山东省2013届高三高考模拟卷(四)文科数学含答案
2013年山东省高考数学试卷(文科)答案与解析讲解学习
2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()=,.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()4S=V=5.(5分)(2013•山东)函数f(x)=的定义域为()=6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,Bb==得:===cosA=8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q....x=时,10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()B=91(.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,B求出函数在,得),得,则抛物线的焦点与双曲线的右焦点的连线所在直线方程为处的切线的斜率为由题意可知,得).p=12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,代入=+,求得二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.=,2=214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.=的最小值等于故答案为:15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.利用已知条件求出解:因为知,=,所以16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号),,.时,此时lnb=,此时则,此时,,<三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)2(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.p=p=18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.[]﹣,故周期为,所以)时,,,[]上的最大值和最小值分别为:19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.AB CD=20.(12分)(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.,+++++时,=时,=)﹣(==,+++,T++T+++)﹣﹣﹣21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.时,.可得出﹣<)上是减函数,在(),单调递增区间是(,,)上,导数小于在区间(,),单调递增区间是(,,),单调递增区间是(,)知,是函数的唯一极小值点故=1==0x=<<(22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.(Ⅰ)设椭圆的标准方程为,解出即可得到椭圆的方程.的关系,再利用(Ⅰ)由题意设椭圆的标准方程为,焦距为,解得,∴椭圆的方程为.,另一方面,==,∴,,∴,,解得,或,∴综上可得:。
数学_2013年山东省济宁市高考数学一模试卷(文科)_(含答案)
2013年山东省济宁市高考数学一模试卷(文科)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U =R ,集合M ={x|x 2+2x −3≤0),N ={x|−1≤x ≤4},则M ∩N 等于( )A {x|1≤x ≤4}B {x|−1≤x ≤3}C {x|−3≤x ≤4)D {x|−1≤x ≤1} 2. 复数1+i2−i 表示复平面内的点位于( )A 第一象限B 第二象限C 第三象限D 第四象限3. 已知命题p:m 、n 为直线,α为平面,若m // n ,n ⊂α,则m // α;命题q :若a >b ,则ac >bc ,则下列命题为真命题的是( ) A p 或q B ¬p 或q C ¬p 且q D p 且q4. 设a =30.3,b =log π3,c =log 0.3e ,则a ,b ,c 的大小关系是( ) A a >b >c B c >b >a C b >a >c D c >a >b5. 将函数f(x)=sin(2x +π6)的图象向右平移π6个单位,那么所得的图象对应的函数解析式是( )A y =sin2xB y =cos2xC y =sin(2x +2π3) D y =sin(2x −π6)6. 已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V 1.直径为4的球的体积为V 2,则V 1:V 2=( ) A 1:4 B 1:2 C 1:1 D 2:17. 设实数x ,y 满足不等式组{x +y −11≤03x −y +3≤0x ≥0,则z =2x +y 的最大值为( )A 13B 19C 24D 298. 如图在程序框图中,若输入n =6,则输出k 的值是( )A 2B 3C 4D 59. 设a∈R,则“a=1”是“直线l1:ax+2y−1=0与直线l2:x+(a+1)y+4=0平行”的()A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件10. 已知函数f(x)=2x−2,则函数y=|f(x)|的图象可能是()A B C D11. 已知椭圆方程为x24+y23=1,双曲线x2a2−y2b2=1(a>0, b>0)的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为()A √2B √3C 2D 312. 已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=−1对称,则f(2013)=()A 0B 2013C 3D −2013二、填空题:本大题共4小题,每小题4分,共16分.13. 已知等差数列{a n}中,a7=π4,则tan(a6+a7+a8)=________.14. 已知不等式|x+2|+|x|≤a的解集不是空集,则实数a的取值范围是________.15. 圆心在原点,并与直线3x−4y−10=0相切的圆的方程为________.16. 某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成五组:每一组[13, 14);第二组[14, 15),…,第五组[17, 18].如图是按上述分组方法得到的频率分布直方图若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数是________.三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17. 已知向量a →=(cosx,4sinx −2),b →=(8sinx,2sinx +1),x ∈R ,设函数f(x)=a →⋅b →(1)求函数f(x)的最大值;(2)在△ABC 中,A 为锐角,角A ,B ,C 的对边分别为a ,b ,c ,f(A)=6,且△ABC 的面积为3,b +c =2+3√2,求a 的值.18. 某学校为促进学生的全面发展,积极开展丰富多样的社团活动,根据调查,学校在传统民族文化的继承方面开设了“泥塑”、“剪纸”、“年画”三个社团,三个社团参加的人数如下表示所示:为调查社团开展情况,学校社团管理部采用分层抽样的方法从中抽取一个容量为n 的样本,已知从“剪纸”社团抽取的同学比从“泥塑”社团抽取的同学少2人. (1)求三个社团分别抽取了多少同学;(2)若从“剪纸”社团抽取的同学中选出2人担任该社团活动监督的职务,已知“剪纸”社团被抽取的同学中有2名女生,求至少有1名女同学被选为监督职务的概率.19. 如图,在三棱柱ABC −A 1B 1C 1中,CC 1⊥底面ABC ,AC =BC ,M ,N 分别是CC 1,AB 的中点.(Ⅰ)求证:CN ⊥AB 1;(Ⅱ)求证:CN // 平面AB 1M .20. 设数列{a n }的前n 项和为S n ,且满足S n +1=2a n ,n ∈N ∗. (1)求数列{a n }的通项公式;(2)在数列{a n }的每两项之间都按照如下规则插入一些数后,构成新数列:a n 和a n+1两项之间插入n 个数,使这n +2个数构成等差数列,其公差记为d n ,求数列{1d n}的前n 项的和T n .21. 已知函数f(x)=lnx −12ax 2−2x .(1)若函数f(x)在x =2处取得极值,求实数a 的值;(2)若函数f(x)在定义域内单调递增,求实数a 的取值范围;(3)若a =−12时,关于x 的方程f(x)=−12x +b 在[1, 4]上恰有两个不相等的实数根,求实数b 的取值范围.22. 椭圆E:x 2a 2+y 2b 2=1(a >b >0)的焦点到直线x −3y =0的距离为√105,离心率为2√55,抛物线G:y 2=2px(p >0)的焦点与椭圆E 的焦点重合;斜率为k 的直线l 过G 的焦点与E 交于A ,B ,与G 交于C ,D .(1)求椭圆E 及抛物线G 的方程;(2)是否存在学常数λ,使1|AB|+λ|CD|为常数,若存在,求λ的值,若不存在,说明理由.2013年山东省济宁市高考数学一模试卷(文科)答案1. D2. A3. B4. A5. D6. B7. A8. B9. A 10. B 11. C 12. A 13. −114. {a|a ≥2} 15. x 2+y 2=4 16. 2717. 解:(1)∵ 函数f(x)=a →⋅b →=8sinxcosx +(4sinx −2)(2sinx +1)=4sin2x −4cos2x +2=4√2sin(2x −π4)+2,∴ 函数f(x)的最大值为 4√2+2.(2)在△ABC 中,∵ A 为锐角,f(A)=6,∴ 4√2sin(2A −π4)+2=6,解得 sin(2A −π4)=√22, ∴ A =π4.∴ △ABC 的面积为3=12⋅bc ⋅sinA =√24bc ,∴ bc =6√2.再根据 b +c =2+3√2,可得 a 2=b 2+c 2−2bc ⋅cosA =(b +c)2−2bc −2bc ×√22=10,∴ a =√10.18. 解:(1)设出抽样比为x ,则“泥塑”、“剪纸”、“年画”三个社团抽取的人数分别为:320x ,240x ,200x∵ 从“剪纸”社团抽取的同学比从“泥塑”社团抽取的同学少2人∴ 320x−240x=2解得x=140故“泥塑”、“剪纸”、“年画”三个社团抽取的人数分别为:8人,6人,5人(2)由(1)知,从“剪纸”社团抽取的同学共有6人,其中有两名女生,则从“剪纸”社团抽取的同学中选出2人担任该社团活动监督的职务,共有C62=15种不同情况;其中至少有1名女同学被选为监督职务的情况有C41⋅C21+C22=9种故至少有1名女同学被选为监督职务的概率P=915=3519. 证明:(Ⅰ)因为三棱柱ABC−A1B1C1中CC1⊥底面ABC,所以BB1⊥平面ABC,所以BB1⊥CN.因为AC=BC,N是AB的中点,所以CN⊥AB.因为AB∩BB1=B,所以CN⊥平面AB B1A1.所以CN⊥AB1.(2)证法一:连接A1B交AB1于P.因为三棱柱ABC−A1B1C1,所以P是A1B的中点.因为M,N分别是CC1,AB的中点,所以NP // CM,且NP=CM,所以四边形MCNP是平行四边形,所以CN // MP.因为CN⊄平面AB1M,MP⊂平面AB1M,所以CN // 平面AB1M.证法二:取BB1中点P,连接NP,CP.因为N,P分别是AB,BB1的中点,所以NP // AB1.因为NP⊄平面AB1M,AB1⊂平面AB1M,所以NP // 平面AB1M.同理CP // 平面AB1M.因为CP∩NP=P,所以平面CNP // 平面AB1M.因为CN⊂平面CNP,所以CN // 平面AB1M.20. 解:(1)n =1时,s 1+1=2a 1,∴ a 1=1,… n ≥2时,又s n−1+1=2a n−1,相减得a n =2a n−1, ∵ {a n }是以1为首项,2为公比的等比数列, 故a n =2n−1…(2)由(1)得a n+1=2n , ∴ 2n =2n−1+(n +1)d n ,∴ d n =2n−1n+1,∴ 1d n=n+12n−1… ∴ T n =220+321+⋯+n 2n−2+n+12n−1,12T n =22+322+⋯+n 2n−1+n+12n,两式相减得:12T n =2+121+122+⋯+12n−1−n+12n=2+12(1−12n−1)1−12−n +12n=2+1−12n−1−n+12n,…∴ T n =6−n+32n−1.…21. 解:(1)f ′(x)=1x −ax −2=−ax 2+2x−1x(x >0),∵ f(x)在x =2处取得极值,∴ f ′(2)=0, 即−a×22+2×2−12=0,解之得a =−34(经检验符合题意).(2)由题意,得f ′(x)≥0在(0, +∞)内恒成立, 即ax 2+2x −1≤0在(0, +∞)内恒成立,∵ x 2>0,可得a ≤1−2x x 2在(0, +∞)内恒成立,∴ 由1−2x x 2=(1x−1)2−1,当x =1时有最小值为−1,可得a ≤−1, 因此满足条件的a 的取值范围为(−∞, −1]. (3)a =−12,f(x)=−12x +b ,即14x 2−32x +lnx −b =0.设g(x)=14x 2−32x +lnx −b(x >0),可得g ′(x)=(x−2)(x−1)2x,列表可得:∴ g(x)min =g(2)=ln2−b −2,g(x)max =g(1)=−b −54.∵ 方程g(x)=0在[1, 4]上恰有两个不相等的实数根,且g(4)=2ln2−b −2,∴ {g(1)≥0,g(2)<0,g(4)≥0,解之得ln2−2<b ≤−54.22. 设E 、G 的公共焦点为F(c, 0),由题意得√1+32=√105,ca=2√55. 联立解得c =2,a =√5,b =1. 所以椭圆E:x 25+y 2=1,抛物线G:y 2=8x .设A(x 1, y 1),B(x 2, y 2),C(x 3, y 3),D(x 4, y 4).直线l 的方程为y =k(x −2),与椭圆E 的方程联立{x 25+y 2=1y =k(x −2),得(1+5k 2)x 2−20k 2x +20k 2−5=0△=400k 4−20(5k 2+1)(4k 2−1)=20(k 2+1)>0. x 1+x 2=20k 21+5k 2,x 1x 2=20k 2−51+5k 2|AB|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2=2√5(k 2+1)1+5k 2. 直线l 的方程为y =k(x −2),与抛物线G 的方程联立{y 2=8xy =k(x −2) ,得k 2x 2−(4k 2+8)x +4k 2=0.x 3+x 4=4k 2+8k 2.|CD|=x 3+x 4+4=8(k 2+1)k 2.1|AB|+λ|CD|=22√5(k 2+1)+λk 28(k 2+1)=√5λ)k 28√5(k 2+1).要使1|AB|+λ|CD|为常数,则20+√5λ=4,得λ=−16√55.故存在λ=−16√55,使1|AB|+λ|CD|为常数.。
山东省2013年高考数学预测试题4.pdf
数学2013高考预测题4 本卷分为第Ⅰ(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 参考公式: 如果事件互斥,那么 球的表面积公式 如果事件相互独立,那么 其中表示球的半径 球的体积公式 如果事件在一次试验中发生的概率是,那么 次独立重复试验中事件恰好发生次的概率 其中表示球的半径 第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分)1、若复数(为虚数单位)是纯虚数,则实数的值为A.B. C. D.2、已知,则=A.B.C.D. 3、如图,一个空间几何体的三视图如图所示,其中,主视图中是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为A.B.C.D. 4、已知为等差数列,若,则的值为 A. B. C. D. 5、“”是“函数有零点”的 A.充分非必要条件 B.充要条件C.必要非充分条件 D.既不充分也不必要条件 6、在边长为1的正三角形中,,,且,则的最大值为A. B. C. D. 是实数,且.则“”是“”的 A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 8.半径为的球面上有、、三点,其中点与、两点间的球面距离均为,、两点间的球面距离均为,则球心到平面的距离为 A.B.C.D. 9.已知函数(为常数),在R上连续,则的值是 A.2 B.1 C.3 D.4 10.定义在R上的函数满足:当时,的值域为,=,则=A.1 B. C. D. 11.已知是双曲线上的不同三点,且连线经过坐标原点,若直线的斜率乘积,则该双曲线的离心率=A.C. D.,求长度为的三条线段能构成等腰三角形的概率为 A. B. C. D. 第Ⅱ卷 二、填空题本大题共题,每小题,共13、若f(x)在R上可导,则 . 14、设面积为S的平面四边形的第条边的边长为,P是该四边形内一点,点P到第条边的距离记为,若,则,类比上述结论,体积为V的三棱锥的第个面的面积记为,Q是该三棱锥内的一点,点Q到第个面的距离记为,若等于 。
2013年高考数学文科模拟试卷(含答案详解版)
开始 0k =k =k +131n n =+150?n >输出k ,n结束是 否输入n2013年高考数学模拟试卷(文)第I 卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.1.已知集合{}0 1 2A =,,,集合{}2B xx =>,则A B =A .B .{}0 1 2,,C .{}2x x >D .∅ 2.已知i 为虚数单位,则212ii-++的值等于 ( )A. i -B.12i -C. 1-D.2.定义{|,,}x A B z z x y x A y B y⊗==+∈∈.设集合{0,2}A =,{1,2}B =3.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5 4.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是( ) A .21 B .33 C .23 D .35.阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56.函数tan()42y x ππ=-的部分图象如图所示,则()O AO BA B +⋅=( )A.6B.4C.4-D.6-7.在纪念中国人民抗日战争胜利六十周年的集会上,两校各派3名代表,校际间轮流发言,对日本侵略者所犯下的滔天罪行进行控诉,对中国人民抗日斗争中的英勇事迹进行赞颂,那么不同的发言顺序共有( ) A.72种 B.36种 C.144种 D.108种O xyAB第6题图图18.已知函数()y f x =的定义域为2(43,32)a a --, 且(23)y f x =-为偶函数,则实数a 的值为( )A .3或-1B .-3或1C .1D .-19.农民收入由工资性收入和其它收入两部分构成。
山东省济南市2013届高三3月高考模拟文科数学
