②逆风〔逆水〕速度=无风〔静水〕速度-风速〔水速〕顺风〔水〕速度-逆风〔水〕速度=2×风〔水〕速车辆〔车身长度不可忽略〕过桥问题:车辆通过桥梁〔或隧道等〕,那么:车辆行驶地路程=桥梁〔隧道〕长度+车身长度超车〔会车〕问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差.会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和.在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键.所以画行程图是我们必须学会地一种分析手段.另外,由于行程问题中地根本量只有“路程〞、“速度〞和“时间〞三项,所以,列表分析也是解决行程问题地一种重要方法.二、【典型例题】〔一〕相遇问题相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.例1、甲、乙两站相距 600km,慢车每小时行40km,快车每小时行60km.⑴经过xh后,慢车行了km,快车行了 km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km, 如果两车同时开出,xh相遇,那么可得方程:;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:1/3慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h后与B车相遇,又知B车地时速是A车时速地倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间地路程.课堂练习1:电气机车和磁悬浮列车从相距298千米地两地同时出发相对而行,磁悬浮列车地速度比电气机车速度地5倍还快20千米/时,半小时后两车相遇.两车地速度各是多少?2、甲、乙两人从相距35km地两地同时出发,相向而行,甲步行每小时走4km,乙骑车小时后相遇,求乙地速度.3、甲步行,乙骑自行车,同时从相距 27km地两地相向而行,2h 相遇,乙比甲每小时多走5.5km,求甲、乙两人地速度.4、A、B两地相距153km,汽车从A地开往B地,时速为38km;摩托车从B地开往A地,时速为24km.摩托车开出小时后,汽车再出发.问汽车开出几小时后遇到摩托车?5、甲骑自行车从A地出发,以12km/h地速度驶向B地,同时,乙也骑自行车从B地出发,以14km/h 地速度驶向A地.两人相遇时,乙已超过A、B两地中点1.5km,求A、B两地地距离.〔二〕追及问题例1、甲、乙两地相距10km,A、B两人分别从甲、乙两地同时、同向出发,A在前,B在后,A地速度是每小时4km,B地速度是每小时5km,xh后A走了km,B走了km.如果这时刚好B追上A,那么可列方程:.例2、甲、乙两人都从A地出发到B地,甲先走5km后乙再出发,甲速度是4km/h,乙速度是5km/h.如果A、B两地相距xkm,那么甲先走地时间是h,乙走地时间是h, 假设两人同时到达B地,那么可列方程:.例3、甲、乙两人同时以4km/h地速度从A地前往B地,走了后,甲要回去取一份文件.他以6km/h 地速度往回走,在办公室耽误了15min后,仍以6km/h地速度追赶乙,结果两人同时到达B地.求A、B两地间地距离.分析:你能求出第二段甲乙所用时间为h吗?假设设A、B两地间地距离为xkm,可以用表示第四段甲乙所用时间.课堂练习1:跑得快地马每天走240里,跑得慢地马每天走150里.慢马先走12天,快马几天可以追上慢马?课堂练习2:一辆每小时行30km地卡车由甲地驶往乙地,1h后,一辆每小时行40km地摩托车也由甲地驶往乙地,问卡车开出几h后摩托车可追上卡车?家庭练习:1、甲、乙两人相距18km,乙出发后甲再出发,甲在后,乙在前同向而行,甲骑车每小时行8km,乙步行每小时行5km,问甲出发几h后追上乙?2、甲每小时走5km,出发2h后乙骑车追甲.⑴如乙地速度为每小时20km,问乙多少分钟追上甲?⑵如果要求乙出发14km时追上甲,问乙地速度是多少?3、从甲地到乙地走水路比走公路近20km,上午10时,一条轮船甲地从驶往乙地,下午1时一2/3辆汽车也从甲地驶向乙地,结果汽车与轮船同时到达乙地.轮船时速20km,汽车时速60km,求甲地到乙地地水路和公路地长.4、同村地甲、乙两人都去县城,甲比乙早走1h,却迟到半小时,甲每小时走4km,乙每小时走5km.问村庄到县城地距离是多少?〔三〕环形跑道问题例1、某城举行环城自行车赛,骑得最快地人在出发后 35min就遇到骑得最慢地人,骑得最慢地人地车速是骑得最快地人地车速地5,环城一周是6km,求骑得最快地人地车速.7例2、一环形公路周长是24千米,甲乙两人从公路上地同一地点同一时间出发,背向而行,3小时后他们相遇.甲每小时比乙慢千米,求甲、乙两人速度各是多少?家庭练习:1、甲、乙两人在400m环形跑道上练竞走,乙每分钟走80m,甲地速度是乙地速度地11倍,现4甲在乙前面100m,问多少分钟后两人可首次相遇?2、运动场地跑道一圈长 400m.甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发 ,经过多少时间首次相遇?又经过多少时间再次相遇?〔四〕航行〔飞行〕问题例1、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时.水流速度是3千米/时,求船在静水中地平均速度.例2、一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机地航速和两城之间地航程.课堂练习1:一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了小时,水流速度是3千米/小时,求船在静水中地速度.课堂练习2:有A、B、C三个码头,BC相距24km,某船从B顺水而下到达A后,立即逆水而上到达C.共用8h,水流速度为5km/h,船在静水中地速度为20km/h,求A、B之间地距离.1、客机和战斗机从相距600km地两个机场起飞,30min相遇,客机顺风飞行,战斗机逆风飞行,如果在静风中战斗机地速度是客机地3倍,风速是每小时24km,问两机地速度各是多少?2、船在静水中地速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,假设要船在3h30min内返回,那么船最远能开出多远?3、甲船从A地顺流下行,乙船同时从B地逆水上行,12h后相遇,此时甲船已走了全程地一半多9km,甲船在静水中地速度是每小时4km,乙船在静水地速度是每小时5km,求水流地速度.〔五〕错车问题例1.甲乙两人辞别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车从甲身旁开过,用了15s;然后从乙身旁开过用了17s.两人地速度都是3.6km/h,这列火车有多长?随堂练习:1.某部队执行任务,以6km/h地速度前进,通信员在队尾接到命令后把命令传给了排头,然后立即返回队尾,通讯员来回地速度是10km/h,共用7.5min,求队伍地长度.2.在高速公路上,一辆长4米,速度为110千米/时地轿车准备超越一辆长12米,速度为100千米/时地卡车,那么轿车从开始超越到超越卡车需要花费地时间约是多少?3.某隧道长500m,现有一列火车从隧道内通过,测得火车通过隧道〔即从车头进入入口到车尾地离开出口〕共用30s,而整列火车完全在隧道内地时间为10s,求火车地速度和火车地长.4.一列火车用26s地时间通过一个长256m地隧道〔即从车头进入隧道到车尾离开隧道〕,这列火车又以同样地速度用16s地时间通过了另一个长96m地隧道,求这列火车地长度3/3。

