初高中 数学 衔接课程

合集下载

初高中衔接补课数学教案

初高中衔接补课数学教案

初高中衔接补课数学教案
教学内容:初中数学与高中数学衔接
教学目标:
1. 了解初中数学与高中数学的衔接关系;
2. 掌握初中数学中的基础知识,为高中数学学习打下坚实基础;
3. 培养学生数学思维,提高解题能力。

教学步骤:
第一步:导入(5分钟)
通过回顾初中数学知识,引导学生对高中数学衔接有一个整体的认识。

第二步:复习初中数学基础知识(20分钟)
1. 复习初中数学中的代数、几何等基础知识,包括方程、不等式、几何图形等;
2. 强化重难点知识点,解答学生遇到的疑惑和困惑。

第三步:介绍高中数学的拓展内容(20分钟)
1. 介绍高中数学中的新知识点,包括函数、导数、积分等;
2. 分析初中数学与高中数学的衔接关系,帮助学生理解高中数学知识的重要性。

第四步:练习与讨论(30分钟)
1. 给学生布置相关练习题,让学生独立完成;
2. 学生完成后,进行讨论和解析,帮助学生理解题目背后的思想和方法。

第五步:作业布置(5分钟)
布置相关作业,让学生在课后进行复习和巩固。

教学反思:
通过本节课的教学,学生对初中数学与高中数学的衔接有了更深入的了解,同时也加深了对高中数学知识的理解和掌握。

在后续的教学中,可以继续强化学生的数学思维和解题能力,提高学生成绩。

初高中数学衔接教材1.完全立方、立方和及立方差公式 课件(共15张PPT)

初高中数学衔接教材1.完全立方、立方和及立方差公式 课件(共15张PPT)
完全立方公式:
(a b)3 (a b)3
立方差公式: 立方和公式下列乘法运算中,可以运用立方和或立方差公式计 算的是( C )
A. (m n)(m2 2mn n2 )
B.(m n)(m2 mn n2 )
C. (m 2n)(m2 4n2 2mn) D. (m 2n)(m2 2mn 4n2 )
3.已知 x 1 3 x
解:(1)
若x 1 3呢? x
(2)
,求(:1)x 2
x1(2 2,)x4
1 x4

4.已知 x2 y2 z2 2x 4 y 6z 14 0,
求 (x y z)(x z y) 的值.
解:
板书设计
第一章 完全立方、立方和及立方差公式 完全立方公式:
2
2ab b
)
a3 2a2b ab2 ba2 2ab2 b3
a3 3a2b 3ab2 b3
用-b代替b,易得
(a b)3
(1) ( a b )( a2 ab b2 )
(2) ( a b )( a2 ab b2 )
逆用上面公式,可以得到 立方差公式: 立方和公式:
(a b)3 (a b)3
立方差公式: 立方和公式:
(a b c)2
注:公式中的字母可以表示数字、单项式,也可以表示多 项式。
学习目标(1分钟)
1.掌握完全立方公式、立方和及立方差的推导过程. 2.能利用完全平方公式展开形如(a+b+c)2的式子. 3.能灵活运用公式进行运算.
问题导学1(8分钟)
1.利用整式乘法运算推导完全立方公式.
(a b)3 (a b)3
解法一:
(a 2)3 (a 1)3
解法二:

初中与高中的衔接数学教案

初中与高中的衔接数学教案

初中与高中的衔接数学教案教学目标:通过本课学习,学生将能够熟练掌握初中数学知识,为高中数学学习奠定良好基础。

教学内容:初中与高中数学知识的衔接,包括初中数学知识的复习与延伸,高中数学知识的引入。

教学重点:初中数学知识的回顾与巩固,高中数学知识的初步引入与理解。

教学难点:初中数学知识与高中数学知识的衔接,学生需要跨越知识的边界,理清逻辑关系。

教学准备:教师准备好教案、教材、多媒体设备等教学工具;学生准备好课本、笔记本和笔等学习用具。

教学步骤:1.复习初中数学知识。

教师可以通过课堂互动让学生回顾和巩固初中数学知识,如方程、函数、几何等内容。

2.引入高中数学知识。

教师可以简要介绍高中数学的内容和学习方法,让学生做好学习准备。

3.进行知识衔接。

教师可以通过案例讲解初中数学知识与高中数学知识的联系和衔接,引导学生拓展思路,加深理解。

4.分组讨论。

教师让学生小组合作讨论与解决一些涉及初中和高中数学知识的问题,培养学生的合作与解决问题的能力。

5.总结与反思。

教师带领学生总结本节课的学习内容,学生反思自己的学习收获和不足之处,并提出问题。

教学评价:通过教师的现场观察、学生的表现以及课后作业的完成情况,对学生的学习情况进行评价,并提出建议和指导。

教学反思:教师根据教学过程和学生的反馈,总结本节课的教学效果和不足之处,为下一节课的教学改进提供参考。

扩展活动:为学生提供相关拓展资料或参加数学竞赛等活动,激发学生学习兴趣,促进数学能力的提升。

教学结束语:本节课的目标是让学生理清初中数学与高中数学之间的联系,帮助学生顺利过渡到高中数学学习阶段。

希望大家在今后的学习中能够积极探索,勇攀高峰!谢谢大家的认真听讲,下节课见!。

初高中数学衔接内容

初高中数学衔接内容

初高中数学衔接内容初中数学和高中数学在知识体系、思维方式和学习方法等方面存在着一定的差异。

为了让同学们能够顺利地从初中数学过渡到高中数学,做好衔接工作至关重要。

接下来,让我们一起来探讨一下初高中数学的衔接内容。

一、知识内容的衔接1、数与式在初中,我们主要学习了有理数、无理数、整式、分式等基本的数与式的概念和运算。

而在高中,会进一步拓展到复数的概念和运算,同时对代数式的变形和化简要求更高,例如乘法公式的灵活运用、因式分解的技巧等。

2、方程与不等式初中阶段,我们学习了一元一次方程、二元一次方程组、一元二次方程以及简单的不等式。

到了高中,会接触到一元二次方程根与系数的关系(韦达定理)、高次方程、分式方程、绝对值不等式等内容,并且需要掌握更复杂的求解方法和应用。

3、函数函数是初高中数学的重点和难点。

初中主要学习了一次函数、反比例函数和二次函数的基本性质和图像。

高中则在此基础上,引入了指数函数、对数函数、幂函数等更多类型的函数,同时对函数的性质(单调性、奇偶性、周期性等)、函数的图像变换以及函数的综合应用有更深入的要求。