山东省济南市2013届高三高考模拟考试文科数学试题本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:1.锥体的体积公式:1V S 3h =,其中S 是锥体的底面积,h 是锥体的高; 2.方差],)()()[(1222212x x x x x x ns n -++-+-=其中x 为n x x x ,,,21 的平均数. 第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 已知全集}6,5,4,3,2,1,0{=U ,集合{1,2}A =,}5,2,0{=B ,则集合=B A C U )(A .{3,4,6}B .{3,5}C .{0,5}D .{0,2,4}【答案】C{0,3,4,5,6}U A =ð,所以(){0,5}U A B = ð,选C.2. 设复数(34)(12)z i i =-+(i 是虚数单位),则复数z 的虚部为 A .2- B. 2 C. i 2- D. i 2【答案】B由(34)(12)52z i i i =-+=-+,所以复数z 的虚部为2,选B. 3. 若6.03=a ,2.0log 3=b ,36.0=c ,则A .b c a >> B. c b a >> C. a b c >> D. a c b >>【答案】A0.6331,log 0.20><,300.61<<,所以a c b >>。
2013年高考文科数学山东卷-答案
xy xy
xy
xy
当且仅当 x2 =4y2 即 x=2y 时, z 有最小值 1。将 x=2y 代入原式得 z=2y2 , xy
所以 x+2y-z=2y+2y-2y2 =-2y2 +4y ,当 y=1时有最大值 2。故选 C。
第Ⅱ卷
二、填空题 13.【答案】 2 2
【解析】如下图,当 AB 所在直线与 AC 垂直时弦 BD 最短, AC 3 22 1 22 2 , CB=r=2 ∴ BA 22 22 2 ,∴ BD=2 2 。
x1 b
b2 8a 4a
, x2
b
b2 8a 4a
。显然, x1 0 , x2
0。
当 0 x x2 时, f (x) 0 ,函数 f (x) 单调递减。当 x x2 , f (x) 0 ,函数 f (x) 单调递增。
所以函数
f
(x)
的单调递减区间是
62
(Ⅱ)从该小组同学中任选 2 人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,
E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共 10 个。由于每个人被选到的机会均等,
因此这些基本事件的出现是等可能的。选到的 2 人身高都在 1.70 以上且体重指标都在[18.5,23.9)中的事件
91,94,94,87,方差为 s2 290 912 291 912 294 912 87 912 36 。
7
7
11.【答案】D
【解析】设 M
1
x0
,
2
p
x0
2
山东省实验中学2013届高三第四次诊断性测试数学文试题含答案
山东省实验中学2010级第四次诊断性测试数学试题(文科)(2013.02)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)共两卷.其中第Ⅰ卷共60分,第Ⅱ卷共90分,两卷合计150分,答题时间为120分钟,不能使用计算器.第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i 为虚数单位,若复数(1)(1)a a -++i 为实数,则实数a 的值为 A. -1B. 0C. 1D. 不确定2.若集合{|0}P y y =≥,P Q Q = ,则集合Q 不可能是 A .2{|,}y y x x =∈RB .{|2,}xy y x =?R C .{||lg |,0}y y x x =>D .3{|,0}y y x x -=?3.函数0.51log (43)y x =-的定义域为A .3,14骣÷ç÷ç÷ç桫B .3,4骣÷ç+?÷ç÷ç桫C .(1,)+?D .3,1(1,)4骣÷ç+?÷ç÷ç桫U 4.在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 A .92,2B .92,2.8C .93,2D .93,2.85.下列命题中,真命题是A .m $?R ,使函数2()()f x x mx x =+?R 是偶函数B .m $?R ,使函数2()()f x x mx x =+?R 是奇函数C .m "?R ,函数2()()f x x mx x =+?R 都是偶函数D .m "?R ,函数2()()f x x mx x =+?R 都是奇函数6.若,x y ÎR ,且1,230,,x x y y x í³ïïï-+?ìïï³ïïî 则2z x y =+的最小值等于A .2B .3C .5D .97.某程序框图如图所示,若输出的S =57,则判断框内为A .4?k >B .5?k >C .6?k >D .7?k >8.已知锐角ABC V的面积为4,3BC CA ==,则角C 的大小为A .75°B .60°C .45°D .30°9.直线l 与圆22240(3)x y x y a a ++-+=<相交于A 、B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为 A .50x y -+= B .10x y +-= C .50x y --=D .30x y +-=10.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是11.过双曲线22221(0,0)x y a b a b -=>>的左焦点(,0)(0)F c c ->,作圆2224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点P ,若2OP OE OF =-u u r u u u r u u u r,则双曲线的离心率为AB .5C .2D 12.设函数()y f x =的定义域为R ,对于给定的正数k ,定义函数(),(),(),().k f x f x k f x k f x k í£ïï=ìï>ïî给出函数2()42f x x x =-+-,若对任意的x ÎR ,恒有()()k f x f x =,则A .k 的最大值为2B .k 的最小值为2C .k 的最大值为1D .k 的最小值为1第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共有4个小题,每小题4分,共计16分.)13.下图中的三个直角三角形是一个体积为20cm 3的几何体的三视图,则h = cm.14.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有 根棉花纤维的长度小于20mm. 15.已知数列{}n a ,函数2(0)y x x =>的图象在点2(,)k k a a 处的切线与x 轴的交点的横坐标为1k a +,其中k Î*N ,若116a =,则135a a a ++的值是 .16.已知向量(1,2),(1,1)==a b 且a 与l +a b 的夹角为锐角,则实数l 的取值范围是 . 三、解答题:(本大题共有6个小题,共74分.解答应写出文字说明、演算步骤或证明过程.) 17.(本小题满分12分)已知向量(cos ,sin ),,cos )x x x x ==a b ,若()f x =?a b (1)求函数()f x 的最小正周期和图象的对称轴方程; (2)求函数()f x 在区间5,1212p p éö÷ê-÷÷êøë上的值域.18.(本小题满分12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12. (1)求n 的值;(2)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①记事件A 表示“2a b +=”,求事件A 的概率;②在区间[0,2]内任取两个实数,x y ,求事件“222()x y a b +>-恒成立”的概率. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,PD ^底面ABCD ,底面ABCD 为正方形,,,PD DC E F =分别是,AB PB 的中点.(1)求证:;EF CD ^(2)若线段AD 上存在点G ,使GF ^平面PCB ,请确定G 位置,并证明你的结论.20.(本小题满分12分)已知正项数列{}n a 的前n 项和为11,2n S a =.当且n ÎN *时,点1(,)n n S S +在直线122y x =+上,数列{}n b 满足12log ()n n b a n =?N*.(1)求数列{}n a 的通项公式n a ; (2)设数列{}nnb a 的前n 项和为.n T 求.n T 21.(本小题满分12分)设椭圆1C 和抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点,从每条曲线上各(1)求曲线12,C C 的标准方程;(2)是否存在过抛物线2C 的焦点F 的直线l ,使得l 与椭圆1C 交于不同两点M 、N ,且0OM ON?uuu r uuu r ?若存在,求出直线l 的方程;若不存在,请说明理由.22.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (1)求函数()f x 的单调区间;(2)若()0f x £恒成立,试确定实数k 的取值范围; (3)证明:ln 2ln 3ln 4ln (1)()34514nn n n n n -+++鬃?<?+N *且>1. 数学试题(文科)参考答案选择题ADDBA BABAC CB 填空题13. 4 14. 30 15. 2116. 5,0(0,)3骣÷ç-+?÷ç÷ç桫U . 17. 解:(1)2()sincos f x x x x =?++a b 1sin 22x x =++ π2πsin 2π3x T z骣÷ç=++\==÷ç÷ç桫,图象的对称轴方程为π7ππ+π+()1212x k x k k ==?Z 和. 6分 (2)由于区间5ππ,1212轹÷ê-÷÷êøë的长度为π2,为半个周期. 又()f x 在5ππ,1212-处分别取到函数的最小值12,最大值12+,所以函数()f x 在区间5ππ,1212轹÷ê-÷÷êøë上的值域为1,122÷ê÷-+÷ê÷øë. 12分 18. 解:(1)由题意可知:1112n n =++,解得2n = 4分(2)①两次不放回抽取小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0)(22,1),(22,21),共12个,事件A 包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个. 4()1123P A \==. 8分 ②记“222()x y a b +>-恒成立”为事件B ,则事件B 等价于“224x y +>”,(,)xy 可以看成平面中的点,则全部结果所构成的区域{(,)|02,02,,}x y xy x y W=##?R ,而事件B 所构成的区域22{(,)|4,,}B x y x y x y =+>蜽, 如图,则π()14ABCS P B S D ==-正方形. 12分 19. 证明:(1)由于底面ABCD 为正方形,AD CD \^,又PD ^平面ABCD ,PD CD \^,又,E F Q 分别是AB ,PB 的中点,EF \∥AP ,EF CD \^. 5分(2)如图,设AD 的中点为G ,BD 的中点为O ,连结,,,,OF OG PG GB GF .O Q 、F 、G 分别是BD 、PB 、AD 的中点, FO \∥PD ,GO ∥AB ,,AB BD GO BC ^\^Q ,,PD ABCD FO ^Q 平面∥PD ,,FO ABCD \^平面GF BC \^. 设PD DC a ==,则2PG =,GB =, 阴PG GB \=,又F 是PB 的中点,,GF PB GF PCB \^\^平面. 12分20. 解:(1)当2n ³且n Î*N 时,点1(,)n n S S -在直线122y x =+上,1241n n S S -\=+ ① 1241()n n S S n +\=+?*N ②由②-①得:1122(2,)n n n na a a n n a ++=?澄N*由21241S S =+得1212()41a a a +=+ 又21211,1,22aa a a =\=\=, \数列{}n a 是以12为首项,2为公比的等比数列. 22n n a -\=. 6分(2)211log log 2222n n n b a n -===-Q232210132,1212222n n n n n n b n n n T a -------\=\=+++鬃?+ ③ 221110132212222n n n n n T -----=+++鬃?+ ④ 由③-④得:2212111111212221222222n n n n n n nT ------=----鬃?-=-. 21222n n n nT n --\==?. 12分21. 解:(1)由题意(-2,0)一定在椭圆1C 上.设1C 方程为22221(0)x y a b a b+=>>,则2a =\椭圆1C 上任何点的横坐标||2x £.所以也在1C 上,从而21b = \1C 的方程为2214x y +=从而(3,-,(4,-4)一定在2C 上,设2C 的方程为22(0)y px p =>2p \=.即2C 的方程为24y x =. 5分 (2)假设直线l 过2C 的焦点(1,0)F .当l的斜率不存在时,则,1,M N 骣-桫桫. 此时311044OM ON ?-=?uuu r uuu r ,与已知矛盾. 当l 的斜率存在时设为k ,则l 的方程为(1)y k x =-代入1C 方程并整理得:2222(14)8440k x k x k +-+-=. 设1122(,),(,)M x y N x y ,则22121222844,1414k k x x x x k k-+==++ 221212121223(1)(1)(1)14k y y k x k x k x x x x k -=--=--+=+212120,0,40,2OM ONx x y y k k ?\+=\-==?uuu r uuu r Q\存在符合条件的直线l 且方程为2(1)y x =?,即2121y x y x =-=-+或. 12分22.(1)解:函数()f x 的定义域为1(1,),()1f x k x ¢+?--. 当0k £时,110,0,()01x f x x ¢->\>>-Q ,则()f x 在(1,)+?上是增函数. 当0k >时,令()0f x ¢=,即101k x -=-,得11x k=+. 当11,1x k 骣÷ç?÷ç÷ç桫时,11()01111f x k k x k¢=->-=-+-,则()f x 在11,1k 骣÷ç+÷ç÷ç桫上是增函数;当11,x k 骣÷ç?+?÷ç÷ç桫时,11()0,()1111f x k k f x x k¢=-<-=\-+-在11,k 轹÷ê++?÷÷êøë上是减函数.综上可知:当0,()k f x £在(1,)+?上是增函数, 当0k >时,()f x 在11,1k 骣÷ç+÷ç÷ç桫上是增函数,在11,k轹÷ê++?÷÷êøë上是减函数. 5分 (2)解:由(1)知,当0k £时,(2)10f k =->不成立, 故只考虑0k >的情况.又由(1)知max 1()(1)ln f x f k k=+=-, 要使()0f x £恒成立,只要max ()0f x £即可.由ln 0k -?,得1k ³. 9分(3)证明:由(2)知当1k =时,有()0f x £在(1,)+?内恒成立, 又()f x 在[)2,+?内是减函数,(2)0f =,(2,)x \??时,有()0f x <恒成立,即ln(1)2x x -<-在(2,)+?内恒成立. 令21(, 1.)x n n n-=?*N 且则22ln 1n n <-,即2ln (1)(1)n n n <-+,ln 1(,1)12n n n n n -\<?+*N 且.ln 2ln 3ln 4ln 1231(1)345122224n n n n n --+++鬃?<+++鬃?=+, 即ln 2ln 3ln 4ln (1)(,1)34514n n n n n n -+++鬃?<?+*N 且成立. 14分。
2013年山东省高考数学试卷(文科)答案与解析
2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()=,.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()4S=V=5.(5分)(2013•山东)函数f(x)=的定义域为()=6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,Bb==得:===cosA=8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q....x=时,10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()B=91(.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,B求出函数在,得),得,则抛物线的焦点与双曲线的右焦点的连线所在直线方程为处的切线的斜率为由题意可知,得).p=12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,代入=+,求得二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.=,2=214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.=的最小值等于故答案为:15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.利用已知条件求出解:因为知,=,所以16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号),,.时,此时lnb=,此时则,此时,,<三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)2(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.p=p=18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.[]﹣,故周期为,所以)时,,,[]上的最大值和最小值分别为:19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.AB CD=20.(12分)(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.,+++,++时,=时,=)﹣(==,+++,T++T+++)﹣﹣﹣21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.时,.可得出﹣<)上是减函数,在(),单调递增区间是(,,)上,导数小于在区间(,),单调递增区间是(,,),单调递增区间是(,)知,是函数的唯一极小值点故=1==0x=<<(22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.(Ⅰ)设椭圆的标准方程为的关系,再利用(Ⅰ)由题意设椭圆的标准方程为,焦距为,解得,∴椭圆的方程为.,另一方面,==,∴,,∴,,解得,或,∴综上可得:。
2013年山东省高考文科数学真题及答案
