浙江省宁波市三校联考2020-2021学年九年级上学期期中数学试题
2020-2021学年浙江省台州市三区三校八年级上学期期中数学试卷 (解析版)
2020-2021学年浙江省台州市三区三校八年级第一学期期中数学试卷一、选择题1.(3分)已知三角形的两边长分别为3cm和9cm,则此三角形的第三边的长可能是()A.4cm B.7cm C.6cm D.13cm2.(3分)△ABC中,∠A=20°,∠B=70°,则∠C=()A.70°B.90°C.20°D.110°3.(3分)某多边形的内角和是其外角和的4倍,则此多边形的边数是()A.10B.9C.8D.74.(3分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA等于()A.30°B.36°C.45°D.32°5.(3分)两个等腰三角形,若顶角和底边对应相等,则两个等腰三角形全等,其理由是()A.SAS B.SSS C.ASA D.ASA或AAS 6.(3分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确7.(3分)下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有()个.A.1个B.2个C.3个D.4个8.(3分)已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,将△ABC沿直线BC 方向平移2.5个单位得到△DEF,AC与DE相交于G点,连接AD,AE,则下列结论:①△AGD≌△CGE;②△ADE为等腰三角形;③AC平分∠EAD;④四边形AEFD的面积为9.其中正确的个数是()A.1个B.2个C.3个D.4个10.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当AP=AQ时,点P、点Q运动的时间是()A.4秒B.3.5秒C.3秒D.2.5秒二、填空题11.(3分)已知△ABC≌△DEF,∠A=50°,∠E=60°,则∠C=.12.(3分)点A(﹣3,3)关于y轴的对称点A′的坐标为.13.(3分)若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是三角形.14.(3分)如果a、b、c为一个三角形的三边,那么点P(a+b﹣c,a﹣b﹣c)在第象限.15.(3分)如图,△ABC的高AD和它的角平分线BE相交于点F,若∠ABC=52°,∠C=44°,则∠AEF=.16.(3分)如果一个三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形“.若△ABC是“准互余三角形”,∠C>90°,∠A=20°,则∠B=.17.(3分)如图,点P是∠AOB的角平分线OC上一点,PN⊥OB于点N,点M是线段ON上一点,已知OM=3,ON=4,点D为OA上一点,若满足PD=PM,则OD的长度为.18.(3分)如图,点P在AC上,点Q在AB上,BE平分∠ABP,交AC于E,CF平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC =110°,则∠A的度数为.三、解答题19.折叠如图所示的直角三角形纸片ABC,使点C落在AB上的点E处,折痕为AD(点D 在BC边上),用直尺和圆规画出折痕AD.(保留作图痕迹,不写作法).20.已知:如图,D是AB上的一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFC的度数.21.如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.(1)请你判断BF与CD的位置关系,并说明理由.(2)求∠3的度数.22.如图,在△ABC中,线段BC的垂直平分线DE交AC于点D.(1)若AB=3,AC=8,求△ABD的周长.(2)若△ABD的周长为13,△ABC的周长为20,求BC的长.23.如图1,CA=CB,CD=CE,∠ACB=∠DCE=α.(1)求证:BE=AD;(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.24.(1)如图1,请证明∠A+∠B+∠C=180°(2)如图2的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D(3)如图3,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明(4)如图4,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.参考答案一、选择题1.(3分)已知三角形的两边长分别为3cm和9cm,则此三角形的第三边的长可能是()A.4cm B.7cm C.6cm D.13cm解:设第三边的长度为xcm,由题意得:9﹣3<x<9+3,即:6<x<12,∴7cm可能,故选:B.2.(3分)△ABC中,∠A=20°,∠B=70°,则∠C=()A.70°B.90°C.20°D.110°解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣(∠A+∠B)=180°﹣(20°+70°)=90°,故选:B.3.(3分)某多边形的内角和是其外角和的4倍,则此多边形的边数是()A.10B.9C.8D.7解:设多边形的边数为n,根据题意,得(n﹣2)•180=4×360,解得n=10.则这个多边形的边数是10.故选:A.4.(3分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA等于()A.30°B.36°C.45°D.32°解:在正五边形ABCDE中,∠C=×(5﹣2)×180°=108°,∵正五边形ABCDE的边BC=CD,∴∠CBD=∠CDB,∴∠CDB=(180°﹣108°)=36°,∵AF∥CD,∴∠DFA=∠CDB=36°.故选:B.5.(3分)两个等腰三角形,若顶角和底边对应相等,则两个等腰三角形全等,其理由是()A.SAS B.SSS C.ASA D.ASA或AAS 解:一个等腰三角形,若顶角对应相等,则它们的两个底角也相等,所以根据AAS或者ASA都可以判定这两个三角形全等.故选:D.6.(3分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.7.(3分)下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有()个.A.1个B.2个C.3个D.4个解:①、②不是轴对称图形;③长方形是轴对称图形;④等腰三角形是轴对称图形.共2个.故选:B.8.(3分)已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.解:∵点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,∴对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<,如图所示:.故选:D.9.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,将△ABC沿直线BC 方向平移2.5个单位得到△DEF,AC与DE相交于G点,连接AD,AE,则下列结论:①△AGD≌△CGE;②△ADE为等腰三角形;③AC平分∠EAD;④四边形AEFD的面积为9.其中正确的个数是()A.1个B.2个C.3个D.4个解:由平移的性质得:AD∥BE,AD=BE=2.5,∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴CE=2.5,∴AD=CE,∵AD∥BE,∴∠DAG=∠ECG,在△AGD和△CGE中,,∴△AGD≌△CGE(AAS),∴①正确;∵∠BAC=90°,BE=CE,∴AE=BC=CE=2.5,∴AE=AD,∴△ADE为等腰三角形,∴②正确;∵AE=CE,∴∠EAC=∠ECG,∵∠DAG=∠ECG,∴∠EAC=∠DAG,∴AC平分∠EAD,∴③正确;作AH⊥BC于H,如图所示:∵△ABC的面积=BC•AH=AB•AC,∴AH==,∴四边形AEFD的面积=(AD+EF)×AH=(2.5+5)×=9,∴④正确;正确的个数有4个,故选:D.10.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当AP=AQ时,点P、点Q运动的时间是()A.4秒B.3.5秒C.3秒D.2.5秒解:设运动时间为t秒时,AP=AQ,根据题意得:20﹣3t=2t,解得:t=4.故选:A.二、填空题11.(3分)已知△ABC≌△DEF,∠A=50°,∠E=60°,则∠C=70°.解:∵△ABC≌△DEF,∴∠B=∠E=60°,∵∠A=50°,∴∠C=180°﹣50°﹣60°=70°,故答案为:70°.12.(3分)点A(﹣3,3)关于y轴的对称点A′的坐标为(3,3).解:点A(﹣3,3)关于y轴的对称点A′的坐标为(3,3),故答案为:(3,3).13.(3分)若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是直角三角形.解:若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是直角三角形.故答案为直角.14.(3分)如果a、b、c为一个三角形的三边,那么点P(a+b﹣c,a﹣b﹣c)在第四象限.解:∵a、b、c为一个三角形的三边,∴a+b﹣c>0,a﹣b﹣c<0,∴点P(a+b﹣c,a﹣b﹣c)在第四象限,故答案为:四.15.(3分)如图,△ABC的高AD和它的角平分线BE相交于点F,若∠ABC=52°,∠C=44°,则∠AEF=70°.解:∵BE平分∠ABC,∴∠EBC=∠ABC=26°,∴∠AEF=∠EBC+∠C=26°+44°=70°,故答案为70°.16.(3分)如果一个三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形“.若△ABC是“准互余三角形”,∠C>90°,∠A=20°,则∠B=35°或50°.解:∵△ABC是“准互余三角形”,∠C>90°,∠A=20°,∴2∠B+∠A=90°或2∠A+∠B=90°,解得,∠B=35°或50,故答案为:35°或50°.17.(3分)如图,点P是∠AOB的角平分线OC上一点,PN⊥OB于点N,点M是线段ON上一点,已知OM=3,ON=4,点D为OA上一点,若满足PD=PM,则OD的长度为3或5.解:如图:过点P作PE⊥OA于点E,∵OC平分∠AOB,PE⊥OA,PN⊥OB,∴PE=PN,在Rt△OPE和Rt△OPN中,,∴Rt△OPE≌Rt△OPN(HL),∴OE=ON=4,∵OM=3,ON=4,∴MN=ON﹣OM=1;若点D在线段OE上,在Rt△PMN和Rt△PDE中,,∴Rt△PMN≌Rt△PDE(HL)∴DE=MN=1∴OD=OE﹣DE=3若点D在射线EA上,在Rt△PMN和Rt△PDE中,,∴Rt△PMN≌Rt△PDE(HL),∴DE=MN=1,∴OD=OE+DE=5;故答案为:3或5.18.(3分)如图,点P在AC上,点Q在AB上,BE平分∠ABP,交AC于E,CF平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC =110°,则∠A的度数为80°.解:连接BC,如图,在△DBC中,∠3+∠4=180°﹣∠BDC=180°﹣140°=40°;在Rt△GBC中,∠1+∠2+∠3+∠4=180°﹣∠BGC=180°﹣110°=70°;∴∠1+∠2=30°∵BE平分∠ABP,CF平分∠ACQ,∴∠ABP=2∠1,∠ACQ=2∠2,∴∠ABP+∠ACQ=2∠1+2∠2=60°,∴∠ABP+∠ACQ+∠3+∠4=60°+40°=100°,∴∠ABC+∠ACB=100°,在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=180°﹣100°.故答案为80°.三、解答题19.折叠如图所示的直角三角形纸片ABC,使点C落在AB上的点E处,折痕为AD(点D 在BC边上),用直尺和圆规画出折痕AD.(保留作图痕迹,不写作法).解:如图,线段AD即为所求.20.已知:如图,D是AB上的一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFC的度数.解:(1)∵∠A=62°,∠ACD=35°,∴∠BDC=∠A+∠ACD=62°+35°=97°;(2)∵∠ABE=20°,∠BDC=97°,∴∠BFC=∠BDC+∠ABE=97°+20°=117°.21.如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.(1)请你判断BF与CD的位置关系,并说明理由.(2)求∠3的度数.解:(1)BF∥CD.理由如下:∵∠B=42°,∠1=∠2+10°,∴∠1+∠2+∠B=∠2+10°+∠2+42°=180°,解得∠2=64°,又∵∠ACD=64°,∴∠ACD=∠2,∴BF∥CD;(2)∵CE平分∠ACD,∴∠DCE=∠ACD=32°,∵BF∥CD,∴∠3=180°﹣32°=148°.22.如图,在△ABC中,线段BC的垂直平分线DE交AC于点D.(1)若AB=3,AC=8,求△ABD的周长.(2)若△ABD的周长为13,△ABC的周长为20,求BC的长.解:(1)∵DE是线段BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+DB=AB+AD+DC=AB+AC=11;(2)∵△ABC的周长为20,∴AB+BC+AC=20,∵△ABD的周长=13,∴AB+AC=13,∴BC=20﹣13=7.23.如图1,CA=CB,CD=CE,∠ACB=∠DCE=α.(1)求证:BE=AD;(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形24.(1)如图1,请证明∠A+∠B+∠C=180°(2)如图2的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D(3)如图3,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明(4)如图4,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.解:(1)证明:如图1,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1,∠A=∠2,又∵∠BCD=∠BCA+∠2+∠1=180°,(2)证明:如图2,在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(3)解:如图3,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+(∠B+∠D);(4)解:②∠3+∠4﹣∠1﹣∠2不变正确.理由如下:作PQ∥AB,如图4,∵AB∥CD,∴PQ∥CD,由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,由PQ∥CD得∠5=∠2,∵∠APQ+∠5+∠1=90°,∴180°﹣∠3﹣∠4+∠2+∠1=90°,。