4、几何图形初中的几何主要集中在平面几何,如三角形、四边形、圆等的性质和定理。

高中则将几何拓展到空间几何,学习空间点、线、面的位置关系,空间几何体的表面积和体积等,并且需要具备较强的空间想象能力和逻辑推理能力。

5、三角函数初中阶段,我们初步了解了锐角三角函数的概念和简单应用。

高中会对三角函数进行系统的学习,包括任意角的三角函数、诱导公式、三角函数的图像和性质、两角和与差的三角函数公式等。

二、思维方式的衔接1、从形象思维到抽象思维初中数学的内容相对较为直观和形象,例如通过图形来理解几何问题,通过实际例子来学习函数。

而高中数学则更加抽象,需要同学们具备更强的抽象思维能力,例如理解函数的概念、空间几何的位置关系等。

2、从常量思维到变量思维初中数学中,大多数问题涉及的是常量的计算和求解。

而高中数学中,变量的概念无处不在,函数就是研究变量之间关系的重要工具。

初高中衔接内容数学教案

初高中衔接内容数学教案

初高中衔接内容数学教案
一、教学目标:
1. 知识与技能:学生能够掌握初中数学与高中数学的衔接知识,如函数、方程、不等式等
内容。

2. 过程与方法:通过引导学生进行问题解决和思维拓展,培养学生的数学思维和解决问题
的能力。

3. 情感态度与价值观:培养学生对数学学习的兴趣和自信心,激发学生学习数学的积极性。

二、教学内容:
本节课主要教学内容为初高中数学衔接的知识点,包括但不限于:
1. 函数与方程的衔接:介绍高中函数与初中函数的联系,并引导学生探讨函数的性质和图
像变化。

2. 不等式的衔接:通过举例引导学生理解不等式的性质和解法,并培养学生分析问题、解
决问题的能力。

3. 逻辑推理与证明:引导学生进行逻辑推理和证明练习,培养学生的思维逻辑和分析能力。

三、教学过程:
1. 导入:通过提出一个问题或引入一个实例,激发学生对本课内容的兴趣。

2. 学习与讨论:教师介绍和讲解本节课的知识点,引导学生进行讨论和互动,加深对知识
的理解。

3. 练习与应用:设计一些练习题和问题,让学生进行练习和解答,巩固所学知识。

4. 总结与拓展:对本课内容进行总结,引导学生拓展思维,思考更深层次的问题。

5. 作业布置:布置相关的作业,加强对知识的巩固与熟练掌握。

四、教学评估:
通过课堂表现、作业情况和考试成绩等多方面对学生进行评估,及时发现问题并进行针对
性调整和指导。

五、教学反思:
教学结束后,教师应对本节课的教学效果进行反思和总结,发现问题并加以改进,为下一
节课的教学做好准备。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

初高中知识衔接数学教案

初高中知识衔接数学教案

初高中知识衔接数学教案教学内容:初中数学与高中数学知识的衔接教学目标:1. 了解初中数学和高中数学之间的知识衔接关系;2. 掌握数学知识的渐进性和深入性;3. 提高学生对数学学习的兴趣和动力。

教学重点:1. 初中数学和高中数学知识的衔接点;2. 渐进式学习方法的应用。

教学难点:1. 高中数学对初中数学知识的深入理解;2. 如何利用初中数学知识快速适应高中数学学习。

教学准备:1. 教材:初中数学教材、高中数学教材;2. 教具:黑板、彩色粉笔、计算器等。

教学步骤:第一步:导入(5分钟)教师简单介绍初中数学和高中数学之间的知识衔接关系,引导学生对今天的学习内容产生兴趣。

第二步:理论讲解(15分钟)1. 教师通过对几个例题的讲解,让学生了解初中数学和高中数学之间的知识衔接点;2. 教师讲解数学知识的渐进性和深入性,引导学生明确学习目标。

第三步:实例练习(20分钟)1. 学生在教师的指导下完成一些衔接性的习题,加深对知识点的理解;2. 学生自主练习,并彼此交流讨论。

第四步:课堂讨论(10分钟)学生就学习过程中遇到的问题进行讨论和解答,教师及时纠正学生的错误理解。

第五步:拓展延伸(10分钟)1. 学生进行拓展延伸练习,进一步加深对知识点的理解;2. 学生通过实际问题的解决,巩固所学知识。

第六步:作业布置(5分钟)布置相关作业,巩固所学知识。

教学反思:通过本节课的学习,学生对初中数学和高中数学之间的知识衔接有了更深入的了解,对数学学习的兴趣有所提高。

在日后的教学中,要加强对初中数学知识的深度学习,以便更好地适应高中数学学习的要求。

同时,要注重渐进式学习方法的应用,帮助学生更好地掌握数学知识。

初高中衔接数学主要知识点的简单梳理

初高中衔接数学主要知识点的简单梳理

初高中衔接数学主要知识点的简单梳理初高中数学衔接主要包括以下几个方面的知识点梳理:1.数与代数:初中主要学习了整数、有理数、多项式等基本概念和运算法则,高中将进一步学习实数、复数、指数、对数、函数等数学概念,并研究其性质和运算规律。

初中数学中遇到的一元一次方程、一元二次方程等概念会在高中进一步学习,学习解方程的新方法和技巧。

2.几何:初中主要学习了平面几何中的角、线段、三角形、平行四边形、圆等基本概念和性质,高中将进一步学习立体几何(如面体的体积、表面积等)和解析几何(如坐标系、直线、曲线等)。

初中已经学习的几何知识将在高中进一步扩展和应用。

3.概率与统计:初中主要学习了简单概率问题的计算以及统计分布(如频数分布表、直方图等),高中将进一步学习概率、期望、方差等概念,并研究相关的问题。

高中数学中的统计内容也会更加深入,涉及到抽样调查和统计推断等内容。

4.算术与数列:初中主要学习了四则运算、分数、小数、百分数、比例与比例般以及简单的图像处理等内容,高中将继续学习复杂的算术运算(如幂运算、根式运算等)以及更复杂的数列(如等差数列、等比数列等),并研究它们的性质和应用。