2013年山东省高考数学试卷(文科)一.选择题:本题共12个小题,每题5分,共60分.1.(5分)复数z=(i为虚数单位),则|z|()A.25 B. C.5 D.2.(5分)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3}B.{4}C.{3,4}D.∅3.(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣24.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,85.(5分)函数f(x)=的定义域为()A.(﹣3,0]B.(﹣3,1]C.(﹣∞,﹣3)∪(﹣3,0)D.(﹣∞,﹣3)∪(﹣3,1)6.(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.87.(5分)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.18.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(5分)函数y=xcosx+sinx的图象大致为()A.B.C.D.10.(5分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A. B.C.36 D.11.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A.B.C.D.12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y ﹣z的最大值为()A.0 B.C.2 D.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为.14.(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.15.(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有(写出所有真命题的序号)三.解答题:本大题共6小题,共74分,17.(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.18.(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.19.(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.20.(12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.21.(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.22.(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x 轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()A.25 B. C.5 D.【分析】化简复数z,然后求出复数的模即可.【解答】解:因为复数z==,所以|z|==.故选C.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3}B.{4}C.{3,4}D.∅【分析】通过已知条件求出A∪B,∁U B,然后求出A∩∁U B即可.【解答】解:因为全集U={1.2.3.4.},且∁U(A∪B)={4},所以A∪B={1,2,3},B={1,2},所以∁U B={3,4},所以A={3}或{1,3}或{3,2}或{1,2,3}.所以A∩∁U B={3}.故选A.3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2【分析】由条件利用函数的奇偶性和单调性的性质可得f(﹣1)=﹣f(1),运算求得结果.【解答】解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=﹣f(1)=﹣(1+1)=﹣2,故选D.4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,8【分析】由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,则其侧面积和体积可求.【解答】解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,其主视图为原图形中的三角形PEF,如图,由该四棱锥的主视图可知四棱锥的底面边长AB=2,高PO=2,则四棱锥的斜高PE=.所以该四棱锥侧面积S=,体积V=.故选B.5.(5分)(2013•山东)函数f(x)=的定义域为()A.(﹣3,0]B.(﹣3,1]C.(﹣∞,﹣3)∪(﹣3,0)D.(﹣∞,﹣3)∪(﹣3,1)【分析】由函数解析式可得1﹣2x≥0 且x+3>0,由此求得函数的定义域.【解答】解:由函数f(x)=可得1﹣2x≥0 且x+3>0,解得﹣3<x≤0,故函数f(x)=的定义域为{x|﹣3<x≤0},故选A.6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.8【分析】计算循环中a的值,当a≥1时不满足判断框的条件,退出循环,输出结果即可.【解答】解:若第一次输入的a的值为﹣1.2,满足上面一个判断框条件a<0,第1次循环,a=﹣1.2+1=﹣0.2,第2次判断后循环,a=﹣0.2+1=0.8,第3次判断,满足上面一个判断框的条件退出上面的循环,进入下面的循环,不满足下面一个判断框条件a≥1,退出循环,输出a=0.8;第二次输入的a的值为1.2,不满足上面一个判断框条件a<0,退出上面的循环,进入下面的循环,满足下面一个判断框条件a≥1,第1次循环,a=1.2﹣1=0.2,第2次判断后不满足下面一个判断框的条件退出下面的循环,输出a=0.2;故选C.7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.1【分析】利用正弦定理列出关系式,将B=2A,a,b的值代入,利用二倍角的正弦函数公式化简,整理求出cosA的值,再由a,b及cosA的值,利用余弦定理即可求出c的值.【解答】解:∵B=2A,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=3+c2﹣3c,解得:c=2或c=1(经检验不合题意,舍去),则c=2.故选B8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选A.9.(5分)(2013•山东)函数y=xcosx+sinx的图象大致为()A.B.C.D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选D.10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A. B.C.36 D.【分析】根据题意,去掉两个数据后,得到要用的7个数据,先根据这组数据的平均数,求出x,再用方差的个数代入数据和平均数,做出这组数据的方差.【解答】解:∵由题意知去掉一个最高分和一个最低分后,所剩数据的数据是87,90,90,91,91,94,90+x.∴这组数据的平均数是=91,∴x=4.∴这这组数据的方差是(16+1+1+0+0+9+9)=.故选:B.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A.B.C.D.【分析】由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.【解答】解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M()把M点代入①得:.解得p=.故选:D.12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0 B.C.2 D.【分析】将z=x2﹣3xy+4y2代入,利用基本不等式化简即可求得x+2y﹣z的最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选:C.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.【分析】由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出.【解答】解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2.故答案为:214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.【分析】首先根据题意做出可行域,欲求|OM|的最小值,由其几何意义为点O (0,0)到直线x+y﹣2=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点O(0,0)到直线x+y﹣2=0距离,即为所求,由点到直线的距离公式得:d==,则|OM|的最小值等于.故答案为:.15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.【分析】利用已知条件求出,利用∠ABO=90°,数量积为0,求解t的值即可.【解答】解:因为知,,所以=(3,2﹣t),又∠ABO=90°,所以,可得:2×3+2(2﹣t)=0.解得t=5.故答案为:5.16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号)【分析】由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假.【解答】解:(1)对于①,由定义,当a≥1时,a b≥1,故ln+(a b)=ln(a b)=blna,又bln+a=blna,故有ln+(a b)=bln+a;当a<1时,a b<1,故ln+(a b)=0,又a<1时bln+a=0,所以此时亦有ln+(a b)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;(3)对于③,i.≥1时,此时≥0,当a≥b≥1时,ln+a﹣ln+b=lna﹣lnb=,此时则,命题成立;当a>1>b>0时,ln+a﹣ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a﹣ln+b=0,成立;ii.<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b﹣2ab=a﹣ab+b﹣ab=a(1﹣b)+b(1﹣a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2.当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b﹣2a=b﹣a≤0,∴a+b≤2a,∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2.当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2.故④正确.故答案为①③④.三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.【分析】(Ⅰ)写出从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人身高都在1.78以下的事件,然后直接利用古典概型概率计算公式求解;.(Ⅱ)写出从该小组同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件,利用古典概型概率计算公式求解.【解答】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在 1.70以上且体重指标都在[18.5,23.9)中的概率p=.18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.【分析】(Ⅰ)通过二倍角的正弦函数与余弦函数化简函数为一个角的一个三角函数的形式,利用函数的正确求出ω的值(Ⅱ)通过x 的范围求出相位的范围,利用正弦函数的值域与单调性直接求解f (x)在区间[]上的最大值和最小值.【解答】解:(Ⅰ)函数f(x)=﹣sin2ωx﹣sinωxcosωx===.因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故周期为π又ω>0,所以,解得ω=1;(Ⅱ)由(Ⅰ)可知,f(x)=﹣sin(2x﹣),当时,,所以,因此,﹣1≤f(x),所以f(x)在区间[]上的最大值和最小值分别为:.19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.【分析】(Ⅰ)取PA的中点H,则由条件可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.再由直线和平面平行的判定定理证明CE∥平面PAD.(Ⅱ)先证明MN⊥平面PAC,再证明平面EFG∥平面PAC,可得MN⊥平面EFG,而MN在平面EMN内,利用平面和平面垂直的判定定理证明平面EFG⊥平面EMN.【解答】解:(Ⅰ)证明:∵四棱锥P﹣ABCD中,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点,取PA的中点H,则由HE∥AB,HE=AB,而且CD∥AB,CD=AB,可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.由于DH在平面PAD内,而CE不在平面PAD内,故有CE∥平面PAD.(Ⅱ)证明:由于AB⊥AC,AB⊥PA,而PA∩AC=A,可得AB⊥平面PAC.再由AB∥CD可得,CD⊥平面PAC.由于MN是三角形PCD的中位线,故有MN∥CD,故MN⊥平面PAC.由于EF为三角形PAB的中位线,可得EF∥PA,而PA在平面PAC内,而EF不在平面PAC内,故有EF∥平面PAC.同理可得,FG∥平面PAC.而EF 和FG是平面EFG内的两条相交直线,故有平面EFG∥平面PAC.∴MN⊥平面EFG,而MN在平面EMN内,故有平面EFG⊥平面EMN.20.(12分)(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.【分析】(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得到关于a1与d的方程组,解之即可求得数列{a n}的通项公式;(Ⅱ)由(Ⅰ)知,a n=2n﹣1,继而可求得b n=,n∈N*,于是T n=+++…+,利用错位相减法即可求得T n.【解答】解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得:,解得a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,得:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,显然,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减得:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.【分析】(Ⅰ)由函数的解析式知,可先求出函数f(x)=ax2+bx﹣lnx的导函数,再根据a≥0,分a=0,a>0两类讨论函数的单调区间即可;(Ⅱ)由题意当a>0时,是函数的唯一极小值点,再结合对于任意x>0,f(x)≥f(1).可得出=1化简出a,b的关系,再要研究的结论比较lna与﹣2b的大小构造函数g(x)=2﹣4x+lnx,利用函数的最值建立不等式即可比较大小【解答】解:(Ⅰ)由f(x)=ax2+bx﹣lnx(a,b∈R)知f′(x)=2ax+b﹣又a≥0,故当a=0时,f′(x)=若b≤0时,由x>0得,f′(x)<0恒成立,故函数的单调递减区间是(0,+∞);若b>0,令f′(x)<0可得x<,即函数在(0,)上是减函数,在(,+∞)上是增函数、所以函数的单调递减区间是(0,),单调递增区间是(,+∞),当a>0时,令f′(x)=0,得2ax2+bx﹣1=0由于△=b2+8a>0,故有x2=,x1=显然有x1<0,x2>0,故在区间(0,)上,导数小于0,函数是减函数;在区间(,+∞)上,导数大于0,函数是增函数综上,当a=0,b≤0时,函数的单调递减区间是(0,+∞);当a=0,b>0时,函数的单调递减区间是(0,),单调递增区间是(,+∞);当a>0,函数的单调递减区间是(0,),单调递增区间是(,+∞)(Ⅱ)由题意,函数f(x)在x=1处取到最小值,由(1)知,是函数的唯一极小值点故=1整理得2a+b=1,即b=1﹣2a令g(x)=2﹣4x+lnx,则g′(x)=令g′(x)==0得x=当0<x<时,g′(x)>0,函数单调递增;当<x<+∞时,g′(x)<0,函数单调递减因为g(x)≤g()=1﹣ln4<0故g(a)<0,即2﹣4a+lna=2b+lna<0,即lna<﹣2b22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.【分析】(Ⅰ)设椭圆的标准方程为,焦距为2c.由题意可得,解出即可得到椭圆的方程.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,利用判别式、根与系数的关系即可得到弦长|AB|,再利用点到直线的距离公式即可得到原点O到直线AB的距离,进而得到三角形AOB的面积,利用即可得到m,n,t的关系,再利用,及中点坐标公式即可得到点P的坐标代入椭圆的方程可得到m,n,t的关系式与上面得到的关系式联立即可得出t的值.【解答】解:(Ⅰ)由题意设椭圆的标准方程为,焦距为2c.则,解得,∴椭圆的方程为.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,则△=4m2n2﹣4(m2+2)(n2﹣2)=4(2m2+4﹣2n2)>0,(*),,∴|AB|===.原点O到直线AB的距离d=,∵,∴=,化为.(**)另一方面,=,∴x E=my E+n==,即E.∵,∴.代入椭圆方程得,化为n2t2=m2+2,代入(**)得,化为3t4﹣16t2+16=0,解得.∵t>0,∴.经验证满足(*).当AB∥x轴时,设A(u,v),B(﹣u,v),E(0,v),P(0,±1).(u>0).则,,解得,或.又,∴,∴.综上可得:.。
山东省潍坊市2013年高三三模文科数学试题