浙江2020-2021学年初三语文上学期期中测试卷(有答案)
浙江2020-2021学年初三语文上学期期中测试卷(有答案)浙江2020-2021学年初三语文上学期期中测试卷一、积累(20分)(一)某校九年级开展“我与祖国”综合性学习活动,请你完成下列任务。
【青春祖国】青春由磨(lì)□而出彩,人生因奋斗而升华。
把梦想的种子撒在奋斗的土壤上,才能结出累( )累硕果。
把小我(róng)□入祖国的大我、人民的大我之中,青春的风采才会璀璨夺目;与时代同步伐、与人民共命运,青春的价值才能得到升华。
从建功立业的人生际遇到志存高远的时代使命,从日常生活的尽职尽责到关键时刻的迎难而上,常怀忧国忧民之心,饱含爱国爱民之情,把自己的理想同祖国的前途、把自己的人生同民族的命运紧密联系在一起,青年就能以青春之我、奋斗之我,为民族复兴铺路架桥,为祖国建设_________。
1.给加点字注音或根据拼音写汉字。
(3分)磨(lì)□ 累( )累(róng)□入【答案】砺léi 融【解析】根据平时积累答题,注意“砺”右边是“厉”,“累”读二声,“融”字右下边是“虫”。
2.填入上文横线处的词语恰当的一项是()(2分)A.贡献力量B.建言献策C.添砖加瓦【答案】C. 添砖加瓦【解析】联系上句“为民族复兴铺路架桥”可知此处应为“为祖国建设添砖加瓦”,故选C。
【时代楷模】材料一:“蛟龙号”深海载人潜水器总设计师、首席潜航员叶聪,通过不懈努力,终将“蛟龙号”从图纸变为现实。
参与“蛟龙号”深潜作业共计50次,最大下潜深度达到7062米。
他是青年人岗位建功、报效祖国的榜样,荣获“中国青年五四奖章”,被评为“改革开放杰出贡献人物”。
材料二:黄大年,著名地球物理学家。
2009年,他依然放弃国外优越条件回到祖国。
赤胆忠心,殚精竭虑,取得了一系列重大科技成果,加速推动了我国的“深探”(地球深层探测)事业,用5年时间走完了发达国家20年的道路,项目成果达到国际领先水平,技术研发实现弯道超车,完成了跨代飞跃,书写了在地球深层探测领域的传奇,展示了归国科学家至诚报国的风采。
考点01 图形的旋转-2021届九年级《新题速递·数学》(人教版)(解析版)
考点01 图形的旋转1.(江苏省无锡市丁蜀中学2020-2021学年第一次阶段性测验数学试题)经过以下变化后所得到的三角形不能和ABC 全等的是( ) A .B .C .D .【答案】D【解析】∵平移、旋转,翻折前后的三角形全等, ∵选项A 、B 、C 不符合题意,【点睛】本题主要考查全等三角形、平移、旋转、翻折的知识,熟练掌握相关定义是关键.2.(2020年江西省初中名校联盟九年级质量监测(一)数学试题)如图,在ABC 中,90ACB ︒∠=,将ABC 绕点C 逆时针旋转θ角到DEC 的位置,这时点B 恰好落在边DE 的中点,则旋转角θ的度数为( ).A .60︒B .45︒C .30D .55︒A 【答案】A【解析】∵点B 恰好落在边DE 中点上,90ECD ACB ︒∠=∠=, ∵EB=CB ,由旋转的性质可得EC CB =,ECB θ∠= ∵EB CB EC == ∵EBC 是等边三角形, ∵60ECB θ︒∠==.故选A .【点睛】此题考查的是直角三角形的性质、旋转的性质和等边三角形的判定及性质,掌握直角三角形斜边上的中线等于斜边的一半、旋转的性质和等边三角形的判定及性质是解决此题的关键.3.(2019年山东省潍坊诸城市九年级中考三模数学试题)如图,ABC ∆中,2AC BC ==,90ACB ∠=︒,将ABC ∆绕点A 顺时针旋转60︒得到ADE ∆,连接BE ,则线段BE 的长等于( )A.8-BC .1D【答案】B【解析】如图所示,连接BD ,延长BE 交AD 于点F , 由旋转可知:AB=AD ,∵BAD=60°, ∵∵ABD 是等边三角形, ∵∵BDA=60°,AB=BD , 又∵∵BAC=∵ADE=45°, ∵∵BDE=∵BAE=60°-45°=15°, ∵在∵ABE 与∵DBE 中,AB BD BAE BDE AE DE =⎧⎪∠=∠⎨⎪=⎩, ∵∵ABE∵∵DBE (SAS ) ∵∵ABE=∵DBE∵BF∵AD ,点F 为AD 中点, 又∵AC=BC=2,∵EF=12AD =∵BE=BF -故答案为:B .【点睛】本题考查了旋转的性质、等边三角形、等腰三角形的性质,解题的关键是灵活运用旋转的性质构造等边三角形进行解答.4.(2020年山东省枣庄市九年级中考三模数学试题)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .(1,2-+B .()C .(2D .(-【答案】B【解析】如图,作B H y '⊥轴于H .由题意:2OA A B '''==,60B A H ''∠=︒,∴30A B H ''∠=︒, ∴112AH A B '''==,B H '= ∴3OH =,∴()B ',故选B .【点睛】本题考查坐标与图形变化﹣旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5.(浙江省绍兴市三校联考2020-2021学年九年级上学期第一次月考数学试题)如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到AB C ''∆.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A .18︒B .20︒C .24︒D .28︒【答案】C【解析】解:设C '∠=x°.根据旋转的性质,得∵C=∵'C = x°,'AC =AC, 'AB =AB. ∵∵'AB B =∵B.∵AB CB ''=,∵∵C=∵CA 'B =x°. ∵∵'AB B =∵C+∵CA 'B =2x°. ∵∵B=2x°.∵∵C+∵B+∵CAB=180°,108BAC ∠=︒, ∵x+2x+108=180. 解得x=24.∵C '∠的度数为24°. 故选:C.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质.6.(江苏省江阴市长寿中学2020-2021学年八年级10月阶段性检测数学试题)如图,∵AOB 中,∵B=30°,将∵AOB 绕点O 顺时针旋转得到∵A′OB′,若∵A′=40°,则∵B′= °,∵AOB= .【答案】30°,110°【解析】∵∵AOB中,∵B=30°,将∵AOB绕点O顺时针旋转得到∵A′OB′,∵A′=40°,∵∵B=∵B′=30°,∵A′=∵A=40°,则∵B′=30°,∵AOB=180°-∵A-∵B=110°.故答案为30,110.【点睛】:旋转的变换7.(2020年甘肃省天水市麦积区九年级中考模拟数学试题)如图所示,△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠BOC的度数是_____.【答案】35°【解析】解:∵∵COD是∵AOB绕点O顺时针方向旋转35°后所得的图形,∵∵AOC=∵BOD=35°,∵∵AOD=90°,∵∵BOC=20°.故答案为:20°.【点睛】本题考查了旋转变换的性质,属于基础题型,熟练掌握旋转的性质是解题关键.8.(江苏省无锡市敔山湾中学2020-2021学年八年级上学期第一次阶段性测验数学试题)如图,在Rt△ACB 中,∠ACB=90°,点O在AB上,且CA=CO=2,AB=6,若将△ACB绕点A顺时针旋转得到Rt△△AB′C′,且C′落在CO的延长线上,连接B B′交CO的延长线于点F,则BF=__________.【答案】143.【解析】解:过C作CD∵AB于点D,∵CA=CO,∵AD=DO,∵在Rt∵ACB中,AB=6,AC=2,∵BC= =,∵1122ABCS AB CD AC BC =⋅=⋅∵116222CD⨯⋅=⨯⨯,=23,∵OA=2AD=43,∵OB=AB-OA=6-43=143,∵∵AC′B′是由∵ACB旋转得到,∵AC=AC′,AB=AB′,∵CAC′=∵BAB′,∵∵ACC′=12(180°-∵CAC′),∵ABB′=12(180°-∵BAB′),∵∵ABB′=∵ACC′,∵在∵CAO和∵BFO中,∵BFO=∵CAO,∵CA=CO,∵∵COA=∵CAO,又∵∵COA=∵BOF(对顶角相等),∵∵BOF=∵BFO ,∵BF=BO=143. 故答案为:143.【点睛】本题考查了旋转的性质,等腰三角形三线合一的性质,根据三角形面积公式求出CD 的值是突破口.9.(黑龙江省齐齐哈尔市第五十三中学校2020-2021学年九年级上学期第一次月考数学试题)如图,在平面直角坐标系中,将ABO ∆绕点A 顺时针旋转到11AB C ∆的位置,点B 、O 分别落在点1B 、1C 处,点1B 在X 轴上,再将11AB C ∆绕点1B 顺时针旋转到112A B C ∆的位置,点2C 在x 轴上,将112A B C ∆绕点2C 顺时针旋转到222A B C ∆的位置,点2A 在x 轴上,依次进行下去,…若点()3,02A ,()0,2B ,则点2019B 的坐标为_____________.【答案】(6058,0) 【解析】由题意可得:∵AO=32,BO=2,52=, ∵OA+AB1+B1C2=32+52+2=6,∵B2的横坐标为:6,B4的横坐标为:2×6=12, ∵点B2018的横坐标为:20182×6=6054. ∵点2019B 的横坐标为:356054605822++=; ∵点2019B 的坐标为(6058,0). 故答案为:(6058,0).【点睛】此题主要考查了旋转的性质,勾股定理,点的坐标以及图形变化类,根据题意得出B 点横坐标变化规律是解题关键.10.(2019年山东省泰安市岱岳区中考第三次模拟数学试题)如图,点1A 的坐标为()1,0, 2A 在y 轴的正半轴上,且1230A A O ∠=︒,过点2A 作2312A A A A ⊥,垂足为2A ,交x 轴于点3A ;过点3A 作3423A A A A ⊥,垂足为3A ,交y 轴于点4A ;过点4A 作4534A A A A ⊥,垂足为4A ,交x 轴于点5A ;过点5A 作5654A A A A ⊥.垂足为5A ,交x 轴于点6A ,按此规律进行下去,则点2019A 的坐标为____________【答案】A2019[-2018,0] 【解析】∵∵A1A2O=30°,OA1=1,∵点A2的坐标为(0,同理,A3(-3,0),A4(0,-,A5(9,0),A6(0,,A7(-27,0),…,即A1(1,0),A2[0,,A3[-,0],A4[0,-(,,0]…,∵序号除以4整除的话在y 轴的负半轴上,余数是1在x 轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x 轴的负半轴上, ∵2019÷4=504…3,∵A2019在x 轴的负半轴上,A2019[-,0]. 【点睛】本题考查坐标与图形的性质、规律型题目,以及含30度角的直角三角形的性质,解题的关键是从特殊到一般,探究规律,利用规律解决问题.11.(四川省眉山市2020年中考数学试题)如图,在Rt ABC 中,90BAC ∠=︒,2AB =.将ABC 绕点A 按顺时针方向旋转至11AB C △的位置,点1B 恰好落在边BC 的中点处,则1CC 的长为________.【答案】【解析】解:在Rt △ABC 中,∵BAC=90°,AB=2,将其进行顺时针旋转,1B 落在BC 的中点处, ∵111Rt A B C △是由Rt △ABC 旋转得到,∵1AB =AB=2,而1BC=2AB =4,根据勾股定理:, 又∵1AB =AB=2,且11BB =BC=22,∵1ABB △为等边三角形, ∵旋转角1BAB =60∠︒,∵1CAC =60∠︒,且1AC 1ACC △也是等边三角形,∵1CC故答案为:【点睛】本题主要考查了旋转性质的应用以及勾股定理的计算,解题的关键在于通过题中所给的条件,判断出图形旋转的度数,知道图形旋转的角度后,有关线段的长度也可求得.12.(湖南省邵阳市邵东市2019-2020学年七年级下学期期末数学试题)如图在边长为1的小正方形组成的网格中,△OAB 的顶点都在格点上.(1)请作出△OAB关于直线CD对称的△O1A1B1;(2)请将△OAB绕点B顺时针旋转90°,画出旋转后的△BO2A2.【答案】(1)见解析;(2)见解析.【解析】解:(1)如图所示,∵O1A1B1即为所求;(2)如图所示,∵BO2A2即为所求.