多元函数微积分学及应用习题课
微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分习题解答
习题 1—1 解答1.设xf (x, y ) xy,求yf(x ,y),f1(x,1),yf (xy,xy),f1(x, y)解xf (x ,y ) xy;yf1(x,1)y1xyyx; f (xy,xy)x2y ;2 f1(x, y)yxy2x2.设f (x, y ) ln x ln y ,证明:f (xy,uv ) f (x,u ) f (x,v ) f (y,u ) f (y,v)f (xy,uv ) ln(xy ) ln(uv ) (ln x ln y)(ln u ln v )ln x ln u ln x ln v ln y ln u ln y ln vf (x,u ) f (x,v ) f (y,u ) f (y,v)3.求下列函数的定义域,并画出定义域的图形:(1)f (x, y ) 1x 2 y 2 1;4x y(2)f (x, y ) ;ln(1x y )22 2x y z2 2 2(3)f (x, y ) 1;a b c2 2 2x y z(4)f (x, y, z ) .1x 2 y z2 2解(1)D {(x, y) x 1, y 1y1-1 O 1x-1(2)D (x, y) 0x y 1, y 4x2 2 y21-1 1O x-11(3)D x y z2 2 2(x, y ) 1a b c2 2 2zc-a-b O b yax(4)( , , ) 0, 0, 0, 1D x y z x y z x 2 y z2 2z1O y11x4.求下列各极限:1xy (1)limx0 x y2 2y 11 0= 1 0 1ln(x e y ln(1 e )) 0(2)lim ln 2 x 1 2 12 0x yy02 xy4 (2xy 4)(2 (3)lim limx xy xy0 0 (xy x 2xy4) 4)14y0 y0sin(xy) sin(xy)(4)lim lim x 2 x y2 x 2 xyy0 y05.证明下列极限不存在:x y (1)lim ;x 0 x yy0x y2 2 (2)limx 0 x y (xy )2 2 2y0(1)证明如果动点P(x, y) 沿y 2x 趋向(0,0)x y x 2x则lim lim 3;x 0 x 0x y x 2xy2x0如果动点P(x, y) 沿x 2y 趋向(0,0) ,则lim lim 3 3x y yy0 x y y0 yx 2 y02所以极限不存在。
最新多元微分习题课
多元微分习题课多元函数微积分复习课在实际生活中,会遇到依赖于两个或两个以上自变量的多元函数.本章在一元函数微积分的基础上介绍多元函数微积分.多元函数微积分和一元函数微积分有很多相似的问题,也有很多不同的问题,需要大家在学习中注意.一、内容提要1.二元函数(1)二元函数:设«Skip Record If...»是平面上的一个非空点集,如果有一个对应规律«Skip Record If...»,使每一个点«Skip Record If...»都对应于惟一确定的值«Skip Record If...»,则称«Skip Record If...»为«Skip Record If...»上的二元函数.记做«Skip Record If...»,其中«Skip Record If...»称为自变量,函数«Skip Record If...»也称为因变量,«Skip Record If...»称为该函数的定义域.自变量多于一个的函数统称为多元函数.(2)二元函数的几何意义:函数«Skip Record If...»的几何图形一般在空间直角坐标系中表示一张曲面,而其定义域«Skip Record If...»就是此曲面在«Skip Record If...»坐标面上的投影.2. 二元函数的极限与连续(1)二元函数的极限设函数«Skip Record If...»在点«Skip Record If...»的某个邻域内有定义(在点«Skip Record If...»处可以无定义),如果当点«Skip Record If...»以任意方式趋向于点«Skip Record If...»时,相应的函数值«Skip Record If...»无限接近于一个确定的常数«Skip Record If...»,则称当«Skip Record If...»«Skip Record If...»时,函数«Skip Record If...»以«Skip Record If...»为极限,记作«Skip Record If...»或«Skip Record If...»«Skip Record If...».(2)二元函数的连续性①在一点连续的两个等价的定义定义1 设有二元函数«Skip Record If...»,如果«Skip RecordIf...»=«Skip Record If...»,则称二元函数«Skip Record If...»在点«Skip Record If...»处连续.定义2 设«Skip Record If...»(称«Skip Record If...»为函数«Skip Record If...»的全增量),若«Skip Record If...»,则称二元函数«Skip Record If...»在点«Skip Record If...»处连续.②如果«Skip Record If...»在区域«Skip Record If...»内的每一点都连续,则称«Skip Record If...»在区域«Skip Record If...»上连续.③如果«Skip Record If...»在点«Skip Record If...»不连续,则称点«Skip Record If...»是二元函数«Skip Record If...»的不连续点或间断点.3.偏导数(1)二元函数«Skip Record If...»的两个偏导数定义如下:«Skip Record If...»«Skip Record If...»(2)偏导数的计算从偏导数的定义可以看出,求«Skip Record If...»的偏导数并不需要用新方法,因为这里只有一个自变量在变动,另一个自变量被看作是固定的,所以仍旧可用一元函数的微分法.求«Skip Record If...»时,只要把«Skip Record If...»暂时看作常量而对«Skip Record If...»求导数;求«Skip Record If...»时,只要把«Skip Record If...»暂时看作常量而对«Skip Record If...»求导数.4.高阶偏导数(1)«Skip Record If...»的四个二阶偏导数如下:«Skip Record If...» , «Skip Record If...»,«Skip Record If...» , «Skip Record If...».二阶以及二阶以上的偏导数统称为高阶偏导数.(2)混合偏导数与次序无关的定理如果函数«Skip Record If...»的两个混合偏导数在点«Skip Record If...»连续,则在点«Skip Record If...»处,有«Skip Record If...».5.全微分(1)定义«Skip Record If...».(2)全微分在近似计算中的应用«Skip Record If...».«Skip Record If...».6.复合函数的偏导数设函数«Skip Record If...»«Skip Record If...»在点«Skip Record If...»处有偏导数,函数«Skip Record If...»在相应点«Skip Record If...»处有连续偏导数,则复合函数«Skip Record If...»在点«Skip Record If...»处有偏导数,且«Skip Record If...»,«Skip Record If...» .7.隐函数的偏导数设方程«Skip Record If...»确定了«Skip Record If...»