Tectonic Model for Lachlan Fold Belt I-, S- and A-Type Granites
Constutive Model for SMA
σ
σ
AS S
AS f
AS σS
εL
σ fAS
σ SA S
Cm
Cs σ SA S σ SA f To
σ SA f
Input
AS SA AS, − σS σ fAS σ SA σ σ S f s
AS, − σs
ε L To
Cm
Cs
Formulation : Mechanical Shape Memory Alloy
& TWIN = f g & ( σ eq ) ε T ε eq
g
3 σ′ {σ eq }{ σ eq − σ Twin eff } 2 σ eq
n
G-function values (a,n and σ o ) should be selected to fit Exp. Curve Under Mf (Under Mf , Phase Transformation Strain = Twin Strain)
Shape Memory Alloy (SMA) : Nickel-Titanium alloys to show shape memory effect that severely deformed specimens, with residual strains up to 15%, regained their original shape after a loading cycle at a certain temperature.
(Contribution to Trip Strain : Starting with Vf = 0.0)
σ eq g ( σ eq ) = 1 − exp a σg o
金矿矿床特征分析与找矿标志探究
金矿矿床特征分析与找矿标志探究摘要:内蒙古虎拉林是金矿含量较多的地区,本文主要通过对该矿区的综合分析,分析金矿矿床的地质特征,同时对找矿标志进行了系统的探究,为今后我国的采矿事业提供了理论依据,对金矿矿区分析有着重要的指导意义。
关键词:金矿矿床特点找矿标志所谓金矿,是指具有足够含量黄金并可工业利用的矿物集合体,即金矿石,也指通过用采矿作业获得黄金的场所,即金矿山,还指通过成矿作用形成的具有一定规模的可工业利用的金矿石堆积,即金矿床。
本文以内蒙古的虎拉林为例,对金矿矿床进行系统的分析,并对其的形成原因和找矿标志进行探讨。
虎拉林位于内蒙古自治区的额尔古纳市,到目前为止,已经发现多个岩金矿床,我国的黄金支队一直对虎拉林地区进行调查,根据当地的矿产地质对虎拉林金矿有了新的认识。
1 虎拉林金矿区地质特点中侏罗统22站组是矿区内德主要地层,矿区的东南部和西北部分部比较广泛。
有研究表明区内的主要侵入岩为石英斑岩和,然后是花岗岩。
其中石英斑岩主要在矿区的中南部,形状为椭圆状,花岗斑岩主要在矿区的西南部分部分布,形状为条带状,花岗岩主要在矿区的西南部和中部分布,形状为小岩株状。
有研究表明花岗斑岩与金矿化之间有密切关系,但是从矿区中采集到了岩石标本的鉴定表明,赋矿岩浆岩是花岗岩的演化产物。
矿区内的最主要控矿构造就是角砾岩筒构造,其次是角砾岩筒构造。
研究表明,在虎拉林矿区有一个角砾岩带,方向为南北方向,能够在每个钻孔中都存在各种各样的角砾岩,在这些控矿构造中,最小的环形构造的直径大约为240m。
从钻孔的数据资料分析可知,角砾岩筒构造的垂深大于290m,南北方向的宽度大于590m,而东西方向的宽度大于390m。
依据角砾岩的分类方法,可以敬爱那个角砾岩分为以下三期:第一期为隐爆角砾岩,此期的角砾岩分布比较防范,而且在整个角砾岩筒内均有分布,角砾的成分大约包括:粉砂岩、长石、黑云母等。
角砾岩的形状也不一样,有的为棱角状的,也有的为磨圆状的,角砾的尺寸也不一样,最大的尺寸超过6cm,而最小的尺寸小于1mm;第二期为隐爆角砾岩,它主要在角砾岩筒的东侧分布,黑云母和第一期的角砾岩是角砾的主要成分,角砾的尺寸也不样,范围为从1mm~9cm,角砾的形状主要为磨圆状,也由少量的角砾为次棱角状,此期的局部地段的金矿已经达到了边界品位;第三期为角砾岩,主要分布在角砾岩筒内,且角砾的尺寸不一样,主要形状为棱角状,角砾岩脉呈平行状产出,虽然此期的角砾岩规模比较小,但是进品位较高,且矿化强度也达到了最大。
科学物理 Tesla 变压器说明书
3B SCIENTIFIC ® PHYSICSBedienungsanleitung06/15 LW/ALF1 Spulenabgriff2 Zündspule3 Grundplatte4 4-mm-Sicherheitsbuchsen5 Funkenstrecke (Zündkerze)6 Primärspule7 Sekundärspule8 Kugelelektrode, kurz 9 Kugelelektrode, lang∙Vorsicht! Umsichtiges Experimentieren von befähigtem Fachpersonal erforderlich! Lehre-rexperiment!∙ Betrieb nur im Innenbereich!∙Der Betrieb des Tesla-Transformators darf ausschließlich entsprechend dieser Beschrei-bung mit dem mitgelieferten Zubehör erfol-gen!∙Der Tesla-Transformator erzeugt hochfre-quente elektromagnetische Wellen. Wegen der großen Bandbreite kann der Transforma-tor empfindliche elektronische Geräte in un-mittelbarer Nähe stören oder zerstören. Des-halb dürfen solche Geräte nur im Abstand von mindestens fünf Metern aufgestellt werden. ∙Die vom Teslatransformator ausgestrahlten Frequenzen liegen im Bereich zahlreicher Funkfrequenzen. Die Inbetriebnahme darf daher nur kurzzeitig für Ausbildungszwecke erfolgen.∙Wenn sich Personen mit Herzschrittmachern und anderen elektronischen Steuergeräten in der Nähe des Tesla-Transformators aufhal-ten, darf dieser nicht in Betrieb genommen werden. Lebensgefahr!∙Es darf kein Betrieb des Gerätes durch schockgefährdete (kranke) Menschen erfol-gen!∙Keine Experimente an Tieren oder anderen Lebewesen mit dem Tesla-Transformator durchführen!∙Der Teslatrafo darf mit keinen Flüssigkeiten in Berührung kommen oder feucht werden!∙Bei Beschädigungen oder Fehlern den Tesla-Trafo nicht selbst reparieren!∙Es dürfen keine Metall- oder andere leitende Teile des Tesla-Transformators berührt wer-den. Von der Hochspannungsspule ist ein Si-cherheitsabstand von 20 cm einzuhalten, um Funkenüberschläge zu vermeiden.∙Nicht in der Nähe von feuergefährlichen Ma-terialien oder entzündlichen Flüssigkeiten und Gasen bzw. Dämpfen verwenden –Funken-bildung!∙Bei der Entwicklung des Tesla-Transformators wurde ein optimaler Kompro-miss zwischen seiner Leistungsfähigkeit und Universalität seines Einsatzes bei Einhaltung der erforderlichen Sicherheitsvorkehrungen geschlossen.∙Auf einen absoluten Berührungsschutz der Spannung führenden Teile wurde bewusst verzichtet, damit die Schüler Aufbau und Wir-kungsweise des Gerätes in allen Details gut erkennen können.∙Die Sicherheit des Experimentierenden ist in jeder Hinsicht vollständig garantiert, wenn Veränderungen am Tesla-Transformator (Va-riieren der Primärwindungszahl) und an der experimentellen Anordnung nur bei ausge-schaltetem Gerät vorgenommen werden. Es besteht bei keinem Experiment die Notwen-digkeit, bei angelegter Spannung am Tesla-Transformator Teile des Transformators oder der Experimentieranordnung zu berühren.∙Die Eingangsspannung des Teslatransforma-tors bereitet in ihrer Handhabung keinerlei Si-cherheitsrisiko (20 V), die Primärstromstärke(3 A) ebenfalls nicht.∙Entsprechendes gilt für die Ausgangsspan-nung und Stromstärke. Die Sekundärspan-nung hat eine Frequenz von 200 kHz bis 1200 kHz. bei einer Spannung von ca.100000 V. Die maximale Stromstärke liegt bei etwa 0,08 mA.Der Tesla-Transformator dient der Demonstration und Untersuchung der physikalischen Gesetz-mäßigkeiten hochfrequenter elektromagnetischer Wellen.Im Einzelnen ermöglicht der Tesla-Transformator die Demonstration folgender Phänomene:∙Erzeugung hochfrequenter elektromagneti-scher Schwingungen in einem Schwingkreis geringer Induktivität und Kapazität∙Abschirmung hochfrequenter elektromagneti-scher Schwingungen∙Berührungsloses Leuchten einer Leuchtstoff-lampe im hochfrequenten Feld∙Koronaentladung∙Funkenentladung∙Drahtlose Energieübertragung durch Hertz’sche Wellen∙Durchdringungsfähigkeit und Absorption Hertzscher Wellen∙Stehende Wellen auf einer Tesla-Spule2.1 AufbauDie Sekundärspule wird zentrisch in die Primär-spule eingeführt und eingesteckt. Man schließt den Tesla-Transformator über die Anschluss-buchsen (4) an eine Wechselspannungsquelle an.2.2 FunktionsprinzipMit einer Halbwelle der Versorgungsspannung wird über die Zündspule ein Kondensator gela-den, der sich über die Funkenstrecke (Zündker-ze) und die Primärwicklung des Tesla-Transformators entlädt.An der Primärwicklung entsteht eine gedämpfte Schwingung, die Energie auf die Sekundärspule überträgt. Dort entsteht eine elektromagnetische Schwingung im Bereich von 200 kHz bis 1200 kHz.In der Sekundärspule entsteht eine hochfrequen-te Hochspannung von mehr als 100 kV. Dabei schwingt die Sekundärspule in Resonanz zum Schwingkreis.1 Tesla-Transformator1 Kugelelektrode, kurz1 Kugelelektrode, lang1 Nadelelektrode mit Sprührad1 Handspule1 Sekundärspule1 Leuchstoffröhre mit Halterung1 ReflektorAbmessungenTransformator: 330x200x120 mm3 Sekundärspule: 240 mm x 75 mm Ø Masse Transformator: ca. 3 kg WindungszahlPrimärspule: 9Sekundärspule: 1150Primärspannung: 20 V ACSekundärspannung: ca. 100 kVZusatzspule 1000967 AC/DC Netzgerät, 30 V, 6 A @230V 1003593 oderAC/DC Netzgerät, 30 V, 6 A @230V 1003593∙Bei allen nachstehend beschriebenen Expe-rimenten ist ein Netzgerät mit einstellbarer Wechselspannung von 15 ... 24 V (max. 4 A) erforderlich. Zur Inbetriebnahme wird die Ver-sorgungsspannung erhöht, bis an der Zünd-kerze eine periodische Funkenentladung ein-tritt.∙Das Gerät ist nicht für Dauerbetrieb geeignet.Nach 5 Minuten Betriebsdauer sollte eine Ab-kühlung von mindestens 15 Minuten eingehal-ten werden.7.1 Abschirmung elektromagnetischerSchwingungen∙Der Tesla-Transformator wird ohne Sekun-därspule betrieben. Auf den Kunststoffring der Primärspule wird die Handspule gelegt.∙Der Abgriff der Primärspule ist auf höchste Position zu bringen. Nach der Inbetriebnahme des Tesla-Transformators wird in der Hand-spule eine Spannung induziert (Leuchten der Glühlampe).∙Danach wird zwischen Primärspule und Handspule der Reflektor geschoben. Die Aluminiumfolie schirmt die elektromagneti-schen Schwingungen ab. Die Lampe an der Handspule leuchtet nicht mehr. 7.2 Thomson’sche Schwingungsgleichung∙Der Tesla-Transformator wird mit einer Se-kundärspule betrieben. In die Buchse an der Oberseite wird die Nadelelektrode gesteckt. ∙Nach dem Anlegen der Spannung tritt an der Nadelspitze eine Koronaentladung auf. Durch Variieren der Abgriffposition (Veränderung der Primärspuleninduktivität) wird das Maxi-mum der Entladung eingestellt. (Spannungs-überhöhung bei Resonanz).