5.数学思想方法:高中数学对于学生的思维能力和综合运用能力要求更高,需要培养学生的证明能力和问题解决能力。

初中时的计算和应用题目会逐渐转向推理和证明题目,学生需要熟悉不同证明方法的运用,掌握一定的证明技巧。

在初中到高中的衔接过程中,学生需要温故而知新,对初中已学内容进行复习、总结与巩固,同时积极学习新的高中数学知识。

高中数学相较于初中,不仅内容更加深入和复杂,学习方法、思维方式以及解题思路等方面也有所不同。

学生要增强数学学习的兴趣和主动性,通过多做习题、解决实际问题,培养对数学的兴趣和理解,以便更好地适应高中数学的学习。

数学初高中衔接班教案

数学初高中衔接班教案

数学初高中衔接班教案
教学目标:
1. 帮助学生顺利过渡从初中数学到高中数学的学习
2. 加强学生对基础数学知识的掌握和应用能力
3. 培养学生解决实际问题的数学思维能力
教学内容:
1. 复习初中数学的重点知识,如代数、几何、函数等
2. 引入高中数学的知识,如排列组合、概率、微积分等
3. 培养学生分析和解决问题的能力
教学过程:
1. 复习初中知识
- 通过讲解、练习和考试等方式复习初中数学知识,包括代数、几何、函数等2. 引入高中知识
- 介绍高中数学的知识点,并通过案例分析和实例演练等方式引导学生理解和掌握3. 综合训练
- 定期进行综合训练,综合初高中知识,巩固学生所学内容
4. 课外拓展
- 鼓励学生参加数学竞赛或进行相关研究,扩展数学视野
教学评估:
1. 定期进行小测验,检测学生对知识点的掌握情况
2. 每学期末进行综合考试,综合考察学生对初高中数学知识的理解和应用能力
3. 不定期进行课堂互动,了解学生的学习情况并及时调整教学方法
教学资源:
1. 教材:《数学初中教材》、《数学高中教材》
2. 参考书籍:《数学衔接教程》、《数学基础训练》等
3. 网络资源:数学学习平台、在线教学资源等
备注:
本教案仅供参考,根据学生实际情况和学校教学大纲进行适当调整,以确保教学效果和学生学习质量。

初高中衔接数学怎么写教案

初高中衔接数学怎么写教案

初高中衔接数学怎么写教案
教案主题:初高中数学衔接
教学目标:
1. 复习初中数学知识,帮助学生巩固基础;
2. 引导学生理解高中数学概念,培养解决问题的能力;
3. 培养学生良好的数学思维和学习方法。

教学内容:
1. 复习初中数学知识,包括代数、几何、概率等方面;
2. 引入高中数学概念,如函数、极限、导数等;
3. 进行数学实际问题的应用训练。

教学过程:
1. 复习初中数学知识,通过课堂练习、小组讨论等方式加深理解;
2. 引入高中数学概念,通过讲解、举例等方式让学生掌握新知识;
3. 进行数学实际问题的训练,通过实例训练、作业布置等方式提高学生解决问题的能力。

教学评价:
1. 定期进行知识点小测验,检测学生对数学知识的掌握情况;
2. 在课堂上进行实时评价,帮助学生及时纠正错误;
3. 通过期中期末综合测验评价学生的学习成绩和能力提升情况。

教学反思:
1. 及时总结教学过程中的优缺点,为下次教学改进提供参考;
2. 根据学生学习情况调整教学方法和内容,更好地促进学生的数学学习;
3. 与同事之间进行教学交流,共同提高数学教学水平。

通过以上教案范本的设计,可以更好地进行初高中数学的衔接教学,帮助学生顺利过渡并提高数学学习能力。

初升高数学衔接课程(15节)

初升高数学衔接课程(15节)

初升高数学衔接课程(例题+练习+习题+答案)1、一元二次不等式2、分式不等式3、绝对值不等式4、集合的含义与表示5、集合间的基本关系6、集合的基本运算7、映射与函数8、分式函数9、函数定义域10、函数值域11、函数单调性12、函数奇偶性13、函数解析式14、二次函数在闭区间上的最值15、集合与函数测试制作人:梁林庆时间:2015-7-11、一元二次不等式1、1 知识1、定义:含有一个未知数,并且未知数的最高次数是二次的不等式叫做一元二次不等式。

2、解一元二次不等式的步骤:(1)把二次项系数变为正,令一元二次不等式=0,得到一元二次方程; (2)解一元二次方程得到两根(一根或无根);(3)根据不等号判断取值范围。

(若>,两根之外,若<,两根之间)。

1、2 例题例1、 解下列不等式1、02532>-+x x 2、01692>+-x x 3、0542>+-x x4、0122<++-x x 5、0442>-+-x x例2、 已知不等式012<-+bx ax 的解集是{}43|<<x x ,求实数a,b 的值。

例3、 解关于x 的不等式 0)12(22<+++-m m x m x例4、 解关于x 的不等式 0)1(2<--+a x a x1、解下列不等式(1)03422<++x x (2)08232≤+--x x (3)21618x x ≥-(4) ()()410x x +--<; (5)232x x -+>; (6)24410x x -+>.2、已知一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,求实数ab 的值。

3、若不等式210x mx ++>的解集为R ,求m 的取值范围。

解下列一元二次不等式1.03282>--x x2.031082≥-+x x3.041542<--x x4.02122>--x x5.021842>-+x x6.05842<--x x7.0121752≤-+x x 8.0611102>--x x 9.038162>--x x10.038162<-+x x 11.0127102≥--x x 12.02102>-+x x2、分式不等式2、1知识1、定义:分母中含有未知数的不等式叫做分式不等式。