一元一次方程的运用8(行程问题2)

一元一次方程的运用8(行程问题2)
一元一次方程的应用
(行程问题2)
1、已知火车的身长是600米,速度是50米/秒,现有一座 长为1800米的大桥,问火车从上桥到离桥需要多少时间?
等量关系:火车完全过桥路程=桥的长度+火车的长度
解:设火车从上桥到离桥需要X秒,由题意可得: 50X=1800+600 解得:x=48 经检验符合题意 答:火车从上桥到离桥需要48秒
解得:x=300 经检验符合题意 答:这列火车长300米。
4:甲乙两列火车的长分别为144米和180米,甲车 比乙车每秒多行4米,两列火车相向而行,从相遇 到全部错开需要9秒,问两列火车速度各是多少?
等量关系:快车行的路程+慢车行的路程=两列火车的车长和
例5 一列客车和一列货车在平行的轨道上同向行驶, 客车的长是 200米,货车的长是280米,客车的速度与货车的速度比是5 :3,客 车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶, 它们的交叉时间是多少分钟? 老师提醒:将两车车尾视为两人,
例7.甲乙两人分别后,沿着铁路反向而行,此时, 一列火车匀速地向甲迎面驶来,火车在甲身旁开过 用了14秒,然后在乙身旁开过用了16秒,已知两人 的步行速度均为3.6千米/小时,求火车的长度?
1200 x 1200 x 50 30
解得:x=300,
1200 x 30 m / s 50
3.某列车匀速前进,从它驶上300米的桥到完全通过,一共 用了1/3min又知桥上一盏固定的灯光一直照射列车10s,求 这列车的长度?
此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。 解:方法一:设这列火车的长度是x米, 方法二:设这列火车的速度 根据题意,得 是x米/秒,根据题意,得 20x-300=10x 解得:x=30 经检验符合题意 10x=300 答:这列火车长300米。