2013年高考模拟考试 数学试题(文)2013.5本试卷共5页,分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数2a ii+-是纯虚数,则实数a= A.2-B.2C.12-D.122.已知集合{{},1,,,=A B m A B B m ==⋂=则 A.0或1 B.0或3 C.1或3 D.0或1或33.下列命题中,真命题是A.命题“若p ,则q.”的否命题是“若p ,则.q ⌝”B.命题2:10p x R x ∃∈+<,使得,则:p x R ⌝∀∈,使得210x +≥C.已知命题p 、q ,若“p q ∨”为假命题,则命题p 与q 一真一假D.a+b=0的充要条件是1ab=- 4.某校200名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)[)50,60,60,70,[)[)[)70,80,80,90,90,100.则成绩在[]90,100内的人数为A.20B.15C.10D.55.函数()()2log 1f x x =+的图象大致是6.一个几何体的三视图如图所示,且其左视图是一个等边三角形,则这个几何体的体积为A.3122π+B.9362π+C.9184π+D.364π+7.已知()(),1,2,4AB k AC ==,若k 为满足4AB ≤的随机整数,则AB BC ⊥的概率为A.17B.27C.13D.238.已知,x y 满足1400x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩,则2z x y =-的最大值是A.5-B.2-C.1-D.19.已知ABC ∆内角A 、B 、C 的对边分别是a 、b 、c ,若1cos ,2,sin 2sin ,4B bC A===则ABC ∆的面积为C.10.已知函数()312,16f x x x a a =-+≥其中,则下列说法正确的是A.()f x 有且只有一个零点B.()f x 至少有两个零点C.()f x 最多有两个零点D.()f x 一定有三个零点11.已知数列()*21n a n n N =-∈,把数列{}n a 的各项排列成如图所示的三角形数阵,记(),M s t 表示该数阵中第s 行从左到右第t 个数,则M (10,9)为A.55B.53C.109D.10712.已知抛物线2:4C y x =的焦点为F ,123P P P 、、是抛物线C 上的不同三点,且1FP 、2FP 、3FP 成等差数列,公差0d ≠,若点2P 的横坐标为3,则线段13PP 的垂直平分线与x 轴交点的横坐标是A.3B.5C.6D.不确定,与d 的值有关第Ⅱ卷(非选择题 共90分)注意事项:1.将第II 卷答案用0.5mm 的黑色签字笔答在答题纸的相应位置上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题4分,共16分.13.过点(2,3)且以y =为渐近线的双曲线方程是________. 14.设()f x 为定义在()3,3-上的奇函数,当()()230l o g3,xf x x -<<=+时,()1f =_________. 15.运行如图所示的程序框图,输出的S 值为_______.16.如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且AB 、CD 均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看点D 的仰角为α,看点C 的俯角为β,已知45αβ+=,则BC 的长度是__________m.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数()()22sin cos 2f x x x x ππ⎛⎫=-+-⎪⎝⎭. (I )求函数()f x 的单调增区间; (II )若3,2122f απα⎛⎫-=⎪⎝⎭是第二象限角,求cos 23πα⎛⎫+ ⎪⎝⎭的值.18.(本小题满分12分)如图,在几何体ABCDE 中,平面//,ABC BCD AE BD ABC ⊥∆平面,为边长等于2的正三角形,=42,CD BD AE M =,为CD 的中点.(I )证明:平面ECD ⊥平面ABC ; (II )证明:EM 平面ABC .19.(本小题满分12分)已知数列{}n a 是一个公差大于零的等差数列,且362755,16a a a a =+=,数列{}n b 的前n 项和为,22n n n S S b =-且.(I )求数列{}{},n n a b 的通项公式; (II )设,nn na cb =求{}n c 的前n 项和n T .20.(本小题满分12分)某质检机构检测某产品的质量是否合格,在甲乙两厂的匀速运行的自动包装传送带上每隔10分钟抽一包产品,称其质量(单位:克),分别记录抽查数据,获得质量数据茎叶图(如图)。
2013年全国普通高等学校招生统一考试文科数学(山东卷带解析)答案解析docx
2013年全国普通高等学校招生统一考试文科(山东卷)数学试题1、【答案】C【解析】【考点定位】本题考查复数的基本概念和运算,通过分母实数化思想来考查运算能力,要注意在运算中多次出现,符号确定容易出错.2、【答案】A【解析】,因为,所以中必有元素,【考点定位】本题考查集合的交集、并集和补集运算,考查推理判断能力.对于,这两个条件,可以判断集合中的元素有三种情形,而指出中必有元素,简化了运算,使结果判断更容易.3、【答案】D【解析】【考点定位】本题考查函数的奇偶性的应用,考查运算求解能力和转化思想. 根据直接运算而若求在上的解析式再求便“多余”了.【答案】B【解析】由正视图可知该四棱锥为正四棱锥,底面边长为,高为,侧面上的斜高为,所以【考点定位】本题考查三视图的应用,考查空间想象能力和运算能力. 因求体积的影响,可能会把求侧面积误认为全面积而选C. 此外棱锥体积运算时不要漏乘5、【答案】A【解析】由题意得,所以【考点定位】本题考查函数的定义域的求法,考查数形结合思想和运算能力. 根据函数解析式确定函数的定义域,往往涉及到被开放数非负、分母不能为零,真数为正等多种特殊情形,然后通过交集运算确定.6、【答案】C【解析】两次运行结果如下:第一次第二次【考点定位】本题考查程序框图的运行途径,考查读图能力和运算能力. 本题不同于以往所见试题,两次运行程序输出结果.针对类似问题可根据框图中的关键“部位”进行数据罗列,从而确定正确的输出结果.【答案】B【解析】,所以,整理得求得或若,则三角形为等腰三角形,不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出后,要及时判断出,便于三角形的初步定型,也为排除提供了依据.如果选择支中同时给出了或,会增大出错率.8、【答案】A【解析】由且可得且,所以是的充分不必要条件.【考点定位】本题考查充分必要条件的判断,通过等价命题的转化化难为易,也渗透了转化思想的考查. 本题依据原命题的逆否命题进行判断较为简单,也可以依据题目条件构造一个满足“是的必要而不充分条件”的简单例子,进行转化比较,从而确定答案.9、【答案】D【解析】函数在时为负,排除A,由奇函数的性质可排除B,再比较C,D,不难发现在取接近于的正值时排除C.【考点定位】本题考查函数的奇偶性、函数的单调性、函数的值域等函数的重要性质,考查了函数图象的识别能力.本题可根据函数的性质对比图象进行逐一验证,若通过求导方法来研究该函数的图象和性质后再做准确判断,增加了运算负担.10、【答案】B【解析】由图可知去掉的两个数是,所以,【考点定位】本题考查茎叶图的识别、方差运算能统计知识,考查数据处理能力和运算能力. 确定被去掉的数据是解题的关键,本题给出的数据中最大,即便是处理方差运算时要对方差概念牢固掌握,避免与标准差混淆误选D.11、【答案】D【解析】画图可知被在点M处的切线平行的渐近线方程应为,设,则利用求导得又点共线,即点共线,所以,解得所以【考点定位】本题考查了抛物线和双曲线的概念、性质和导数的意义,进一步考查了运算求解能力.这一方程形式为导数法研究提供了方便,本题“切线”这一信号更加决定了“求导”是“必经之路”.根据三点共线的斜率性质构造方程,从而确定抛物线方程形式,此外还要体会这种设点的意义所在.12、【答案】C【解析】当且仅当时成立,因此所以【考点定位】本题考查基本不等式的应用,考查运算求解能力、推理论证能力和转化思想、函数和方程思想. 基本不等式的使用价值在于简化最值确定过程,而能否使用基本不等式的关键是中的是否为定值,本题通过得以实现.13、【答案】【解析】最短弦为过点与圆心连线的垂线与圆相交而成,,所以最短弦长为【考点定位】本题考查直线和圆的位置关系,考查数形结合思想和运算能力. 圆的半径、弦心距、半弦构成的直角三角形在解决直线和圆问题常常用到,本题只需要简单判断最短弦的位置就能轻松解答,有时候可能会出现点到直线的距离公式来求弦心距的长度.14、【答案】【解析】确定可行域为点形成的三角形,因此的最小值为点到直线的距离,所以【考点定位】本题考查线性规划下的最值求法,考查数形结合思想、图形处理能力和运算能力. 线性规划问题的重点是确定可行域,要根据已知条件逐一画出直线并代点验证从而确定区域位于直线的某一侧,类比集合的交集运算确定公共部分,再按照研究方向求得结果.15、【答案】【解析】,所以【考点定位】本题考查平面向量的加减坐标运算和数量积坐标运算,考查转化思想和运算能力. 本题通过进行运算极易想到,但求时往往出现坐标的“倒减”,虽然不影响运算的结果,被填空题型所掩盖,但在解答题中就会被发现.16、【答案】①③④【解析】对于①可分几种情形加以讨论,显然时,依运算,成立,时亦成立.若,则成立.综合①正确.对于②可取特殊值验证排除.对于③分别研究在内的不同取值,可以判断正确;对于④根据在内的不同取值,进行判断,显然中至少有一个小于结论成立,当均大于时,,所以满足运算,结论成立.【考点定位】本题通过新定义考查分析问题解决问题的能力,考查了分类讨论思想,并对推理判断能力和创新意识进行了考查. “正对数”与“普通对数”的差异只在于内,因此在取值验证时要特别注意这一“差异”,对于“正对数”的四则运算法则才能作出正确判断.17、【答案】(Ⅰ)(Ⅱ)【解析】(I)可得到满足条件的基本事件有种情形,目标事件只有种,所以选到的人都在以下的概率为(II)把研究学生的人数扩大到人,基本事件个数增加到,并且要通过身高和体重两方面的限制确定目标事件,因此选到的人的身高都在以上且体重指标都在中的概率为【考点定位】本题考查古典概型的运算,通过对基本事件和目标事件的罗列考查数据处理能力和运算能力. 判断为古典概型后,根据题意罗列可能的结果组成的基本事件是关键.由于本题的两个问题研究的对象发生变化,在寻找基本事件和目标事件时要做到不重不漏.18、【答案】(Ⅰ) (Ⅱ) ,.【解析】因为图象的一个对称中心到最近的对称轴的距离为,又,所以(II)由(I)知,当时,,所以因此故在区间上的最大值和最小值分别为,.【考点定位】.本题考查三角函数的图象和性质,通过三角恒等变换考查转化思想和运算能力.第一问先逆用倍角公式化为的形式,再利用图象研究周期关系,从而确定第二问在限制条件下求值域,需要通过不等式的基本性质先求出的取值范围再进行求解.式子结构复杂,利用倍角公式简化时要避免符号出错导致式子结构不能形成这一标准形式,从而使运算陷入困境.19、【答案】见解析【解析】(I)取的中点,连接因为为的中点,所以,又,所以因此四边形是平行四边形.所以又平面,平面,因此平面.另解:连结.因为为的中点,所以又所以又,所以四边形为平行四边形,因此. 又平面,所以平面.因为分别为的中点,所以又平面,所以平面.因为,所以平面平面.(II)证明因为分别为的中点,所以,又因为,所以同理可证.又,平面,平面,因此平面.又分别为的中点,所以.又,所以因此平面,又平面,所以平面平面.【考点定位】本题考查空间直线与平面,平面与平面间的位置关系,考查推理论证能力和空间想象能力.要证平面,可证明平面与所在的某个平面平行,不难发现平面平面.证明平面平面时,可选择一个平面内的一条直线()与另一个平面垂直.线面关系与面面关系的判断离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系,中点形成的三角形的中位线等,都为论证提供了丰富的素材.20、【答案】(Ⅰ)(Ⅱ)【解析】(I) 设等差数列的首项为,公差为.由,得,解得因此(Ⅱ) 由可得当时,,当时,所以又,两式相减得所以【考点定位】本题考查等差数列的通项公式、错位相减求和方法,考查方程思想、转化思想和运算能力、推理论证能力.根据已知条件列出关于首项和公差的方程组,从而确该数列的通项公式,这一问相对简单,第二问通过递推关系得到数列的通项公式后再按照错位相减方法转化为等比数列的求和运算进行解决.本题第二问的条件因其结构复杂在使用上形成障碍,如果表示为数列的前项和的形式,则不难想到利用这一熟悉结构来处理.21、【答案】(Ⅰ) 单调递减区间是,单调递增区间是(Ⅱ)【解析】(Ⅰ)由得(1)当时,(i)若,当时,恒成立,所以函数的单调递减区间是.(ii)若,当时,,函数单调递减,当时,,函数单调递增.所以的单调递减区间是,单调递增区间是(2)当时,令得,由得显然当时,,函数单调递减;当时,,函数单调递增.所以函数的单调递减区间是,单调递增区间是.(Ⅱ)由题意知函数在处取得最小值,由(I)知是的唯一极小值点,故,整理得,令则由得当时,,单调递增;当时,,单调递减.因此故,即即【考点定位】本题考查导数法研究函数的单调性和相关函数值的大小比较,考查分类讨论思想、推理论证能力和运算求解能力.函数的单调区间判断必然通过导数方法来解决,伴随而来的是关于的分类讨论.比较与的大小时要根据已知条件和第一问的知识储备,构造新的函数利用单调性直接运算函数值得到结论.本题具备导数研究函数单调性的特征,必然按照程序化运行,即求导、关于参数分类讨论、确定单调区间等步骤进行.而第二问则是在第一问的基础上进一步挖掘解题素材,如隐含条件的发现、新函数的构造等,都为解决问题提供了有力支持.22、【答案】(I) (Ⅱ) 或【解析】(I)设椭圆的方程为,由题意知,解得因此椭圆的方程为(II)(1)当两点关于轴对称时,设直线的方程为,由题意知或,将代入椭圆方程得.所以解得或.又,因为为椭圆上一点,所以,或又因为所以或(2)当两点关于轴不对称时,设直线的方程为,将其代入椭圆方程得.设,由判别式可得,此时所以,因为点到直线的距离为,所以令,则解得或,即或.又,因为为椭圆上一点,所以,即,所以或又因为所以或经检验,适合题意.综上可知或【考点定位】本题基于椭圆问题综合考查椭圆的方程、直线和椭圆的位置关系、平面向量的坐标运算等知识,考查方程思想、分类讨论思想、推理论证能力和运算求解能力.第一问通过椭圆的性质确定其方程,第二问根据两点关于轴的对称关系进行分类讨论,分别设出直线的方程,通过联立、判断、消元等一系列运算“动作”达成目标.本题极易简单考虑设直线的形式而忽略斜率不存在的情况造成漏解.在联立方程得到后,后续运算会多次出现这一式子,换元简化运算不失为一种好方法,令,搭建了与的桥梁,使坐标的代入运算更为顺畅,使“化繁为简”这一常用原则得以完美呈现。
2013年全国普通高等学校招生统一考试文科数学(山东卷带解析)试题
2013年全国普通高等学校招生统一考试文科(山东卷)数学试题1、【题文】复数为虚数单位,则( )A.25 B.C.6 D.2、【题文】已知集合均为全集的子集,且,,则( )A.B.C.D.3、【题文】已知函数为奇函数,且当时, ,则 ( ) A.B.C.D.4、【题文】一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是A.B.C.D.5、【题文】函数的定义域为( )A.B.C.D.6、【题文】执行右边的程序框图,若第一次输入的的值为,第二次输入的的值为,则第一次、第二次输出的的值分别为( )A.B.C.D.7、【题文】的内角的对边分别是,若,,,则( )A.B.C.D.8、【题文】给定两个命题,的必要而不充分条件,则的( ) A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9、【题文】函数的图象大致为( )10、【题文】将某选手的个得分去掉个最高分,去掉个最低分,个剩余分数的平均分为,现场做的个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以表示:则个剩余分数的方差为( )A.B.C.D.11、【题文】抛物线的焦点与双曲线的右焦点的连线交于第一象限的点,若在点处的切线平行于的一条渐近线,则( )A.B.C.D.12、【题文】设正实数满足,则当取得最大值时,的最大值为( )A.B.C.D.13、【题文】过点(3,1)作圆的弦,其中最短的弦长为__________.14、【题文】在平面直角坐标系中,为不等式组所表示的区域上一动点,则直线的最小值为____.15、【题文】在平面直角坐标系中,已知,,若,则实数的值为_____.16、【题文】定义“正对数”:,现有四个命题:①若,则;②若,则③若,则④若,则其中的真命题有____________(写出所有真命题的序号)17、【题文】某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:A B C D E(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.18、【题文】设函数,且的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值.19、【题文】如图,四棱锥中,,,分别为的中点.(Ⅰ)求证:;(Ⅱ)求证:.20、【题文】设等差数列的前项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,求的前项和.21、【题文】已知函数(Ⅰ)设,求的单调区间;(Ⅱ) 设,且对于任意,.试比较与的大小.22、【题文】在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.(I)求椭圆的方程;(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.。
2013年山东高考数学试题及答案 (文科)
2013年山东高考数学试题及答案 (文科)一、选择题1. 复数z =(2-i )2i(i 为虚数单位),则|z|=( )A .25 B.41 C .5 D. 51.C [解析] ∵z =(2-i )2i =i (2-i )2i 2=-4-3i ,∴|z|=()-42+()-32=5.2. 已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B)={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .2.A [解析] ∵U ={1,2,3,4},∁U (A ∪B)={4},∴A ∪B ={1,2,3},又∵B ={1,2},∴{3}A {1,2,3},∴∁U B ={3,4},A ∩∁U B ={3}.3. 已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x,则f(-1)=( )A .2B .1C .0D .-23.D [解析] ∵f(x)为奇函数,∴f(-1)=-f(1)=-⎝⎛⎭⎫12+11=-2. 4. 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图1-1所示,则该四棱锥侧面积和体积分别是( )图1-1A .4 5,8B .4 5,83C .4(5+1),83D .8,84.B [解析] 由正视图知该几何体的高为2,底面边长为2,斜高为22+1=5,∴侧面积=4³12³2³5=4 5,体积为13³2³2³2=83.5. 函数f(x)=1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]5.A [解析] 要使函数有意义,须有⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解之得-3<x ≤0.图1-26. 执行两次图1-2所示的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为( )A .0.2,0.2B .0.2,0.8C .0.8,0.2D .0.8,0.86.C [解析] 当a =-1.2时,执行第一个循环体,a =-1.2+1=-0.2<0再执行一次第一个循环体,a =-0.2+1=0.8,第一个循环体结束,输出;当a =1.2时,执行第二个循环体,a =1.2-1=0.2,输出.7. △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .17.B [解析] 由正弦定理a sinA =b sinB ,即1sinA =3sinB =32sinAcosA ,解之得cosA =32,∴A =π6,B =π3,C =π2,∴c =a 2+b 2=()32+12=2.8. 给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件8.A [解析] ∵“若q ,则⌝p ”与“若p ,则⌝q ”互为逆否命题,又“若q ,则⌝p ”为真命题,故p 是⌝q 的充分而不必要条件.9. 函数y =xcos x +sin x 的图像大致为( )图1-39.D [解析] ∵f(-x)=-xcos(-x)+sin(-x)=-(xcos x +sin x)=-f(x),∴y =xcos x+sin x 为奇函数,图像关于原点对称,排除选项B ,当x =π2,y =1>0,x =π,y =-π<0,故选D.10. 将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示.则7个剩余分数的方差为( )8 7 7 9 4 0 1 0 x 9 1图1-4A.1169B.367C .36 D.6 7710.B [解析] 由题得91³7=87+90³2+91³2+94+90+x ,解得x =4,剩余7个数的方差s 2=17[(87-91)2+2(90-91)2+2(91-91)2+2(94-91)2]=367.11., 抛物线C 1:y =12p x 2(p>0)的焦点与双曲线C 2:x23-y 2=1的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316B.38C.2 33D.4 3311.D [解析] 抛物线C 1:y =12p x 2()p>0的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),连线的方程为y =-p4(x -2),联立⎩⎨⎧y =-p4(x -2),y =12px 2得2x 2+p 2x -2p 2=0.