【点睛】本题主要考查了利用旋转变换和轴对称变换进行作图,旋转作图时,决定图形位置的因素有旋转角度、旋转方向、旋转中心.画一个图形的轴对称图形时,先从一些特殊的对称点开始.13.(江苏省扬州市江都区邵樊片2020-2021学年九年级上学期第一次质量检测数学试题)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N 分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【答案】(1)PM =PN ,PM∵PN ;(2)∵PMN 是等腰直角三角形.理由见解析;(3)S∵PMN 最大=492【解析】解:(1)点P ,N 是BC ,CD 的中点, //PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴==最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大.方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.14.(黑龙江省齐齐哈尔市第五十三中学校2020-2021学年九年级上学期第一次月考数学试题)综合与实践 实践操作:①如图1,ABC ∆是等边三角形,D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .②如图2,在ABC ∆中,AD BC ⊥于点D ,将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC 交于点G .③如图3,将图2中得到AEF ∆沿AE 再一次折叠得到AME ∆,连接MB .问题解决:(1)小明在探索图1时发现四边形ABCE 是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD,CF,AC之间的数量关系为:(2)猜想图2中四边形ADGF的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB的长为.【答案】(1)CD+CF=AC;(2)四边形ADGF为正方形;理由见解析;(3)【解析】解:(1)如图:由旋转得:∵DAF=60°=∵BAC,AD=AF,∵∵BAD=∵CAF,∵∵ABC是等边三角形,∵AB=AC,∵∵BAD∵∵CAF(SAS),∵∵ADB=∵AFC,BD=CF,∵∵ADC+∵ADB=∵AFC+∵AFE=180°,∵C、F、E在同一直线上,∵AC=BC=BD+CD=CF+CD,+=;故答案为:CD CF AC(2)四边形ADGF是正方形,理由如下:如图:∵Rt∵ABD绕点A逆时针旋转90°得到∵AEF,∵AF=AD,∵DAF=90°,∵AD∵BC,∵∵ADC=∵DAF=∵F=90°,∵四边形ADGF是矩形,∵AF=AD,∵四边形ADGF是正方形;(3)如图3,连接DE,∵四边形ADGF是正方形,∵DG=FG=AD=AF=6,∵∵ABD绕点A逆时针旋转90°,得到∵AEF,∵∵BAD=∵EAF,BD=EF=2,∵EG=FG-EF=6-2=4,∵将∵AFE沿AE折叠得到∵AME,∵∵MAE=∵FAE,AF=AM,∵∵BAD=∵EAM,∵∵BAD+∵DAM=∵EAM+∵DAM,即∵BAM=∵DAE,∵AF=AD,∵AM=AD,在∵BAM和∵EAD中,∵AM ADBAM DAEAB AE=⎧⎪∠=∠⎨⎪=⎩,∵∵BAM∵∵EAD(SAS),=故答案为:【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.。
第四关 以立体几何为背景的新颖问题为背景的填空题-(原卷版)
压轴填空题第四关 以立体几何为背景的新颖问题为背景的填空题【名师综述】以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,三棱锥E BCD -体积的取值范围是___________.【来源】山东省菏泽市2021-2022学年高三上学期期末数学试题【举一反三】如果一个棱锥底面为正多边形,且顶点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P ABCD -内接于半径为1的球,则当此正四棱锥的体积最大时,其高为_____类型二 几何体的外接球或者内切球问题典例2.已知正三棱锥S ABC -的底面边长为32P ,Q ,R 分别是棱SA ,AB ,AC 的中点,若PQR 是等腰直角三角形,则该三棱锥的外接球的表面积为______.【来源】陕西省宝鸡市2022届高三上学期高考模拟检测(一)文科数学试题【举一反三】已知菱形ABCD 中,对角线23BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC 33= ,则三棱锥A BCD -的外接球的表面积为________. 【来源】江西宜春市2021届高三上学期数学(理)期末试题类型三 立体几何与函数的结合典例3. 已知正方体1111ABCD A B C D -的棱长为1,E 为线段11A D 上的点,过点E 作垂直于1B D 的平面截正方体,其截面图形为M ,下列命题中正确的是______. ①M 在平面ABCD 上投影的面积取值范围是17,28⎡⎤⎢⎥⎣⎦;②M 的面积最大值为334; ③M 的周长为定值.【来源】江西省九江市2022届高三第一次高考模拟统一考试数学(理)试题【举一反三】如图,点C 在以AB 为直径的圆周上运动(C 点与A ,B 不重合),P 是平面ABC 外一点,且PA ⊥平面ABC ,2PA AB ==,过C 点分别作直线AB ,PB 的垂线,垂足分别为M ,N ,则三棱锥B CMN -体积的最大值为______.【来源】百校联盟2020-2021学年高三教育教学质量监测考试12月全国卷(新高考)数学试题类型四 立体几何中的轨迹问题典例4. 已知P 为正方体1111ABCD A B C D -表面上的一动点,且满足2,2PA PB AB ==,则动点P 运动轨迹的周长为__________.【来源】福建省莆田市2022届高三第一次教学质量检测数学试题【举一反三】在棱长为2的正方体1111ABCD A B C D -中,棱1BB ,11B C 的中点分别为E ,F ,点P 在平面11BCC B 内,作PQ ⊥平面1ACD ,垂足为Q .当点P 在1EFB △内(包含边界)运动时,点Q 的轨迹所组成的图形的面积等于_____________.【来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测数学试题【精选名校模拟】1.已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________. 【来源】江苏省南通市2020-2021高三下学期一模试卷2.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.【来源】山东省枣庄市滕州市2020-2021学年高三上学期期中数学试题3.四面体A BCD -中,AB BC ⊥,CD BC ⊥,2BC =,且异面直线AB 和CD 所成的角为60︒,若四面体ABCD 的外接球半径为5,则四面体A BCD -的体积的最大值为_________. 【来源】浙江省宁波市镇海中学2020-2021学年高三上学期11月期中数学试题4.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童,如图的刍童ABCD EFGH -有外接球,且43,4,26,62AB AD EH EF ====,点E 到平面ABCD 距离为4,则该刍童外接球的表面积为__________.【来源】江苏省苏州市张家港市2020-2021学年高三上学期12月阶段性调研测试数学试题5.已知正三棱柱111ABC A B C -的外接球表面积为40π,则正三棱柱111ABC A B C -的所有棱长之和的最大值为______.【来源】河南省中原名校2020-2021学年高三第一学期数学理科质量考评二6.已知体积为72的长方体1111ABCD A B C D -的底面ABCD 为正方形,且13BC BB =,点M 是线段BC 的中点,点N 在矩形11DCC D 内运动(含边界),且满足AND CNM ∠=∠,则点N 的轨迹的长度为______. 【来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)文科数学试卷7.矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的表面积为______;若翻折过程中BD 的长度在710,22⎡⎤⎢⎥⎣⎦范围内变化,则点D 的运动轨迹的长度是______.【来源】江苏省无锡市江阴市青阳中学2020-2021学年高三上学期1月阶段检测数学试题8.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =23,且异面直线AB 与CD 所成的角为60,则四面体ABCD 的外接球的表面积为_________.【来源】山东省新高考2020-2021学年高三上学期联考数学试题9.已知三棱锥P ABC -外接球的表面积为100π,PB ⊥平面ABC ,8PB =,120BAC ∠=︒,则三棱锥体积的最大值为________.【来源】江苏省徐州市三校联考2020-2021学年高三上学期期末数学试题10.已知直三棱柱111ABC A B C -的底面为直角三角形,且内接于球O ,若此三棱柱111ABC A B C -的高为2,体积是1,则球O 的半径的最小值为___________.【来源】广西普通高中2021届高三高考精准备考原创模拟卷(一)数学(理)试题11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为______.【来源】2021年届国著名重点中学新高考冲刺数学试题(7)12.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.【来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考数学(理)试题13.在三棱锥P ABC -中,平面PAB 垂直平面ABC ,23PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.【来源】福建省福州市八县(市)一中2021届高三上学期期中联考数学试题14.已知A ,B ,C ,D 205的球体表面上四点,若4AB =,2AC =,23BC =且三棱维A BCD -的体积为23CD 长度的最大值为________.【来源】福建省四地市2022届高三第一次质量检测数学试题15.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,//AB CD ,AB ⊥AD ,22CD AD AB ===,3PA =,若动点Q 在PAD △内及边上运动,使得CQD BQA ∠=∠,则三棱锥Q ABC -的体积最大值为______.【来源】八省市2021届高三新高考统一适应性考试江苏省无锡市天一中学考前热身模拟数学试题16.已知正三棱锥A BCD -的底面是边长为23其内切球的表面积为π,且和各侧面分别相切于点F 、M 、N 三点,则FMN 的周长为______.【来源】湖南省常德市2021-2022学年高三上学期期末数学试题17.在三棱锥P ABC -中,PA ⊥平面ABC ,AC CB ⊥,4===PA AC BC .以A 为球心,表面积为36π的球面与侧面PBC 的交线长为______.【来源】山东省威海市2021-2022学年高三上学期期末数学试题18.在棱长为1的正方体1111ABCD A B C D -中,过点A 的平面α分别与棱1BB ,1CC ,1DD 交于点E ,F ,G ,记四边形AEFG 在平面11BCC B 上的正投影的面积为1S ,四边形AEFG 在平面11ABB A 上的正投影的面积为2S .给出下面四个结论:①四边形AEFG 是平行四边形; ②12S S +的最大值为2; ③12S S 的最大值为14;④四边形AEFG 6则其中所有正确结论的序号是___________.【来源】北京西城区2022届高三上学期期末数学试题196,在该圆柱内放置一个棱长为a 的正四面体,并且正四面体在该圆柱内可以任意转动,则a 的最大值为__________.【来源】河南省郑州市2021-2022学年高三上学期高中毕业班第一次质量预测数学(文)试题20.在三棱锥P -ABC 中,P A =PB =PC =2,二面角A -PB -C 为直二面角,∠APB =2∠BPC (∠BPC <4π),M ,N 分别为侧棱P A ,PC 上的动点,设直线MN 与平面P AB 所成的角为α.当tan α的最大值为2532时,则三棱锥P -ABC 的体积为__________.【来源】湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题21.体积为8的四棱锥P ABCD -的底面是边长为22底面ABCD 的中心为1O ,四棱锥P ABCD -的外接球球心O 到底面ABCD 的距离为1,则点P 的轨迹长度为_______________________.22.如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD'△的位置,使得平面A CD '⊥平面BCD .若63A B '=,则三棱锥A BCD '-外接球的表面积是________.【来源】河南省2021-2022学年高三下学期开学考试数学理科试题23.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线P A ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.【来源】辽宁省营口市2021-2022学年高三上学期期末数学试题24.在棱长为2的正方体1111ABCD A B C D -中,E 是CD 的中点,F 是1CC 上的动点,则三棱锥A DEF -外接球表面积的最小值为_______.【来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试理科数学试题25.如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.①当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;②当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;③当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形; ④直线MN 与平面ABCD 2;⑤若正方体的棱长为2,点1D 到平面1A MN 2.【来源】四川省成都市第七中学2021-2022学年高三上学期1月阶段性考试理科数学试题11。