是«Skip Record If...»的函数«Skip Record If...»,且«Skip Record If...»«Skip Record If...»,«Skip Record If...»连续及«Skip Record If...»,则«Skip Record If...» , «Skip Record If...» , 一般地,求由方程确定的隐函数的偏导数,对方程两边同时求偏导更为方便.8. 二元函数的极值与驻点(1)极值存在的必要条件设函数«Skip Record If...»在点«Skip Record If...»的某个邻域内有定义,且存在一阶偏导数,如果«Skip Record If...»是极值点,则必有«Skip Record If...».即可导函数的极值点必定为驻点,但是函数«Skip Record If...»的驻点却不一定是极值点.(2)极值存在的充分条件设函数«Skip Record If...»在点«Skip Record If...»的某个邻域内具有二阶连续偏导数,且«Skip Record If...»是驻点.设«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,则①当«Skip Record If...»时,点«Skip Record If...»是极值点,且当«Skip Record If...»时,点«Skip Record If...»是极大值点;当«Skip Record If...»时,点«Skip Record If...»是极小值点;②当«Skip Record If...»时,点«Skip Record If...»不是极值点;③当«Skip Record If...»时,点«Skip Record If...»有可能是极值点也可能不是极值点.(3)条件极值与拉格朗日乘数法求函数«Skip Record If...»在满足约束条件«Skip Record If...»下的条件极值,其常用方法是拉格朗日乘数法,具体步骤如下:①构造拉格朗日函数«Skip Record If...»,其中«Skip Record If...»为待定常数,称其为拉格朗日乘数.②求四元函数«Skip Record If...»的驻点,即列方程组«Skip Record If...»求出上述方程组的解«Skip Record If...»,那么驻点«Skip Record If...»有可能是极值点;③判别求出的点«Skip Record If...»是否是极值点,通常由实际问题的实际意义来确定.对于多于三个自变量的函数或多于一个约束条件的情形也有类似的结果.9.二重积分(1)定义设二元函数«Skip Record If...»是定义在有界闭区域«Skip Record If...»上的连续有界函数,如果极限«Skip Record If...»存在,且该极限的值与区域«Skip Record If...»的分割方法和«Skip Record If...»的选取无关,则称此极限为函数«Skip Record If...»在闭区域«Skip Record If...»上的二重积分,记为«Skip Record If...»,即«Skip Record If...».(2)几何意义«Skip Record If...»表示曲面«Skip Record If...»在区域«Skip Record If...»上所对应的曲顶柱体各部分体积的代数和.(3)二重积分的性质线性:设«Skip Record If...»为常数,则有«Skip Record If...».可加性:设积分区域«Skip Record If...»可分割成为«Skip Record If...»、«Skip Record If...»两部分,则有«Skip Record If...».积分的比较性质:若«Skip Record If...»,其中«Skip Record If...»,则«Skip Record If...».积分的估值性质:设«Skip Record If...»,其中«Skip Record If...»,而«Skip Record If...»为常数,则«Skip Record If...»(其中«Skip Record If...»表示区域«Skip RecordIf...»的面积).积分中值定理:若«Skip Record If...»在有界闭区域«Skip Record If...»上连续,则在«Skip Record If...»上至少存在一点«Skip Record If...»,使得«Skip Record If...».10. 二重积分的计算(1)二重积分在直角坐标系下的计算直角坐标系下的面积元素«Skip Record If...».①若«Skip Record If...»为:«Skip Record If...»,«Skip Record If...»,则«Skip Record If...».②若«Skip Record If...»: «Skip Record If...»,«Skip Record If...»,则«Skip Record If...».(2)二重积分在极坐标系下的计算极坐标系下的面积元素«Skip Record If...»,极坐标与直角坐标的关系«Skip Record If...»①设区域«Skip Record If...»为:«Skip Record If...»≤«Skip Record If...»≤«Skip Record If...»,«Skip Record If...»≤«Skip RecordIf...»≤«Skip Record If...»,则«Skip Record If...».②设区域«Skip Record If...»为:0≤«Skip Record If...»≤«Skip Record If...»«Skip Record If...»≤«Skip Record If...»≤«Skip Record If...»,则«Skip Record If...».③设区域«Skip Record If...»为:0≤«Skip Record If...»≤«Skip Record If...»0≤«Skip Record If...»≤2«Skip Record If...»所确定,从而得«Skip Record If...».11. 二重积分的应用二重积分在几何学中可用于求空间中立体的体积,在物理学中可用于求平面薄片的质量、重心、转动惯量等.二、解题指导1.二元函数定义域例1求下列函数的定义域并画出定义域的图形.(1)«Skip Record If...»;(2)«Skip Record If...».解(1)要使函数有意义,需满足条件«Skip Record If...»即 «Skip Record If...».因此定义域为«Skip Record If...»与«Skip Record If...»围成的部分,包括曲线«Skip Record If...»(图1) .图1 图2(2)要使函数有意义,需满足条件«Skip Record If...» 即 «Skip Record If...»定义域如图2所示.小结 多元函数的定义域的求法与一元函数的定义域的求法完全相同.即先考虑三种情况:分母不为零;偶次根式的被开方式不小于零;要使对数函数,某些三角函数与反三角函数有意义.再建立不等式组,求出其公共部分就是多元函数的定义域.如果多元函数是几个函数的代数和或几个函数的乘积,其定义域就是这些函数定义域的公共部分.2.多元函数的偏导数例2 设«Skip Record If...» ,求«Skip Record If...».解法一 求函数在一点处的偏导数是指函数的偏导函数在一点处的值.可先将«Skip Record If...»看作常数,对«Skip Record If...»求偏导数«SkipRecord If...»,然后代入«Skip Record If...»,从而«Skip Record If...». «Sk解法二先将二元函数转化为一元函数,再对«Skip Record If...»