初高中衔接班数学教案

初高中衔接班数学教案

初高中衔接班数学教案
教学目标:
1. 让学生从初中数学的知识基础出发,逐步过渡到高中数学的学习内容,为顺利适应高中数学课程做好准备。

2. 帮助学生建立数学思维和解题能力,培养他们的数学学习兴趣和自信心。

教学内容:
1. 复习初中数学基础知识,包括代数、几何、函数等方面的内容。

2. 引入和探讨高中数学的一些基本概念和方法,如集合与映射、函数的基本性质、解析几何等。

3. 练习高中数学的典型题目,培养学生的解题能力和运用知识的能力。

教学过程:
1. 复习初中数学知识,通过课堂练习和作业,夯实基础。

2. 导入高中数学内容,引导学生理解新概念和方法。

3. 组织学生分组讨论,解决一些高难度数学问题,培养合作精神和解题方法。

4. 布置课外作业,巩固和拓展学生所学内容。

5. 定期组织模拟考试,检测学生学习效果。

教学资源:
1. 《新课标数学》教材及配套辅导书。

2. 数学练习册和习题集。

3. 电子教学资源和多媒体教学手段。

评价方式:
1. 经常性的小测验和作业评定,评价学生对知识的掌握情况。

2. 定期组织模拟考试,评价学生的解题能力和应试能力。

3. 考察学生在课堂讨论和小组合作中的表现情况。

教学心得:
通过组织系统的初高中衔接班数学教学,可以有效帮助学生顺利过渡到高中数学学习阶段,并且提高他们的数学学习能力和解题能力。

同时也可以培养学生的合作意识和团队精神,
为其未来的学习和发展奠定良好的基础。

人教版初升高中数学衔接教材教案讲义

人教版初升高中数学衔接教材教案讲义

人教版初升高中数学衔接教材教案讲义引言本教案讲义是为了解决初中毕业生升入高中后数学学科的衔接问题而编写的。

首先,我们将分析初中数学和高中数学之间的差异,并提出解决方案。

然后,我们将介绍一套适用于人教版初升高中数学衔接教材的教案。

这些教案旨在帮助学生顺利过渡到高中数学,提高他们的研究成绩。

初中数学与高中数学的差异初中数学和高中数学在内容和难度上存在一定的差异。

初中数学主要侧重于基本的数学概念和计算能力培养,而高中数学则更加注重抽象思维、逻辑推理和问题解决能力的培养。

因此,初中毕业生在升入高中后可能会面临一些困难和挑战。

解决方案为了解决初中升高中数学衔接的问题,我们提出以下解决方案:1. 设置过渡课程:在初中阶段结束和高中阶段开始之间设置过渡课程,着重培养学生的抽象思维和问题解决能力,帮助他们适应高中数学的要求。

2. 教师培训:提供专门的培训课程,帮助初中数学老师了解高中数学的要求和难点,使他们能够更好地指导和辅导学生。

3. 个性化辅导:针对初中毕业生的不同水平和研究需求,提供个性化的辅导和指导,帮助他们克服困难,提高数学研究成绩。

人教版初升高中数学衔接教材教案针对人教版初升高中数学衔接教材,我们提供一套教案,旨在帮助学生顺利过渡到高中数学:1. 第一课:初中数学回顾和高中数学预此课程将回顾初中数学的基本概念和技巧,并预高中数学的一些重要概念,为学生打下良好的数学基础。

2. 第二课:数列和数列的应用本课程将介绍数列的概念,讲解数列的求和公式和递推公式,并提供一些数列的应用例题,帮助学生熟悉数列的思想方法。

3. 第三课:函数此课程将介绍函数的概念,讲解函数的性质和图像,帮助学生理解函数在数学中的重要性和应用。

4. ...(继续编写其他教案内容)结论通过以上的解决方案和教案,我们相信学生在初中升高中数学衔接的过程中将能够得到更好的支持和帮助。

希望这份教案讲义能够为初中毕业生顺利过渡到高中数学提供一定的指导和帮助。

初高中衔接数学学习计划

初高中衔接数学学习计划

初高中衔接数学学习计划数学是一门严谨的学科,是理工科专业必修的一门课程。

从初中到高中,数学的内容逐渐加深,难度逐渐增加。

因此,初高中数学的衔接非常重要,而且也是学生数学学习的一个关键阶段。

在数学学习的过程中,学生需要建立坚实的数学基础,掌握一定的数学知识和技能,为将来的学习打下良好的基础。

本篇文章将针对初高中数学的衔接,提出一份详细的学习计划,以帮助学生更好地掌握数学知识,提高数学水平。

一、初中数学学习回顾初中数学主要包括数与代数、平面几何、立体几何、函数与方程、概率与统计等内容。

在初中阶段,学生需要建立数学的基本概念,掌握基本的运算技能,形成初步的数学思维方式。

初中数学学习的主要内容包括以下几个方面:1. 数与代数:掌握整数、有理数、整式等基本概念,学会运用四则运算法则进行数的运算,了解一元一次方程、一元二次方程的解法。

2. 几何:学习平面图形、立体图形的性质和计算方法,了解与平面图形、立体图形相关的概念和定理。

3. 函数与方程:初步了解函数的概念和性质,学习一元一次函数、一元二次函数的图像、性质等内容,掌握一元一次方程、一元二次方程的解法。

4. 概率与统计:初步了解概率和统计的基本概念,学习统计图表的绘制和分析,了解简单的概率计算方法。

二、高中数学学习目标高中数学学习相对于初中来说更加深入和复杂,高中数学主要包括数学分析、解析几何、数学推理和训练以及数学研究方法等内容。

在高中阶段,学生需要深入学习数学的基本概念和方法,提高数学分析和解决问题的能力。

高中数学学习的主要目标包括以下几个方面:1. 深入理解数与代数的基本概念,掌握多项式、分式、指数与对数、不等式等内容,形成较为完整的数学概念和计算技巧。

2. 深入学习几何的基本概念和方法,掌握平面几何和空间几何的相关定理和方法,提高几何问题的分析和解决能力。

3. 进一步学习函数与方程的相关内容,掌握函数的概念、性质和图像,提高方程的解题能力和数学建模能力。

初高中数学衔接讲义

初高中数学衔接讲义

初高中数学衔接讲义初高中数学的衔接比较重要,因为高中数学相较于初中有更多的内容和更高的难度。

以下是初高中数学的衔接内容和一些讲义的建议:1. 恒等式和方程:初中数学主要学习了一元一次方程,高中数学将进一步学习二次方程、一元二次不等式和一元二次方程。

在初高中数学的衔接中,可以讲解一些解二次方程的方法,如公式法和配方法,并与初中时学习的一元一次方程做对比,帮助学生理解二次方程的概念和解法。

2. 几何:初中数学主要学习了平面几何的基本概念和性质,如平行线、垂直线、等腰三角形等。

高中数学将进一步学习空间几何,如点、线、面的位置关系。

在初高中数学的衔接中,可以讲解一些空间几何的基本概念和性质,并与初中时学习的平面几何做对比,帮助学生理解空间几何的概念和性质。

3. 数列和数列的求和:初中数学主要学习了等差数列的概念和求和公式。

高中数学将进一步学习等比数列和级数。

在初高中数学的衔接中,可以讲解一些等比数列和级数的概念和求和公式,并与初中时学习的等差数列做对比,帮助学生理解等比数列和级数的概念和求和方法。

4. 概率与统计:初中数学主要学习了简单概率和统计的基本概念,如事件、概率、频数、频率等。

高中数学将进一步学习概率和统计的理论和方法。

在初高中数学的衔接中,可以对初中学过的简单概率和统计进行复习,并引入高中的概率与统计内容,如条件概率、排列组合等。

此外,还可以根据教材的章节内容进行具体讲解,引导学生逐步过渡到高中数学的学习。

同时,可以通过提供一些练习题来帮助学生巩固和扩展基础知识。

最重要的是,要给学生提供足够的时间和机会来理解和掌握这些概念和技巧,因为初高中数学衔接的过程需要一个渐进的过程。

2024版夏老师的初高中数学衔接课程(完整版)