浙江省宁波市2020-2021学年镇海区蛟川书院九年级上学期期中数学试卷
12020-2021学年镇海区蛟川书院初三上学期期中数学试卷一、选择题A.B.C.D.1.在中,,,则( ).A.相切B.相交C.相离D.以上都不对2.一圆的半径为,圆心到直线的距离为,则该直线与圆的位置关系是( ).A.B.C.D.3.已知线段,,线段是线段,的比例中项,则线段的长度是( ).A. B. C.D.4.如图,,分别切⊙于点,,,切⊙于点,交,于点,两点,则的周长是( ).A.个B.个C.个D.个5.下列说法:()三点确定一个圆;()直径所对的圆周角是直角;()平分弦的直径垂直于弦,并且平分弦所对的弧;()相等的圆心角所对的弧相等;()圆内接四边形的对角互补.其中正确的个数为( ).A.B.C. D.6.已知一个扇形的半径为,圆心角为,当这个扇形的面积与一个直径为的圆面积相等时,则等于( ).A. B. C. D.7.如图,在中,,,,点为边上一点,则下列条件不能保证与相似的是( ).A. B.C.D.8.如图,在⊙中,是直径延长线上一点,切⊙于点,若,则的余弦值为( ).A. B. C.D.9.如图,和都是等边三角形,点在的延长线上,,若,,则的长为( ).10.如图,四个水平放置正方形的边长都为,顶点、、是圆上的点,则此圆的面积为( ).A. B. C. D.二、填空题11.已知(为锐角),满足方程,则 .12.如图,五边形是⊙的内接正五边形,是⊙的直径,则的度数是 .13.如图,是半圆的直径,且,,则的长为 .14.如图,已知点是的重心,过作的平行线,分别交于点、交于点,作,交于点.若的面积为,则平行四边形的面积为 .15.如图,在锐角中, ,,.若点是边上的一点,将沿所在直线翻折得到,交于,,则 ,D.16.如图,矩形中,,,点是对角线上的动点,点是边上的动点,点是半径为的⊙上的动点,则的最小值为 .三、解答题17.计算:.(1)(2)18.已知⊙的半径为,弦,点是的中点,与交于点.求圆心到弦的距离.求的度数.(1)(2)19.如图,在边长为的的正方形网格上有两个三角形,它们顶点都在格点上.图与是否相似?请说明理由.请在空白网格上画出,并指出相似比.(要求三个顶点都在格点上,并与、都不全等),相似比为 .20.如图,某学校体育场看台的顶端到地面的垂直距离为,看台所在斜坡的坡比,在点处测得旗杆顶点的仰角为,在点处测得旗杆顶点的仰角为,且,,三点在同一水平线上.(1)(2)求的长.求旗杆的高度.(结果保留根号)(1)(2)21.如图,有一座拱桥是圆弧形,它的跨度米,拱高米.求圆弧所在的圆的半径的长;当洪水泛滥到跨度只有米时,要采取紧急措施,若拱顶离水面只有米,即米时,是否要采取紧急措施?22.如图,在边长为的菱形中,,为坐标原点,点在轴的正半轴上,,两点都在第一象限.点以每秒个单位的速度沿运动一周,设运动时间为(秒).请解答下列问题:(1)yO备用图x (2)yO x 当时,求的值.以点为圆心,以为半径画圆,当⊙与菱形的一边所在直线相切,且切点菱形的边上时,求出的值.不.在.(1)(2)23.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友爱四边形”,这条对角线叫“友爱线”.如图,在的正方形网格中,有一个网格和两个网格四边形与四边形,其中是被分割成的“友爱四边形”的是 .图如图,四边形是”友爱四边形”,对角线是“友爱线”,同时也是的角平分线,若中,,,,求友爱四边形的周长.(3)图如图,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友爱四边形”,求的长.图(1)12(2)24.如图,内接于⊙,是直径,于,为延长线上一点,.求证:是⊙的切线.点是⊙上一点,,延长交于,.求的长.若,求⊙的半径.。
2020-2021学年度上学期浙江省宁波市三校联考九年级数学第一次月考试卷(含解析)
2020-2021学年度上学期浙江省宁波市三校联考九年级数学第一次月考试卷一、选择题(共10题;共40分)1.抛物线y=3(x﹣2)2+1的顶点坐标为()A. (1,2)B. (﹣2,1)C. (2,1)D. (﹣2,1)2.二次函数y=x²的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位3.如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A. 40°B. 140°C. 160°D. 170°4.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是195.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计口袋中红球的个数是()A. 3B. 4C. 5D. 66.圆的一条弦长为6,其弦心距为4,则圆的半径为()A. 5B. 6C. 8D. 107.如图,点A,B,C,D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A. 30°B. 40°C. 50°D. 60°8.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=−5t2+v0t+ h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m s⁄)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A. 23.5mB. 22.5mC. 21.5mD. 20.5m9.如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为()A. 6秒B. 8秒C. 10秒D. 18秒10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共30分)11.如图,MN是⊙O的直径,矩形ABCD的顶点A、D在MN上,顶点B、C在⊙O上,若⊙O的半径为5,AB=4,则BC边的长为________.12.已知二次函数y=−x2+2x+m的部分图象如图所示,则关于x的一元二次方程−x2+2x+m=0的根为________.13.经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是________.14.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是________.15.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),M,N分别是BP,AB的中点.若AB=4,∠APB=30°,则MN长的最大值为________.16.如图,在平面直角坐标系中,抛物线y=a(x-2)²+1(a为常数)的顶点为A,过点A作y轴的平行线与抛物线y= −13x2- 43x交于点B,抛物线y= −13x2- 43x的顶点为C,连结CA、CB,则△ABC的面积为________。
2020-2021学年浙江省9 1高中联盟高一上学期期中考试数学试题 PDF版
2020学年第一学期9+1高中联盟期中考试高一年级数学学科 试题1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息; 3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;4.参加联批学校的学生可登陆 查询个人分析报告。
第Ⅰ卷(选择题 共60分)一、选择题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}12M x x =<<,{}=3N x x <,则集合M 和集合N 的关系是( ▲ )A .N M ∈B .M N∈C .M N⊆D .N M⊆2.函数()()02f x x =+的定义域为( ▲ )A .()(),22,-∞+∞ B .()(),22,2-∞-- C .(),2-∞-D .()2-∞,3.已知幂函数()()22322m m f x m m x+-=--⋅在()0,+∞上单调递减,则=m ( ▲ )A .3B .1-C .1-或3D .1或3-4.命题“x R ∀∈,210x x ++≤”的否定为( ▲ ) A . x R ∃∈,210x x ++> B .x R ∀∈,210x x ++≥C . x R ∃∉,210x x ++> D .x R ∀∉,210x x ++≤5.设R x ∈,则“02x <<”是“38x <”的( ▲ )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.函数x y a =(0a >且1a ≠)与函数()21y a x x =--在同一坐标系内的图象可能是( ▲ )A B C D7.对于给定的正数k ,定义函数(),()(),()k f x f x k f x k f x k ⎧=⎨>⎩,若对于函数()f x =的定义域内的任意实数x ,恒有()()k f x f x =,则( ▲ ) A .k 的最大值为2B .k 的最小值为2C .k 的最大值为4D .k 的最小值为48.已知定义在[]1,2a a -上的偶函数()f x ,且当[]0,2x a ∈时,()f x 单调递减,则关于x 的不等式()()123f x f x a ->-的解集是( ▲ )A .20,3⎛⎫ ⎪⎝⎭ B .15,66⎡⎤⎢⎥⎣⎦ C .12,33⎛⎤⎥⎝⎦ D .25,36⎛⎤⎥⎝⎦二、选择题(本题共4小题,每小题5分,共20分。
2020-2021学年浙江省温州市三校联考八年级(上)期中数学试卷-解析版
2020-2021学年浙江省温州市三校联考八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.以下列数据为长度的三条线段,能组成三角形的是()A. 1,2,3B. 6,8,15C. 8,4,3D. 4,6,52.下列学习用具中,不是轴对称图形的是()A. B.C. D.3.如图,△ACB≌△A1CB1,AB=2,AC=3,BC=4,则A1C的长为()A. 2B. 3C. 4D. 2.54.下列语句是命题的是()A. 等腰三角形是轴对称图形B. 将27开立方C. 画一个角等于已知角D. 垂线段最短吗?5.等腰三角形两边长分别为4和9,则它的周长为()A. 9B. 17C. 22D. 17或226.如果直角三角形的两条直角边的长分别为6cm和8cm,那么斜边上的中线等于()A. 2.4cmB. 4.8cmC. 5cmD. 10cm7.已知AD是△ABC的中线,BE是△ABD的中线,若△ACD的面积为20,则△ABE的面积为()A. 5B. 10C. 15D. 188.下列条件中,不能判断一个三角形是直角三角形的是()A. 三个角的比为1:2:3B. 三条边满足关系a2=b2−c2C. 三条边的比为1:2:3D. 三个角满足关系∠B+∠C=∠A9.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A. 1.5B. 2.4C. 2.5D. 3.510.如图,△ABC的周长为30,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连结AD,若AE=4,则△ABD的周长是()A. 22B. 20C. 18D. 15二、填空题(本大题共8小题,共24.0分)11.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A为______度.12.如图,在△ABC中,点D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于______.13.把命题“对顶角相等”改写成“如果…那么…”的形式:______.14.如图,在Rt△ABC中,∠C=90°,CD⊥AB,如果∠A=40°,则∠1=______ 度.15.如图,已知AC=DB,再添加一个适当的条件______ ,使△ABC≌△DCB.(只需填写满足要求的一个条件即可).16.如图,△ABC中,AB=AC,BC=3,点E为中线AD上一点,已知△ABE和△CDE的面积分别为1.5和2,则AD的长度为______ .17.如图,已知△ABD,△BCE均为等腰直角三角形,若CD=8,BE=3,则AC等于______.18.