求导数,由于«Skip Record If...»,则«Skip Record If...»,从而«Skip Record If...».说明以上两种解法中解法一较为常用,解法二较简单.例3 设«Skip Record If...»,求 «Skip Record If...»,«Skip Record If...».解法一令«Skip Record If...»,«Skip Record If...»,原式可写成«Skip Record If...»,由复合函数求导法则,得«Skip Record If...»,即«Skip Record If...»=«Skip Record If...»,«Skip Record If...»=«Skip Record If...»=«Skip Record If...».解法二利用一元函数求导法则求偏导,可直接求出两个偏导数«Skip Record If...»,«Skip Record If...».即«Skip Record If...»= «Skip Record If...»,«Skip Record If...»=«Skip Record If...».例4设«Skip Record If...»,求«Skip Record If...»,«Skip Record If...».解此题为抽象函数,所以只能用多元函数求导法则.令 «Skip Record If...» , «Skip Record If...» , 则«Skip Record If...»,于是«Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...»+«Skip Record If...»[«Skip Record If...»]=«Skip Record If...»+«Skip Record If...»[«Skip Record If...»] =«Skip Record If...»+«Skip Record If...»(«Skip Record If...»),«Skip Record If...»=«Skip Record If...»=«Skip Record If...»[«Skip Record If...»]=«Skip Record If...»[«Skip Record If...»]=«Skip Record If...»(«Skip Record If...»).小结求二元复合函数偏导数,对于函数关系具体给出时,一般将一个变量看成常量,可直接对另一个变量求偏导,但求带有抽象函数符号的复合函数偏导数时,必须使用复合函数的求导公式.其关键在于正确识别复合函数的中间变量与自变量的关系.3.隐函数的偏导数例5设 «Skip Record If...»,求«Skip Record If...»,«Skip Record If...».解法一用公式法,设«Skip Record If...»=«Skip Record If...»,则 «Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...»;«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...».解法二方程两端求导,由于方程有三个变量,故只有两个变量是独立的,所以求«Skip Record If...»,«Skip Record If...»时,将«Skip Record If...»看作«Skip Record If...»,«Skip Record If...»的函数.方程两端对«Skip Record If...»求偏导数,得«Skip Record If...»即 «Skip Record If...»=«Skip Record If...»;方程两端对«Skip Record If...»求偏导数,得«Skip Record If...»即 «Skip Record If...»=«Skip Record If...».解法三利用全微分求«Skip Record If...»,«Skip Record If...».方程两边求全微分,利用微分形式不变性,则«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»=«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»,因此 «Skip Record If...»=«Skip Record If...»,«Skip Record If...»=«Skip Record If...».小结用公式法求隐函数的偏导数时,将«Skip Record If...»看成是三个自变量«Skip Record If...»,«Skip Record If...»,«Skip Record If...»的函数,即«Skip Record If...»,«Skip Record If...»,«Skip Record If...»处于同等地位.方程两边对«Skip Record If...»求偏导数时,«Skip Record If...»,«Skip Record If...»是自变量,«Skip Record If...»是«Skip Record If...»,«Skip Record If...»的函数,它们的地位是不同的.4.函数的极值与最值例 6求函数«Skip Record If...»的极值.分析求函数极值问题可以用列表的方法,比较清晰,一目了然.解(1)求偏导数«Skip Record If...»,«Skip Record If...»«Skip Record If...»,«Skip Record If...»,«Skip Record If...»;(2)解方程组«Skip Record If...» , 得驻点(0,0)及(2,2);(3)列表判定极值点例7某公司要用不锈钢板做成一个体积为8«Skip Record If...»的有盖长方体水箱.问水箱的长、宽、高如何设计,才能使用料最省?解法一用条件极值求问题的解.设长方体的长,宽,高分别为«Skip Record If...»,«Skip Record If...»,«Skip Record If...».依题意,有«Skip Record If...», «Skip Record If...»令 «Skip Record If...»=«Skip Record If...»+«Skip Record If...»,由 «Skip Record If...»解得驻点(«Skip Record If...»).根据实际问题,最小值一定存在,且驻点惟一.因此,当水箱的长、宽、高分别为2«Skip Record If...»时,才能使用料最省.解法二将条件极值转化为无条件极值.设长方体的长,宽,高分别为«Skip Record If...»,«Skip Record If...»,«Skip Record If...».依题意,有«Skip Record If...», «Skip Record If...»消去«Skip Record If...»,得面积函数 «Skip Record If...», «Skip Record If...»,«Skip Record If...»,«Skip Record If...».由 «Skip Record If...»得驻点(«Skip Record If...»),根据实际问题,最小值一定存在,且驻点惟一.因此,(«Skip Record If...»)为«Skip Record If...»的最小值点,即当水箱的长、宽、高分别为2«Skip Record If...»时,才能使用料最省.小结 求条件极值时,可以化为无条件极值去解决,或用拉格朗日乘数法.条件极值一般都是解决某些最大、最小值问题.在实际问题中,往往根据问题本身就可以判定最大(最小)值是否存在,并不需要比较复杂的条件(充分条件)去判断.5.二重积分例8 计算 «Skip Record If...» 