2024版夏老师的初高中数学衔接课程(完整版)

夏老师的初高中数学衔接课程(完整版)目录•课程介绍与背景•初中数学知识点回顾•高中数学知识点引入•初高中数学知识衔接点分析•典型例题解析与讨论•学习方法与技巧分享01课程介绍与背景填补知识空白适应教学要求提升学习兴趣初高中数学衔接的重要性初中数学与高中数学在知识点上存在较大差异,通过衔接课程可以帮助学生填补这一知识空白,为高中数学学习打下坚实基础。

高中数学相对于初中数学难度增加,对学生的思维能力、创新能力等要求更高。

通过衔接课程,学生可以逐步适应高中数学的教学要求,提高学习效果。

衔接课程可以帮助学生更好地理解和掌握数学知识,激发学生的学习兴趣和自信心,为未来的数学学习奠定良好基础。

课程目标与内容课程目标通过本课程的学习,学生将能够熟练掌握初中数学与高中数学的衔接知识点,提高数学思维能力、创新能力和解决问题的能力。

课程内容本课程主要包括数与式、方程与不等式、函数与图像、几何与图形等方面的知识,通过讲解、练习、测试等多种方式帮助学生掌握相关知识点。

01020304讲解与演示练习与讨论测试与反馈多媒体辅助教学教学方法与手段通过教师的详细讲解和演示,帮助学生理解和掌握相关知识点。

通过大量的练习和讨论,提高学生的数学思维和解决问题的能力。

利用多媒体技术,如PPT 、视频等辅助教学,提高教学效果和学生的学习兴趣。

通过定期的测试和反馈,及时了解学生的学习情况,针对问题进行调整和改进。

02初中数学知识点回顾整数、有理数、无理数和实数的概念和性质代数式的化简和因式分解分式的运算和化简一元一次方程、一元二次方程的解法和应用0102030405平面几何的基本概念和性质,如点、线、面、角、三角形等平行线和相交线的性质及判定四边形的性质和判定,包括平行四边形、矩形、菱形和正方形等相似三角形和全等三角形的性质和判定圆的基本性质和定理,如切线长定理、割线定理等01020304概率的基本概念和性质,包括事件的关系和运算、概率的加法公式和乘法公式等随机事件的概率计算,包括古典概型和几何概型等统计图表的认识和制作,如条形图、折线图、扇形图等数据的收集、整理和描述,包括平均数、中位数、众数、方差等统计量的计算和应用概率与统计初步03高中数学知识点引入集合与函数集合的基本概念包括元素与集合的关系、集合的表示方法、集合间的关系(子集、真子集、相等)等。

初中衔接高中数学教案

初中衔接高中数学教案

初中衔接高中数学教案目标:学生能够顺利过渡到高中数学学习,并掌握高中数学的基础知识和解题方法。

一、复习与拓展初中数学知识1. 复习初中代数与函数的基本知识,包括代数方程与不等式、函数与方程。

2. 复习初中几何知识,包括平面几何和立体几何。

3. 复习初中概率与统计知识。

4. 拓展初中数学知识,发展学生的数学思维和解题能力。

二、学习高中数学内容1. 数列与数学归纳法:介绍数列的概念、性质和求和法则,掌握数学归纳法的应用。

2. 不等式与绝对值:学习不等式的解法和应用,掌握绝对值不等式的性质和解法。

3. 矩阵与行列式:介绍矩阵和行列式的基本概念,学习矩阵的运算和行列式的性质。

4. 函数的基本概念:复习初中函数的知识,学习高中函数的性质和图像。

三、解题方法与应用实例1. 掌握解题方法和思维模式,培养学生的分析和判断能力。

2. 提供丰富的应用实例,让学生能够将所学知识应用到解决实际问题中。

四、练习与评价1. 提供大量的练习题,帮助学生巩固所学知识。

2. 定期进行测试和评价,及时发现学生的学习问题并给予指导。

五、教学方法1. 组织多样化的教学活动,包括讲解、练习、讨论和实验等。

2. 注重培养学生的问题解决能力和创新意识,鼓励学生主动探究和发现。

六、教学资源1. 利用多种教学资源,包括教材、多媒体、网络等,提高教学效果。

2. 鼓励学生利用网络等资源进行自主学习,拓宽数学知识的广度和深度。

七、反馈与调整1. 定期进行教学反馈,了解学生的学习情况和反馈意见。

2. 根据学生的反馈和实际情况进行课程调整,及时改进教学方法和内容。

初升高数学衔接课程

初升高数学衔接课程

初升高中衔接教程数学第1讲数与式1910+⨯的正整数n ,有1(1)n n ++第2讲一元二次函数与二次不等式第3讲一元二次方程与韦达定理第4讲绝对值不等式与无理式不等式第5讲集合的基本概念}6x<.【内容概述】用平面上封闭曲线的内部代表集合,这种图叫做韦恩图。