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=2.5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是15,则这个风车的外围周长是______ .三、解答题(本大题共6小题,共46.0分)19.如图,点B、E、C、F在一条直线上,∠B=∠DEF,AB=DE,BE=CF,∠F=70°,求∠ACB的度数.20.如图,在△ABC中,AB=AC,D为BC边上中点,DM⊥AC于点M,DN⊥AB于点N.求证:DM=DN.21.已知:如图,A,B,D在同一条直线上,∠1=∠2,∠A=∠D=Rt∠,AC=BD.(1)△ABC与△DEB全等吗?请说明理由(2)求证:△CBE为等腰直角三角形.22.在如图所示的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画一个以格点为顶点,面积为6个平方单位的等腰三角形;(2)请你在图2中画一条以格点为端点,长度为√5的线段;(3)请你在图3中画一个以格点为顶点,√5为直角边的直角三角形.23.如图,在等边△ABC中,D、E分别在边BC、AC上,且DE//AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.24.如图1,△ABC中,BE平分∠ABC交AC边于点E,过点E作DE//BC交AB于点D,(1)求证:△BDE为等腰三角形;(2)若点D为AB中点,AB=6,求线段BC的长;(3)在图2条件下,若∠BAC=60°,动点P从点B出发,以每秒1个单位的速度沿射线BE运动,请直接写出图3当△ABP为等腰三角形时t的值.答案和解析1.【答案】D【解析】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形;B、6+8=14<15,不能组成三角形;C、3+4=7<8,不能组成三角形;D、4+5=9>6,能够组成三角形.故选:D.可根据三角形三边关系,两边之和大于第三边,对每个选项进行分析得出答案.此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.【答案】C【解析】解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.3.【答案】B【解析】解:∵△ACB≌△A1CB1,∴A1C=AC=3.故选B.根据全等三角形对应边相等可得A1C=AC.本题考查了全等三角形对应边相等的性质,熟记性质并准确识图准确确定出对应边是解题的关键.【解析】解:根据命题是一个陈述句,因此BCD不是命题,故选A.利用命题的定义分别判断后即可确定正确的选项.考查了命题与定理的知识,解题时要根据命题的定义做出选择.5.【答案】C【解析】解:9为腰长时,三角形的周长为9+9+4=22,9为底边长时,4+4<9,不能组成三角形,故选:C.分类讨论:9为腰长,9为底边长,根据三角形的周长公式,可得答案.本题考查了等腰三角形的性质,分类讨论是解题关键,又利用了三角形三边的关系:两边之和大于第三边.6.【答案】C【解析】【分析】本题主要考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边的长为:√62+82=10cm,×10=5cm.所以斜边上的中线长:12故选C.7.【答案】B【解析】【分析】由于AD是△ABC的中线,那么△ABD和△ACD的面积相等,又BE是△ABD的中线,由此得到△ABE和△DBE的面积相等,而△ACD的面积为20,由此即可求出△ABE的面积.此题主要考查了中线能把三角形的面积平分,利用这个结论就可以求出三角形的面积.解:∵AD是△ABC的中线,△ACD的面积为20,∴S△ABD=S△ACD,=20,∵BE是△ABD的中线,∴S△ABE=S△DBE,而S△ABE=20÷2=10.故选:B.8.【答案】C【解析】解:A、三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,故正确;B、三条边满足关系a2=b2−c2,故正确;C、三条边的比为1:2:3,12+22≠32,故错误;D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故正确.故选C.根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.9.【答案】B【解析】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM=√AB2−BM2=√52−32=4,又S△AMC=12MN⋅AC=12AM⋅MC,∴MN=AM⋅CMAC =125=2.4.故选:B.连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.本题考查等腰三角形的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求线段的长.10.【答案】A【解析】解:∵把△ABC的边AC对折,使顶点C和点A重合,∴AD=DC,AE=CE=4,∴AC=8,∵△ABC的周长为30,∴AB+BC=30−AC=30−8=22,∴△ABD的周长=AB+AD+BD=AB+CD+BC−CD=AB+BC=22.故选:A.直接利用翻折变换的性质得出AD=CD,AE=EC,进而得出△ABD的周长=AB+AD+ BD=AB+CD+BC−CD=AB+BC,进而得出答案.此题主要考查了翻折变换的性质,正确得出AB+BC的长是解题关键.11.【答案】30【解析】解:∵∠A:∠B:∠C=1:2:3,×180°=30°,∴∠A=11+2+3故答案为:30.根据三角形内角和定理求解即可.本题考查三角形内角和定理,解题的关键是记住三角形内角和为180°.12.【答案】80°【解析】解:由三角形外角性质可得:∠ACD=∠B+∠A,∵∠B=40°,∠ACD=120°,∴∠A=120°−40°=80°,故答案为:80°.根据三角形的一个外角等于和它不相邻的两个内角的和解答即可.此题考查三角形外角性质,关键是根据三角形的一个外角等于和它不相邻的两个内角的和解答.13.【答案】如果两个角是对顶角,那么它们相等【解析】【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.14.【答案】40【解析】解:∵∠C=90°,CD⊥AB,∴∠A+∠ACD=∠1+∠ACD=90°,∴∠1=∠A=40°.故答案为:40.根据同角的余角相等可得∠1=∠A.本题考查了直角三角形的性质,同角的余角相等的性质,熟记性质并准确识图是解题的关键.15.【答案】AB=DC【解析】解:添加AB=DC∵AC=DB,BC=BC,AB=DC∴△ABC≌△DCB∴加一个适当的条件是AB=DC.要使△ABC≌△DCB,由于BC是公共边,若补充一组边相等,则可用SSS判定其全等.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.16.【答案】143【解析】解:∵AB=AC,点E为中线AD上一点,∴AD⊥BC,∵△ABE和△CDE的面积分别为1.5和2,BC⋅AD=2(S△ABE+S△CDE)=2(1.5+2)=7,∴S△ABC=12∵BC=3,∴AD=14,3故答案为:14.3首先根据等腰三角形的三线合一的性质得到AD是底边上的高,然后求得三角形的面积,从而根据底边的长求得底边上的高.本题考查了等腰三角形的性质,能够利用等腰三角形的性质得到AD是底边上的高是解答本题的关键,难度不大.17.【答案】√34【解析】【分析】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.先根据△ABD,△BCE均为等腰直角三角形得出BD=AB,BC=BE,再根据CD=8,BE=3得出BC及AB的长,再根据勾股定理求出AC的长即可.【解答】解:∵△ABD,△BCE均为等腰直角三角形,∴BD=AB,BC=BE,∵CD=8,BE=3,∴BC=3,AB=BD=8−3=5,∴AC=√AB2+BC2=√52+32=√34.故答案为:√34.18.【答案】38【解析】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+2.52,∵△BCD的周长是15,∴x+2y+2.5=15则x=6.5,y=3.∴这个风车的外围周长是:4(x+y)=4×9.5=38.故答案是:38.由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.19.【答案】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中{AB=DE ∠B=∠DEF BC=EF∴△ABC≌△DEF(SAS),∴∠ACB=∠F=70°.【解析】求出BC=EF,根据SAS推出△ABC≌△DEF,根据全等三角形的性质得出∠ACB=∠F即可.本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.20.【答案】证明:∵AB=AC,D为BC中点,∴AD平分∠BAC,∵DM⊥AC DN⊥AB,∴DM=DN.【解析】首先根据等腰三角形的性质得到AD是顶角的平分线,然后利用角平分线的性质得到两条垂线段相等即可.本题考查了等腰三角形的性质及角平分线的性质,证明的比较巧妙,防止出现证明全等的现象.21.【答案】解:(1)全等,理由如下:∵∠1=∠2,∴BC=BE,在Rt△BAC和Rt△EDB中{BC=BEAC=BD∴Rt△BAC≌Rt△EDB(HL),即△ABC与△DEB全等;(2)∵Rt△BAC≌Rt△EDB,∴∠ABC=∠DEB,∵∠DEB+∠EBD=90°,∴∠ABC+∠EBD=90°,∴∠CBE=90°,∵BC=BE∴△CBE为等腰直角三角形.【解析】(1)关键等腰三角形的判定去球场BC=BE,根据HL证两三角形全等即可;(2)根据全等三角形的性质得出∠ABC=∠DEB,求出∠ABC+∠EBD=90°,推出∠CBE=90°即可.本题考查了等腰三角形的判定,全等三角形的性质和判定,三角形内角和定理的应用,解此题的关键是求出Rt△BAC≌Rt△EDB,题目比较好,难度适中.22.【答案】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【解析】(1)根据三角形的面积公式画出图形即可;(2)画出以1和2为长方形的宽和长的对角线的长即可;(3)先画出边长为√5的线段,再画出直角三角形即可.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.23.【答案】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE//AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°−∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【解析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.24.【答案】(1)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE//BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)解:∵点D为AB中点AB=3,∴AD=BD=ED=12∵DE//BC,∴E为AC中点,∴DE为△ABC的中位线,∴BC=2DE=6;(3)在(2)的条件下可知DE=DA,且∠BAC=60°,∴△ADE为等边三角形,∵BC=2DE=AB,∴△ABC为等边三角形,AB=6,当BP=AP时,过点P作PE⊥AB,交AB于点E,则BF=12∠ABC=30°,在Rt△PBF中,∠PBF=12∴BP=2√3,即t=2√3,当BP=BA时,此时BP=6,即t=6,当AB=AP时,此时,BP=2BE=6√3,即t=6√3,综上可知当△ABP为等腰三角形时t的值为2√3,6,6√3.【解析】(1)由角平分线和平行线的性质可得到∠BDE=∠DEB,可证得结论;(2)由条件可知BD=DE=DA=3,且DE为△ABC的中位线,可求得BC长;(3)分BP=AP、BP=AB、AP=AB三种情况分别讨论求t的值即可.本题主要考查等腰三角形的性质和判定及勾股定理、平行线性质的综合应用,掌握等腰三角形的判定方法是解题的关键,在第(3)中注意分情况讨论.。
2020-2021学年浙江省宁波市慈溪市九年级(上)期末数学试卷 解析版