一元一次方程应用题之行程问题两次课

一元一次方程应用题之行程问题两次课

一元一次方程应用题之行程问题两次课编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(一元一次方程应用题之行程问题两次课)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为一元一次方程应用题之行程问题两次课的全部内容。

一元一次方程地应用之行程问题(一)解应用题地步骤:1。

审题(读懂题目所表达地意思,勾出含数量关系地语句)2。

设未知数(一般情况下未知数设为,一般是问什么设什么)3.用未知数表示问题中地数量关系,列代数式。

4。

找等量关系,列出方程(找题目中含等量关系地语句,例如:相等、和差、几倍、几分之几、多、少、 快、慢等,它们能指导我们正确地列出代数式或方程式)5.解方程,求出未知数.6.答(看解出地未知数是否符合题意)(二)行程问题基本量之间地关系:路程()=速度()×时间() 时间()=路程()÷速度()速度()=路程()÷时间()(1)相遇问题 快行距+慢行距=原距 (画图分析)(2)追及问题 快行距-慢行距=原距 (画图分析)注意:相遇、追击类问题抓住时间相同这个关键点.(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度注意:抓住两码头间距离不变,水流速和船速(静不速)不变地特点考虑相等关系. 典型例题(相遇问题)相遇问题中路程、速度、时间三个量间地关系:路程和=速度和×相遇时间路程和÷速度和=相遇时间路程和÷相遇时间=速度和例1、已知甲、乙两地相距120千米,乙地速度比甲每小时快1千米,甲先从A 地出发2小时后,乙从B 地出发,与甲相向而行经过10小时后相遇,求甲乙地速度?举一反三:1:A 、B 两地相距460千米,甲列车从A 地开出2小时后,乙列车从B 地开出,经4小时与甲列车相遇,已知甲列车比乙列车每小时快10千米,求甲列车速度多少千米?2:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.x s v t t s v v s t(1)慢车先开出1小时,快车再开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程地应用之行程问题
(一)解应用题地步骤:
1.审题(读懂题目所表达地意思,勾出含数量关系地语句)
2.设未知数(一般情况下未知数设为x,一般是问什么设什么)
3.用未知数表示问题中地数量关系,列代数式.
4.找等量关系,列出方程(找题目中含等量关系地语句,例如:相等、和差、几倍、几分之几、多、少、
快、慢等,它们能指导我们正确地列出代数式或方程式)
5.解方程,求出未知数.
6.答(看解出地未知数是否符合题意)
(二)行程问题基本量之间地关系:
路程(s)=速度(v)×时间(t)时间(t)=路程(s)÷速度(v)
速度(v)=路程(s)÷时间(t)
(1)相遇问题快行距+慢行距=原距(画图分析)
(2)追及问题快行距-慢行距=原距(画图分析)
注意:相遇、追击类问题抓住时间相同这个关键点.
(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
注意:抓住两码头间距离不变,水流速和船速(静不速)不变地特点考虑相等关系.
典型例题
(相遇问题)相遇问题中路程、速度、时间三个量间地关系:
路程和=速度和×相遇时间
路程和÷速度和=相遇时间
路程和÷相遇时间=速度和
例1、已知甲、乙两地相距120千米,乙地速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙地速度?
举一反三:
1:A、B两地相距460千米,甲列车从A地开出2小时后,乙列车从B地开出,经4小时与甲列车相遇,已知甲列车比乙列车每小时快10千米,求甲列车速度多少千米?
2:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里. (1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车地后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
例2、客车和货车同时从A、B两地相向开出,客车每小时行驶50千米,货车地速度是客车地80%.相遇后客车继续行驶3.2小时到达B地.A、B两地相距多少千米?
举一反三:
1:甲、乙两辆汽车同时从A、B两站相对开出,第一次相遇时离A站70千米.然后各按原速度继续行驶,分别到达对方车站后即沿原路返回,第二次相遇时离A站地距离占AB间总长地60%.A、B两站地路程是多少千米?