其中«Skip Record If...»由直线«Skip Record If...»,«Skip Record If...»和曲线«Skip Record If...»所围成.解 画出区域«Skip Record If...»的图形如图3所示,求出边界曲线的交点坐标A («Skip Record If...»,2), B (1,1), C (2,2),视区域«Skip Record If...»为«Skip Record If...»型区域:«Skip Record If...»于是«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...» =«Skip Record If...» . 分析:若视区域«Skip Record If...»为«Skip Record If...»型区域,此时就必须用直线«Skip Record If...»将«Skip Record If...»分«Skip Record If...»和«Skip Record If...»两部分(图4).其中«Skip Record If...»«Skip Record If...» «Skip Record If...»«Skip Record If...»由此得«Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...»+«Skip Record If...» =«Skip Record If...»+«Skip Record If...» =«Skip Record If...».显然,先对«Skip Record If...»积分后对«Skip Record If...»积分要麻烦得多,所以恰当地选择积分次序是化二重积分为二次积分的关键步骤.例9 已知 «Skip Record If...»=«Skip Record If...»+«Skip Record If...» 改变积分次序. 解 积分区域«Skip Record If...»,其中«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...» 画出积分区域«Skip Record If...»的图形(图5),改变为先对«Skip Record If...»积分后对«Skip Record If...»积分, 此时 «Skip Record If...»«Skip Record If...» 因此«Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...» . 例10 计算二重积分«Skip Record If...»,其中区域«Skip Record If...»«Skip Record If...».解 该积分区域为环形(图6),利用极坐标,区域的边界曲线是 «Skip Record If...» 与 «因此«Skip Record If...».例11 求球体«Skip Record If...»被圆柱面«Record If...»所截得的立体的体积(图7).解 由对称性,所截的部分是以«Skip Record If...»为底的曲顶柱体体积的4倍,而曲顶柱体顶面的方程是 «Skip Record If...».2x 图5因此«Skip Record If...»,利用极坐标,便得«Skip Record If...»«Skip Record If...»«Skip Record If...».小结在计算二重积分时,当积分区域为圆形区域、圆环区域或扇形区域时,选择用极坐标为好,其他情况用直角坐标为宜.。
多元函数微积分学
3、 f ( x, y) f ( x, y) y x
x
y
4、 f ( x, y) 1, f ( x, y) 2 y.
x
y
二、隐函数的求导法则(重点)
(1) F( x, y) 0
隐函数存在定理 1 设函数F ( x, y)在点 P( x0 , y0 )的 某一邻域内具有连续的偏导数,且F( x0 , y0 ) 0, Fy ( x0 , y0 ) 0,则方程F ( x, y) 0在点 P( x0 , y0 )的
y
x y
3. 设 f ( x y, x y) x2 y2 , 求 f ( x, y) f ( x, y) .
x
y
4.设 f ( xy, x y) x2 y2 xy, 求 f ( x, y) , f ( x, y)
x
y
练习四答案
1、 dz esin xcos x (cos2 x sin2 x); dx
z 2ex2y y 2z 2ex2y x y
2z 2 e x2 y y x
2 z y2
4e x2 y
二、全微分概念
如果函数z f ( x, y)在点( x, y)的全增量 z f ( x x, y y) f ( x, y)可以表示为
z
uv tt
定理 2 如果u ( x, y)及v ( x, y)都在点
( x, y)具有对 x和 y 的偏导数,且函数z f (u,v)
在对应点(u, v )具有连续偏导数,则复合函数
z f [ ( x, y), ( x, y)]在对应点( x, y)的两个偏
导数存在,且可用下列公式计算
专升本第七课(多元积分学2)
x
故二重积分可写为
∫∫ f ( x, y)dσ =∫∫ f ( x, y)dxdy D D
高等数学 极坐标系下二重积分的计算 2. 在极坐标系下用同心圆来划分区域 , 在极坐标系下用同心圆来划分区域D, 面积微元: 面积微元 1 1 2 2 ∆σ i = ( ri + ∆ri ) ⋅ ∆θ i − ri ⋅ ∆θ i 2 2
1.根据积分区域类型选择坐标系 根据积分区域类型选择坐标系
计 ∫∫ xdxdy 其 D为 算 , 中
x2 + y2 =1, y = x,以及x轴所围成的第一象限部分。
2.根据积分区域类型选择积分次序 根据积分区域类型选择积分次序
D
计 ∫∫ xydxdy, 其 R是 抛 线 2 = x及 算 中 由 物 y
围成的第一象限内的区域。 x 2 + y 2 = 2 y及x = 0 围成的第一象限内的区域。 解
∫∫
D
x 2 + y 2 dxdy
π
2 0 2 sin θ 0
= ∫ dθ ∫
π
2 0
r 2 dr
o
r
8 3 = ∫ sin θdθ 3 π 8 1 3 = ( cos θ − cos θ ) 02 3 3
a
a2 π rdr = ( 3 − ). 2 3
)
2.计算二重积分 计算二重积分
其中D: ∫∫ ydxdy 其中 :x
D
2
+ y 2 = 2ax 与x轴所围成的上半圆。 轴所围成的上半圆。 轴所围成的上半圆
(答案: 答案:
∫
π
2 0
dθ ∫
2acosθ
0
2 3 r sin θdr =L= a 3
专升本(高数—)第五章多元函数微积分学PPT课件
第七节 二重积分的应用
*
2
考试点津:
• 本讲出题在18分—26分之间,本讲内容是 一元函数微分内容的延伸,一般在选择题、 填空题、解答题中出现。
• 本讲重点:
(1)二元函数的偏导数和全微分。
(2)二元函数的有关极值问题及应用。 (3)会计算二重积分
• 建议重点复习前几年考过的试题,把握考 试重心和知识点,重在模仿解题。
成人高考高数一辅导
•
College of Agriculture & Biological Engineering
*
1
第五章 多元函数微积分学 (11年考了22分)
第一节 多元函数、极限和连续 第二节 偏导数与全微分 第三节 二元函数的极值 第四节 二重积分的概念和性质 第五节 直角坐标系下二重积分的计算 第六节 极坐标系下二重积分的计算
可 以 证 明 ,一 元 函 数 关 于 极 限 的 运 算 法 则 仍 适 用 于 多 元 函 数 ,即 多 元 连 续 函 数 的 和 、差 、积 为 连 续 函 数 ,在 分 母 不 为 零 处 ,连 续 函 数 的 商 也 是 连 续 函 数 ,多 元 函 数 的 复 合 函 数 也 是 连 续 函 数 .由 此 还 可 得 出 如 下 结 论 : 一 切 多 元 初等函数在其定义区域内是连续的.