2020-2021学年浙江省宁波市慈溪市九年级(上)期末数学试卷一、选择题(每题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A.明天30%的地区不会下雨B.明天下雨的可能性较大C.明天70%的时间会下雨D.明天下雨是必然事件3.把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+4)2+1D.y=(x﹣4)2+14.一个圆的内接正六边形与内接正方形的边长之比为()A.3:2B.1:C.1:D.:5.如图,直线l1∥l2∥l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A.18B.20C.25D.306.在4×5网格中,A,B,C为如图所示的格点(正方形的顶点),则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=7.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A.8.5米B.8.8米C.8.3米D.9米9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=y B.3x=2y C.x=1,y=2D.x=3,y=2 10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f(e,f 为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB=90°,则a的值为()A .﹣B .﹣C .﹣D .﹣二、填空题(每题5分,共30分)11.(5分)如图,已知P(4,3)为∠α边上一点,则cosα=.12.(5分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记第下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n10015020050080010006000到白球的次数m58961162954846013601摸到白球的频率0.580.640.580.590.6050.6010.600小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是(若有正确的,则填编号;若没有正确的,则填“无”).13.(5分)已知点A(﹣1,y1),B(﹣0.5,y2),C(4,y3)都在二次函数y=﹣ax2+2ax ﹣1(a>0)的图象上,则y1,y2,y3的大小关系是.14.(5分)如图,AB为⊙O的直径,=2,M为的中点,过M作MN∥OC交AB 于N,连接BM,则∠BMN的度数为.15.(5分)如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为.16.(5分)如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:;②m=(用含S1,S3的代数式表示m).三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.(8分)计算求值:(1)已知,求的值;(2)2sin30°﹣tan60°•cos30°.18.(8分)如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.19.(8分)某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).20.(10分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.21.(10分)如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.22.(10分)如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接P A,PB,分别交⊙O 于点C,D,=.(1)求证:P A=PB;(2)若∠P=60°,=3.△AOC的面积等于9,求图中阴影部分的面积.23.(12分)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ∥AC,交直线BC于点Q,作PM∥y轴交BC于M.①求证:△PQM∽△COA;②求线段PQ的长度的最大值.24.(14分)如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求P A•AE的最大值.2020-2021学年浙江省宁波市慈溪市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.【分析】直接利用旋转的定义得出答案即可.【解答】解:根据旋转的定义,A,B,C中的三角形绕一点旋转一次不能得到另一三角形,不符合题意,选项D符合题意.故选:D.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A.明天30%的地区不会下雨B.明天下雨的可能性较大C.明天70%的时间会下雨D.明天下雨是必然事件【分析】根据概率的意义找到正确选项即可.【解答】解:天气台预报明天下雨的概率为70%,说明明天下雨的可能性很大,故B正确.故选:B.3.把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+4)2+1D.y=(x﹣4)2+1【分析】根据平移规律“左加右减,上加下减”解答.【解答】解:把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为y=(x﹣1+3)2﹣3+4,即y=(x+2)2+1.故选:A.4.一个圆的内接正六边形与内接正方形的边长之比为()A.3:2B.1:C.1:D.:【分析】设圆的半径是R,则可表示出两个多边形的边长,进而求解.【解答】解:设此圆的半径为R,它的内接正六边形的边长为R,则它的内接正方形的边长为R,内接正六边形和内接四边形的边长比为R:R=1:.故选:C.5.如图,直线l1∥l2∥l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A.18B.20C.25D.30【分析】利用平行线分线段成比例定理得到=,然后把已知条件代入计算即可.【解答】解:∵l1∥l2∥l3,∴=,即=,∴DF=25.故选:C.6.在4×5网格中,A,B,C为如图所示的格点(正方形的顶点),则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=【分析】根据网格构造直角三角形利用勾股定理可求出三角形ABC的三边的长,进而得出此三角形是等腰直角三角形,在利用特殊锐角三角函数值得出答案.【解答】解:由网格构造直角三角形可得,AB2=12+32=10,AC2=12+22=5,BC2=12+22=5,∵AB2=AC2+BC2,∴△ABC是等腰直角三角形,∴∠A=∠B=45°,∴sin A=sin45°=,cos A=cos45°=,tan A=tan45°=1,∴选项D是正确的,故选:D.7.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π【分析】连接OB,求出∠BOD的度数,利用弧长公式求解即可.【解答】解:如图,连接OB.∵CD⊥AB,CD是直径,∴=,∴∠AOC=∠BOC,∵OA=OB,∴∠A=∠B=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠COB=∠AOB=60°,∴∠DOB=180°﹣60°=120°,∴的长==2π,8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A.8.5米B.8.8米C.8.3米D.9米【分析】根据坡度坡角定义即可求出结果.【解答】解:由于台阶共高出地面1.53米,斜坡的坡角不得超过10°,斜坡的水平宽度AB至少为AB=≈8.5(米).故选:A.9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=y B.3x=2y C.x=1,y=2D.x=3,y=2【分析】分两种情形,利用相似多边形的性质求解即可.【解答】解:如图,当矩形ABCD∽矩形EFGH时,则有=,∴=,可得3x=2y,选项B符合题意,当矩形ABCD∽矩形EHFG时,则有=,∴=,推不出:x=y或3x=2y或x=1,y=2或x=3,y=2.故选项A,B,C,D都不满足条件,此种情形不存在.∴矩形ABCD∽矩形EFGH,可得3x=2y,10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f(e,f 为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB=90°,则a的值为()A.﹣B.﹣C.﹣D.﹣【分析】根据二次函数图象的性质,再结合二次函数图象,可以表达对称轴,并结合几何图形,利用相似三角形得出等量关系,建立等式,求解.【解答】解:∵C(m,n)和D(m+8,n),∴CD∥x轴,且二次函数的对称轴x=m+4,∴AB⊥CD,∵点C,D在二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f (e,f为常数)的图象上,∴y=ax2+bx+c=a(x﹣m)(x﹣m﹣8)+n,y=(x﹣m)(x﹣m﹣8)+n,∴A(m+4,n﹣16a),B(m+4,n﹣8),设AB与CD的交点为E,则E(m+4,n),则CE=4,AE=﹣16a,BE=8;在△ABC中,∠ACB=90°,且AB⊥CD,则CE2=AE•BE,∴42=﹣16a×8,解得,.故选:C.二、填空题(每题5分,共30分)11.(5分)如图,已知P(4,3)为∠α边上一点,则cosα=.【分析】过点P作x轴的垂线,构造直角三角形,根据勾股定理和锐角三角函数看求出答案.【解答】解:过点P(4,3)作PQ⊥x轴,垂足为Q,则PQ=3,OQ=4,在Rt△POQ中,OP===5,所以cosα==,故答案为:.12.(5分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记第下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000600058961162954846013601到白球的次数m0.580.640.580.590.6050.6010.600摸到白球的频率小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是②(若有正确的,则填编号;若没有正确的,则填“无”).【分析】根据题意和表格中的数据、概率的含义,可以判断①和②的结论是否成立,本题得以解决.【解答】解:由题意可得,若摸10000次,则频率不一定为0.6,可能为0.6,故①错误;由表格中的数据可以估计摸一次得白球的概率约为0.6,故②正确;故答案为:②.13.(5分)已知点A(﹣1,y1),B(﹣0.5,y2),C(4,y3)都在二次函数y=﹣ax2+2ax ﹣1(a>0)的图象上,则y1,y2,y3的大小关系是y3<y1<y2.【分析】根据二次函数的解析式得出图象的开口向下,对称轴是直线x=1,根据x<1时,y随x的增大而增大,即可得出答案.【解答】解:∵y=﹣ax2+2ax﹣1(a>0),∴图象的开口向下,对称轴是直线x=﹣=1,∴A(4,y3)关于直线x=1的对称点是(﹣2,y3),∵﹣2<﹣1<﹣0.5,∴y3<y1<y2,故答案为y3<y1<y2.14.(5分)如图,AB为⊙O的直径,=2,M为的中点,过M作MN∥OC交AB 于N,连接BM,则∠BMN的度数为45°.【分析】连接OM.想办法求出∠MNB,∠NBM,即可解决问题.【解答】解:连接OM.∵AB是直径,=2,∴∠BOC=×180°=60°,∵=,∴∠MOB=∠COM=30°,∵OM=OB,∴∠B=∠OMB=(180°﹣30°)=75°,∵OC∥MN,∴∠MNB=∠COB=60°,∴∠BMN=180°﹣∠BNM﹣∠NBM=180°﹣60°﹣75°=45°,故答案为:45°.15.(5分)如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为.【分析】如图,由DE∥BC,可得△ADE∽△ABC,利用相似三角形的性质,可求得△ADE的高,进而求得平行四边形的高,则问题可解.【解答】解:如图,作AM⊥BC于M,AM交DE于N.∵S△ABC=BC•AM=10,BC=5,∴AM=4.∵DE∥BC,AM⊥BC,∴△ADE∽△ABC,AM⊥DE,∴=,即=,∴AN=,∴平行四边形DEGF的高MN=AM﹣AN=4﹣=,∴平行四边形纸片的面积=2×=.故答案为:.16.(5分)如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:S2=(S1+S3);②m=.(用含S1,S3的代数式表示m).【分析】①由题意可得:S1=8S△AEH+S3,4S△AEH=S2﹣S3,代入化简即可得到答案;②先证明△MLK∽△KEH,设AE=x,PE=y,结合四边形MNOP的面积为m,可得答案.【解答】解:①观察图像(2)可知,S1=8S△AEH+S3,4S△AEH=S2﹣S3,∴S1=2(S2﹣S3)+S3,∴2S2=S1+S3,∴S2=(S1+S3),故答案为:S2=(S1+S3).②∵HE⊥EF,AK⊥HE,∴AK∥EF,同理:BL∥GF,DJ∥HE,CI∥GH,∴四边形MNOP是平行四边形,且△MKL≌△NLI≌△OIJ≌△PJK,∴MN∥GF∥EH,∴∠LMK=∠EKH=90°,∠MLK=∠HEL,∴△MLK∽△KEH,∴==,设AE=x,PE=y,则:==,∴ML=,MK==LN,∴MN=+=,∴m=MN2=2=,∵S1=(x+y)2,S2=x2+y2,S3=(x﹣y)2,∴m===.故答案为:.三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.(8分)计算求值:(1)已知,求的值;(2)2sin30°﹣tan60°•cos30°.【分析】(1)直接利用一个未知数表示出a,b,进而代入化简得出答案;(2)直接利用特殊角的三角函数值代入得出答案.【解答】解:(1)∵,∴设a=3x,则b=4x,∴==﹣;(2)原式=2×﹣×=1﹣=﹣.18.(8分)如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.【分析】根据网格即可画出满足两个条件的三角形.【解答】解:如图所示,△ADE和△ADB即为所求.19.(8分)某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).【分析】(1)直接利用概率公式求解可得答案;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.