∙Danach werden zwei Sekundärspulen überei-nander gesteckt und in die obere Spule die Nadelelektrode eingesetzt.∙Die Resonanz tritt bei höherer Primärwin-dungszahl auf, da das Sekundärspulenpaar jetzt die doppelte Windungszahl besitzt. Die Eigenfrequenz ist dadurch geringer gewor-den.∙Durch Vergrößern der Windungszahl des Schwingkreises verringert sich die Resonanz-frequenz.7.3 Korona-Entladung∙Der Tesla-Transformator wird mit zwei Se-kundärspulen und aufgesetzter Nadelelekt-rode betrieben.∙Die Windungszahl der Schwingkreisspule wird auf 7 eingestellt. An der Spitze der Nadel tritt eine Koronaentladung infolge der hohen Spannung auf.7.4 Elektrischer Wind∙Der Transformator wird mit einer Sekundär-spule bei einer Primärwindungszahl von 4 be-trieben. Auf die Sekundärspule wird die Na-delelektrode mit Sprührad gesetzt.∙Die Enden des S-förmigen Sprührades laufen spitz aus. Dort treten infolge der hohen elektrischen Feldstärke Elektronen aus Sie lagern sich an Luftmoleküle an, die abgesto-ßen werden. Die Bewegung der Luftmoleküle bewirkt einen Rückstoß, welcher das Rad in Bewegung setzt.7.5 Funkenentladung∙Der Transformator wird mit nur einer Sekun-därspule bei einer Primärwindungszahl von 4 betrieben. Auf die Sekundärspule wird die Nadelelektrode gesetzt.∙In die zweite Erdungsbuchse wird die lange Kugelelektrode gesteckt und deren Kugel zur Nadelspitze hin ausgerichtet.∙Zwischen Kugel und Nadelspitze springen lebhaft einige Zentimeter lange Funken über.7.6 Drahtlose Energieübertragung∙Der Transformator wird mit einer Sekundär-spule und aufgesteckter Kugelelektrode be-trieben.∙Eine zweite Sekundärspule wird mit Aufstell-fuß und Halterung für Leuchtstoffröhre in ca.1 m Abstand vom Tesla-Transformator aufge-stellt.∙Die Erdungsbuchsen zwischen Aufstellfuß und Tesla-Transformator sind mit einer Labor-Leitung zu verbinden.∙Nach der Inbetriebnahme des Tesla-Transformators ist im teilweise abgedunkelten Raum ein Leuchten der Röhre erkennbar. Es findet eine drahtlose Energieübertragung zwi-schen den Spulen statt.∙Mit dem Reflektor, zwischen den Spulen auf-gestellt, kann die abschirmende Wirkung der Metallfolie demonstriert werden.7.7 Stehende Wellen auf der Tesla-Spule∙Der Tesla-Transformator wird mit zwei ver-bundenen Spulen betrieben. Am oberen Ende befindet sich die kleine Kugelelektrode. Die Primärwindungszahl wird auf 8 eingestellt.∙Man führt die Handspule von oben her über das Spulenpaar langsam nach unten. Mit zu-nehmender Tiefe leuchtet die Lampe heller.Die Sekundärspule schwingt als λ/4-Dipol.Am oberen Ende tritt ein Stromknoten auf, am unteren Ende ein Strombauch.∙Man verringert die Windungszahl der Primär-spule auf 3 und führt wiederum die Handspule vom oberen Ende der Tesla-Spule langsam nach unten. Am oberen Ende tritt ein Strom-knoten auf, die Glühlampe leuchtet nicht oder schwach.∙Beim weiteren Bewegen nach unten sind noch zwei Schwingungsbäuche und ein Schwingungsknoten nachweisbar. Die Tesla-Spule schwingt als 3/4-λ-Dipol.∙Gerät an einem sauberen, trockenen und staubfreien Platz aufbewahren.∙Vor der Reinigung Gerät von der Stromver-sorgung trennen.∙Zur Reinigung keine aggressiven Reiniger oder Lösungsmittel verwenden.∙Zum Reinigen ein weiches, feuchtes Tuch benutzen.∙Die Verpackung ist bei den örtlichen Recyc-lingstellen zu entsorgen.∙Sofern das Gerätselbst verschrottetwerden soll, so gehörtdieses nicht in dennormalen Hausmüll. Essind die lokalen Vor-schriften zur Entsor-gung von Elektro-schrott einzuhalten.3B Scientific GmbH ▪ Rudorffweg 8 ▪ 21031 Hamburg ▪ Deutschland ▪ 。
Autodesk Fusion 360 T-Splines Module教程说明书
Product Surfacing with T-Splines and Parametric Modeling ToolsFACULTY INDUSTRIAL DESIGN – WAYNE STATE UNIVERSITY****************.studioKuhnen.deClaas Eicke KuhnenA little bit about myself:Undergraduate degree in Color Design for Product and Graphic Design MFA in 3D Studio for Jewelry and Digital Animation I always have been very curious about 3D in general Faculty Industrial Design at Wayne State UniversityResearch Assistant in BioMedical Engineering studioKuhnen LLCFocus: Digital design tools and workflows for product development andrapid digital prototyping combining different programs into on cohesivedesign approach.BackgroundClass summaryDescription:This class will demonstrate a workflow that uses the T-Splines Module in Fusion 360 software to create NURBS-like surface patches based on existing sketches and sculpting the desired surface flows via CV direct modeling.The resulting boundary representations (BREPs) can be further manipulated with solid and surface modeling tools inside Fusion 360’s parametric timeline.The class will also focus on proper T-Spline mesh topology to improve resulting BREP patch layout quality.Key learning objectivesAt the end of this class, you will be able to:▪Create T-Splines surfaces via sketches and primitives▪Sculpting T-Spline surfaces and maintain proper topology layouts▪Use T-Splines with other modeling tools in the parametric timeline▪Understand best practices and parametric surfacing strategies▪Understand how to exchange data with other 3rd party applicationsNURBS vs T-Splines▪Precise▪Curvature graph▪Single 4 sided patch▪Poly surface for complex topology▪Insert isoprams or change degree while keeping the shape▪Cannot refine density locally (only on complete patch)▪To round edges fillet command has/ can to be used ▪Precise▪Curvature graph (with limitations)▪Single 4 sided patch and NGons▪Single surface for complex topology ▪Insert loop-cuts while keeping the exact shape▪Insert edge on a face where needed for local density change▪Fillets can be sculpted via edge loops and mesh topology on the fly▪Advantage:▪Clean light weight geometry▪Control over patch layout▪Disadvantage:▪Very labor intensive for smooth shapes▪Requires perfect profile layouts▪Design adjustments require manual sketch and surface re-alignments ▪Advantage:▪Incredible easy to sculpt▪Organic flows can be modeled with irregular topology layouts▪Disadvantage:▪Patch layout can get messy when T-Splines mesh count is high▪Achieving smooth curvature is harder than blending between NURBSsurfacesConclusionThink about T-Splines like NURBS:▪Think and treat T-Splines like NURBS that combines the best for NURBS andpolygon modeling together into one workflow▪Maintain slim mesh density like in a NURBS sculpting workflow▪But make use of mesh topology freedom from Sub-D modeling▪Then you have NURBS CV cage editing in Fusion 360Excited?So lets get started!▪Your class feedback is critical. Fill out a class survey now.▪Use the AU mobile app or fill out a class survey online.▪Give feedback after each session. ▪AU speakers will get feedback in real-time.▪Your feedback results in betterclasses and a better AU experience. How did I do?More Questions? Visit the AU Answer Bar ▪Seek answers to all of your technical productquestions by visiting the Answer Bar.Wednesday; 8am-4:30pm Thursday.▪Located outside Hall C, Level 2.▪Meet Autodesk developers, testers,& support engineers ready to helpwith your most challengingtechnical questions.Shape the future of Autodesk▪Connect one-on-one with product managers, designers, and researchers at the Idea Exchange.GoPro Sweepstakes.▪Open daily – Sessions average 20 minutes.No appointment necessary. Walk-ins welcome!▪Located outside Hall C, Level 2.▪View my contributor profile at AUonline for a list of all my classes.▪Learn more about me and see allmy contributions to Autodesklearning.▪Activate your own profile and startcontributing.▪Complete your profile while at AULas Vegas and Autodesk will makea donation on your behalf.See all my AU classes in one placeAutodesk is a registered trademark of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and。