(4)最大值和最小值定理
在有界闭区域D上的多元连续函数,在D上至少取得它的最大 值和最小值各一次.
(5)介值定理
在有界闭区域D上的多元连续函数,如果在D上取得两个不同的
函数值,则它在D上取得介于这两值之间的任何值至少一次.分
(一) 偏导数
1. 偏导数的定义
定义 设函数 z f (x, y)在点(x0, y0 )的某一邻域内有 定义,当 y固定在 y0,而 x在 x0处有增量x时,相应地函 数有增量 f (x0 x, y0 ) f (x0, y0 ),如果极限
微积分第2版-朱文莉第7章 多元函数微分学习题祥解
习题7.1(A)1、求点(2,1,3)A -关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。
解 (1)(2,1,3)--,(2,1,3)--, (2,1,3);(2)x 轴:(2,1,3)-,y 轴:(2,1,3)---,z 轴:(2,1,3)-; (3) (2,1,3)--。
2、在空间直角坐标系中,指出下列各点在哪个卦限?(4,3,5)A -,(2,3,4)B -,(2,3,4)C --,(2,3,1)D --并求点(4,3,5)A -分别到(1)坐标原点;(2)各坐标轴;(3)各坐标面的距离。
解 A 点在第4卦限; B 点在第5卦限;C 点在第8卦限;D 点在第3卦限。
(1) A =(4,3,5)-(2) A 到x =A 到y =A 到z 5=;(3) A 到坐标面xy 5=;A 到坐标面yz 4=;A 到坐标面xz 3=。
3、在z 轴上求一点M ,使该点与点(4,1,7)A 和(3,5,2)B 的距离相等。
解 因为所求点在z 轴上, 所以设该点为(0,0,)M z , 由题意有MA MB , 即222222(4)1(7)35(2)z z两边平方, 解得149z, 于是所求点为14(0,0,)9M . 4、写出球心在点(1,3,2)--处,且通过点(1,1,1)-的球面方程。
解 由2222000()()()xx yy zz R ,得2222(1())(113())(12)R则3R ,从而球面方程为2222(1)(3)(2)3x yz5、下列各题中方程组各表示什么曲线?(1)2248,8;x y z z(2)2225,3;x y z x(3)2224936,1;x y z y (4)2244,2.x y z y解 (1) 双曲线;(2) 圆;(3) 椭圆;(4) 抛物线。
6、描绘下列各组曲面在第一卦限内所围成的立体的图形。
(1) 0,0,0,1x y z x y z ===++=;(2) 2222220,0,0,,x y z x y R y z R ===+=+=。
第八章多元函数微分学(8.3-8.5)
微积分教案§8.3 全微分教学目的与要求:理解全微分的概念,了解全微分存在的必要条件和充分条件。
掌握全微分的计算。
教学重点(难点):弄清多元函数连续、可微、偏导存在的关系。
一、全微分的定义定义1 如果函数),(y x f z =在点),(y x 的某邻域内有定义,并设),(y y x x P ∆+∆+'为这邻域内的任意一点,则称这两点的函数值之差),(),(y x f y y x x f -∆+∆+ 为函数在点P 对应于自变量增量y x ∆∆,的全增量,记为z ∆,即z ∆=),(),(y x f y y x x f -∆+∆+定义2 如果函数),(y x f z =在点),(y x 的全增量),(),(y x f y y x x f z -∆+∆+=∆可以表示为)(ρo y B x A z +∆+∆=∆,其中B A ,不依赖于y x ∆∆,而仅与y x ,有关,22)()(y x ∆+∆=ρ,则称函数),(y x f z =在点),(y x 可微分,y B x A ∆+∆称为函数),(y x f z =在点),(y x 的全微分,记为dz ,即 dz =y B x A ∆+∆.函数若在某区域D 内各点处处可微分,则称这函数在D 内可微分. 定理 如果函数),(y x f z =在点),(y x 可微分, 则函数在该点连续. 因为 ),(ρo y B x A z +∆+∆=∆ ),(ρo y B x A z +∆+∆=∆),(lim 00y y x x f y x ∆+∆+→∆→∆ ]),([lim 0z y x f ∆+=→ρ ),(y x f =故函数),(y x f z =在点),(y x 处连续.定理(可微的必要条件) 如果函数),(y x f z =在点),(y x 可微分,则该函数在点),(y x 的偏导数x z ∂∂、yz∂∂必存在,且函数),(y x f z =在点),(y x 的全微分为 y yzx x z dz ∆∂∂+∆∂∂=. 一元函数在某点的导数存在则微分存在;若多元函数的各偏导数存在,全微分一定存在吗?.0),(222222⎪⎩⎪⎨⎧=+≠++=y x y x y x xy y x f 在点)0,0(处有0)0,0()0,0(==y x f f ;])0,0()0,0([y f x f z y x ∆⋅+∆⋅-∆ ,)()(22y x y x ∆+∆∆⋅∆=如果考虑点),(y x P ∆∆'沿着直线x y =趋近于)0,0(,则ρ22)()(y x yx ∆+∆∆⋅∆ 22)()(x x xx ∆+∆∆⋅∆=,21= 说明它不能随着0→ρ而趋于0,故函数在点)0,0(处不可微.