设点M 的横坐标为a ,则在点M 处切线的斜率为.又∵双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,∴a p =33,即a =33p ,代入2x 2+p 2x -2p 2=0得,p =4 33或p =0(舍去).12. 设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当zxy取得最小值时,x +2y -z 的最大值为( )A .0 B.98C .2 D.9412.C [解析] 由题意得z =x 2-3xy +4y 2,∴z xy =x 2-3xy +4y 2xy =x y +4y x -3≥2 x y ·4y x-3=1, 当且仅当x y =4yx,即x =2y 时,等号成立,∴x +2y -z =2y +2y -()4y 2-6y 2+4y 2=-2(y -1)2+2≤2.13. 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.13.2 2 [解析] 设弦与圆的交点为A 、B ,最短弦长以(3,1)为中点,由垂径定理得⎝⎛⎭⎫|AB|22+(3-2)2+(2-1)2=4,解之得|AB|=2 2. 14. 在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM|的最小值是________.14.2 [解析] 可行域如图,当OM 垂直于直线x +y -2=0时,|OM|最小,故|OM|=|0+0-2|1+1= 2.图1-5 15. 在平面直角坐标系xOy 中,已知OA →=(-1,t),OB →=(2,2).若∠ABO =90°,则实数t 的值为________.15.5 [解析] 由题意得AB →=OB →-OA →=(3,2-t),又∵∠ABO =90°,∴OB →²AB →=2³3+2(2-t)=0,解得t =5.16., 定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x ≥1.现有四个命题:①若a>0,b>0,则ln +(a b )=bln +a ;②若a>0,b>0,则ln +(ab)=ln a +ln +b ;③若a>0,b>0,则ln +(a b )≥ln +a -ln +b ;④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号)16.①③④ [解析] ①中,当a b ≥1时,∵b>0,∴a ≥1,ln +a b =ln a b =bln a =bln +a ;当0<a b <1时,∵b>0,∴0<a<1,ln +a b =bln +a =0,∴①正确.②中,当0<ab<1,且a>1时,左边=ln +(ab)=0,右边=ln +a +ln +b =ln a +0=ln a>0,∴②不成立.③中,当a b ≤1,即a ≤b 时,左边=0,右边=ln +a -ln +b ≤0,左边≥右边,成立;当a b >1时,左边=ln ab=ln a -ln b>0,若a>b>1时,右边=ln a -ln b ,左边≥右边成立;若0<b<a<1时,右边=0, 左边≥右边成立;若a>1>b>0,左边=ln ab=ln a -ln b>ln a ,右边=ln a ,左边≥右边成立,∴③正确.④中,若0<a +b<1,左边=ln +(a +b)=0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b ≥1,ln +(a +b)-ln 2=ln(a +b)-ln 2=ln ⎝⎛⎭⎫a +b 2.又∵a +b 2≤a 或a +b 2≤b ,a ,b 至少有1个大于1,∴ln ⎝⎛⎭⎫a +b 2≤ln a 或ln ⎝⎛⎭⎫a +b 2≤ln b ,即有ln +(a +b)-ln 2=ln (a +b)-ln 2=ln ⎝⎛⎭⎫a +b 2≤ln +a +ln +b ,∴④正确.17. 某小组共有A ,B ,C ,D ,E 五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:A B C D E身高1.69 1.73 1.75 1.79 1.82 体重指标19.2 25.1 18.5 23.3 20.9 (1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率; (2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.17.解:(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B),(A ,C),(A ,D),(B ,C),(B ,D),(C ,D),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A ,B),(A ,C),(B ,C),共3个.因此选到的2人身高都在1.78以下的概率为P =36=12.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B),(A ,C),(A ,D),(A ,E),(B ,C),(B ,D),(B ,E),(C ,D),(C ,E),(D ,E),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C ,D),(C ,E),(D ,E),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P 1=310.18., 设函数f(x)=32-3sin 2 ωx -sin ωx cos ωx (ω>0),且y =f(x)图像的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f(x)在区间[π,3π2]上的最大值和最小值.18.解:(1)f(x)=32-3sin 2ωx -sin ωxcos ωx=32-3²1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3.因为图像的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4³π4.因此ω=1.(2)由(1)知f(x)=-sin ⎝⎛⎭⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3.所以-32≤sin ⎝⎛⎭⎫2x -π3≤1.因此-1≤f(x)≤32.故f(x)在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1.19., 如图1-5,四棱锥P —ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面PAD ;(2)求证:平面EFG ⊥平面EMN.图1-619.证明:(1)证法一:取PA 的中点H ,联结EH ,DH. 因为E 为PB 的中点,所以EH ∥AB ,EH =12AB.又AB ∥CD ,CD =12AB ,所以EH ∥CD ,EH =CD.因此四边形DCEH 是平行四边形. 所以CE ∥DH.又DH 平面PAD ,CE 平面PAD , 因此CE ∥平面PAD.证法二:联结CF.因为F 为AB 的中点,所以AF =12AB.又CD =12AB ,所以AF =CD. 又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD.又CF 平面PAD , 所以CF ∥平面PAD.因为E ,F 分别为PB ,AB 的中点, 所以EF ∥PA.又EF 平面PAD , 所以EF ∥平面PAD. 因为CF ∩EF =F ,故平面CEF ∥平面PAD. 又CE 平面CEF , 所以CE ∥平面PAD.(2)因为E ,F 分别为PB ,AB 的中点, 所以EF ∥PA. 又AB ⊥PA , 所以AB ⊥EF.同理可证AB ⊥FG .又EF ∩FG =F ,EF 平面EFG ,FG 平面EFG , 因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点, 所以MN ∥CD. 又AB ∥CD , 所以MN ∥AB , 因此MN ⊥平面EFG. 又MN 平面EMN ,所以平面EFG ⊥平面EMN.20. 设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈*,求{b n }的前n 项和T n .20.解:(1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1得 ⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1. 解得a 1=1,d =2. 因此a n =2n -1,n ∈*.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈*,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -⎝⎛⎭⎫1-12n -1=12n .所以b n a n =12n ,n ∈*.由(1)知a n =2n -1,n ∈*,所以b n =2n -12n ,n ∈*.又T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1, 两式相减得12T n =12+⎝⎛⎭⎫222+223+…+22n -2n -12n +1 =32-12n -1-2n -12n +1, 所以T n =3-2n +32n .21. 已知函数f(x)=ax 2+bx -ln x (a ,b ∈). (1)设a ≥0,求f(x)的单调区间;(2)设a>0,且对任意x>0,f(x)≥f(1).试比较ln a 与-2b 的大小. 21.解:(1)由f(x)=ax 2+bx -ln x ,x ∈(0,+∞),得f′(x)=2ax 2+bx -1x.①当a =0时,f ′(x)=bx -1x.(i)若b ≤0,当x >0时,f ′(x)<0恒成立, 所以函数f(x)的单调递减区间是(0,+∞).(ii)若b >0,当0<x <1b时,f ′(x)<0,函数f(x)单调递减,当x >1b时,f ′(x)>0,函数f(x)单调递增.所以,函数f(x)的单调递减区间是⎝⎛⎭⎫0,1b ,单调递增区间是⎝⎛⎭⎫1b ,+∞. ②当a >0时,令f′(x)=0, 得2ax 2+bx -1=0. 由Δ=b 2+8a >0得x 1=-b -b 2+8a 4a ,x 2=-b +b 2+8a 4a.显然,x 1<0,x 2>0.当0<x <x 2时,f ′(x)<0,函数f(x)单调递减; 当x >x 2时,f ′(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是⎝ ⎛⎭⎪⎫0,-b +b 2+8a 4a ,单调递增区间是⎝ ⎛⎭⎪⎫-b +b 2+8a 4a ,+∞.综上所述,当a =0,b ≤0时,函数f(x)的单调递减区间是(0,+∞);当a =0,b>0时,函数f(x)的单调递减区间是⎝⎛⎭⎫0,1b ,单调递增区间是⎝⎛⎭⎫1b ,+∞; 当a>0时,函数f(x)的单调递减区间是⎝ ⎛⎭⎪⎫0,-b +b 2+8a 4a ,单调递增区间是⎝ ⎛⎭⎪⎫-b +b 2+8a 4a ,+∞.(2)由题意,函数f(x)在x =1处取得最小值,由(1)知-b +b 2+8a4a是f(x)的唯一极小值点,故-b +b 2+8a 4a=1,整理得2a +b =1,即b =1-2a. 令g(x)=2-4x +ln x.则g′(x)=1-4xx.令g′(x)=0,得x =14.当0<x <14时,g ′(x)>0,g(x)单调递增;当x >14时,g ′(x)<0,g(x)单调递减.因此g(x)≤g ⎝⎛⎭⎫14=1+ln 14=1-ln 4<0. 故g(a)<0,即2-4a +ln a =2b +ln a <0, 即ln a <-2b. 22., 在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.22.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),故题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(i)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m ,由题意-2<m <0或0<m < 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|=2-m 22.所以S △AOB =|m|2-m 22=64.解得m 2=32或m 2=12.①又OP →=tOE →=12t(OA →+OB →)=12t(2m ,0)=(mt ,0),因为P 为椭圆C 上一点,所以(mt )22=1.②由①②得 t 2=4或t 2=43,又因为t>0,所以t =2或t =2 33.(ii)当A ,B 两点关于x 轴不对称时, 设直线AB 的方程为y =kx +h.将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4khx +2h 2-2=0, 设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2,此时x 1+x 2=-4kh1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k 2,所以|AB|=1+k 2(x 1+x 2)2-4x 1x 2=2 21+k 21+2k 2-h 21+2k 2.因为点O 到直线AB 的距离d =|h|1+k 2,所以S △AOB =12|AB|d=12³2 21+k 21+2k 2-h 21+2k 2|h|1+k 2= 2 1+2k 2-h 21+2k 2|h|.又S △AOB =64,所以 2 1+2k 2-h 21+2k2|h|=64.③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0,解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④又OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=⎝⎛⎭⎫-2kht 1+2k 2,ht 1+2k 2,因为P 为椭圆C 上一点,所以t2⎣⎡⎦⎤12⎝⎛⎭⎫-2kh 1+2k 22+⎝⎛⎭⎫h 1+2k 22=1, 即h 21+2k 2t 2=1.⑤ 将④代入⑤得t 2=4或t 2=43,又知t>0,故t =2或t =2 33,经检验,适合题意. 综合(i)(ii)得t =2或t =。
2013年山东高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试(山东卷)文科数学一.选择题:本题共12个小题,每题5分,共60分.1.复数2(2i)iz -=(i 为虚数单位),则z = ( )A .25 B.41 C.5 D.5 【测量目标】复数的代数的四则运算,复数的基本概念(复数的模). 【考查方式】给出复数的乘方与除法形式,求复数的模. 【参考答案】C【试题解析】利用复数的乘方和乘除运算计算出z ,进而求出z ,2222(2i)44i+i 34i =43i,z (4)(3)5i i iz ---===--∴=-+-=.2.已知集合,A B 均为全集{}=1,2,3,4U 的子集,且{}()4U A B = ð,{}=1,2B ,则U A B = ð ( )A.{3}B.{4}C.{3,4}D.∅【测量目标】集合间的基本运算.【考查方式】集合的表示(列举法),给出集合间的四则运算结果,去计算A B 与的补集的交集.【参考答案】A【试题解析】利用所给条件计算出A 和U B ð,进而求交集{}{}=1,2,3,4,()4U U A B = ,ð(步骤1) {}{}{}{}1,2,3.=123123.A B B A ∴=∴⊆⊆ 又,,,,(步骤2) 又{}{}=34,3.U UB A B ∴= ,痧(步骤3)3.已知函数()f x 为奇函数,且当0x >时()21f x x x=+,则()1f -= ( ) A .2 B.1 C.0 D.-2【测量目标】函数奇偶性的综合运用.【考查方式】已知函数的部分解析式、利用函数的奇偶性,解决函数的求值问题. 【参考答案】D【试题解析】利用奇函数的性质()()f x f x -=-求解.当2210(),(1)11 2.x f x x f x>=+∴=+=时, ()f x 为奇函数.(1)(1)2f f ∴-=-=-4.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是 ( ) A .45,8 B.845,3C.84(51),3+ D. 8,8 【测量目标】由三视图求几何体表面积与体积.【考查方式】给出四棱锥的主视图,描述四棱锥棱的情况,求解四棱锥的侧面积与体积.【参考答案】B 【试题解析】有正视图知:四棱锥的底面是边长为2的正方形,四棱锥的高为2,21822.33V ∴=⨯⨯=四棱锥的侧面是全等的等腰三角形,底为2,高为15,=425=452S ∴⨯⨯⨯侧5.函数1()123xf x x =-++的定义域为 ( ) A.(-3,0] B. (-3,1] C. ()(],33,0-∞-- D. ()(],33,1-∞-- 【测量目标】函数的定义域.【考查方式】通过给定函数式,使每个部分有意义,求其定义域. 【参考答案】A【试题解析】求函数定义域就是是这个式子有意义的自变量x 的取值范围,由题意,自变量x 应满足120,30,x x ⎧-⎨+>⎩…解得0,303,x x x ⎧∴-<⎨>-⎩……6.执行右边的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为 ( )A.0.2,0.2B. 0.2,0.8C. 0.8,0.2D. 0.8,0.8 【测量目标】循环结构的程序框图.【考查方式】给出具体的算法流程图,求输出的结果.【参考答案】C【试题解析】根据输入a 的值的不同而执行不同的程序.当 1.20, 1.210.2,0,a a a a =-<∴=-+=-< 时,0.210.8,0.0.81,a a =-+=>< 输出0.8.a =当 1.21, 1.210.2.a a a =∴=-=时,…0.21,< 输出0.2.a =7.ABC △的内角A B C 、、的对边分别是a b c 、、,若=2,=1,=3,B A a b 则c = ( )A. 23B. 2C.2D.1【测量目标】用正余弦定理判断三角形形状,勾股定理,二倍角.【考查方式】已知三角形的边角关系求边长,考查正弦定理、二倍角公式. 【参考答案】B【试题解析】先利用正弦定理,求出角A ,进而求出角B 和角C ,得出角C 为直角,从而用勾股定理求出边c 由正弦定理得,2,1,3,sin sin a bB A a b A B==== 13.sin 2sin cos A A A∴=(步骤1) A 为三角形的内角3sin 0.cos 2A A ∴≠∴=,.(步骤2)ππ0π,2.63A A B A <<∴=∴==又,(步骤3)ππ2C A B ABC ∴=--=∴,△为直角三角形由勾股定理得221(3) 2.c =+=(步骤4)8.给定两个命题q p ,,p ⌝是q 的必要而不充分条件,则p 是q ⌝ ( ) A .充分而不必要条件 B.必要而不充分条件 C.充要条件 D.不充分也不必要条件 【测量目标】充分、必要条件,四种命题之间的关系.【考查方式】根据逻辑连接词,来主要考查命题的基本关系及充分必要条件. 【参考答案】A【试题解析】借助原命题与逆否命题等价判断.若p ⌝是q 的必要不充分条件,则q p ⇒⌝但p q ⌝≠,其逆否命题为,p q q p p q ⇒⌝⌝≠∴⌝但是的充分不必要条件.9.函数cos sin y x x x =+的图象大致为 ( )A B C D【测量目标】函数奇偶性的综合运用,函数图象的阅读及处理. 