关于连铸凝固传热数值模拟中钢液有效导热系数的探讨 2009
第6期 2009年12月连铸Continuous CastingNo.6December 2009关于连铸凝固传热数值模拟中钢液有效导热系数的探讨邹达基, 邹宗树(东北大学材料与冶金学院,辽宁沈阳110004)摘 要:在建立板坯连铸一维非稳态凝固传热数学模型的基础上,考虑到液相区的流动和传热状态随拉坯方向的变化,研究了有效导热系数与固相导热系数的比值m (λeff /λs )的处理方法对计算结果的影响。
结果表明,在相同的二冷条件下,m 取不同的常数对模型计算结果影响很大。
在相同的二冷条件下,将m 取为常数和取为随拉坯方向变化的变量都可以得到相同的液相穴深度,但二者的凝固壳厚度随拉坯方向的变化有一定的差别,并且出结晶器坯壳厚度差别较大。
改变二冷条件,上述二者液相穴深度不再相等。
因此,将m 取为常数的处理方法是不合理的。
关键词:板坯连铸;凝固传热;数值模拟;液相有效导热系数中图分类号:TF777.1 文献标识码:A 文章编号:100524006(2009)0620005204Discussion on E ffective Therm al Conductivity of Molten Steel inNumerical Simulation of Solidif ication in Continuous C astingZOU Da 2ji , ZOU Zo ng 2shu(School of Materials and Metallurgy ,Northeastern University ,Shenyang ,110004,Liaoning ,China )Abstract :Considering the variation of flow and heat transfer conditions in the region of slab continuous castingstrand ,the influence of m (λeff /λS )ratio of effective thermal conductivity to solid thermal conductivity on simulationresult was studied with a one 2dimensional unsteady solidification heat transfer model.The results showed that under the same secondary cooling condition ,the value of m has a great effect on the model calculating result ;the same depth of liquid core can be obtained with a constant m or a variable m along with casting direction ,but the variations of solidified shell thickness are different f rom each other ,particularly at the exit of the mold.Moreover ,if the sec 2ondary cooling condition is changed ,the depths of liquid core will no longer be equal to each other.Therefore ,the taking m as a constant is unreasonable.K ey w ords :slab continuous casting ;solidification heat transfer ;numerical simulation ;liquid effective thermal con 2ductivity作者简介:邹达基(19862),男,硕士生; E 2m ail :daji141@ 修订日期:2009206217符号表τ———时间,st p ———浇注温度,℃q w ———热流密度,W/m 2A ,B ———常数τ0———凝固时间,s α———对流给热系数,W/(m 2・℃)t w ———铸坯表面温度,℃t f 1———冷却水温度,℃t f 2———环境温度,℃W ———水流密度,L/m 2・s ε———铸坯表面黑度,一般取0.8σ———波尔兹曼常数,5.67×10-8W/(m 2・K 4)T ———温度,℃T l ,T s ———液相线、固相线温度,℃f s ———固相率C s ,C l ,C s -l ———固相区、液相区、两相区比热容,J /(kg ・℃)L f ———凝固潜热,低碳钢可取310800J /kg [2]λs ———固相导热系数,W/(m ・℃)λeff ———有效导热系数,W/(m ・℃)1 问题的提出在凝固传热的数值模拟中,对液相导热系数的处理是必须解决的问题。
Enterprise自扩展纤维胶脑血管支架使用说明书
Delivery technique plays an important role indetermining vessel wall apposition of the Enterprise self-expanding intracranial stentRobert S Heller,1,3Adel M Malek 1,2,3ABSTRACTBackground The Enterprise (EN)vascular reconstruction device is a self-expanding nitinol stent used as adjunctive support in wide-necked aneurysm coiling.We sought to evaluate the effect of deployment technique on how well the EN stent conforms to the vessel wall around a curve.Methods A flow model consisting of a 3.5mm diameter silicone tube forming a 7mm radius curve was visualized using high-resolution flat-panel CT (FPCT;DynaCT).EN stents (4.5mm 322mm)were deployed using three methods:(1)microcatheter pull-back,(2)deliverymicrowire push and (3)a combination of both methods so as to keep the microcatheter tip centered within the lumen during deployment.FPCT images were visualized using multiplanar reconstruction for evidence of incomplete stent apposition (ISA).Results FPCT revealed a critical role for deployment method in stent e wall apposition as noted by the development of a crescent-shaped gap between the stent and the wall.Specifically,the manufacturer-recommended microcatheter pull-back unsheathing technique (method 1)resulted in outer curve ISA,while the microwire push technique (method 2)led to inner curve ing method 3in a dynamic push e pull manner minimized both inner and outer curve ISA.Conclusion The deployment method used to deliver the EN vascular reconstruction device plays a critical role in determining how well its struts appose the vessel wall in vitro.This characteristic must be taken into account when deploying this flexible low-profile stent to avoid ISA in even mildly tortuous anatomy given the possible link between stent malapposition and thromboembolic complications.INTRODUCTIONThe Enterprise vascular reconstruction device (EN)is a closed-cell design intracranial stent that is designed for treatment of wide-necked aneurysms 12(figure 1A).The EN stent offers a number of features that provide it with advantages,including a low-pro file delivery microcatheter (0.021-inch),resheathability for repositioning and smaller cell size to decrease risk of coil protrusion,as compared with the open-cell design Neuroform stent 3(figure 1B).Conventional angiography and 3D rotational angiography have not been able to clearly visualize the fine structure of the EN stent in clinical use to assess how well the stent apposes the vessel wall in tortuous anatomy.Recent advances in high-resolution imaging with C-arm flat-panel angio-CT (FPCT)have improved the ability to resolve the stent structure.45This technique has been successfully used to determine the in vitrobehavior of self-expanding intracranial stents around bends.These studies were,however,conducted in vitro by externally altering the angle of a straight silicone tube containing the already deployed stent.4Although these studies are very informative,they do not re flect the reality of deploying a stent in an already tortuous vessel,and do not address the effect of deployment technique on the interaction of the stent with the vessel wall.In the current study,we used FPCT to evaluate the interaction of the EN stent with the wall in an in vitro silicone model,and describe a critical effect of the deployment technique on the development of incomplete stent apposition (ISA)67to the wall and present a method of deployment that aims to mitigate this undesirable property.METHODSFlow model and imagingA silicone flow model connected to a flow pump was used under direct radiographic visualization in the angiography suite.The inner diameter of the tubing was 3.5mm and the targeted curved segment had a radius of curvature of 7mm(toFigure 1Enterprise (EN)vascular reconstruction device (A)is mounted on a delivery microwire (B,C).Illustration of the different delivery methods used to deploy the wire-mounted EN self-expanding stent (D).1Cerebrovascular and Endovascular Division,Department of Neurosurgery,Tufts Medical Center,Boston,Massachusetts,USA 2Department of Radiology,Tufts Medical Center,Boston,Massachusetts,USA 3Tufts University School of Medicine,Boston,Massachusetts,USA Correspondence toAdel M Malek,Department of Neurosurgery,Tufts Medical Center,800Washington Street,Boston,MA 02111,USA;Received 12December 2010Accepted 24January 2011Published Online First 9March2011This paper is freely available online under the BMJ Journals unlocked scheme,see /site/about/unlocked.xhtml on December 24, 2023 by guest. Protected by copyright./J NeuroIntervent Surg: first published as 10.1136/jnis.2010.004499 on 9 March 2011. Downloaded fromcenter of lumen).A calibratedflat-panel biplanar Artis digital subtraction angiography system(Siemens,Malvern,Pennsyl-vania,USA)was used for all procedures.3D FPCT was performed(DynaCT;Siemens)after the deployment procedure using all three deployment methods.Acquisitions were recon-structed and analyzed using the Leonardo software package (Siemens).The FPCT source images were visualized using multiplanar reconstruction and maximal intensity projection using Osirix software(64-bit version 3.8;Pixmeo,Bernex, Switzerland).Deployment methodA standard Envoy5-French guide catheter was used to advance a Prowler Plus Select0.021-inch microcatheter(Codman Neurovascular,Chelmsford,Massachusetts,USA)across the targeted tubing bend over a0.014Agility microwire(Codman). A4.5mm322mm EN stent was advanced underfluoroscopic guidance and centered over the target aneurysm.The stent was then initially deployed using the same technique of immobi-lizing the delivery microwire