说明:多元函数的各偏导数存在并不能保证全微分存在, 定理2(可微的充分条件) 如果函数),(y x f z =的偏导数x z ∂∂、yz∂∂在点),(y x 连续,则该函数在点),(y x 可微分.习惯上,记全微分为.dy yzdx x z dz ∂∂+∂∂=例1 计算函数xye z =在点)1,2(处的全微分. 解:,xy ye x z =∂∂ ,xy xe y z =∂∂ ,2)1,2(e x z=∂∂,22)1,2(e y z =∂∂ 所求全微分 .222dy e dx e dz +=例2 求函数)2cos(y x y z -=,当4π=x ,π=y ,4π=dx ,π=dy 时的全微分. 解:),2sin(y x y x z --=∂∂ ),2sin(2)2cos(y x y y x yz -+-=∂∂ dy y z dx x z dz ),4(),4(),4(ππππππ∂∂+∂∂=).74(82ππ-= 例3 计算函数yz e yx u ++=2sin的全微分. 解:,1=∂∂x u ,2cos 21yz ze y y u +=∂∂ ,yz ye z u =∂∂ 所求全微分 .)2cos21(dz ye dy ze ydx du yz yz +++=例4 试证函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在点)0,0(连续且偏导数存在,但偏导数在点)0,0(不连续,而f 在点)0,0(可微.思路:按有关定义讨论;对于偏导数需分)0,0(),(≠y x ,)0,0(),(=y x 讨论. 多元函数连续、可导、可微的关系(与一元函数有很大不同):一元函数)(x f 在0x 处二元函数),(y x f 在),(y x 处其中“→”表示可推出,“→”表示不能推出。
微积分第七章-多元函数微分学习题
总结词
理解偏导数与全微分的关系,掌握二者之间 的转换方法。
详细描述
偏导数是全微分的线性近似,即当 自变量改变量Δx、Δy等趋于0时, 全微分等于偏导数乘以自变量改变 量。因此,在求函数在某一点的切 线斜率时,可以使用偏导数;而在 计算函数在某一点的微小改变量时, 则使用全微分。
03
习题三:方向导数与梯度
THANKS
感谢观看
Delta y]
计算多元函数的梯度
总结词
梯度是多元函数在某点处的方向导数的最大值,表示函数在该点处沿梯度方向变 化最快。
详细描述
梯度的计算公式为:[nabla f(x_0, y_0) = left( frac{partial f}{partial x}(x_0, y_0), frac{partial f}{partial y}(x_0, y_0) right)]梯度向量的长度即为函数在该点 的变化率。
讨论多元函数极值的性质
要点一
总结词
极值的性质包括局部最大值和最小值、鞍点的存在以及多 变量函数的极值与一元函数的极值之间的关系。
要点二
详细描述
在多元函数中,极值具有局部性,即在一个小的区域内, 一个函数可能达到其最大值或最小值。鞍点是函数值在某 方向上增加而在另一方向上减少的点。此外,多变量函数 的极值与一元函数的极值之间存在一些关系,例如,在一 元函数中,可微函数在区间上的最大值和最小值必然在驻 点处取得,但在多元函数中,这一性质不再成立。
利用二阶条件求多元函数的极值
总结词
二阶条件是进一步确定极值点的工具,通过判断二阶偏导数的符号,我们可以确定是否为极值点。
详细描述
在得到临界点后,我们需要进一步判断这些点是否为极值点。这需要检查二阶偏导数的符号。如果所 有二阶偏导数在临界点处都为正,则该点为极小值点;如果所有二阶偏导数在临界点处都为负,则该 点为极大值点;如果既有正又有负,则该点不是极值点。
(前5节)复习第9章多元函数微分法及其应用(1)共73页
确定二重极限不存在的方法:
( 1 )令 P ( x ,y ) 沿 y k 趋 向 x 于 P 0 ( x 0 ,y 0 ) ,若 极 限 值
与 k 有 关 , 则 可 断 言 极 限 不 存 在 ; limf(x,y)xy ykx yx2x
x 0
xy
y 0
(2)找 两 种 不 同 趋 近 方 式 , 使 lim f(x,y)存 在 , (x,y)(x0,y0)
但 两 者 不 相 等 , 此 时 也 可 断 言 f(x,y)在 点 P0(x0,y0)处
极 限 不 存 在 .
21
例5
考察
f
( x,
y)
xy x2 y2
当 ( x,
y) (0,0) 时的极限.
解
沿
x
轴考察,
lim
(x,y)(0,0)
f(x,
y)0,
y0
沿 y 轴考察, lim f(x, y)0,
去 心 邻 域 内 有 定 义 ,如 果 存 在 常 数 A, 对 0,0,
只 要 0 (xx0)2(yy0)2,恒 有 f(x,y)A,
则 称 函 数 z f(x ,y )当 (x ,y ) (x 0 ,y 0 )时 以 A 为 极
限 , 记 为
limf(x,y)A.