例6. 求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}.【典型例题—3】集合相等:设集合A={x|x 2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?【概括】集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等, 即:A=B例7.判断集合{}2A x x ==与集合{}240B x x =-=的关系.例8.判断集合A 与B 是否相等?(1) A={0},B= ∅;(2) A={…,-5,-3,-1,1,3,5,…},B={x| x=2m+1 ,m ∈Z } ;(3) A={x| x=2m-1 ,m ∈Z },B={x| x=2m+1 ,m ∈Z }.变式:已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.【典型例题—4】真子集:【内容概述】如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作B A (或A B), 读作“A 真包含B ”(或“B 真包含于A ”).[不包含本身的子集叫做真子集] 对于集合A 、B 、C ,如果AB ,BC ,则A C . 例9.选用适当的符号“⊂≠”或“”填空:(1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; (3){1} _∅. 例10.设集合{}0,1,2M =,试写出M 的所有子集,和真子集第6讲集合的基本运算变式1:图中阴影部分用集合表示为_______________.变式2:已知集合}3|{},42|{a x a x B x x A <<=<<=.(1)若∅=B A ,求a 的取值范围;(2)若}4|{<<=x a x B A ,求a 的取值范围.知识点三、补集【内容概述】1.全集:在研究集合与集合之间的关系时,有时这些集合都是某一个给定集合的子集,这个给定集合可以看成一个全集,用符号“U ”表示,也就是说,全集含有我们所要研究的各个集合的全部元素.2.补集:如果集合A 是全集U 的一个子集,由全集U 中不属于集合A 的所有元素组成的集合,叫做集合A 相对于全集U 的补集,简称为集合A 的补集.3.对补集定义的理解要注意以下几点:(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如当研究数的运算性质时,我们常常将实数集R 当做全集.(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,当然也是一种数学思想.(3)从符号角度来看,若U x ∈,U A ⊂,则A x ∈和A C x U ∈二者必居其一.4.集合图形,理解补集的如下性质:(1)∅====∅∅=)(,)(,)(,,A C A U A C A A A C C U C U C U U U U U U(2)若B A ⊆,则)()(B C A C U U ⊇;反之,若)()(B C A C U U ⊇,则B A ⊆(3)若A=B ,则B C A C U U =;反之,若B C A C U U =,则A=B【典型例题】例5.设全集U 是实数集R ,}4|{2>=x x A ,}13|{<≥=x x x B 或都是U 的子集,则图中阴影部分所表示的集合是__________________.变式1:已知集合}012|{2=++=b ax x x A 和}0|{2=+-=b ax x x B满足R U B C A B A C U U ===},4{)(},2{)( ,求实数a 、b 的值.变式2:设集合}123|),{(},,|),{(=--=∈=x y y x M R y x y x U ,}1|),{(+≠=x y y x N , 则)()(N C M C U U =__________________.例6.已知全集R U =,}12|{},523|{≤≤-=+<<=x x P a x a x M ,若P C M U ⊂,求实数a 的取值范围.变式1:已知集合},0624|{2R x m mx x x A ∈=++-=,},0|{R x x x B ∈<=,若∅≠B A ,求实数m 的取值范围.变式2:已知集合}50|{≤-<=a x x A ,}62|{≤<-=x a x B . (1)若A B A = ,求a 的取值范围;(2)若A B A = ,求a 的取值范围.例7.学校50名学生调查对A 、B 两个事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对第7讲集合的综合复习第8讲函数的概念与定义域。

初高中数学衔接教程(全套)

初高中数学衔接教程(全套)

初高中数学衔接教程(全套)简介本教程旨在帮助初中毕业生顺利过渡到高中数学研究,并建立起坚实的数学基础。

通过本教程,学生将能够更好地理解和应用数学知识,为高中数学研究打下良好的基础。

内容概述本教程包括以下几个主要内容:1. 数的性质与运算- 自然数、整数、有理数、实数的概念与性质- 四则运算及其性质- 开方与指数运算- 计算器的使用技巧2. 代数与方程- 代数式的表示与运算- 一元一次方程与二元一次方程- 一次不等式与二次不等式- 方程与不等式的解法与应用3. 几何与图形- 基本图形的性质(三角形、四边形、圆等)- 几何证明与作图- 平面与空间几何关系- 三视图与投影图4. 函数与图像- 函数及其性质- 一次函数、二次函数与指数函数- 图像的绘制与分析- 函数应用的问题解决5. 统计与概率- 数据的收集与整理- 统计指标的计算与分析- 概率的基本概念与计算- 统计与概率在现实问题中的应用使用方法本教程提供全面而简洁的教学材料,学生可以按照教程的顺序逐章研究,确保掌握每个章节的内容。

每个章节还包括了练题和答案,以便学生巩固所学知识并进行自我评估。

结语通过本教程的研究,初中毕业生将能够充分准备好高中数学研究的挑战。

这将为他们未来的学业和职业发展打下坚实的基础。

同时,本教程也欢迎教师和家长的参与,以促进学生的研究效果和兴趣培养。

*注意:本教程的内容旨在提供数学学习的指导,因此不涉及复杂的法律问题和不可确认的引用内容。

请学生、教师和家长在使用本教程时,务必遵守当地教育政策和规定。

*。

初高中数学衔接

初高中数学衔接

初高中数学衔接
初高中数学的衔接是指初中数学知识与高中数学知识的衔接和延伸。

对于学生来说,初中数学是高中数学的基础,初中数学的学习成绩和基本数学思维能力将会影响到高中数学的学习水平和进度。

以下是初高中数学的衔接内容:
1. 知识内容的延伸与拓展:高中数学在初中数学的基础上进一步深入和拓展,包括函数的概念及其图像、极限的引入与计算、导数的定义与应用等。

2. 解题方法与思维方法的转变:初中数学主要注重计算能力和基本解题能力的培养,而高中数学更注重思维方法的培养,例如通过建立模型、推理和证明等方式解决问题。

3. 解决实际问题的能力培养:高中数学强调数学的应用能
力和实际问题的解决能力,需要学生将抽象的数学知识与
实际问题相结合,培养学生的数学建模能力。

4. 数学概念的理解和记忆:高中数学涉及较多的数学概念,学生需要对这些概念进行深入理解和牢记。

为了进行初高中数学的衔接,学生可以根据以下几点进行
提高:
1. 夯实初中数学基础:合理安排初中数学知识的学习,从
基础知识开始夯实,强化初中数学的计算能力和解题技巧。