and unsheathing the stent by withdrawal of the delivery(Prowler Plus Select)microcatheter until theflared ends and distal5e6mm of the stent were in contact with the wall(figure1C).The rest of the deployment was then performed using three distinct methods(figure1D).In method1(microcatheter pull-back),the stent delivery micro-wire was kept immobilized and the rest of the stent was unsheathed by simple withdrawal of the microcatheter (figure1D,T op).Method1is recommended by the manufacturer in its instructions for use(‘If stent positioning is satisfactory, carefully retract the infusion catheter,while maintaining the position of the deliverywire,to allow the stent to deploy across the neck of the aneurysm.The stent will expand as it exits the infusion catheter.’).In method2(microwire push),the delivery microcatheter was immobilized and the stent delivery microwire was advanced to affect the remainder of the stent deployment (figure1D,Center).In method3(balanced push e pull), a combination of methods1and2was used to insure that the tip of the delivery microcatheter remained centered in the middle of the lumen during the entire delivery process (figure1D,Bottom).RESULTSHigh-resolution FPCT imaging revealed a critical role for EN stent deployment technique in its apposition to the tubing wall on the curved test site(figure2).Using the microcatheter pull-back technique(method1),the EN stent tended to follow theFigure2Sagittal thick(3.5mm,A,B,C)and thin(1mm,D,E,F)and axial thin(0.4mm,G,H, I)reconstructions of high-resolutionflat-panel CT in the same silicone model deployed using method1(microcatheter pull-back,A,D,G), method2(microwire push,B,E,H)and method3 (dynamic push e pull,C,F,I).Note gap between the stent struts and inner wall(arrow).on December 24, 2023 by guest. Protected by copyright./J NeuroIntervent Surg: first published as 10.1136/jnis.2010.004499 on 9 March 2011. Downloaded fromcontour of the inner vessel curve,with poor contact on the outer curve(figure2A,D,G).This resulted in the development of significant outer curve ISA,seen as a crescent-shaped gap between the stent and the wall of the tubing.Conversely,using the microwire push technique(method2)resulted in the EN stent following the outer contour of the curve during its deployment,with a consequent crimp on the inner curve and lack of apposition to the wall at that site(figure2B,E,H),leading to inner curve ISA.By examining the tip of the delivery microcatheter during deployment with methods1and2,it appeared that striving for a mid-luminal microcatheter position during the deployment process may alleviate or balance the tendencies of the stent to follow the outer or inner curve contours.Accordingly,the third technique of balanced push e pull is a combination of methods 1and2that aims to mitigate both inner and outer curve ISA. This is achieved by careful monitoring of the microcatheter tip, applying microwire push when the tip is too close to the wall of the inner curve,and conversely pulling back on the delivery microcatheter when the tip is noted to be getting close to the outer curve.This dynamic balancing technique is continued until the entire stent is delivered,resulting in optimized inner and outer curve apposition(figure2C,F,I).DISCUSSIONThis report is thefirst to highlight the critical importance of deployment technique in the performance of the EN self-expanding stent.Despite using the same relatively large radius curvature silicone model,which is less tortuous than a typical carotid siphon,deployment technique resulted in significantly different configurations of the EN stent with the tubing wall leading to the appearance of outer,or inner curve stent e wall malapposition(figure3).The study has limitations as well,in that silicone tubing does not faithfully reproduce the frictional coefficient or the stiffness of a native vessel wall,even though it is likely superior to a rigid glass tubing model.In addition,a methodical analysis of the dependence of stent apposition on deployment technique at decreasing curvature radius or using different EN stent lengths was not performed in the current analysis.4Because of it closed-cell design,it is possible that the EN stent may not be able to completely appose the vessel wall beyond a certain level of tight curvature,regardless of the deployment technique employed by the interventionalist.Rather,the purpose of the current study was to illustrate the phenomenon of deployment method dependence in a very mildly curved vessel,where the inherent closed-cell design property of the EN stent cannot be directlyimplicated as the only source of thefinding.There are a number of points of clinical relevance that can be derived from thefindings described here.First of all,ISA has been shown to be related to short-term and long-term thromboem-bolic complications as well as vessel thrombosis and occlusion in the coronary circulation.7These observations,however,were made in thicker-strut balloon-mounted coronary stents deployed in atherosclerotic vessels,and may not be applicable to the use of the thinner strut EN stent deployed in non-stenotic aneurysm-bearing vessels.Second,a number of reports have implicated the EN stent in early and delayed migration.89It is possible that lack of complete stent apposition to the wall may contribute to this phenomenon in two ways:(1)by decreasing the surface in contact with the vessel wall and making it more likely to migrate as a result of pulsation of the vessel wall(ratchet effect) or(2)by increasing the exposure of stent elements to the higher centralflow velocities,which may increase the stent surfacecross-section exposed to hemodynamic drag and lead to move-ment of the stent over time.The latter effect is unlikely tocontribute to the reported proximal migration,however,because any hemodynamic drag would tend to move the stent downstream.The third implication is related to subsequent navigationthrough the deployed stent under conventionalfluoroscopy.It isfeasible that an advancing microcatheter or microwire may inadvertently enter into the outer or inner region of ISA,whichis not visible under standardfluorography used in neuro-interventional procedures.This could thereby lead to entangle-ment between the microcatheter and the stent struts.Thecurrent study suggests the possible utility of FPCT imaging toevaluate the relative position of the advancing microwire or microcatheter with respect to the deployed EN stent and anyareas of inner or outer curveISA.Figure3Illustration of resulting incomplete stent apposition(ISA)patterns from deployment methods1e3.Microcatheter pull-back(method1)leads to the stent preferentially apposing the inner curveleading to outer curve ISA(A),while the microwire push(method2)leads to the stent apposing the outer curve resulting in inner curve ISA (B).Method3(C)aims to minimize both patterns of malapposition. on December 24, 2023 by guest. Protected by copyright./ J NeuroIntervent Surg: first published as 10.1136/jnis.2010.004499 on 9 March 2011. Downloaded fromIn conclusion,we have demonstrated that the method of deployment of the EN stent plays an important role in deter-mining the way that the stent apposes to the wall and its configuration.This technical dependence should be kept in mind when deploying the device around curved and tortuous vessels in order to minimize the phenomenon of stent crimping,ovalization,incomplete stent apposition,and their potential deleterious clinical impacts.Funding The senior author has received unrestricted research support from Boston Scientific and Codman Neurovascular.Competing interests The senior author(AMM)has received unrestricted research support from Codman Neurovascular and Boston Scientific for unrelated research. Provenance and peer review Not commissioned;externally peer reviewed.REFERENCES1.Higashida RT,Halbach VV,Dowd CF,et