【解答】解:(1)小丽通过A通道进入校园的概率为;(2)列表如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小丽和小聪从两个不同通道进入校园的有6种可能,∴小丽和小聪从两个不同通道进入校园的概率为=.20.(10分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.【分析】(1)过O作OG⊥BD于点G,根据等腰三角形的性质和平行线的性质可得∠EAB =∠BOG=28°,再利用锐角三角函数即可解决问题;(2)根据已知条件证明△AEB∽△CFD,对应边成比例即可求出CF的高度.【解答】解:(1)如图,过O作OG⊥BD于点G,∵AE⊥BD,∴OG∥AE,∵BO=DO,∴OG平分∠BOD,∴∠BOG=∠BOD=×56°=28°,∴∠EAB=∠BOG=28°,在Rt△ABE中,AB=AO+BO=70+80=150(cm),∴AE=AB•cos∠EAB=150×cos28°≈150×0.88=132(cm),答:点A离地面的高度AE约为132cm;(2)∵OG∥AE,∴∠EAB=∠BOG,∵CF⊥BD,∴CF∥OG,∴∠DCF=∠DOG,∵∠BOG=∠DOG,∴∠BAE=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△CFD,∴=,∴CF===100(cm),答:C点离地面的高度CF为100cm.21.(10分)如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.【分析】(1)设矩形的长为x米,则宽为米,由题意可知x≤a,设矩形的面积为S,根据题意用含x的式子表示出S,将其写成二次函数的顶点式,则可知其对称轴,然后分别对①a=15;②a=10计算求得相应的最大值即可.(2)令S=67.5得关于x的一元二次方程,求得方程的解并结合由(1)的结论可得答案.【解答】解:(1)设矩形的长为x米,则宽为米,由题意可知x≤a,∴设矩形的面积为S,则S=x×=﹣x2+12x=﹣(x﹣12)2+72,∵﹣<0,抛物线开口向下,对称轴为直线x=12,∴当0<x≤12时,S随x的增大而增大,当x≥12时,S随x的增大而减小;①a=15时,x≤a即x≤15;∴当x=12时,S有最大值为72平方米;②a=10时,x≤a即x≤10,∴当x=10时,面积的最大值为﹣×(10﹣12)2+72=70(平方米).(2)令S=67.5得:﹣(x﹣12)2+72=67.5,解得x=9或x=15,由x≤a可知,当x=15时,a≥15,由(1)知,此时矩形最大值在x=12时取得,面积最大值为72平方米,故x=15舍去.∴a=9.22.(10分)如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接P A,PB,分别交⊙O 于点C,D,=.(1)求证:P A=PB;(2)若∠P=60°,=3.△AOC的面积等于9,求图中阴影部分的面积.【分析】(1)连接OA,OC,OD,OB,设OM⊥AC于M,ON⊥BD于N,设OP交⊙O 于E.证明Rt△OMC≌Rt△OND(HL),推出OM=ON,再证明Rt△POM≌Rt△PON (HL),可得结论.(2)过点A作AJ⊥OC于J.设OA=OB=R,则AJ=R,首先证明∠AOC=30°,利用三角形的面积公式求出R,即可解决问题.【解答】(1)证明:连接OA,OC,OD,OB,设OM⊥AC于M,ON⊥BD于N,设OP 交⊙O于E.∵=,∴AC=BD,∵OA=OC=OB=OD,OM⊥AC,ON⊥BD,∴CM=AM,BN=DN,∠OMC=∠OND=90°,∴CM=DN,在Rt△OMC和Rt△OND中,,∴Rt△OMC≌Rt△OND(HL),∴OM=ON,在Rt△POM和Rt△PON中,,∴Rt△POM≌Rt△PON(HL),∴PM=PN,∵AM=BN,∴P A=PB.(2)解:∵∠APB=60°,∠PMO=∠PNO=90°,∴∠MON=120°,∵△POM≌△PON,∴∠POM=∠PON=60°,∵=3,∴∠COE=3∠COM,∴∠COM=15°,∴∠AOC=2∠COM=30°,过点A作AJ⊥OC于J.设OA=OB=R,则AJ=R∴S△AOC=9,∴•R••R=9,∴R=6,∴S阴=S阴=S阴﹣S△AOC=﹣9=3π﹣9.23.(12分)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ∥AC,交直线BC于点Q,作PM∥y轴交BC于M.①求证:△PQM∽△COA;②求线段PQ的长度的最大值.【分析】(1)利用待定系数可求解析式;(2)先求出AB,AC,BC,由勾股定理的逆定理可求解;(3)①由平行线的性质可得∠ACB=∠CQP=∠PQM=90°,∠PMQ=∠BCO=∠CAO,由相似三角形的判定定理可得△PQM∽△COA;②先求出BC解析式,设P(m,﹣m2+m+2),则点M(m,﹣m+2),由锐角三角函数可求PQ的长,由二次函数的性质可求解.【解答】解:(1)∵二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),∴,解得:,∴二次函数表达式为y=﹣x2+x+2;(2)△ABC是直角三角形,理由如下:∵抛物线y=﹣x2+x+2与y轴交于点C,∴点C(0,2),又∵点A(﹣1,0),B(4,0),∴AB=5,AC===,BC===2,∵AB2=25,AC2+BC2=25,∴AB2=AC2+BC2,∴∠ACB=90°,∴△ABC是直角三角形;(3)①∵∠ACB=∠AOC=90°,∴∠ACO+∠BCO=90°=∠ACO+∠CAO,∴∠BCO=∠CAO,∵PQ∥AC,PM∥y轴,∴∠ACB=∠CQP=∠PQM=90°,∠PMQ=∠BCO=∠CAO,∴△PMQ∽△COA;②如图,延长PM交AB于H,∵∠PMQ=∠BMH,∠PQM=∠PHB=90°,∴∠QPM=∠CBA,∵B(4,0),点C(0,2),∴直线BC解析式为y=﹣x+2,设P(m,﹣m2+m+2),则点M(m,﹣m+2),∴PM=﹣m2+m+2﹣(﹣m+2)=﹣(m﹣2)2+2,∵cos∠CBA=cos∠QPM,∴,∴=,∴PQ=﹣(m﹣2)2+,∴当m=2时,PQ有最大值为.24.(14分)如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求P A•AE的最大值.【分析】(1)①证明:如图1,连接PC,根据圆内接四边形的性质和圆周角定理得:∠PCB=∠PBC,所以弦相等,弧相等,可得结论;②如图2,作辅助线,构建直径PG,根据垂径定理得:BG=3,∠BOG=∠BAC,最后由三角函数定义可得结论;(2)如图3,过P作PG⊥BC于G,连接OC,根据勾股定理计算OG和PC的长,根据各角的关系证明∠APC=∠E,则CE和PC的长相等,可得结论;(3)如图4,过点C作CQ⊥AB于Q,证明△ACE∽△APB,列比例式得:P A•AE=AC •AB,根据三角形面积公式得P A•AE=S△ABC,由图形可知:点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,从而得结论.【解答】(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠P AF=∠PBC,∵AP平分∠BAF,∴∠P AF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴=,∴点P为的中点;②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴,∴PH是直径,∵∠BPC=∠BAC,∠BOG=∠BPG=∠BPC,∵OG⊥BC,∴BG=BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG==;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC===3,设∠APC=x,∵A是的中点,∴=,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x﹣x=x=∠CPE,∴CE=PC=3;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠P AF=∠P AB,∴△ACE∽△APB,∴,∴P A•AE=AC•AB,∵sin∠BAC=,∴CQ=AC•sin∠BAC=AC,∴S△ABC=AB•CQ=,∴P A•AE=S△ABC,∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时P A•AE=×=80.。
浙江省宁波市鄞州区七校联考2020-2021学年第二学期九年级数学第一次阶段性测试试题
2020学年第二学期九年级第一次阶段性测试数学试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.若9x=5y,则xy=()A.95B.59C.94D.492.下列事件是随机事件的是()A.抛一枚质地均匀的硬币,正好正面朝上B.掷一枚质地均匀的骰子,出现点数为7C.从一副扑克牌中任抽2张都是红心5D.从装满红球的口袋中随意摸一个球是红球3.下列二次函数的图象的对称轴是y轴的是()A.y=-(x+1)2+1B.y=(x-1)2+1C.y=-(x-1)2+1 D.y=-x2+14.如图,该几何体是由4个相同的小正方体搭建而成的,则它的左视图是()A.B.C.D.第4题图第6题图5.已知点A(1,y1),B(-2,y2),C(0,y3)是抛物线y=-x2+2x+1上的三个点,则()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y16.如图,已知△ABC∽△BDC,其中AC=4,CD=2,则BC=()A.2B.C.D.47.如图,AC为⊙O的弦,B为优弧ABC上任意一点,过点O作AB的平行线交⊙O于点D,交弦AC于点E,连结OA,其中∠OAB=20°,∠CDO=40°,则∠CED=()A .50°B .60°C .70°D .80°第7题图 第8题图8. 如图,在△ABC 中,E 是线段AC 上一点,且AE ∶CE =1∶2,过点C 作CD ∥AB ,交BE 的延长线于点D .若△BCE 的面积等于4,则△CDE 的面积等于( )A .8B .16C .24D .329. 如图,小明家附近有一观光塔CD ,他发现当光线角度发生变化时,观光塔的影子在地面上的长度也发生变化.经测量发现,当小明站在点A 处时,塔顶D 的仰角为37°,他继续往前再走5米到达点B (点A ,B ,C 在同一直线上),此时塔顶D 的仰角为53°,则观光塔CD 的高度约为( )(精确到0.1米,参考数值:3tan374︒≈,4tan533︒≈) A .7.6米 B .7.8米C .8.6米D .8.8米第9题图 第10题图10.如图,点A 是二次函数2y =图象上的一点,且位于第一象限,点B 是直线y x =上一点,点B ′与点B 关于原点对称,连结AB ,AB ′,若△ABB ′为等边三角形,则点A 的坐标是( )A .(13 B .(23C .(1)D .(43试题卷Ⅱ二、填空题(每小题5分,共30分)11.在Rt △ABC 中,∠C =90°,AC =3,BC =4,则tan A = .12.某市对一批口罩进行抽检,统计合格口罩的只数,得到口罩的合格频率如下:抽检只数(只) 50 100 150 500 1 000 2 000 10 000 50 000 合格频率0.82 0.83 0.82 0.83 0.84 0.84 0.840.84则从该批口罩中任抽一只口罩,是合格品的概率约为 .13.如图,点A ,B ,C 都在⊙O 上,若OB =3,∠ABC =30°,则劣弧AC 的长为 .第13题图 第15题图 第16题图14.将二次函数y =x 2+2的图象先向左平移2个单位长度,再向下平移3个单位长度,所得新抛物线的函数表达式为 .15.如图,⊙O 的半径为4,AB 为⊙O 的直径,∠ABC =90°,直线CE 与⊙O 相切于点D ,交BA 的延长线于点E ,A 为OE 的中点,则AC 的长是 .16.如图,在△ABC 中,AB =2,AC D 为△ABC 内部的一点,且CD ⊥BD ,在BD 的延长线上取一点E ,使得∠CAE =∠BAD .若∠ADE =∠ABC ,且∠DBC =30°,则AD 的长为 . 三、解答题(本大题有8小题,共80分) 17.(本题8分)(1)计算:24sin 60tan 45|cos301|︒-︒+︒-; (2)若3b a =,求a b a b+-的值.18.(本题8分)小刚所在的社区为了做好应对新冠疫情的防控工作,特招募社区抗疫志愿工作者.小刚的爸爸决定报名参加,根据规定,志愿者会被随机分到A (体温检测),B (便民代购),C (环境消杀)其中一组.(1)求小刚的爸爸被分到C 组的概率;(2)小明的爸爸也加入了该社区的志愿者队伍,请利用画树状图或列表的方法求小明的爸爸和小刚的爸爸被分到同一组的概率.19.(本题8分)近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18 cm,灯臂CD=33 cm,灯罩DE=20 cm,BC⊥AB,CD,DE分别可以绕点C,D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1 cm,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)20.(本题10分)如图,在7×7的正方形网格中,每个小正方形的边长均为1,线段AB的端点均在小正方形的格点上(小正方形的顶点称为格点).