2. 注意数学思维和解题方法的转变:了解高中数学的解题
方法和思维方式,适应从计算能力到思维能力的转变,培
养问题解决的思维能力。

3. 积极参加数学竞赛和数学社团活动:参加数学竞赛和数学社团活动,可以提高自己的数学应用能力和解决问题的能力。

4. 深入理解数学概念:重视数学概念的理解和记忆,通过多次复习和练习,牢记数学公式和定理。

总之,初高中数学衔接需要学生的认真学习和努力,合理安排学习时间,并注重理解、记忆和应用数学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数与式的运算一)、必会的乘法公式【公式1】ca bc ab c b a c b a 222)(2222+++++=++ 证明:2222)(2)(])[()(c c b a b a c b a c b a ++++=++=++ca bc ab c b a c bc ac b ab a 222222222222+++++=+++++=∴等式成立【例1】计算:22)312(+-x x解:原式=22]31)2([+-+x x913223822)2(312312)2(2)31()2()(234222222+-+-=-⨯⨯+⨯+-++-+=x x x x x x x x x x说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. 【公式2】3322))((b a b ab a b a +=+-+(立方和公式)证明: 3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+ 说明:请同学用文字语言表述公式2.【例2】计算: (2a+b )(4a 2-2ab+b 2)=8 a 3+b 3【公式3】3322))((b a b ab a b a -=++-(立方差公式)1.计算(1)(3x+2y )(9x 2-6xy+4y 2)= (2)(2x-3)(4x 2+6xy+9)=(3))916141(31212++⎪⎭⎫ ⎝⎛-m m m =(4)(a+b )(a 2-ab+b 2)(a-b )(a 2+ab+b 2)=2.利用立方和、立方差公式进行因式分解 (1)27m 3-n 3=(2)27m 3-81n 3=(3)x 3-125= (4) m 6-n 6=【公式4】33322()33a b a b a b ab +=+++【公式5】33223()33a b a a b ab b -=-+- 【例3】计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++ 解:(1)原式=333644m m +=+ (2)原式=3333811251)21()51(n m n m -=- (3)原式=644)()44)(4(63322242-=-=++-a a a a a (4)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知2310x x -+=,求331x x +的值. 解:2310x x -+= 0≠∴x 31=+∴xx原式=18)33(3]3)1)[(1()11)(1(2222=-=-++=+-+x x x x xx x x说明:本题若先从方程2310x x -+=中解出x 的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知0=++c b a ,求111111()()()a b c b c c a a b+++++的值. 解:b a c a c b c b a c b a -=+-=+-=+∴=++,,,0∴原式=abba c ac c ab bc c b a +⋅++⋅++⋅333()()()a a b b c c a b c bc ac ab abc---++=++=- ①abc c ab c c ab b a b a b a 3)3(]3))[((32233+-=--=-++=+abc c b a 3333=++∴ ②,把②代入①得原式=33-=-abcabc说明:注意字母的整体代换技巧的应用.二)、根式0)a ≥叫做二次根式,其性质如下:【例6】化简下列各式:(1)(2)1)x ≥解:(1) 原式=2|1|211-+==*(2) 原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2)x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数):(1)83(2)(3)(4) -+解:(1)83=46282383=⨯⨯=(2) 原式6==-(3) 原式=(4) 原式==说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式; ②被开方数不含能开得尽方的因数或因式. (2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式(或被开方数有分母(.(化为) ,转化为 “分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(2+2-).有理化因式和分母有理化有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式叫做有理化因式。

如a 与a ;y b x a +与y b x a -互为有理化因式。

分母有理化:在分母含有根式的式子里,把分母中的根式化去,叫做分母有理化。

【例8】计算:(1) 21)(1++--(2)+解:(1) 原式=22(1()21a b a +--+=--+(2) 原式+=+)=说明:有理数的的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式二次根式的运算.【例9】设x y =,求33x y +的值.解:77 14,123x y x y xy ==+=-⇒+==-原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.练 习1a =-成立的条件是( )A .0a >B .0a <C .0a ≤D .a 是任意实数2.若3x <|6|x -的值是( ) A .-3B .3C .-9D .93.计算: (1) 2(34)x y z --(2) 2(21)()(2)a b a b a b +---+(3)322)())((b a b ab a b a +-+-+(4) 221(4)(4)4a b a b ab -++4.化简(下列a 的取值范围均使根式有意义):(1) (2) a(3)(4)+-5.化简:(1)102m (2)0)x y >> 6.若112x y -=,则33x xy yx xy y +---的值为( ): A .35B .35-C .53-D .537.设x y ==,求代数式22x xy y x y +++的值.8.已知11120,19,21202020a xb xc x =+=+=+,求代数式222a b c ab bc ac ++---的值.9.设x =4221x x x ++-的值. 10.化简或计算:(1)3+÷(2)(3)-答案:1. C 2. A3. (1) 2229166824x y z xy xz yz ++--+(2) 22353421a ab b a b -++-+(3) 2233a b ab --(4)331164a b - 4.21--5. 6. D 7.8. 39.3- 10.-三)、分式当分式A B 的分子、分母中至少有一个是分式时,AB就叫做繁分式,繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.【例10】化简11xx x x x-+-解法一:原式=222(1)11(1)1(1)(1)11x x x x x xx x x x x x x x x x x x x x x x x x x++=====--⋅+-+-+++--+ 解法一:原式=22(1)1(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x++====-⋅-+--+++--⋅说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质A A mB B m⨯=⨯进行化简.一般根据题目特点综合使用两种方法.【例11】化简222396162279x x x x x x x x++-+-+-- 解:原式=22239611612(3)3(3)(3)2(3)(3)(39)(9)x x x x x x x x x x x x x x x ++--+-=--+-+---++-22(3)12(1)(3)(3)32(3)(3)2(3)(3)2(3)x x x x xx x x x x +-------===+-+-+ 说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式.四)、多项式除以多项式做竖式除法时,被除式、除式都要按同一字母的降幂排列,缺项补零(除式的缺项也可以不补零,但做其中的减法时,要同类项对齐),要特别注意,得到每个余式的运算都是减法。