al.Initial clinical experience with a newself-expanding nitinol stent for the treatment of intracranial cerebral aneurysms:the Cordis Enterprise stent.AJNR Am J Neuroradiol2005;26:1751e6.2.Mocco J,Snyder KV,Albuquerque FC,et al.Treatment of intracranial aneurysms withthe Enterprise stent:a multicenter registry.J Neurosurg2009;110:35e9.3.Howington JU,Hanel RA,Harrigan MR,et al.The Neuroform stent,thefirstmicrocatheter-delivered stent for use in the intracranial circulation.Neurosurgery2004;54:2e5.4.Ebrahimi N,Claus B,Lee CY,et al.Stent conformity in curved vascular models withsimulated aneurysm necks usingflat-panel CT:an in vitro study.AJNR Am JNeuroradiol2007;28:823e9.5.Benndorf G,Claus B,Strother CM,et al.Increased cell opening and prolapse of strutsof a neuroform stent in curved vasculature:value of angiographic computedtomography:technical case report.Neurosurgery2006;58(4Suppl2):ONS e E380;discussion ONS-E380.6.Radu M,Jorgensen E,Kelbaek H,et al.Strut apposition after coronary stentimplantation visualised with optical coherence tomography.EuroIntervention2010;6:86e93.7.Rathore S,Terashima M,Habara M,et al.Incomplete stent apposition after coronarystent implantation:myth or reality?J Interv Cardiol2009;22:341e9.8.Kelly ME,Turner RDt,Moskowitz SI,et al.Delayed migration of a self-expandingintracranial microstent.AJNR Am J Neuroradiol2008;29:1959e60.vine SD,Meyers PM,Connolly ES,et al.Spontaneous delayed proximal migrationof Enterprise stent after staged treatment of wide-necked basilar aneurysm:technical case report.Neurosurgery2009;64:E1012;discussionE1012. on December 24, 2023 by guest. Protected by copyright./ J NeuroIntervent Surg: first published as 10.1136/jnis.2010.004499 on 9 March 2011. Downloaded from。
华南新元古代花岗岩的锆石U_Pb年龄及其构造意义
区域同位素年代学和地球化学
矿物岩石 地球化学通报 Bulletin of Mineralogy, Petrology and Geochemistry
Vol. 20 No. 4, 2001 Oct.
华南新元古代花岗岩的锆石 U Pb 年龄及其构造意义
李献华1, 李正祥2, 葛文春1 , 周汉文1, 3, 李武显1, 刘 颖1
花岗岩的形成通常是在地幔向地壳传输热和 或物质的时期, 因此也常常和一些重大地质构造事 件相关。扬子块体周缘和内部广泛分布新元古代花 岗岩, 这些花岗岩传统上被认为是和造山运动有关 的, 如同造山花 岗岩[ 1] 或晚造山 后造山花岗 岩[ 2] 。 然而, Li 等[ 3] 最近根据桂北四堡群中的基性岩脉 岩 席的 SHRIMP 锆石U Pb 年龄为 828 7 Ma 和澳大利 亚 Gairdner 地幔柱成因的岩墙群( 827 6 Ma) 年龄一 致, 以及这一时期大规模地壳抬升去顶以及随后形 成裂谷, 提出华南存在~ 825 Ma 的地幔柱。在桂北 地区, 819~ 826 Ma 的花岗岩与 828 Ma 的基性岩在 时空上密切共生, 因此他们将这些花岗岩解释成是 由于地幔柱活动导致地壳重熔所致。
收稿日期: 2001 06 30 第一作者简介: 李献华( 1961 ) , 男, 研究员, 博士生导师, 从事同位素地球化学研究
侧身链条 英语说法
侧身链条英语说法英文回答:Lateral Chains.Lateral chains are branched hydrocarbon chains that are attached to the main carbon backbone of an organic molecule. They can be aliphatic or aromatic, and they can vary in length and complexity. Lateral chains can have asignificant impact on the physical and chemical propertiesof an organic molecule.Aliphatic Lateral Chains.Aliphatic lateral chains are composed of saturated or unsaturated hydrocarbon chains. Saturated aliphatic lateral chains contain only single bonds between the carbon atoms, while unsaturated aliphatic lateral chains contain one or more double or triple bonds. The length and degree of unsaturation of an aliphatic lateral chain can affect thesolubility, boiling point, and other physical properties of an organic molecule.Aromatic Lateral Chains.Aromatic lateral chains are composed of benzene rings or other aromatic groups. Aromatic lateral chains are typically more stable and less reactive than aliphatic lateral chains. They can also affect the solubility,boiling point, and other physical properties of an organic molecule.Effects of Lateral Chains on Organic Molecules.Lateral chains can have a significant impact on the physical and chemical properties of organic molecules. For example, the presence of a lateral chain can:Increase the solubility of an organic molecule in a nonpolar solvent.Decrease the boiling point of an organic molecule.Alter the reactivity of an organic molecule.Influence the formation of intermolecular forces.Importance of Lateral Chains.Lateral chains are important in a wide variety of organic molecules, including:Hydrocarbons.Alcohols.Aldehydes.Ketones.Carboxylic acids.Esters.Amides.Amines.Lateral chains can also be found in many natural products and pharmaceuticals.中文回答:侧身链条。
薄膜材料与技术复习题
一、选择题:1、所谓真空, 是指:()A.一定的空间内没有任何物质存在;B.一定空间内气压小于1个大气压时, 气体所处的物理状态;C、一定空间内气压小于1 MPa时, 气体所处的物理状态;D.以上都不对2.以下关于CVD特点的描述, 不正确的是: ()A.与溅射沉积相比, CVD具有更高的沉积速率;B、与PVD相比, CVD沉积绕射性较差, 不适于在深孔等不规则表面镀膜;C.CVD的沉积温度一般高于PVD方法;D.CVD沉积获得的薄膜致密、结晶完整、表面平滑、内部残余应力低3.关于气体分子的平均自由程, 下列说法不正确的是: ()A.气压越高, 气体分子的平均自由程越小;B.真空度越高, 气体分子的平均自由程越长;C.温度越高, 气体分子的平均自由程越长;D.气体分子的平均自由程与温度、压力无关, 取决于气体种类4、下列PECVD装置中, 因具有放电电极而存在离子轰击、弧光放电所致的电极损坏潜在风险和电极材料溅射污染薄膜问题的是:()A.电容耦合型;B.电感耦合型;C.微波谐振型;D.以上都不对5、按真空区域的工程划分, P = 10-4 Pa时, 属于()区域, 此时气体分子的运动以()为主。
A.粗真空;B.低真空;C.高真空;D.超高真空;E、粘滞流;F、分子流;G、粘滞-分子流H、Poiseuille流6、下列真空计中, ()属于绝对真空计。
A.热偶真空计;B.电离真空计;C、Pirani真空计;D、薄膜真空计7、CVD沉积薄膜时, 更容易获得微晶组织薄膜的方法是:()A.低温CVD;B.中温CVD;C.高温CVD;D.以上都不对8、下列真空泵中, ()属于气体输运泵。
A.旋片式机械泵;B、油扩散泵;C、涡轮分子泵;D、低温泵9、低温CVD装置一般指沉积温度<()的CVD装置。
A.1000℃;B.500℃;C.900℃;D.650℃10、下列关于镍磷镀技术的说法中, 正确的是: ()A.所获得的镀层含有25wt%左右的P而非纯Ni, 所以也称NiP镀;B、低P含量的镍磷镀镀层致密, 硬度可达到与电镀硬Cr相当的水平;C.高P含量的镍磷镀镀层无磁性;D.可直接在不具有导电性的基体上镀膜11.关于LPCVD方法, 以下说法中正确的是: ()A、低压造成沉积界面层厚度增加, 因此薄膜沉积速率比常压CVD更低;B.低压造成反应气体的扩散系数增大;C.低压导致反应气体的迁移运动速度增大;D.薄膜的污染几率比常压CVD更低12.气相沉积固态薄膜时, 根据热力学分析以下说法中不正确的是: ()A.气相过饱和度越大, 固态新相形核能垒越低;B.气相过饱和度越大, 固态新相形核能垒越高;C、气相过饱和度越大, 固态新相临界晶核尺寸越大;D.固态新相的形核能垒和临界晶核尺寸只取决于沉积温度(过冷度)13、溅射获得的气相沉积原子是高能离子轰击靶材后, 二者通过级联碰撞交换能量的结果, 因此入射离子能量()时更容易发生溅射现象。
共晶高熵合金的仿生抗冲击结构
共晶高熵合金的仿生抗冲击结构英文回答:Bio-inspired impact-resistant structures in eutectic high-entropy alloys have attracted significant attention due to their potential applications in various engineering fields. The unique microstructure and mechanical properties of eutectic high-entropy alloys make them promising candidates for developing impact-resistant structures inspired by natural materials.One of the key strategies for designing bio-inspired impact-resistant structures in eutectic high-entropy alloys is to mimic the hierarchical and multi-scale architecture found in natural materials such as nacre or bone. By incorporating this hierarchical architecture into the design of eutectic high-entropy alloys, it is possible to enhance their impact resistance and toughness.Another important aspect of bio-inspired impact-resistant structures in eutectic high-entropy alloys is the use of multiple phases with contrasting mechanical properties. This mimics the natural materials that consistof different phases arranged in a specific manner to enhance their mechanical performance. By carefullydesigning the composition and microstructure of eutectic high-entropy alloys, it is possible to create a similarmulti-phase architecture that improves their impact resistance.Furthermore, the use of bio-inspired design principles such as staggered arrangements, brick-and-mortar structures, and gradient interfaces can also be applied to eutectichigh-entropy alloys to enhance their impact resistance. These design principles have been proven effective innatural materials and can be adapted to improve the mechanical properties of eutectic high-entropy alloys.In summary, the development of bio-inspired impact-resistant structures in eutectic high-entropy alloys holds great promise for advancing the field of materials science and engineering. By drawing inspiration from naturalmaterials and incorporating their design principles into the development of eutectic high-entropy alloys, it is possible to create materials with exceptional impact resistance and toughness.中文回答:共晶高熵合金的仿生抗冲击结构已经引起了人们的广泛关注,因为它们在各种工程领域中具有潜在的应用价值。
西门子PLM软件Parasolid 产品介绍说明书