导 数 , 为
lim f(x0,y0 y)f(x0,y0)
y 0
y
z
记为
,或
y x x0
y y0
z y x x 0 . y y0
z z 偏导函数: , ,
x y
或
zx ,zy .
说明: 1.偏导数实质上仍然是一元函数的微分问题.
多元函数微分学(1)
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
9
二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
10
题型 1 求二元函数的极限
解题思路 (1) 利用多元初等函数的连续性求二元
函数的极限 (如例 1); 如例 (2) 利用变量替换将求二元函数极限的问题转化为 求一元函数极限的问题 (如例 2); 如例 (3) 利用夹逼定理求二元函数的极限 (如例 3); 如例 (4) 判定二元函数的极限不存在 (如例 4). 如例
多元函数微分学
21
例 5 设 z = z(x, y) 是由方程 x2 + y2 − z = ϕ( x + y + z) 所确定的函数, 所确定的函数 其中 ϕ 具有二阶导数且 ϕ′ ≠ −1 , (1) 求 dz ;
∂u 1 ∂z ∂z ( − ), 求 (2) 记 u( x, y) = . ∂x x − y ∂x ∂y
第八章
多元函数微分学
1
多元函数微分学】 【多元函数微分学】习题课 一、主要内容 二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
2
一、主要内容
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
3
1、区域 、 (1) 邻域
U ( P0 , δ ) = { P | PP0 | < δ }
= {( x , y ) | ( x − x0 ) 2 + ( y − y0 ) 2 < δ }.
F ( x , y , u, v ) = 0 (1)F ( x , y ) = 0; (2)F ( x , y , z ) = 0; (3) . G ( x , y , u, v ) = 0
《微积分(下)》第2章多元函数微分学练习题--参考答案
第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1)()11(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin;x y x y x y →∞∞++(3) ()(,)0,1sin lim;x y xyx →(4)((,)0,0limx y →解: (1) 当1(,)2,2x y ⎛⎫→- ⎪⎝⎭时,10xy +→,因此()[]1112(1)11(,)2,(,)2,22lim2lim1(1)e yxy y xy x y x y xy xy -++⎛⎫⎛⎫→-→- ⎪⎪⎝⎭⎝⎭⎧⎫+=++=⎨⎬⎩⎭。
(2) 当()(,),x y →-∞+∞时,2230x y →+,因此222233sin ~x y x y++, ()()()()22222222(,),(,),33limsinlim 3x y x y x y x y x y x y →∞∞→∞∞+=+⋅=++。
(3) 当()(,)0,1x y →时,0xy →,因此sin ~xy xy ,()()(,)0,1(,)0,1sin limlim 1x y x y xy xyx x →→==。
(4) 当()(,)0,0x y →10,0xy →→,因此,(())())(,)0,0(,)0,0(,)0,01limlimlim12x y x y x y xy xy→→→===。
2.证明:当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。
证明: 取2(0)y kx k =≠,则()()()()()()()444484433334444444(,)0,0(,)0,0(,)0,0limlimlim11x y x y x y x y k x x k k xyxk xk k →→→===++++显然此极限值与k 的取值相关,因此当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。
多元函数微积分(课件)
zx f (x0 x, y0 ) f (x0, y0 ) ,
如果极限
lim f (x0 x, y0 ) f (x0, y0 )
x0
x
存在,则称此极限为函数 z f (x, y) 在点 (x0, y0) 处对 x 的偏导数,记为
z
x (x0 , y0 ) 或 f x (x0 , y0 ) 。
求函数的二阶偏导数,并验证
2z x2
2z y2
0。
解 MATLAB求解代码如下:
程序运行结果为:
>>syms x y >>z = log(sqrt(x^2+y^2)) >>dz_dx2 = diff(diff(z,x),x) >>dz_dy2 = diff(diff(z,y),y) >>dz_dxdy = diff(diff(z,x),y) >>dz_dydx = diff(diff(z,y),x) >>a = simplify(dz_dx2+dz_dy2)
MATLAB求解代码如下:
z xy ln x 。 y
>>syms x y >>f = x^y; >>dfx = diff(f,x) >>dfy = diff(f,y)
17
第、 二节 偏导数与全微分
、
3.高阶偏导数
对于二元函数 z f (x, y) 来说,如果它的一阶偏导数 fx (x, y) 、 f y (x, y) 仍是关于每个自变 量的函数,并且一阶偏导数对每个自变量的偏导数存在,则称这个二元函数具有二阶偏导数。
12
目录
1
多元函数的概念、极限与连续性
高等数学(7)多元函数微分学 - 修正版.
仅考虑二维的情况,二维点可以从平面的任何方向 趋近于定点,对应于这些不同的趋近路线,函数取值 的变化可能千差万别。而在一维情况下,函数自变量 只有两个方向趋近于定点,易于观察和验证。
下面是可以按常规算法求极限的几道例题。
【例6-6】求 lim
xy .
( x, y)(0,0) 1 xy 1
【例6-7】求 lim sin( xy) .