结果表示为:被除式=除式⨯商式+余式 【例1】计算)3()3(24x x x -÷-解:393933330030032222442--+----++-+++-x x x x x x x x x x∴x x x x x 39)3()3()3(224-+--⨯-=-计算1.)32()2713103(223-+÷-++x x x x x 2.)1()22(232-÷-+x x x3.已知1453,211221923234+--=-+--=x x x B x x x x A 求:22B A ÷ 答案:1.32151443)32()2713103(2223-+-++=-+÷-++x x x x x x x x x2.12)1()22(2232-++=-÷-+x xx x x x 3.222)23(-=÷x B A二、因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.一)、公式法【例1】用立方和或立方差公式分解下列各多项式:(1) 38x +(2) 30.12527b -分析: (1)中,382=,(2)中3330.1250.5,27(3)b b ==.练 习解:(1) 333282(2)(42)x x x x x +=+=+-+ (2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++说明:(1) 在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如3338(2)a b ab =,这里逆用了法则()n n n ab a b =;(2) 在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号. 【例2】分解因式:(1) 34381a b b -(2) 76a ab -分析:(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++.(2) 76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+二)、分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如ma mb na nb +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.1.分组后能提取公因式 【例3】把2105ax ay by bx -+-分解因式.分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b -,这时另一个因式正好都是5x y -,这样可以继续提取公因式.解:21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试. 【例4】把2222()()ab c d a b cd ---分解因式.分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.解:22222222()()ab c d a b cd abc abd a cd b cd ---=--+ 2222()()abc a cd b cd abd =-+-()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+说明:由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用.2.分组后能直接运用公式【例5】把22x y ax ay -++分解因式.分析:把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.解:22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+ 【例6】把2222428x xy y z ++-分解因式.分析:先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-说明:从例5、例6可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.三)、十字相乘法1.2()x p q x pq +++型的因式分解这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.22()()()()()x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++因此,2()()()x p q x pq x p x q +++=++运用这个公式,可以把某些二次项系数为1的二次三项式分解因式. 【例7】把下列各式因式分解:(1) 276x x -+(2) 21336x x ++解:(1) 6(1)(6),(1)(6)7=-⨯--+-=- 2 76[(1)][(6)](1)(6)x x x x x x ∴-+=+-+-=--. (2) 3649,4913=⨯+=2 1336(4)(9)x x x x ∴++=++ 说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同. 【例8】把下列各式因式分解:(1) 2524x x +-(2) 2215x x --解:(1) 24(3)8,(3)85-=-⨯-+= 2 524[(3)](8)(3)(8)x x x x x x ∴+-=+-+=-+ (2) 15(5)3,(5)32-=-⨯-+=-2 215[(5)](3)(5)(3)x x x x x x ∴--=+-+=-+ 说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同. 【例9】把下列各式因式分解:(1) 226x xy y +-(2) 222()8()12x x x x +-++分析:(1) 把226x xy y +-看成x 的二次三项式,这时常数项是26y -,一次项系数是y ,把26y -分解成3y 与2y -的积,而3(2)y y y +-=,正好是一次项系数.(2) 由换元思想,只要把2x x +整体看作一个字母a ,可不必写出,只当作分解二次三项式2812a a -+.解:(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+- (2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-2.一般二次三项式2ax bx c ++型的因式分解大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++.反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解. 【例10】把下列各式因式分解:(1) 21252x x --(2) 22568x xy y +-解:(1) 21252(32)(41)x x x x --=-+3241-⨯(2) 22568(2)(54)x xy y x y x y +-=+-1 254y y -⨯说明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.四)、其它因式分解的方法1.配方法【例11】分解因式2616x x +-解:222222616233316(3)5x x x x x +-=+⨯⨯+--=+-(35)(35)(8)(2)x x x x =+++-=+-说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验.2.拆、添项法【例12】分解因式3234x x -+分析:此多项式显然不能直接提取公因式或运用公式,分组也不易进行.细查式中无一次项,如果它能分解成几个因式的积,那么进行乘法运算时,必是把一次项系数合并为0了,可考虑通过添项或拆项解决.解: 323234(1)(33)x x x x -+=+--22(1)(1)3(1)(1)(1)[(1)3(1)]x x x x x x x x x =+-+-+-=+-+--22(1)(44)(1)(2)x x x x x =+-+=+-说明:本解法把原常数4拆成1与3的和,将多项式分成两组,满足系数对应成比例,造成可以用公式法及提取公因式的条件.本题还可以将23x -拆成224x x -,将多项式分成两组32()x x +和244x -+.一般地,把一个多项式因式分解,可以按照下列步骤进行: (1) 如果多项式各项有公因式,那么先提取公因式;(2) 如果各项没有公因式,那么可以尝试运用公式来分解; (3) 如果用上述方法不能分解,那么可以尝试用分组或其它方法(如十字相乘法)来分解; (4) 分解因式,必须进行到每一个多项式因式都不能再分解为止.1.把下列各式分解因式:(1) 327a +(2) 38m -(3) 3278x -+2.把下列各式分解因式:(1) 34xy x +(2) 33n n x x y +-(3) 2232(2)y x x y -+3.把下列各式分解因式:(1) 232x x -+ (2) 2627x x --(3) 2245m mn n --4.把下列各式分解因式: (1) 5431016ax ax ax -+ (2) 2126n n n a a b a b +++- (3) 22(2)9x x --(4) 2282615x xy y +-(5) 27()5()2a b a b +-+-5.把下列各式分解因式:(1) 233ax ay xy y -+-(2) 328421x x x +-- (3) 251526x x xy y -+-(4) 22414xy x y +-- (5) 432234ab b a b a b a --+ (6) 66321x y x --+(7) 2(1)()x x y xy x +-+ 6.已知2,23a b ab +==,求代数式22222a b a b ab ++的值. 7.证明:当n 为大于2的整数时,5354n n n -+能被120整除.8.已知0a b c ++=,求证:32230a a c b c abc b ++-+=.练 习答案:1.222(3)(39),(2)(42),(23)(469),a a a m m m x x x +-+-++-++2.2222()(),()(),n x x y y xy x x x y x xy y +-+-++ 22432(1)(4321)y x x x x x --+++ 3.(2)(1)x x --,(9)(3)x x -+, (5)()m n m n -+4.3(2)(8)ax x x -- ;(3)(2)n a a b a b +- ;2(3)(1)(23)x x x x -+-+;(2)(415),x y x y -+ (772)(1)a b a b +++-5.2()(3),(21)(21),(3)(52)x y a y x x x x y -++--+;(12)(12),x y x y -++-23333()(),(1)(1),()(1)ab a b a b x y x y x x y x y +----+-++.6.2837.5354(2)(1)(1)(2)n n n n n n n n -+=--++ 8.322322()()a a c b c abc b a ab b a b c ++-+=-+++三、一元二次方程根与系数的关系现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述.一)、一元二次方程的根的判断式一元二次方程20 (0)ax bx c a ++=≠,(1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根:(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ∆=-【例1】不解方程,判断下列方程的实数根的个数:(1) 22310x x -+=(2) 24912y y +=(3) 25(3)60x x +-=解:(1) 2(3)42110∆=--⨯⨯=>,∴ 原方程有两个不相等的实数根. (2) 原方程可化为:241290y y -+=2(12)4490∆=--⨯⨯=,∴ 原方程有两个相等的实数根. (3) 原方程可化为:256150x x -+=2(6)45152640∆=--⨯⨯=-<,∴ 原方程没有实数根. 说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式.【例2】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根;(4) 方程无实数根.解:2(2)43412k k ∆=--⨯⨯=- (1) 141203k k ->⇒<;(2) 141203k k -=⇒=; (3)310124≤⇒≥-k k ;(4) 310124>⇒<-k k .【例3】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值. 解:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-. 综上知:1,0x y =-=二)、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:1222b b bx x a a a-+--+=+=-,221222()422(2)4b b b ac cx x a a a a a-+---⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”.【例4】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算.这里,可以利用韦达定理来解答.解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=- (1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---= (2)121212112220072007x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====说明:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.*【例5】一元二次方程042=+-a x x值范围。

相关文档
最新文档