Siemens PLM Software ParasolidSummaryParasolid® software is the world’s premier 3D geometric modeling component, selected by leading application vendors and end-user organizations spanning multiple industries as their preferred platform for delivering innovative 3D solutions with unparalleled modeling power, versatility and interoperability. A key offering within Siemens PLM Software’s PLM Components family of software products, Parasolid is tar-geted at a broad range of applications across the product lifecycle and provides robust, high-quality functionality that is easy to use and cost-effective to implement.World-class geometric modeling for demanding 3D applications Parasolid supports solid modeling, facet modeling, generalized cellular modeling, direct modeling and freeform surface/sheet modeling within an integrated framework. Parasolid is available in three commercial packages: Designer, Editor and Communicator – each of which is offered with convergent modeling technology as an option – and is also available to the aca-demic community via an Educator package. The functional scope and typical application at each level are outlined below. The table on the next page summarizes the corre-sponding functionality.Parasolid Designer delivers the full power of Parasolid functionality for unlimited creation, manipulation, interrogation and storage of 3D models. Over 900 object-based API functions provide the most comprehensive and robust 3D modeling platform for demanding 3D applications. Parasolid Editor provides an extended subset of Parasolid functionality that is ideal for analysis, manufacturing and other downstream applications that need to easily manipulate, edit, repair or simplify 3D models without the need for advanced modeling operations.Parasolid benefits• Provides ideal foundationfor innovative 3D applica-tion development• Reduces development costsand risks by providing aproven 3D modelingsolution• Ensures state-of-the-artquality and robustness• Convergent modeling tech-nology seamlesslyintegrates classic b-rep andfacet b-rep modeling opera-tions in a unifiedarchitecture• Offers world-class technicalsupport for rapidtime-to-market• Enables instantcompatibility with otherParasolid-based applicationsthrough translation-freeexchange of 3D data/plmcomponentsParasolidPLM COMPONENTSParasolid Communicator comprises versatile base functionality, including interoper a bility, visualization and data interro g ation capabili-ties, that provides a platform for applications to consume existing 3D models.Parasolid Educator, complementing the above commercial packages, provides academic institutions with the full power of Parasolid functionality for teaching,research and industrial collaboration.Parasolid facts• Fully integrated modeling of 3D curves, surfaces and solids with over 900 API functions • Modeling foundation for hundreds of the world’s leading CAD, CAM and CAE applications• Corporate standard forSiemens’ NX™, Solid Edge®, Femap™ and Teamcenter® software solutions • Used in over 3.5 million seats of application soft-ware globally• Licensed by 170 software vendors for integration into more than 350 applications • Provides industry-leading robustness with over a mil-lion quality tests run daily • Provides unmatched two-way data compatibility via Parasolid native XT format Parasolid usageParasolid is the component of choice for both cloud-based solutions and traditional stand-alone workstations. Parasolid is deployed across a wide range of PLM application domains, including:• Mechanical CAD • CAM/manufacturing • CAE/validation • AEC• Visualization • Data exchange • Interoperability • Knowledge-based engineering • CMM/inspection • CNC/machine tools • Corporate R&D • Academic R&DPLM COMPONENTSFoundation capabilitiesParasolid is built on critical foundation capabilities that enable Parasolid to be deployed successfully in a wide variety of software applications. Enabled across all relevant functionality, Parasolid foundation capabilities include:• Tolerant modeling for intrinsically reliable modeling with imported data• Convergent modeling technology, available as a licensed option, seamlessly integrates classic b-rep and facet b-rep modeling operations in a unified architecture• Attributes and callbacks for application-specific character-istics and behavior• Session and partitioned rollback for flexible history and undo/redo implementation• Data management and tracking for managing models and associated data as they evolve• Thread safety and symmetric multi-processing support for optimal performance on multi-processor machines• Model storage in forwards and backwards compatible native XT format• .NET Binding to integrate Parasolid into .NET applications written in C#• Broad platform coverage including comprehensive support for Windows, Linux, Unix and MacGetting startedParasolid is delivered with a compre h ensive set of documen-tation and developer resources, including a complete Jumpstart Kit of tools that promote easy integration of Parasolid into new and existing applications:• Full Product Documentation Suite in html and pdf formats • Parasolid Workshop prototypingenvironment for Windows• Example Application Resourcesto get you up and running• Code Example Suite illustratesbest implementation practice• Parasolid ‘Getting Started’ Guideanswers your questions• Parasolid Overview summarizesParasolid capabilities• Parasolid API Training Materialsto educate the team Support, training and consultingParasolid has a renowned technical support, training and consulting team, dedicated to helping customers achieve the best possible implementation by providing expert advice on all matters related to Parasolid usage.Responsive telephone and email support is backed by an online support center that provides round-the-clock access to frequent product updates, as well as customer-specific issue reporting and tracking.In addition, specialized training and consulting services are available that can be tailored to customer requirements. Whether you are starting fresh, extending an existing appli-cation or transitioning from other modeling technology, the Parasolid support, training and consulting team is with you every step of the way.Interoperability productsThe Parasolid product suite is augmented by a range of add-on products that provide high-quality interoperability with third-party CAD data. These include Parasolid Bodyshop, a specialized tool for boosting the success of 3D data exchange by cleaning and repairing imported models, and Parasolid Translator toolkits for converting model data between Parasolid and other major standard and proprietary CAD formats, including STEP, IGES, Catia V4, Catia V5, Pro/ Engineer and ACIS(SAT).Siemens PLM Software partners with Tech Soft 3D to offer Hoops Exchange. This highly-integrated and industry-proven 3D data collaboration solution for Parasolid provides high performance import, export, healing and visualization toolsfor a wide range of 3D file formats.Siemens PLM SoftwareAmericas +1 314 264 8499Europe +44 (0) 1276 413200Asia-Pacific +852 2230 3308/plmrespective holders.5661-Y7 3/16 BConvergent modeling: facetmodel of knee joint withb-rep surgical guide, mod-eled in single architecture.。
抗皱化妆品[发明专利]
专利名称:抗皱化妆品
专利类型:发明专利
发明人:卡琳·戈尔斯-贝纳尔,莱昂哈德·察斯特罗,奥利弗·道森特
申请号:CN200580004067.1
申请日:20050210
公开号:CN1913869A
公开日:
20070214
专利内容由知识产权出版社提供
摘要:本发明涉及一种新型的基于天然植物提取物的抗皱化妆品。
该化妆品含有:油包水的硅油体系,质量分数在0.05-2%之间的西番莲提取物,以及质量分数各为0.05-3%之间的罂粟、薄荷和香桃木提取物,化妆品常用助剂,载体和活性物质。
该化妆品不仅质地柔滑,而且还具有长效保湿、增加皮肤弹性的作用。
申请人:科蒂股份有限公司
地址:荷兰哈勒姆
国籍:NL
代理机构:上海开祺知识产权代理有限公司
代理人:费开逵
更多信息请下载全文后查看。
MECHANICS OF STICK-SLIP
December
29, 1969)
SUMMARY
Physical mechanisms that have been proposed to explain the occurrence of stick-slip motion during frictional sliding have been examined in the light of results obtained from experiments with rocks and brittle minerals. An instability caused by sudden brittle fracture of locked regions on surfaces in contact is the most likely explanation for stick-slip during dry frictional sliding of brittle rocks at room temperature. Areas requiring further study and the uncertainties in applying the results of laboratory experiments to earthquake studies are emphasized.