【考查方式】通过给定的函数式,确定函数的大概图象.【参考答案】D【试题解析】结合给出的函数图象,带入特殊值,利用排除法求解.π10,C 2π,1,B 2π,π0 A.Dx y x y x y ==>=-=-==-<时,排除当排除当排除故选10.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为 ( )A.1169 B.367 C.36 D.677【测量目标】茎叶图、用样本数字特征估计总体数字特征(方差,平均数).【考查方式】给定茎叶图,里面含有未知数,给定去高去低后的平均数,求剩余分数的方差.【参考答案】B【试题分析】利用平均数为91,求出x 的值,利用方差的定义,计算方差,根据茎叶图.[]22222222187+94909190(90)9191, 4.7136(8791)(9491)(9091)(9191)(9091)(9491)(9191)77x x s ++++++=∴=⎡⎤=-+-+-+-+-+-+-=⎣⎦11.抛物线211:()2C y x p p=>0的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则p = ( )A .316 B.38 C.233 D.433【测量目标】双曲线、抛物线的简单几何性质,抛物线与直线的位置关系.【考查方式】给定两抛物线交点位置,交点处的切线与抛物线的关系,去求抛物线中的未知数.【参考答案】D【试题解析】做出草图,数形结合,建立方程求解.双曲线2223x C y -:=1,∴右焦点为F (2,0),渐近线方程为33y x =±(步骤1) 抛物线21102C y x p p=>:(),焦点为(0,).2p F '(步骤2)设200001.2M x y y x p=(,), 020001222,.2113,|.3MF FF x x p p x p k k x y x y x p p ''=-=∴=-''=∴== 得433p =(步骤3) 12.设正实数,,x y z 满足22340x xy y z -+-=,当zxy取得最大值时,2x y z +-的最大值为()A .0 B.98 C.2 D.94【测量目标】基本不等式求最值.【考查方式】给定三个未知数满足的方程式,用基本不等式求式子的最大值. 【参考答案】B【试题解析】含三个参数,,x y z 消元,利用基本不等式及配方法求最值.222234(0,0,0),44323134z x xy y x y z xy xy x y x yz x xy y y x y x=-+>>>∴==+--=-+ …(步骤1) 当且仅当42x yx y y x==,时等号成立2222222223446422222242(1)2z x xy y y y y y x y z y y y y y y =-+=-+=∴+-=+-=-+=--+(步骤2)12y x y z ∴=+-,的最大值是2(步骤3)二.填空题:本大题共4小题,每小题4分,共16分13.过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________ 【测量目标】圆的简单几何性质.【考查方式】给定定点,与圆的标准方程,求过点的最短弦长. 【参考答案】22【试题解析】借助圆的几何性质,确定圆的最短弦位置,利用半径,弦心距及半弦长的关系求弦长.设A (3,1),可知圆心C (2,2),半径r =2,当弦过点A (3,1)且与CA 垂直时为最短弦22(23)(21)2CA =-+-=(步骤1)所以半弦长22=422r CA -=-=最短弦长为2214.在平面直角坐标系xOy 中,M 为不等式组2360200x y x y y +-⎧⎪+-⎨⎪⎩………所表示的区域上一动点,则直线OM 的最小值为_______【测量目标】二元线性规划求目标函数的最小值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最小值. 【参考答案】2 【试题解析】如图所示,M 为图中阴影部分的一个动点,由于点到直线的距离最短,所以OM 的最小值2==2215.在平面直角坐标系xOy 中,已知(1,),(2,2)OA t OB =-= ,若90ABO ∠=,则实数t 的值为______【测量目标】平面向量在平面几何中的应用,向量的坐标运算.【考查方式】给出两向量的坐标表示,两向量的垂直关系,求未知数t . 【参考答案】5【试题解析】利用向量垂直的充要条件,列方程求解.90,,0.ABO AB OB OB AB ∠=∴⊥∴=(2,2)(1,)(3,2),AB OB OA t t =-=--=-又(步骤1)(2,2)(3,2)62(2)0t t ∴-=+-= 5t ∴=(步骤2)16.定义“正对数”:()()0,01ln ln ,1x x x x +<<⎧⎪=⎨⎪⎩…,现有四个命题:①若0,a b >>0,则()lnlnba b a ++=;②若0,0a b >>,则ln ()ln ln ab a b +++=+ ③若0,0a b >>,则ln ln ln a a b b +++⎛⎫- ⎪⎝⎭… ④若0,0a b >>,则()lnln ln ln2a b a b ++++++…其中的真命题有____________(写出所有真命题的序号) 【测量目标】分段函数,对数的性质,不等式恒成立问题.【考查方式】给定分段函数,求所给的4个小命题的正确性,逐一论证. 【参考答案】○1○3○4【试题解析】本题是新定义型问题,解题时要严格按照所给定义,对每一个选项逐一论证或排除.○11,0,1,ln ()ln ln ln .bb b a b aa ab a b a ++>∴∴=== 当厖(步骤1)01,0,1,l n ()bba b a a +<<>∴<∴= 当(步骤2) ln 0,ln 0,ln ()ln ba b a a b a ++++=∴=∴=又(步骤3) 故○1正确. ○2112,,ln ()ln 0,42a b ab ++====当而ln ln 2,ln 0,ln ln ln 2a b a b ++++==∴+=(步骤4) 故○2不成立. ○3a.01,01,ln ln 0a b a b ++<<-=当剟而ln 0,ln ln ln a a a b b b ++++⎛⎫⎛⎫∴-⎪ ⎪⎝⎭⎝⎭厖(步骤5)b .当+01,1,ln ln ln 0a b a b b ++<>-=-<…而+ln ()0,ln ()ln ln a a a b bb +++=∴-…(步骤6)c .当1,01,1,aa b a b ><>剠(步骤7) ln ()ln()ln ln ln ln a a a a a b b b ++++∴===-…ln ()ln ln a a b b+++∴-… (步骤8)d .当1,1,,ln ()0a a b a b b+>><=且 ln ln 0,ln ()ln ln a a b a b b+++++-<∴-…(步骤9)e .当1,1,,1aa b a b b>>>>且时ln ()ln()ln ln ln ln a aa b a b b b +++∴==-=-(步骤10)综上:ln ()ln ln a a b b+++-…,故○3正确.○4a.01,01,01,ln ()0a b ab a b +<+<<∴+=当剟?ln ln ln 200ln 20a b ++++=++>+ln ()ln ln ln 2a b a b ++∴+<++(步骤11)b .1,a b +>当分下列三种情况:(i )当 11,12,a b a b b b b b <+++= 0,剠剟ln ()ln()ln 2ln ln ln 2a b a b b a b +++∴+=+=++…(步骤12) (ii)1,011+2,a b a b aa a a <++= 当时,厔剟+ln ()ln()ln 2ln ln 2ln ln ln 2a b a b a a a b ++∴+=+=+=++…(步骤13)(iii)01,012,ln 0,a ba b a +<<∴+=当时,且剟?ln 0.ln ()ln()ln 2ln ln ln 2b a b a b a b ++++=∴++=++剟(步骤14)综上:ln ()ln ln ln 2a b a b ++++++…,故○4正确.三.解答题:本大题共6小题,共74分, 17.(本小题满分12分) 某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:ABCDE身高 1.69 1.73 1.75 1.79 1.82 体重指标 19.225.118.523.320.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率【测量目标】列举法、古典概型,随机事件与概率.【考查方式】给出五个学生的身高与体重,按照一定条件求概率.【试题分析】解(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有(,A B ),(,A C ),(,A D ),(,B C ),(,B D ),(,C D )共6个.(步骤1)由于每个人被选到的机会均等,因此这些基本事件的出现是均等的.选到的2人身高都在1.78以下的事件有(,A B ),(,A C ),(,B C ),共3人.(步骤2)因此选到的俩人身高都在1.78以下的概率为12p =(步骤3) (2)从该小组同学中人选两人,其组成成分有(,A B ),(,A C ),(,A D ),(,A E ),(,B C ),(,B D ),(,B E ),(,C D ),(,C E ),(,D E ),共10个(步骤4) 选到的2人的身高都在 1.70以上且体重指标都在[)18.5,23.9中的事件有(,C D ),(,C E ),(,D E ),共三个(步骤5)选到的2人的身高都在1.70以上且体重指标都在[)18.5,23.9中的概率310P =(步骤6) 18.(本小题满分12分)设函数23()3sin sin cos (0)2f x x x x ωωωω=-->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为π4,(1)求ω的值. (2)求()f x 在区间3ππ,2⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【测量目标】两角和与差的三角函数公式、二倍角公式、三角函数的图象与性质【考查方式】利用倍角公式化简函数式,数形结合求未知数ω再求函数在一段区间上的最值.【试题分析】(1)先利用倍角公式,两角和与差的三角公式把()f x 的解析式进行化简整理,再利用对称中心到最近的对称轴的距离为π4求出ω,(2)先根据x 的取值范围求出π23x -的取值范围,然后利用三角函数的图象,并结合其单调性求出()f x 的最值. 23()3sin sin cos 231cos 213sin 2222f x x x x x x ωωωωω=---=-- (1)31πcos 2sin 2sin 2223x x x ωωω⎛⎫=-=-- ⎪⎝⎭(步骤1) 因为图象的一个对称中心到最近的对称轴的距离为π4, 又2ππ0,424ωω>∴=⨯ 因此1ω=(步骤2)(2)由(1)知π()sin 2.3f x x ⎛⎫=-- ⎪⎝⎭当3π5ππ8ππ,2.2333xx -剟剟 3πsin 2 1.23x ⎛⎫∴-- ⎪⎝⎭剟(步骤3) 因此31()2f x -剟 故()f x 在区间3ππ,2⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为3,12-(步骤4) 19.(本小题满分12分)如图,四棱锥P ABCD -中,,,AB AC AB PA ⊥⊥,2,,,,,AB CD AB CD E F G M N = 分别为,,,,PB AB BC PD PC 的中点(Ⅰ)求证:CEPAD 平面 ;(Ⅱ)求证:EFG EMN ⊥平面平面【测量目标】线面平行的判定定理,线面垂直,面面垂直的判定定理,平行线的传递性.【考查方式】根据所给出的直线间的位置关系,用线线平行推导线面平行,根据线面垂直,去证明面面垂直.【试题分析】要证明线面平行,可考虑证明线线平行,也可先证明面面平行,进而转化为证线面平行,利用三角形的中位线或平行四边形的性质证明线线平行是证明平行问题首先要考虑的;要证明EFG EMN ⊥平面平面,可先考虑证明平面EMN 中的MN 垂直于平面EFG ,即转化为证明线面垂直,而要证明MN EFG ⊥平面,需要证明MN 垂直于平面EFG 中的两条相交直线(1):如图,取,PA H EH DH 的中点,连接E 为PB 的中点1,.2EH AB EH AB ∴= (步骤1)1,2AB CD CD AB =,.EH CD CD EH ∴= (步骤2)所以四边形DCEH 是平行四边形 (步骤3).CE DH ∴ (步骤4),DH PAD CE PAD ⊂又平面平面Ü CE PAD ∴平面 (步骤5)(2)因为,E F 分别为,PB AB 的中点,所以.,.EF PA AB PA AB EF ⊥∴⊥又 (步骤6)同理可证AB FG ⊥(步骤7),,EF FG F EF EFG FG =⊂⊂ 又平面平面EFGAB ⊥因此平面EFG (步骤8)又,M N 分别为,PD PC 的中点MN DC ∴ (步骤9) 又,,AB DC MN AB MN ∴∴⊥ 平面EFG (步骤10)MN ⊂又平面,EMN 所以平面EFG ⊥平面EMN (步骤11)20.(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+. (Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足*12121...1,2n n n b b b n a a a +++=-∈N ,求{}n b 的前n 项和n T . 【测量目标】等差数列通项公式及前n 项和公式,错位相减法求和.【考查方式】已知{}n a 为等差数列,给定{}2n n S a 与进行逆推{}n a ,再由题给出的{}{}n n a b 与的关系式错位相减求出结果.【试题分析】(1)由于已知{}n a 是等差数列,因此可以考虑用基本量1,a d 表示已知等式,进而求出{}n a 的通项公式.(2)先求出nnb a ,进而求出{}n b 的通项公式,再用错位相减法求{}n b 的前n 项和.解:(1)设等差数列{}n a 的首项为1a ,公差为d . 由422421,n n S S a a ==+,11114684,(21)22(1)1a d a d a n d a n d +=+⎧⎨+-=+-+⎩ 解得112a d =⎧⎨=⎩(步骤1) 因此,*21,n a n n =-∈N (步骤2)*121211111,,211,;21112,11222n n n n n n n n b b b n a a a b n a b n a -++⋅⋅⋅+=-∈==⎛⎫=---= ⎪⎝⎭N (2)由已知当当…*1,.2n n n b n a ∴=∈N (步骤3) 由*21,,n a n n =-∈N (1)*21,2n nn b n -∴=∈N (步骤4) 2313521,2222n n n T -∴=+++⋅⋅⋅+23113232122222n n n n n T --=++⋅⋅⋅++(步骤5) 两式相减,得231111122221()2222223121,222n n n n n n T n +-+-=+++⋅⋅⋅+--=--2332n nn T +∴=-(步骤6)21.(本小题满分12分)已知函数2()ln (,)f x ax bx x a b =+-∈R , (Ⅰ)设0a …,求()f x 的单调区间(Ⅱ) 设0a >,且对于任意0,()(1)x f x f >….试比较ln a 与2b -的大小【测量目标】利用导数求函数的单调区间,利用导数解决不等式问题. 【考查方式】用导数求含参数函数的单调区间,利用导数证明不等式.【试题分析】(1)求()f x 的单调区间,需要对()f x 求导.当()0,()f x f x '>是增函数,()0,()f x f x '<是减函数,但是需要对参数,a b 进行讨论(2)()f x 的最小值为(1)f ,当()f x 有唯一极小值点时,极小值就是最小值,然后构造函数求解.解:由2()ln ,(0,),f x ax bx x x =+-∈+∞221()ax bx f x x +-'=(步骤1)11.0,().bx a f x x-'==a .若0b …,当0x >,()0f x '<恒成立 所以函数()f x 的单调递减区间是()0,+∞.(步骤2)1b.0,0,()0b x f x b'><<<若当函数()f x 单调递减1,(),x f x b'>函数()f x 单调递增(步骤3)所以函数()f x 的单调递减区间1(0,)b ,单调递增区间是1(,)b+∞(步骤4)2.当20,()0,210.a f x ax bx '>=+-=令得(步骤5) 由280b a +>得221288,44b b a b b ax x a a--+-++==(步骤6) 显然120,0.x x <>当20,()0,x x f x '<<<函数()f x 单调递减2,()0,x x f x '>>当函数()f x 单调递增(步骤7)所以函数()f x 的单调递减区间是280,4b b a a ⎛⎫-++ ⎪ ⎪⎝⎭,单调递增区间是28,4b b a a ⎛⎫-+++∞⎪ ⎪⎝⎭(步骤8) 综上所述,当0,0a b =…,函数()f x 的单调递减区间是()0,+∞当0,0a b =>,函数()f x 的单调递减区域是10,b ⎛⎫ ⎪⎝⎭,单调递增区域是1,b ⎛⎫+∞ ⎪⎝⎭当0a >,函数()f x 的单调递减区间是280,4b b a a ⎛⎫-++ ⎪ ⎪⎝⎭,单调递增区间是28,4b b a a ⎛⎫-+++∞⎪ ⎪⎝⎭.(步骤9) (2)由题意知函数()1f x x =在处取最小值,由284b b a a-++(1)知是()f x 的唯一极小值点(步骤10)故28=14b b a a-++.整理,21,a b +=即12.b a =-(步骤11)令14()24ln ,().xg x x x g x x-'=-+=则(步骤12) 令1()0,4g x x '==得(步骤13) 10,()0,()4x g x g x '<<>单调递增1,4x >()0g x '<,()g x 单调递减.(步骤13)因此11()()1ln 1ln 4044()0,24ln 2ln 0,g x g g a a a b a =+=-<<-+=+<即… 即ln 2a b <-(步骤14)22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22(I)求椭圆C 的方程(Ⅱ),A B 为椭圆C 上满足AOB △的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 与点P ,设OP tOE =,求实数t 的值.【测量目标】椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,点到直线的距离公式,向量的线性运算,平面向量在平面几何中的应用.【考查方式】给出椭圆的位置情况,短轴及离心率,用待定系数法去求椭圆方程,(Ⅱ)中给出AOB △的面积及部分支线的几何位置,求满足向量方程的未知数. 【试题解析】(1)可用待定系数法求出,a b ,进而求出椭圆C 的方程.(2)设出直线AB 的方程,带入椭圆方程,设而不求,利用根与系数的关系转化,但要注意AB 与x 轴垂直时的情况.解:(1)设椭圆C 的方程为22221(0),x y a b a b+=>>由题意 2222,222a b c cab ⎧=+⎪⎪=⎨⎪=⎪⎩解得21a b ⎧=⎪⎨=⎪⎩ 因此椭圆C 的方程为 22 1.2x y +=(步骤1) (2)(i )当,A B 两点关于x 轴对称,设直线AB 的方程为x m =. 由题意得20m <<-或02m <<(步骤2)将x m =带入椭圆方程22221,22x m y y -+==(步骤3) 226.24AOBm S m -∴== △解得223122m m ==或 ○1 (步骤4) 11()(2,0)(,0),22OP tOE t OA OB t m mt ==+==又P 为椭圆C 上一点212mt ∴=() ○2 (步骤5)由○1○2,得22443t t ==或 又230,23t t t >∴==或 (步骤6) (ii )当,A B 两点关于x 轴不对称时,设直线AB 的方程为y kx h =+将其代入椭圆的方程2212x y +=,得 ()222124220.k xkhx h +++-=(步骤7)设1122(,),(,).A x y B x y 由判定式0∆>可得2212k h +>(步骤8)21212221212222121242,,12122()2,121()4kh h x x x x k khy y k x x h k AB k x x x x +=-=+++=++=+∴=+⨯+-222212221.12k h k k+-=⨯+⨯+(步骤9) 因为点O 到直线AB 的距离21h d k=+,2221122212AOBk h S AB d h k +-∴==⨯⨯+△(步骤10) 2221+262124k h h k -∴⨯⨯=+ ○3 (步骤11) 212,n k =+令代入○3整理得224316160n h n h -+= 解得22443n h n h ==或, 即222241241+23k h k h +==或 ○4 (步骤12) 121211()(,)22OP tOE t OA OB t x x y y ==+=++222,1212khtht k k ⎛⎫=- ⎪++⎝⎭(步骤13) 又P 为椭圆C 上一点,2222212()121212kh h t k k ⎡⎤⎛⎫∴-+=⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦即222112h t k=+ ○5(步骤13) 将○4代入○5,得22443t t ==或 (步骤14) 230,2.3t t t >==又故或(步骤15) 经检验,符合题意23i ii 23t t ==综合()(),得或(步骤16)。