第六章 多元函数微分学及其应用
假设已经搞懂了一元函数的微 分(包括极限、连续和导数概念) 理论,那么这一章的主要任务就 是弄清多元函数微分与一元函数 微分的联系与区别。
其中,从直线到平面的推广或 拓展,是最值得注意的。特别是 与极限概念相关的部分。
6.1多元函数的基本概念
1. N维空间中的点集 2. N维空间中点列的收敛 3. 多元函数的定义 4. 多元函数的极限 5. 多元函数的连续性
(iv)累次极限存在且相等,重极限也可能不存在。
例:当 (x, y) (0,0) 时,观察函数 f ( x, 其累次极限均为0,但重极限不存在。
y)
xy x2 y2
,
(v)两个相互关联的结论:
若重极限与累次极限都存在,则它们不能不相等;
反之,如累次极限存在且不相等,则重极限不能存在。
直观说明:如果两个累次极限不相等,那么从函数 的图像可以看出,在接近z轴的时候,图像一定有 断裂(或上下撕裂)的现象,重极限不可能存在。
满足李普希斯条件。证明该函数是连续的。
讨论:如果二元函数关于每个单个变量是连续函数, 是否可以认为这个函数是连续的二元函数?
xy
f
( x,
y)
x2
y2
0
( x2 y2 0); ( x2 y2=0).
清华大学微积分A习题课3_多元函数微分学及应用(泰勒公式、极值)
AC −B
i i
2 i
16
−32
−32
−32
64
64
−32
由极值的充分条件可知,函数 f 在 ( x1 , y1 ) 点取局部极大值,
( x5 , y5),( x 6 , y 6 )( x8 , y8 )( x 9 , y 9 )
取局部极小值,其它点均为鞍点(非极值点). 例6 函数 z ( x, y ) 在有界闭区域 D 上连续,在 D 内部偏导数存在, z ( x, y ) 在 D 的边界上的值 为零,在 D 内部满足
dz = −
4 x + 8z 4y dx − dy 2 z + 8x − 1 2 z + 8x − 1 ∂z 4 x + 8z =− =0 ∂x 2 z + 8x − 1 ∂z 4y =− =0 ∂y 2 z + 8x − 1
2 x 2 + 2 y 2 + z 2 + 8 xz − z + 8 = 0
。
cosθx − 1 1 + θy 【答案】 f ( x, y ) = 1 − y + ( x, y ) sin θx 2 (1 + θy )2
sin θx x (1 + θy )2 , θ ∈ (0,1) 2 cosθx y (1 + θy )3
2 2
t
(
2
2
)
Hale Waihona Puke − x2 + y2
(
)在
曲线 x 2 + y 2 = 1 上取到极大值 e . 例8 (隐函数的极值)设 z = z ( x, y ) 由 2 x 2 + 2 y 2 + z 2 + 8 xz − z + 8 = 0 确定,求该函数 的极值. 解:
考研数学三-多元函数微积分学(三)
考研数学三-多元函数微积分学(三)(总分:100.00,做题时间:90分钟)一、Section Ⅰ Use of English(总题数:1,分数:10.00)Starting with his review of Skinner's Verbal Behavior, Noam Chomsky had led the psycholinguists who argue that man has developed an innate (天生的) capacity for dealing with the linguistic universals common to all languages. Experience and learning then provide only information about the (1) instances of those universal aspects of language which are needed to communicate with other people within a particular language (2) .This linguistic approach (3) the view that language is built upon learned associations between words. What is learned is not strings of words per se (本身), but (4) rules that enable a speaker to (5) an infinite variety of novel sentences. (6) single words are learned as concepts: they do not stand in a one-to-one (7) with the particular thing signified, but (8) all members of a general class.This view of the innate aspect of language learning is at first not readily (9) into existing psychological frameworks and (10) a challenge that has stimulated much thought and new research directions. Chomsky argues that a precondition for language development is the existence of certain principles "intrinsic (原有的) to the mind" that provide invariant structures (11) perceiving, learning and thinking. Language (12) all of these processes; thus its study (13) our theories of knowledge in general.Basic to this model of language is the notion that a child's learning of language is a kind of theory (14) . It's thought to be accomplished (15) explicit instruction, (16) of intelligence level, at an early age when he is not capable of other complex (17) or motor achievements, and with relatively little reliable data to go on. (18) , the child constructs a theory of an ideal language which has broad (19) power. Chomsky argues that all children could not develop the same basic theory (20) it not for the innate existence of properties of mental organization which limit the possible properties of languages.(分数:10.00)(1).[A] special [B] specific [C] definite [D] explicit(分数:0.50)A.B. √C.D.解析:形容词辨析题。
考研数学习题课讲义--4 多元函数微积分学
2 x uv f f 4 , 练习 设对任意的 x 和 y, 有 用变量代换 将 f (x, y)变 2 2 1 x y y 2 (u v )
2
g g 2 2 换成 g(u, v), 试求满足 a b u v 中的常数 a 和 b. u v
2
2
3
例 11 设
x u 2 v z y u vz
,求
u v u , , . x x z
练习: 1. 设函数 z = z(x, y)由方程 z e
2 x 3 z
2 y 确定, 则 3
z z ____ . x y
2. 设 z = z(x, y) 是由方程 x2 + y2 z = (x + y + z) 所确定的函数, 其中 有二阶导数 且
x2 y4
, 则函数在原点偏导数存在的情况是 ______ .
(A) fx(0, 0) 存在, fy(0, 0) 存在 (B) fx(0, 0) 存在, fy(0, 0) 不存在 (C) fx(0, 0) 不存在, fy(0, 0) 存在 (D) fx(0, 0) 不存在, fy(0, 0) 不存在
.
2
例 7 设 ������ = ������ (������ 2 + ������ 2 , ), 其中 f (u, v) 具有连续的二阶偏导数, 求 . ������ ������������������������
������
����Байду номын сангаас� 2 ������
例 8 设 ������ = ������(������������ + ������������) + ������(������ 2 ������, ������������ 2 ), 其中 f, g 都具有连续的二阶偏导数, 求