IPublication Tectonophysics, authorized by the Director, U.S. Geological Su
475
with time until the force is sufficient to overcome the frictional force. If the rider then moves forward suddenly at a velocity greater than Y, the force in the spring will decrease and the rider will eventually stop. The rider will remain stationary until the force in the spring once more builds up to a value sufficient to overcome the frictional force.
Geology-1993-Roberts-825-8
Geologydoi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;21993;21;825-828GeologyMalcolm P. Roberts and John D. ClemensOrigin of high-potassium, talc-alkaline, I-type granitoidsEmail alerting services cite this articleto receive free e-mail alerts when new articles /cgi/alerts click Subscribeto subscribe to Geology /subscriptions/click Permission requestto contact GSA/pubs/copyrt.htm#gsa click Opinions presented in this publication do not reflect official positions of the Society.positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint.article's full citation. GSA provides this and other forums for the presentation of diverse opinions andarticles on their own or their organization's Web site providing the posting includes a reference to the science. This file may not be posted to any Web site, but authors may post the abstracts only of their unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to maketo employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, Copyright not claimed on content prepared wholly by U.S. government employees within scope of theirNotesGeological Society of America。
疼痛动物模型规范
疼痛实验动物模型2007-04-25 23:11:36 阅读147 评论0 ??字号:大中小?订阅疼痛是机制非常复杂的神经活动。
疼痛研究已经成为当前神经科学研究的重要课题之一。
由于疼痛机制的复杂性,使得在患者身上研究与疼痛有关的神经机制成为不可能的事。
因而,我们的研究需要相应的动物模型。
本章介绍了在现代神经科学研究中常用的疼痛动物模型。
在概要介绍了疼痛研究的意义及其现状之后,重点介绍了在生理痛研究和急性、慢性病理痛研究中所应用的动物模型。
生理痛的模型即常用的动物伤害性感受阈测定法;急性病理痛的模型则主要是各种急性炎症模型模型;慢性病理痛的模型则包括慢性炎症模型和慢性神经损伤模型。
前言疼痛(pain)是人们一生中经常遇到的不愉快的感觉。
它提供躯体受到威胁的警报信号,是生命不可缺少的一种特殊保护功能。
另一方面,它又是各种疾病最常见的症状,也是当今困扰人类健康最严重的问题之一。
近年来,仅在美国就有三至四千万人患有慢性痛。
据估计,美国每年用于治疗慢性痛的费用约为400~600亿美元;澳大利亚每年用于治疗疼痛的费用占全部医疗费用的40%。
随着医学的进步和人类生活水平的提高,烈性传染病逐渐得到控制,疼痛在人的身心痛苦和医疗费用消耗上的相对地位将越来越重要。
由于难以在人体对疼痛进行深入的机制研究,有必要建立疼痛的动物模型。
但疼痛是是包括性质、强度和程度各不相同的多种感觉的复合,并往往与自主神经系统、运动反应、心理和情绪反应交织在一起,它既不是简单地与躯体某一部分的变化有关,也不是由神经系统某个单一的传导束、神经核和神经递质进行传递的,所以很难将某种客观指标与疼痛直接联系起来。
因而,我们只能根据模型动物对伤害性刺激的保护反应和保护性行为来推测它们的疼痛程度。
伤害性感受(nociception)和痛觉是两个有密切关系但又不相同的概念。
前者是指中枢神经系统对由于伤害性感受器的激活而引起的传入信息的加工和反应,以提供组织损伤的信息;痛觉则是指上升到感觉水平的疼痛感觉。
optibelt tt 原理
optibelt tt 原理Optibelt TT是一种高效的传动带,它采用了特殊的设计原理,以提供更高的传动效率和更长的使用寿命。
本文将详细介绍Optibelt TT 的原理及其在工业领域的应用。
Optibelt TT的原理基于摩擦传动的基本原理。
摩擦传动是一种通过两个相互接触的物体之间的摩擦力来传递动力的方式。
在Optibelt TT中,传动带通过与传动轮之间的摩擦力来传递动力。
具体来说,Optibelt TT由一条由强化纤维和橡胶混合物制成的带状物组成,该带状物具有良好的弹性和耐磨性。
这条传动带通过紧固装置与传动轮连接在一起。
Optibelt TT的特殊之处在于其带状物的设计。
带状物表面覆盖有一层特殊的橡胶材料,这种材料具有较高的摩擦系数。
当传动带与传动轮接触时,由于摩擦力的作用,传动带会被牢固地固定在传动轮上,从而实现动力的传递。
同时,这种特殊的橡胶材料也能够减少摩擦损失,提高传动效率。
Optibelt TT还采用了特殊的结构设计,以增强其传动能力和使用寿命。
传动带的内部结构包含了多层强化纤维,这些强化纤维能够增加传动带的强度和刚度,提高其承载能力。
同时,传动带的两侧还覆盖有一层特殊的橡胶材料,这种材料能够起到保护传动带的作用,延长其使用寿命。
Optibelt TT广泛应用于各种工业领域,包括机械制造、汽车制造和食品加工等。
在机械制造领域,Optibelt TT可用于传动大功率设备,如机床和压力机。
其高传动效率和长寿命能够提高设备的运行稳定性和生产效率。
在汽车制造领域,Optibelt TT可以用于传动汽车发动机和变速器等关键部件,确保汽车的高效运行。
在食品加工领域,Optibelt TT的材质符合食品卫生标准,可以用于传动食品加工设备,确保食品的安全性和质量。
总结一下,Optibelt TT是一种采用摩擦传动原理的高效传动带。
其特殊的设计和结构使其具有较高的传动效率和较长的使用寿命。
在工业领域的应用中,Optibelt TT可以提高设备的运行稳定性和生产效率,确保汽车的高效运行,以及保证食品的安全性和质量。
Carter 61524 2
2 EATON Aerospace Group TF100-84D May 2013Eaton’s Carter product line includes several hydrant pit valve models. Model 61524 2½-inch Hydrant Valve is designed to provide deadman control of the refueling operation within the hydrant pit. Both air and lanyard operation is available. This model is available with either 6 or 4-inch inlet flanges and both terminate with the 2½-inch international standard three-lug aircraft bayonet adapter. Now also available with an adapter kit to install the unit in older 12 and 13-inch diameter pits with 3-inch mounting flanges. Model 61524 utilizes many of the same parts as are used in Eaton’s other hydrant valve models. The basic valve assembly consists of three parts, lower valve assembly, upper valve assembly and the pilot valve. The lower valve assembly contains a small isolation valve which will allow removal and servicing of the upper valve assembly and the pilot valve while the pit Design Concepts valve is under pressure (see maintenance manual SM61524 for proper instructions for use).Model 61524 is designed to minimize the propagation of surge pressure shocks into the upstream piping system during closure of the valve.Features y Closing time: 2-5 sec Opening time: 5-10 sec y Either lanyard or air operated pilot valve available y Standard inlet flange mates with 4-inch 150 lb ANSI flange standard (optional 6-inch 300 lb inlet available) y Large pressure equalizing valve in the outlet is standard y Defueling capability optional with air operated pilot valve y Main piston well-guided to minimize piston seal wear y Ductile iron is epoxy coated for corrosion protection y Minimum of bonded seals utilized to reduce maintenance costs T echnical Information y Working pressure: 300 psi (20.68 bar) y Closing time: 2 to 5 sec y Opening time: 5 to10 sec (from zero to 600 USgpm [2271 l/min]) y Overshoot: 30.0 gals maximum at 600 gpm (2271 l/min) y Pilot valve air pressure required for options E or J — 60 psi min (4.136 bar) y Materials:Outer housings — A536, grade 60-40-18 ductile iron Bayonet adapter (outlet) — aluminum bronze Trim— stainless steel and aluminum alloy Mating PartsModel 61524 Hydrant Valve will mate Eaton’s Carter Model 61445 Hydrant Couplers, older Model 60445 couplers (superseded by Model 61445), or any other standard 2½-inch coupler, regardless of brand.EATON Aerospace Group TF100-84D May 2013 3Figure A reflects a lanyard operated pilot valve shown in the open position. The operation of the hydrant valve, whether the pilot is lanyard or air operated, is identical. Figure B reflects the same hydrant valve with the air pilot in a closed position. The only differences between the two units are in the operating mechanism that supplies the power to open and close the pilot valve. In the air operated pilot, the closing lanyard and opening latching mechanisms are replaced with an air operated piston.Servicing Valve Closed/ Pilot Valve Open or Closed The closing of the servicing valve has the same affect as closing the pilot valve. That is, the flow passage from the piston chamber to the downstream side of the piston is blocked. The piston chamber pressure begins to equalize to the inlet pressure (P1) through the check valve. The piston area is greater than the effective seal area, hence the unbalance of forces caused by the equal pressure, plus the spring, will cause the valve tostay closed. Figure AFigure B Valve Operation Pilot Valve Open/ Servicing Valve Open The open pilot valve allows the continuous passageway from the main piston chamber and from the closing control orifice. The piston chamber is vented through an opening control orifice and the open servicing valve to a point in the lower valve half. The pressure (P2) at this point is less than the inlet pressure (P1). The piston chamber pressure is also maintained at P2 causing an unbalance of forces on the piston. The inlet pressure force is greater than the combined piston pressure force plus the spring force hence the valve will open to allow flow. This is assuming that the outlet adapter poppet in the upper valve half has been opened by a coupler. The pilot poppet is maintained in the open position by one of two methods: y Lanyard operated pilot: The pilot is opened by the pull of the “T” handle located on the top of the pilot valve. When it is pulled upward, the spring loaded latch attached to the lanyard pivots to lock the pilot into the open position. y Air operated pilot: Air pressure applied to