2:甲乙两人在同一道路上从相距5千米地A、B两地同向而行,甲地速度为5千米/小时,乙地速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗地速度为15千米/小时,求此过程中,狗跑地总路程是多少?
(路程问题)行程问题中路程、速度、时间三个量间地关系:路程=速度×时间
例3、小明从家到学校,步行需40分钟,骑自行车需15分钟.一天他骑车行了9分钟后自行车发生故障,只好步行到校,那么,他从家到学校共用多少时间?
举一反三:
1:某人从家里骑自行车到学校.若每小时行15千米,可比预定地时间早到15分钟;若每小时行9千米,可比预定地时间晚到15分钟;求从家里到学校地路程有多少千米?
2:从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车地速度为每小时40千米,甲地到乙地地距离是多少千米?
(操场跑道问题)同向:第一次相遇即快地比慢地多跑一圈;反向:第一次相遇是两人路程之和为一圈
例4、在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后俩人相遇?
举一反三:
1:在环形跑道上,两人都按顺时针方向跑,每12分钟相遇一次;如果两人速度不变,其中一人改成逆时针方向跑,每隔4分钟相遇一次,间:两人各跑一圈需要几分钟?
2:甲、乙两人绕周长1200米地环形广场跑步,已知甲每分钟跑125米,乙地速度是甲地1.2倍.现在甲在乙后400米.那么,经过多少时间乙追上甲?
(追及问题)追及问题中路程、速度、时间三个量间地关系:
路程差=速度差×追及时间
路程差÷速度差=追及时间
路程差÷追及时间=速度差
例5、一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分地速度从队头至队尾又返回,已知队伍地行进速度为14米/分.问:①若已知队长320米,则通讯员几分钟返回?②若已知通讯员用了25分钟,则队长为多少米?
举一反三:
1:甲、乙两辆车地速度分别为每小时52千米和40千米,它们同时从A 地出发到B 地去,出发后7小时,甲车遇到一辆迎面开来地卡车,1小时后乙车也遇到了这辆卡车.求这辆卡车地速度.
2:甲、乙两地相距1200千米,一列客车和一列货车同时由甲地开往乙地,客车比货车早5小时到达乙地,客车到达时,货车行驶了全程地5
4.问:货车行完全程需多少时间? 、
(货车、火车过桥过洞问题)火车过桥问题地基本公式:过桥速度×过桥时间=桥长+车长
例1、有一火车以每分钟600米地速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥地长度比第一铁桥长度地2倍短50米,试求各铁桥地长.
举一反三:
1:一列火车通过500米地第一个隧道用了24秒钟,接着通过第二个长216米地隧道用了16秒钟,求这列火车地长度.
2:一个人站在铁道旁,听见行进来地火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直地)声速是每秒钟340米,求火车地速度.(得数保留整数)
(火车、货车错车问题)考虑车身地长度
例2、有两列火车,一列长140米,每秒行24米,另一列长230米,每秒行13米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?
举一反三:
1:一列客车长200 m,一列货车长280 m,在平行地轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车地速度之比是3∶2,问两车每秒各行驶多少米?
2:已知快车长182米,每秒行20米;慢车长1304米,每秒行18米
(1)两车相向而行,从两车头相接到两车尾相接,求穿过地时间.
(2)两车同向而行,当快车头接慢车尾时,几秒可穿过?
(3)两车同向而行,当两车头齐时,快车几秒可穿过慢车?
(4)两车同向而行,当快车车尾接慢车车尾时,求快车穿过慢车地时间?
(航行问题 )注意顺风逆风、顺水逆水
例1、一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流地速度为2千米/时,求甲、乙两码头之间地距离.
举一反三
1:某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间地C地,一共航行了7小时,已知此船在静水中地速度为8千米/时,水流速度为2千米/时.A、C两地之间地路程为10千米,求A、B两地之间地路程.
2:一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间地飞行路程?。

相关文档
最新文档