2013年高三文科数学模拟试题(附答案)
2013年高三文科数学模拟试题(附答案)骞夸笢鐪佹儬宸炲競2013枃绉戯級?0鍒嗭級ぇ棰樺叡l0椤规槸绗﹀悎棰樼洰瑕佹眰鐨勶紟姣忓皬棰?鍒嗭紝婊″垎50鍒嗭紟 1.鈥?鈥濈殑鍚﹀懡棰樻槸( )锛?A. B. C. D. 2.鍔犲瘑浼犺緭锛屽彂閫佹柟鐢辨槑鏂?瀵嗘枃锛堝姞瀵嗭級锛屾帴鍙楁柟鐢卞瘑鏂?鏄庢枃锛堣В?瀵瑰簲瀵嗘枃锛屼緥濡傦紝鏄庢枃瀵瑰簲瀵嗘枃锛庡綋鎺ュ彈鏂规敹鍒板瘑鏂?鏃讹紝鍒欒В瀵嗗緱鍒扮殑鏄庢枃涓猴紙锛夛紟A锛?4锛?锛?锛? B锛?7锛?锛?锛? C锛?6锛?锛?锛? D锛?1锛?锛?锛? 3.宸茬煡鍚戦噺锛?锛岃嫢锛屽垯瀹炴暟鐨勫€肩瓑浜庯紙锛夛紟 A. B. C. D. 4.?鍊嶏紝鍒欐き鍦嗙殑绂诲績鐜囩瓑浜庯紙锛夛紟A锛?B锛?C锛?D锛?5.鍦ㄤ竴娆″?宸茬煡璇ュ皬缁勭殑骞冲潎鎴愮哗涓??锛夛紟锛?锛?锛?锛?6. ?锛夛紟锛?锛?锛?锛?7.涓や釜瑙嗗浘鐩稿悓鐨勬槸锛?銆€锛夛紟A锛庘憼鈶?B锛庘憼鈶?C锛庘憼鈶?D锛庘憽鈶?8.濡傛灉鎵ц?锛?锛夛紟锛★紟2450 锛?2500 锛o紟2550 锛わ紟2652 9.灏嗗嚱鏁?鐨勫浘璞″厛鍚戝乏骞崇Щ锛岀劧鍚庡皢鎵€寰楀浘璞′笂ョ殑鍊嶏紙绾靛潗鏍囦笉鍙橈級锛屽垯鎵€寰楀埌鐨勫浘璞?瀵瑰簲鐨勫嚱鏁拌В鏋愬紡涓猴紙锛夛紟A锛?B锛?C锛?D锛?10.宸茬煡鍏ㄩ泦R锛岄泦鍚?,>b>0锛?鍒欐湁( )锛?A. B. C. D. ?00鍒嗭級5?4锝?5棰樻槸閫夊仛棰樺緱鍒嗭紟姣忓皬棰?鍒嗭紝婊″垎20鍒嗭紟11锛庡寲绠€锛?锛?12. 宸茬煡R涓婄殑鍑芥暟锛屼笖瀵逛换鎰?锛岄兘鏈夛細锛屽張鍒?锛?13.鑻ュ疄鏁?婊¤冻鏉′欢鐨勬渶澶у€间负_____ 锛?14. (鍧愭爣绯讳笌鍙傛暟鏂圭▼閫夊仛棰??涓婄殑鍔ㄧ偣鍒扮洿绾?鐨勮窛绂荤殑鏈€澶у€兼槸锛?15. (?濡傚彸鍥炬墍绀猴紝鐨勭洿寰勶紝锛?锛?锛屽垯锛?6?0鍒嗭紟瑙g瓟椤诲啓鍑16.12鍒嗭級鍦ㄢ柍ABC鎵€瀵圭殑杈癸紝涓旀弧瓒?锛?(鈪?鐨勫ぇ灏忥紱(鈪?璁?锛屾眰鐨勬渶灏忓€? 17锛??4鍒?逛綋锛?锛孍涓烘1鐨勪腑鐐癸紟(鈪? 姹傝瘉锛?锛?(鈪? 姹傝瘉锛?骞抽潰锛?锛堚參锛夋眰涓夋1閿?18?2鍒嗭級鏈夋湅锛?(鈪?姹備粬涔樼伀杞︽垨椋炴満鏉ョ殑姒傜巼锛?(鈪?姹?锛堚參)19.14鍒嗭級璁惧嚱鏁?鐨勫浘璞″湪鐐?澶勭殑鍒囩嚎鐨勬枩鐜囦负锛屼笖褰?鏃?鏈夋瀬鍊硷紟(鈪?姹?鐨勫€硷紱(鈪?姹?鐨勬墍鏈夋瀬鍊硷紟20. (?4鍒?宸茬煡鍦?锛?鍜屽渾锛岀洿绾?涓庡渾鐩稿垏浜庣偣锛涘渾鐨勫渾蹇冨湪灏勭嚎涓婏紝鍦?杩囧锛?(鈪?姹傜洿绾?鐨勬柟绋?(鈪?姹傚渾鐨勬柟绋嬶紟21?4鍒嗭級宸茬煡鏁板垪锛涙暟鍒?鐨勫墠n椤瑰拰鏄?锛屼笖锛?(鈪? 姹傛暟鍒??(鈪? 姹傝瘉锛氭暟鍒?(鈪? 璁?锛屾眰鐨勫墠n椤瑰拰锛?骞夸笢鐪佹儬宸炲競2013鍙傝€冪瓟妗?1.瑙f瀽锛氬懡棰樷€?鈥濈殑鍚﹀懡棰樻槸锛氣€?鈥濓紝鏁呴€塁锛?2.瑙f瀽锛氱敱宸茬煡锛屽緱锛?锛屾晠閫?锛?3.瑙f瀽锛氳嫢锛屽垯锛岃В寰?锛庢晠閫?锛?4.瑙f瀽锛氱敱棰樻剰寰?锛屽張锛?鏁呴€?锛?5.愮哗涓??锛岀敱骞冲潎鏁扮殑姒傚康锛屽緱锛?锛?鏁呴€?锛?6.瑙f瀽锛???锛?7.ц?锛?8.?锛岄€?锛?9.瑙f瀽锛?鐨勫浘璞″厛鍚戝乏骞崇Щ锛屾í鍧愭爣鍙樹负鍘熸潵鐨?鍊?锛庣瓟妗堬細锛?10.瑙f瀽锛氱壒娈婂€兼硶锛氫护锛屾湁锛庢晠閫?锛?棰樺彿11 12 13 14 1511.瑙f瀽锛?锛?12.瑙f瀽锛氫护锛屽垯锛屼护锛屽垯锛?鍚岀悊寰?鍗冲綋鏃讹紝鐨勫€间互涓哄懆鏈燂紝鎵€浠?锛?13.瑙f瀽锛氱敱鍥捐薄鐭ワ細褰撳嚱鏁?鐨勫浘璞¤繃鐐?鏃讹紝鍙栧緱鏈€澶у€间负2锛?14. (鍧愭爣绯讳笌鍙傛暟鏂圭▼閫夊仛棰?愭爣鏂圭▼锛屽渾涓婄殑鍔ㄧ偣鍒扮洿绾?鐨勮窛绂荤殑鏈€澶у蹇?鍒扮洿绾?鐨勮窛绂?鍐嶅姞涓婂崐寰?锛庢晠濉?锛?15. (閫夊仛棰?瑙f瀽锛氳繛缁?锛?鍒欏湪鍜?锛?涓?锛屾墍浠?锛?鏁?锛?6?0鍒嗭紟瑙g瓟椤诲啓鍑16.殑鏈€鍊硷紟瑙o細(鈪?鈭?锛屸埓锛?鈥︹€︹€︹€︹€︹€?鍒?鍙堚埖锛屸埓锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛?銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€銆€鈥︹€︹€︹€︹€?0鍒?鈭村綋鏃讹紝鍙栧緱鏈€灏忓€间负锛?鈥︹€︹€︹€?2鍒?17瑙o細(鈪?璇佹槑锛氳繛缁?锛屽垯// 锛?鈥︹€︹€︹€?鍒?鈭?舰锛屸埓锛庘埖闈?锛屸埓锛?鍙?锛屸埓闈?锛?鈥︹€︹€︹€︹€︹€?鍒?鈭?闈?锛屸埓锛?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛夎瘉鏄庯細浣?鐨勪腑鐐笷锛岃繛缁?锛?鈭?鏄?鐨勪腑鐐癸紝鈭?锛?鈭村洓杈瑰舰锛?鈥︹€︹€?鍒?鈭?鏄?鐨勪腑鐐癸紝鈭?锛?鍙?锛屸埓锛?鈭村洓杈瑰舰洓杈瑰舰锛?// 锛?鈭?锛?锛?鈭村钩闈?闈?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鍙?骞抽潰锛屸埓闈?锛?鈥︹€︹€︹€︹€︹€?0鍒?锛?锛?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?18瑙o細璁欢锛屽垯锛?锛?锛?锛屼笖浜嬩欢?(鈪?鈥︹€︹€?鍒?(鈪??锛??锛?鈥︹€︹€︹€︹€︹€?鍒嗐€€锛堚參)鐢变簬锛?鈥︹€︹€︹€︹€︹€︹€?2鍒嗐€€19.鏋ц?瑙o細(鈪?鐢卞嚱鏁??锛屸€︹€︹€︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€鈥︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛屽嵆锛庛€€銆€鈥︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€? 0 + 0锟終鏋佸皬锟絁鏋佸ぇ锟終鈭?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?20锛庢瀽锛氫富瑕佽€冨療鐩寸嚎锛庡渾鐨勬柟绋嬶紝鐩寸嚎涓庡渾鐨勪綅缃瑙o細(鈪?锛堟硶涓€锛夆埖鐐?鍦ㄥ渾涓婏紝鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭寸洿绾?鐨勬柟绋嬩负锛屽嵆锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堟硶浜岋級褰撶洿绾?鍨傜洿杞存椂锛屼笉绗﹀悎棰樻剰锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?褰撶洿绾?涓?杞翠笉鍨傜洿鏃讹紝璁剧洿绾?鐨勬柟绋嬩负锛屽嵆锛?鍒欏渾蹇?鍒扮洿绾?鐨勮窛绂?锛屽嵆锛?锛岃В寰?锛屸€︹€?鍒?鈭寸洿绾?鐨勬柟绋嬩负锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒??锛?锛屸埖鍦?杩囧師鐐癸紝鈭?锛?鈭村渾鐨勬柟绋嬩负锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭靛渾洿绾?锛屸埓鍦嗗績鍒扮洿绾?锛?鐨勮窛绂伙細锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鏁寸悊寰楋細锛岃В寰?鎴?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?0鍒?鈭?锛屸埓锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?鈭村渾锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?21锛庢瀽锛氫富瑕佽€冨療绛夊樊銆佺瓑姣旀暟鍒楃殑瀹氫箟銆佸紡锛屾眰鏁板垪鐨勫拰鐨勬柟娉曪紟瑙o細(鈪?璁?锛屽垯锛?锛?锛?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛夊綋鏃讹紝锛岀敱锛屽緱锛?鈥︹€︹€︹€︹€︹€︹€?鍒?褰?鏃讹紝锛?锛?鈭?锛屽嵆锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛庛€€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?癸紝涓哄叕姣旂殑绛夋瘮鏁板垪锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚參锛夌敱锛?锛夊彲鐭ワ細锛?銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?0鍒?鈭?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?鈭?锛?鈥?4鍒?。
山东省2013届高三最新文科模拟试题精选(26套含一、二模)分类汇编4:平面向量
山东省2013届高三最新文科模拟试题精选(26套含一、二模)分类汇编4:平面向量一、选择题1 .(山东省德州市2013届高三3月模拟检测文科数学)若,,a b c 均为单位向量,且0a b ⋅=,则a b c +-的最小值为 ( )A .21-B .1C .21+ D .2【答案】A 222222232()a b c a b c a b a c b c a b c +-=+++⋅-⋅-⋅=-+⋅,因为0a b ⋅=,且1a b c ===,所以2a c +=,所以()cos ,2cos ,a b c a b c a b c a b c +⋅=+<+>=<+>,所以2322cos (),a b c a b c +-=-<+>,所以当cos (),1a b c <+>=时,2a b c +-最小为22322(21)a b c +-=-=-,所以21a b c +-=-,即a b c +-的最小值为21-.选 ( )A .2 .(山东省菏泽市2013届高三第二次模拟考试数学(文)试题)已知平面向量(2,),(1,3)a m b =-,且()a b b -⊥,则实数m 的值为( )A .23-B .23C .43D .63[来源:学§科§网]【答案】A3 .(山东省莱芜五中2013届高三4月模拟数学(文)试题)已知向量(1,2),m x =-+(3,21),n y =-若m n ⊥,则18()16x y +的最小值为( )A .2B .4C .22D .42【答案】C [来源:学科网ZXXK]4 .(山东省莱钢高中2013届高三4月模拟检测数学文试题 )已知向量a ()()4,3,1,2==-b ,若向量k +a b 与-a b 垂直,则k 的值为 ( )[来源:学科网][来源:Z#xx#] A .323B .7C .115-D .233-【答案】A5 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)如图,平行四边形ABCD 中,2,1,60AB AD A ==∠=,点M 在AB 边上,且13AM AB DM DB =⋅,则等于( )A .3-B .3 C .1-D .1【答案】D6 .(山东省凤城高中2013届高三4月模拟检测数学文试题 )如图,在ABC∆中,,3,||1,AD AB BC BD AD AC AD ⊥==⋅=则( )[来源:学科网] A .23B 3C.3D 3【答案】D7 .(山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)已知()1,6,2a b a b a ==⋅-=则向量a b 与的夹角为( )A .2πB .3π C .4π D .6π 【答案】B 2()2a b a a b a ⋅-=⋅-=,所以3a b ⋅=,所以31cos ,162a b a b a b⋅<>===⨯,所以,3a b π<>=,选 B .8 .(山东省潍坊市2013届高三3月第一次模拟考试数学(文)试题)如图,在边长为2的菱形ABCD 中,60BAD ∠=,E 为BC 中点,则AE BD ⋅=( )A .-3B .0C .-1D .1【答案】C 12AE AB BE AB BC =+=+,所以11()22AE BD AB BC BD AB BD BC BD ⋅=+⋅=⋅+⋅1111cos120cos60222212222AB BD BC BD =⋅+⋅=-⨯⨯+⨯⨯⨯=-,选 C .9 .(山东省济宁市2013届高三第一次模拟考试数学(文)试题 Word 版含答案)在△ABC中,G 是△ABC 的重心,A B .AC 的边长分别为2、1,∠BAC=60o .则AG BG =( )A .89-B .109- C .539- D .-539-【答案】A10.(山东省莱钢高中2013届高三4月模拟检测数学文试题 )定义域为[a,b]的函数()y f x =图像的两个端点为( )A .B,M(x ,y )是()f x 图象上任意一点,其中(1)[,]=+-∈x a b a b λλ,已知向量(1)ON OA OB λλ=+-,若不等式||MN k ≤恒成立,则称函数()[,]f x a b 在上“k 阶线性近似”.若函数1y x x=-在[1,2]上“k 阶线性近似”,则实数k 的取值范围为 ( ) A .[0,)+∞B .1[,)12+∞C .3[2,)2++∞D .3[2,)2-+∞[来源:学科网]二填空题 【答案】D11.(山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)如图,AB 是圆O的直径,P 是圆弧AB 上的点,,M N 是直径AB 上关于O 对称的两点,且6,4AB MN ==,则PM PN ⋅=( )A .13B .7C .5D .3【答案】C连结AP,BP.则,PM PA AM PN PB BN PB AM =+=+=-,所以2()()PM PN PA AM PB AM PA PB PA AM AM PB AM⋅=+⋅-=⋅-⋅+⋅-221615PA AM AM PB AM AM AB AM =-⋅+⋅-=⋅-=⨯-=.12.(山东省文登市2013届高三3月质量检测数学(文)试题)设,,,O A B M 为平面上四点,(1),(0,1)OM OA OB λλλ=+-∈,则 ( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .,,,O A B M 四点共线【答案】A [来源:学科网]13.(山东省日照市2013届高三第一次模拟考试数学(文)试题)如图,四边形ABCD 是正方形,延长CD 至E,使得DE=CD .若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,其中AP AB AE λμ=+,下列判断正确..的是( )A .满足2λμ+=的点P 必为BC 的中点B .满足1λμ+=的点P 有且只有一个C .λμ+的最大值为3D .λμ+的最小值不存在【答案】C 解析:答案C .由题意可知,0,0λμ≥≥,当0==μλ时,λμ+的最小值为0,此时P 点与A 点重合,故D 错误.当1,1λμ==时,P 点也可以在D 点处,故A 错误.当1,0λμ==,1λμ+=时,P 点在B 处,当P 点在线段AD 中点时12λμ==,亦有1λμ+=.所以B 错误. 14.(山东省凤城高中2013届高三4月模拟检测数学文试题 )设1212(,),(,),a a a b b b ==定义一种向量积12121122(,)(,)(,)a b a a b b a b a b ⊗=⊗=己知1(2,),(,0)23m n π==,点P(x,y)在y=sinx 的图象上运动,点Q 在y=f(x)的图象上运动,且满足OQ m OP n =⊗+(其中O 为坐标原点),则()y f x =的最大值为 ( )A .1B .3C .5D .12【答案】D15.(山东省济南市2013届高三3月高考模拟文科数学)若函数)102)(36sin(2)(<<-+=x x x f ππ的图象与x 轴交于点A,过点A 的直线l 与函数的图象交于 B .C 两点,则=⋅+OA OC OB )( ( )A .-32B .-16C .16D .32[来源:学科网]【答案】D 由()0f x =,解得4x =,即(4,0)A ,过点A 的直线l 与函数的图象交于 B .C 两点,根据对称性可知,A 是,B C 的中点,所以2OB OC OA +=,所以22()222432OB OC OA OA OA OA +⋅=⋅==⨯=,选D .16.(山东省青岛市2013届高三第一次模拟考试文科数学)若两个非零向量a ,b 满足||2||||a b a b a=-=+,则向量a b +与a 的夹角为( )A .6π B .3π C .32π D .65π 【答案】B 由a b a b +=-得,222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=.由2a b a +=,得22224a a b b a +⋅+=,即223b a =,所以3b a =,所以22()a b a a a b a +⋅=+⋅=,所以向量a b +与a 的夹角的余弦值为2()1cos 22a b a aa b aa aθ+⋅===+⋅⋅,所以3πθ=,选 B . [来源:]二、填空题17.(山东省莱钢高中2013届高三4月模拟检测数学文试题 )已知O 为锐角△ABC 的外心,10,6==AC AB 若AO =x AB +y AC ,且5102=+y x ,则BAC ∠cos 的值是________ 【答案】3118.(山东省泰安市2013届高三第二次模拟考试数学(文)试题 )设单位向量1212121,,22e e e e e e ⋅=-+=满足则____.【答案】319.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(文)试题)如上图,在△ABC中,AN=31NC ,P 是BN 上的一点,若AP =m AB +112AC ,则实数m 的值为___________. [来源:学科网](第14题N PCB【答案】11320.(山东省济南市2013届高三4月巩固性训练数学(文)试题(word 版))若向量)3,2(-=a ,),4(m b =, //a b ,则实数=m ________. 【答案】6-21.(山东省潍坊市2013届高三第二次模拟考试数学(文)试题)如图,在△ABC 中,O 为BC中点,若AB=I,3AC = ,60AB AC =,则OA =______________.