the pilot piston will maintain the pilot in the open position until the pressure has been depleted (by release of deadman)Pilot Valve Closed/ Servicing Valve Open Pulling the lanyard, or deplet-ing the air supplied to their respective pilots, will allow the spring loaded pilot poppet to close. This action blocks off the venting of the piston chamber to the lower pressure area downstream. The piston cham-ber begins to equalize to the inlet pressure (P1) through the check valve. The piston area is greater than the effective seal area, hence the unbalance of forces caused by the equal pressure plus the spring will cause the piston to begin to close. As the piston moves toward the closed position, the piston chamber volume increases and must be filled through the two series orifices.The primary orifice is considerably larger than the secondary (slot). During the initial and majority of the travel of the piston, the primary orifice is fully exposed to the inlet pressure, hence the rate of closure is controlled by this orifice. When the piston moves far enough closed to cover the primary orifice, the secondary (smaller) orifice begins to control the closure rate. Hence the valve begins to close relatively rapidly and then slows down as it nears its closed position. The relative size and locations of these two orifices allows the valve to close to provide a minimum of overshoot and yet limit the surge pressure shock, on closing, and still maintain a closure rate in accordance with applicable international specifications.On defueling option J, the pilot valve is manually held closed by the thumb screw to allow defueling flow.4 EATON Aerospace Group TF100-84D May 2013Flow CharacteristicsThe chart (right) depicts typical pressure drop versus flow characteristics of Eaton’s Carter Model 61524 Hydrant Pit Valves with a mating Model 60445 or 61445 Coupler.Technical Data Dimensions shown in inches (millimeters).Installation DataIt is critical that the mating coupler be connected correctly and the pit lid be able to close completely. The hydrant valve’s installation depth depends upon the brand of pit used. The thickness of the pit lid should be checked to be sure that it will clear the hydrant valve before setting the pit. The dimensions noted herein were correct for pits made in the United States at the time of printing. Eaton cannot be responsible for changes in the pits. The dimensions shownare for reference only.EATON Aerospace Group TF100-84D May 2013 5There are three basic valve model numbers to which various modifications may be made by adding option letters as shown in the table (right). Model 61524DLanyard operated pilot valve for manual on/off control.Valve allow flow in the fueling direction only.Weight — 49.0 lbs (22.226 kg)Model 61524EAir operated pilot valve for the deadman control. Valve allows flow in the fueling direction only.Weight — 49.0 lbs (22.226 kg)Model 61524JAir operated pilot valve for the deadman control with defuel control to allow flow on fuel in either the fueling or defueling direction.Weight — 50.0 lbs (22.680 kg)Option Letter Description A Adds strainer, 10-mesh B Adds strainer, 20-mesh C Adds U.S. standard product selection for positions 4, 5, and 6 D Adds manually operated pilot valve E Adds air operated pilot valve F Adds dual air operated pilot valve G Adds 6 to 4-inch IP adapter H Adds 4-mesh stoneguard to Option G only J Adds air operated defuel pilot valve M Adds QD to air pilot connection on Options E and J only. Mates Hansen socket B2-H16N Adds hardware kit to allow installation into 12 or 13-inch pits with 3-inch ANSI mounting flanges Example:61524CEGHM — Air-operated hydrant valve with 6- to 4-inch IP adapter, stoneguard, product selection and QD on the air portOrdering DataEnvelope DimensionsThe drawing (right) provides envelope dimensions for installation purposes only. They are not intended for inspection purposes.Dimensions shown ininches (millimeters).Copyright © 2013 Eaton All Rights Reserved Form No. TF100-84D May 2013Eaton Aerospace Group 9650 Jeronimo Road Irvine, California 92618 Phone: (949) 452 9500 Fax: (949) 452 9555 /aerospace Eaton Aerospace Group Fluid & Electrical Distribution Division 9650 Jeronimo Road Irvine, California 92618Phone: (949) 452 9500Fax: (949) 452 9992E-mail:***********************。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tectonic Model for Lachlan Fold Belt I-,S-and
A-Type Granites
W.J.COLLINS
School of Earth Sciences,James Cook University,
T ownsville,Australia,4811
I-and S-type granites were originally classified in the Lachlan Fold Belt in SE Australia(Chappell and White,1974).Later,the petrogenesis of A-type granites was also discussed using the Lachlan as the type example(Collins et al.,1982).However,subsequent studies have shown that the S-I,A-type classification is not easily applicable to typical active continental margins like those of North and South America.Nonetheless,the classification is applicable to granites from South East Asia.In a review of the relationships between granites and geodynamic environment,Barbarin(1999)inferred that I-types(his ACG)form in subduction settings, S-types(his CPG)form in collision settings,and A-types(his PAG)form in continental rift settings.However,in the Lachlan,I-and S-type overlap in time and space,and I-and A-type overlap in time and space,so they must form in the same geodynamic environment.What is it?In an attempt to resolve the Lachlan tectonic setting,I have investigated the geochemistry of>600mafic rocks from the Ordovician,Silurian and Devonian periods.Ordovician mafic volcanics have extremely primitive mantle isotopic signature and their geochemical patterns are typical of an intra-oceanic arc,consistent with the lack of silicic granitoids during this period. Widespread silicic magmatism occurred in the Early-Mid Silurian(435-420Ma),when most of the S-type granites and few I-types formed.Basalts associated with these granites range from oceanic arc to oceanic backarc.Following development of a widespread end-Silurian unconformity associated with weak compression,I-type intruded extensively across the Laclan during the Early Devonian(420-395Ma).Associated Early Devonian basalts typically show arc to interarc rift character,very similar to the Neogene Taupo Volcanic Zone basalts of New chlan A-type granites mostly formed in the Middle to Late Devonian,associated with minor I-type magmatism.The associated basaltic rocks are transitional between calc-alkaline and alkaline,and closely resemble those of the Basin and Range of western USA. The common tectonic feature of all periods of granite emplacement is the extensionial setting recorded by the basalts.Oceanic arc to backarc type basalts associated with S-types shows they did not form in a continental collision setting.Indeed,the Early-mid Silurian was a time when deep-water,sediment-filled troughs were forming during crustal extension in the Lachlan.During I-type magmatism in the Early Devonian,a large turbiditic basin called the Hill End T rough formed and partlyfilled with I-type volcanics.It has the sedimentological and stratigraphic character of the Lau Basin,a backarc basin located just north of New Zealand, which suggests the Lachlan I-type granites formed in an arc-rift to backarc environment,again
associated with crustal stly,the A-types were associated with bimodal volcanics and continental redbeds,suggestive of a continental rift environment.In conclusion,the Lachlan underwent a series long-lived extensional events,which were probably associated with ongoing subducton rollback,during which time,S-,I-and A-type granites were generated and emplaced. References Barbarin B.1998.Lithos46,605-626.Chappell,B.W.and White,A.J.R.,1974. Pacific Geology8,173-174.Collins,W.J.et al.,1982.Contributions to Mineralogy Petrology
80,189-200.。