【答案】132。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2013届高三高考模拟卷(四)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}04|{2=+=x x x A ,+++=x a x x B )1(2|{2}012=-a ,若B B A = ,则a 的值为A .2B .1C .2-D .1-2.定义运算bc ad d c b a -=,则符合条件02111=+-+ii i z 的复数z 是 A .i 5452- B .i 5452-- C .i 5452+- D .i 5452+ 3. “p 或q ”为真命题是“p 且q ”为真命题的 A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4. 定义某种运算b a S ⊗=,运算原理如图所示,则式子1)31()35cos 4(25sin )45tan 2(-⊗+⊗πππ的值为A .13B .11C .8D .45. 已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为6.已知圆C 的方程为012222=+-++y x y x ,当圆心C 到直线04=++y kx 的距离最大时,k 的值为A .51-B .51 C .5- D .5 7. 如果函数)0)(6sin()(>+=ωπωx x f 的两个相邻零点之间的距离为12π,则ω的值为 A .3 B .6 C .12 D .248.已知向量),1(m a =,),2(n b =,),3(t c =,且b a //,c b ⊥,则22||||c a +的最小值为A .4B .10C .16D .209.设b a <,函数)()(2b x a x y --=的图象可能是10.已知斜率为2的直线l 过抛物线ax y =2的焦点F ,且与y 轴相交于点A ,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为A .x y 42=B .x y 82=C .x y 42=或x y 42-=D .x y 82=或x y 82-=11. 在△ABC 中,已知4=-b a ,b c a 2=+,且最大角为︒120,则这个三角形的最大边等于A .4B .14C .4或14D .2412.定义在R 上的偶函数)(x f ,对任意))(,0[,2121x x x x =/+∞∈,有0)()(1212<--x x x f x f ,则A .)1()2()3(f f f <-<B .)3()2()1(f f f <-<C .)3()1()2(f f f <<-D .)2()1()3(-<<f f f第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置.13.如图,在一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此实验数据为依据,可以估计出该不规则图形的面积为________平方米.14.已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≥≤+-042042k y x y y x ,且目标函数y x z +=3的最小值为1-,则常数=k _______.15. 已知四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,且21=AA ,底面ABCD 的边长均大于2,且︒=∠45DAB ,点P 在底面ABCD 内运动,且在AB ,AD 上的射影分别为M ,N ,若|PA|=2,则三棱锥MN D P 1-体积的最大值为______.16.对大于或等于2的正整数的幂运算有如下分解方式:3122+= 53132++= 753142+++= …5323+= 119733++= 1917151343+++= …根据上述分解规律,若115312++++= m ,3p 的分解中最小的正整数是21,则=+p m ________.三、解答题:本大题共6个小题,共74分.解答应写文字说明、证明过程或演算步骤,把答案填写在答题纸的相应位置.17.(本小题满分12分)已知△ABC 的三个内角A 、B 、C 所对的边分别为c b a 、、,且21)cos(=+C A ,A c a sin 2=.(1)求cosC 的值;(2)当]2,0[π∈x 时,求函数x A x x f 2cos cos 42sin )(+=的最大值.18. (本小题满分12分)已知数列}{n a 满足:11=a ,11=-+n n a a ,*N n ∈.数列}{n b 的前n 项和为n S ,且2=+n n b S ,*N n ∈.(1)求数列}{n a ,}{n b 的通项公式;(2)令数列}{n c 满足n n n b a c ⋅=,求数列}{n c 的前n 项和n T .19.(本小题满分12分)为了了解某年级1 000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,被抽取学生的成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组)14,13[;第二组)15,14[:…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.(1)将频率当作概率,请估计该年级学生中百米成绩在)17,16[内的人数;(2)求调查中随机抽取了多少名学生的百米成绩;(3)若从第一、五组中随机取出两名学生的成绩,求这两名学生的成绩的差的绝对值大于1的概率.20.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ;(2)求三棱锥A-PBC 的体积.21. (本小题满分13分)已知椭圆C :22221(0)x y a b a b +=>>的离心率22=e ,左、右焦点分别为21F F 、,抛物线x y 242=的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆M :3222=+y x 的切线l 与椭圆相交于A 、B 两点,那么以AB 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由,22. (本小题满分13分)已知)(,2121x x x x =/是函数)0()(223>-+=a x a bx ax x f 的两个极值点.(1)若11-=x ,22=x ,求函数)(x f 的解析式;(2)若22||||21=+x x ,求实数b 的最大值;(3)设函数)()()(1x x a x f x g --'=,若21x x <,且a x =2,求函数)(x g 在),(21x x 内的最小值.(用a 表示)山东省2013届高三高考模拟卷(四)数学(文科)参考答案一、1.B 【解析】因为B B A = ,所以B A ⊆.又因为}4,0{-=A ,而B 中最多有两个元素,所以}4,0{-==A B ,所以1=a .选B .2.A 【解析】设bi a z +=.根据定义运算得++1)((bi a 0)1)(1()2=-+-i i i ,即2)2()2(=++-i b a b a ,根据复数相等的定义得⎩⎨⎧=+=-,02,22b a b a 得⎪⎪⎩⎪⎪⎨⎧-==,54,52b a 所以i z 5452-=. 3.C 【解析】若命题“p 或q ”为真命题,则q p ,中至少有一个为真命题;若命题“p 且q ”为真命题,则q p ,都为真命题.因此“p 或q 为真命题是“p 且q ”为真命题的必要不充分条件.故选C .4.A 【解析】原式+⨯++⨯=⊗+⊗=2(3)11(232121) =13.5.C 【解析】由于空间几何体的正视图和侧视图“高平齐”,故正视图的高一定是2,由于正视图和俯视图“长对正”,故正视图的底面边长为2,又根据侧视图可知这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综上可知,这个空间几何体的正视图可能是C .6.A 【解析】圆C 的方程可化为1)1()1(22=-++y x ,所以圆心C 的坐标为)1,1(-,又直线04=++y kx 恒过点)4,0(-A ,所以当圆心C 到直线04=++y kx 的距离最大时,直线CA 应垂直于直线04=++y kx ,因为直线CA 的斜率为5-,所以51=-k ,51-=k . 7.C 【解析】由正弦函数的性质可知,两个相邻零点之间的距离为周期的一半,即该函数的周期6122ππ=⨯=T ,故62πωπ==T ,解得12=ω.故选C .8.C 【解析】由b a //,c b ⊥,得c a ⊥,则031=+⨯mt ,即3-=mt ,故222291||||t m c a +++=+16||2101022=+≥++=mt t m ,当且仅当3||||==t m 时等号成立.9.C 【解析】由解析式可知,当b x >时,0>y ,由此可以排除A 、B 选项.又当b x ≤时,0≤y ,从而可以排除D .故选C .10.D 【解析】抛物线的焦点坐标是)0,4(a,直线l 的方程是-=x y (2)4a ,令0=x ,得2a y -=,故)2,0(a A -,所以△OAF 的面积为⨯2116|2||4|2a a a =-⨯,由题意,得4162=a ,解得8±=a .故抛物线方程是x y 82=或x y 82-=.故选D .11.B 【解析】因为4=-b a ,所以4-=a b ,所以b a >,又b c a 2=+,所以8-=a c ,所以a 大于c b 、,则︒=120A ,由余弦定理得A bc c b a cos 2222-+=⋅---+-=)4(2)8()4(22a a a )21()8(-⋅-a ,所以056182=+-a a ,所以14=a 或4=a (舍去).12.A 【解析】由已知条件可知,函数)(x f 在),0[+∞上单调递减,因此)3()2()1(f f f >>,又)(x f 为偶函数,则)2()2(-=f f ,从而)3()2()1(f f f >->.二、13.38【解析】设该不规则图形的面积为x 平方米,向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,所以根据几何概型的概率计算公式可知x 11000375=,解得38=x .14.9【解析】先根据约束条件画出变量y x ,满足的可行域如图中阴影部分所示.易知直线04=+-k y x 与2=y 的交点为)2,8(k A -,观察图形可知目标函数y x z +=3在点)2,8(k -处取得最小值1-,即12)8(3-=+-⨯k ,解得9=k .15.312-【解析】由条件可得,A 、M 、P 、N 四点在以PA 为直径的圆上,所以由正弦定理得245sin =︒MN ,所以2=MN 、在△PMN 中,由余弦定理可得≥︒⋅-+=135cos 2222PN PM PN PM MN PN PM ⋅+)22(,当且仅当PM= PN 时取等号,所以⋅PM 22222-=+≤PN ,所以底面△PMN 的面积⋅PM 2121222)2(21135sin -=⨯-⨯≤︒k PN ,当且仅当PM= PN 时取最大值,故三棱锥MN D P 1-的体积≤⋅∆131AA S PMN 312221231-=⨯-⨯. 16.11【解析】由3122+=,53132++=,753142+++=,…,可知)12(5312-++++=n n .由115312++++= m ,可知6=m ,易知292725232153++++=,则21是53的分解中最小的正整数,可得5=p .故11=+p m .三、17.【解析】(1)在△ABC 中,因为21)cos(=+C A ,所以3π=+C A .(2分) 又A c a sin 2=,c Cc A a 2sin sin ==, 所以21sin =C ,6π=C 或π65(舍),(4分) 所以23cos =C .(6分)(2)由(1)知23cos =A ,(7分) 所以32cos 32sin cos 322sin )(2++=+=x x x x x f++=)32sin(2πx 3,(10分) 又]2,0[π∈x ,所以32)(max +=x f .(12分)18.【解析】(1)由已知可知数列}{n a 为等差数列,且首项为1,公差为1.∴数列}{n a 的通项公式为n a n =.(2分)∵2=+n n b S ,∴211=+++n n b S ,∴211=+n n b b ,∴数列}{n b 为等比数列,(4分) 又211=+b S ,∴11=b ,∴数列}{n b 的通项公式为121-=n n b .(6分) (2)由已知得:121-⋅=n n n c . ∴12223221-++++=n n n T , ∴n n n n n T 22123222121132--++++=- ,(8分) ∴两式相减得n n n n T 221212121121132-+++++=- n n n 2211211---=n n n 2)211(2--=.(10分) ∴数列}{n c 的前n 项和112242)211(4--+-=--=n n n n n n T .(12分) 19.【解析】(1)百米成绩在)17,16[内的频率为32.0132.0=⨯,320100032.0=⨯. 所以估计该年级学生中百米成绩在)17,16[内的人数为320.(4分)(2)设图中从左到右的前3个组的频率分别为x x x 19,8,3.依题意,得1108.0132.01983=⨯+⨯+++x x x ,解得02.0=x .(6分)设调查中随机抽取了n 名学生的百米成绩,则n802.08=⨯,解得50=n , 故调查中随机抽取了50名学生的百米成绩.(8分) (3)百米成绩在第一组的学生人数为35002.03=⨯⨯,记他们的成绩为c b a ,,, 百米成绩在第五组的学生人数为450108.0=⨯⨯,记他们的成绩为q p n m ,,,, 则从第一、五组中随机取出两名学生的成绩包含的基本事件有:},{b a ,},{c a ,},{m a ,},{n a ,},{p a ,},{q a ,},{c b ,},{m b ,},{n b ,},{p b ,},{q b ,},{m c ,},{n c ,},{p c ,},{q c ,},{n m ,},{p m ,},{q m ,},{p n ,},{q n ,},{q p ,共21个,(10分) 其中满足成绩的差的绝对值大于1的基本事件有:},{m a ,,{a }n ,},{p a ,},{q a ,},{m b ,},{n b ,},{p b ,},{q b ,},{m c ,},{n c ,},{p c ,},{q c ,共12个, 所以所求概率742112==P .(12分) 20.【解析】(1)如图,取AB 的中点F ,连接DF ,EF .在直角梯形ABCD 中,CD ∥AB ,且AB=4,CD=2,所以CD BF //,所以四边形BCDF 为平行四边形,所以DF ∥BC .(2分)在△PAB 中,PA=EA ,AF=FB ,所以EF//PB .又因为DF EF=F ,PB BC=B ,所以平面DEF ∥平面PBC. (4分)因为DE ⊂平面DEF ,所以DE ∥平面PBC .(6分)(2)取AD 的中点O ,连接PO .在△PAD 中,PA=PD=AD=2,所以PO ⊥AD ,3=PO .(8分)又因为平面PAD ⊥平面ABCD ,平面PAD 平面ABCD=AD ,所以PO ⊥平面ABCD .直角梯形ABCD 中,CD//AB ,且AB=4,AD=2,AB ⊥AD , 所以4242121=⨯⨯=⨯⨯=∆AD AB S ABC ,(10分) 故三棱锥A-PBC 的体积⨯⨯==∆--ABC ABC P PBC A s V V 313343431=⨯⨯=PO .(12分)21.【解析】(1)因为椭圆C 的离心率22=e ,所以22=a c ,即c a 2=.(4分) 因为抛物线x y 242=的焦点)0,2(F 恰好是该椭圆的一个顶点, 所以2=a ,所以1=c ,1=b .所以椭圆C 的方程为1222=+y x .(6分) (2)(i)当直线l 的斜率不存在时.因为直线l 与圆M 相切,故其中的一条切线方程为36=x . 由⎪⎪⎩⎪⎪⎨⎧=+=,12,3622y x x 不妨设)36,36(A ,)36,36(-B , 则以AB 为直径的圆的方程为32)36(22=+-y x .(6分) (ii)当直线l 的斜率为零时.因为直线l 与圆M 相切,所以其中的一条切线方程为36-=y . 由⎪⎪⎩⎪⎪⎨⎧=+-=,12,3622y x y 不妨设)36,36(-A ,)36,36(--B , 则以AB 为直径的圆的方程为32)36(22=++y x . 显然以上两圆都经过点O(0,0).(8分)(iii)当直线l 的斜率存在且不为零时.设直线l 的方程为m kx y +=. 由⎪⎩⎪⎨⎧=++=,12,22y x m kx y 消去y ,得0224)12(222=-+++m kmx x k ,所以设),(11y x A ,),(22y x B ,则124221+-=+k kmx x ,12222221+-=k m x x . 所以))((2121m kx m kx y y ++=122)(222221212+-=+++=k k m m x x km x x k .所以2121y y x x OB OA +=⋅12223222+--=k k m .①(11分) 因为直线l 和圆M 相切,所以圆心到直线l 的距离361||2=+=k m d , 整理,得)1(3222k m +=, ② 将②代入①,得0=⋅,显然以AB 为直径的圆经过定点O(0,0) 综上可知,以AB 为直径的圆过定点(0,0).(13分) 22.【解析】)0(23)(22>-+='a a bx ax x f . (1)因为11-=x ,22=x 是函数)(x f 的两个极值点, 所以0)1(=-'f ,0)2(='f .(2分)所以0232=--a b a ,04122=-+a b a ,解得6=a ,9-=b .所以x x x x f 3696)(23--=.(4分)(2)因为)(,2121x x x x =/是函数)0()(223>-+=a x a bx ax x f 的两个极值点, 所以0)()(21='='x f x f ,所以21,x x 是方程)0(02322>=-+a a bx ax 的两根,因为32124a b +=∆,所以0>∆对一切0>a ,R b ∈恒成立,而a b x x 3221-=+,321ax x -=,又0>a ,所以021<x x , 所以||||||2121x x x x -=+=-+=212214)(x x x x a a b a a b 3494)3(4)32(222+=---,由22||||21=+x x ,得22349422=+a a b ,所以-=6(322a b )a . 因为02≥b ,所以0)6(32≥-a a ,即60≤<a .(6分) 令)6(3)(2a a a h -=,则a a a h 369)(2+-='.当40<<a 时,0)(>'a h ,所以)(a h 在(0,4)上是增函数; 当64<<a 时,0)(<'a h ,所以)(a h 在(4,6)上是减函数.所以当4=a 时,)(a h 有极大值为96,所以)(a h 在]6,0(上的最大值是96, 所以b 的最大值是64.(8分)(3)因为21,x x 是方程0)(='x f 的两根,且)0(23)(22>-+='a a bx ax x f , 所以321a x x -=,又a x =2,311-=x , 所以))((3)(21x x x x a x f --='))(31(3a x x a -+=,所以)()()(1x x a x f x g --'=+--+=x a a x x a ())(31(3)31)(31(3)31--+=a x x a ,其对称轴为2a x =,因为0>a ,所以),31(2a a -∈,即),(221x x a ∈,(11分)所以在),(21x x 内函数)(x g 的最小值==)2()(min a g x g )312)(312(3--+a a a a 221(32)3()=2312a a a a +=-+-.(13分)。