(1)在图中画一个Rt△ABC,使其同时满足以下三个条件:①A为直角顶点;②点C在格点上;③3 tan2ACB∠=;(2)在(1)的条件下,请在网格中找到另一个格点D,满足tan∠CBD=1,连结CD,求线段CD的长.21.(本题10分)如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,AC长为半径作圆,交BC 于点D,交AB于点E,连结DE.(1)若∠ABC=20°,求∠DEA的度数;(2)若AC=3,AB=4,求CD的长.22.(本题10分)如图,已知二次函数y=-x2+bx+c的图象经过A(2,0),B(0,-8)两点.(1)求该二次函数的表达式;(2)当2≤x ≤5时,函数在点C 处取得最大值,在点D 处取得最小值,求△BCD 的面积.23.(本题12分)如图,在平面直角坐标系中,点A 的坐标为(4,0),B 是y 轴正半轴上的一个动点,以OA 为直径作圆,交AB 于点C . (1)求证:△AOB ∽△ACO ;(2)当∠OAB =30°时,求点C 到x 轴的距离; (3)求OCAB的最大值.24.(本题14分)定义:有一组邻边垂直且对角线相等的四边形称为垂等四边形.(1)写出一个已学的特殊平行四边形中是垂等四边形的是 ;(2)如图1,在正方形ABCD 中,点E ,F ,G 分别在AD ,AB ,BC 上,四边形DEFG 是垂等四边形,且∠EFG =90°,AF =CG . ①求证:EG =DG ;②若BC =n ·BG ,求n 的值; (3)如图2,在Rt △ABC 中,2ACBC=,5AB =,以AB 为对角线,作垂等四边形ACBD .过点D 作CB 的延长线的垂线,垂足为E ,且△ACB 与△DBE 相似,求四边形ACBD 的面积.2020学年第二学期九年级第一次阶段性测试数学参考答案及评分建议一、选择题(每小题4分,共40分)二、填空题(每小题5分,共30分) 11.4312.0.8413.π 14.y =(x +2)2-1(或y =x 2+4x +3)15.16.2三、解答题(本大题有8小题,共80分) 17.(本题8分)解:(1)原式=241|1|⨯-+ ···························································· 2分3411=⨯-+-3=. ·············································································· 4分 (2)∵3ba=, ∴b =3a , ······················································································· 2分 ∴原式=323a aa a+=--.······································································ 4分18.(本题8分)解:(1)P (小刚的爸爸被分到C 组)=13. ··················································· 3分 (2)根据题意,画树状图如下:··············· 6分由树状图可知,共有9种等可能的结果,其中小明的爸爸和小刚的爸爸被分到同一组的结果有3种,∴P(小明的爸爸和小刚的爸爸被分到同一组)=3193 =. ························ 8分19.(本题8分)解:如图,过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,··············································································· 2分∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18 cm.又∵∠DCB=140°,∴∠DCF=50°. ···················································································· 4分∵CD=33 cm,∴DF=CD·sin50°≈33×0.77=25.41(cm),······················································· 6分∴DG≈25.41+18≈43.4(cm).答:点D到桌面AB的距离约为43.4 cm.·················································· 8分20.(本题10分)解:(1)由题意,知AB.∵3tan2ABACBAC∠==,∴AC=.··············································································· 3分如图,Rt△ABC即为所求:····································································· 5分(2)∵tan∠CBD=1,∴∠CBD=45°.如图所示,点D和点D′即为所求:······································································ 8分∴'===CD CD.························································10分(点D和点D′作出其中一个即可得分)21.(本题10分)解:(1)如图,连结AD.······························································· 1分∵∠BAC=90°,∠ABC=20°,∴∠ACD=70°.∵AC=AD,∴∠ACD=∠ADC=70°,∴∠CAD=180°-70°-70°=40°,∴∠DAE=90°-40°=50°. ································································· 3分又∵AD=AE,∴1(18050)652∠=∠=︒-︒=︒DEA ADE.············································ 5分(2)如图,过点A作AF⊥CD,垂足为F.······························································· 6分∵∠BAC=90°,AC=3,AB=4,∴BC=5.又∵1122AF BC AC AB⋅=⋅,∴1341221552AF⨯⨯==⨯, ··································································· 8分∴95 CF==.∵AC=AD,AF⊥CD,∴1825CD CF==. ·······································································10分22.(本题10分)解:(1)将(2,0),(0,-8)代入y=-x2+bx+c,得4208b cc-++=⎧⎨=-⎩,········································································ 2分解得68bc=⎧⎨=-⎩,∴该二次函数的表达式为y=-x2+6x-8.············································· 4分(2)∵y=-x2+6x-8=-(x-3)2+1,∴当x=3时,函数取得最大值,且最大值为1,∴C(3,1).当x=5时,函数在2≤x≤5的范围内取得最小值,最小值为-3,∴D(5,-3).················································································ 6分如图,连结BC,CD,BD,过点C作CM⊥x轴,交BD于点M.设直线BD的表达式为y=kx+b,将(0,-8),(5,-3)代入y=kx+b,得853bk b=-⎧⎨+=-⎩,解得18kb=⎧⎨=-⎩,∴直线BD的表达式为y=x-8.························································· 8分∵CM⊥x轴,∴点M的横坐标为3,将x=3代入y=x-8,得y=-5,∴M(3,-5),∴CM=6,∴156152BCDS=⨯⨯=. ································································10分23.(本题12分)(1)证明:∵OA为直径,∴∠OCA=90°.又∵∠BAO=∠OAC,∠BOA=90°,∴△AOB∽△ACO. ··························································································4分(2)解:如图,过点C作CD⊥x轴,垂足为D.∵A(4,0),∴OA=4.在Rt△OAC中,∠OAC=30°,∴4cos30AC=⨯︒=∴sin30CD=︒=即点C到x. ··························································· 8分(3)解:由(1)知∠COD=∠ABO,且∠CDO=∠AOB=90°,∴△COD∽△ABO,∴OC CD AB OA=.∵直径OA=4,为定值,∴当CD最大,即CD为半径时,OCAB取得最大值.∴CD的最大值为2,∴OCAB的最大值为12. ··································································12分24.(本题14分)(1)解:矩形···························································································· 2分(2)①证明:∵四边形ABCD为正方形,∴AD=CD,∠A=∠C.又∵AF=CG,∴△ADF≌△CDG,∴DF=DG.∵四边形DEFG是垂等四边形,∴EG=DF,∴EG=DG.·····································································································5分②解:如图1,过点G作GH⊥AD,垂足为H,∴四边形CDHG为矩形, ···························································· 6分∴CG=DH.由①知EG=DG,∴DH=EH.由题意知∠A=∠B=90°,AB=BC=CD=AD,AF=CG,∴AB-AF=BC-CG,即BF=BG,∴△BFG为等腰直角三角形,∴∠GFB=45°.又∵∠EFG=90°,∴∠EFA=180°-90°-45°=45°,∴△AEF为等腰直角三角形,∴AE=AF=CG,∴AE=EH=DH,∴BC=3AE,BG=2AE.∵BC=n·BG,∴32BCnBG==. ········································································ 8分(3)解:如图2,过点D作DF⊥AC,垂足为F,∴四边形CEDF 为矩形. ∵2AC BC=, ∴AC =2BC .在Rt △ABC 中,AB ,根据勾股定理得,AC 2+BC 2=AB 2,即(2BC )2+BC 2=5,∴AC =2,BC =1.∵四边形ACBD 为垂等四边形,∴AB CD ==第一种情况:当△ACB ∽△BED 时,2AC BE BC DE==, 设DE =x ,则BE =2x ,∴CE =1+2x .在Rt △CDE 中,根据勾股定理得,CE 2+DE 2=CD 2,即(1+2x )2+x 2=5,解得125x =,225x --=(舍去),∴DE =12CE DF x ==+=,∴S 四边形ACBD =S △ACD +S △DCB =112122⨯+⨯=; ·········· 11分 第二种情况:当△ACB ∽△DEB 时,2AC DE BC BE==, 设BE =y ,则DE =2y ,∴CE =1+y .在Rt △CDE 中,根据勾股定理得,CE 2+DE 2=CD 2, 即(1+y )2+(2y )2=5,解得1y ,2y =(舍去),∴1CE DF y ==+2DE y ==,∴S 四边形ACBD =S △ACD +S △DCB =11212⨯⨯=.综上所述,四边形ACBD 35. ··························· 14分。
人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含2套题)
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC=3:5,则AB 的长为( )A . cmB .8cmC .6cmD .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c ,则下列说法中错误的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 的值全变 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16,则四边形ABCD 的面积最大值是( )A .64B .16C .24D .32封线内不得10.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b2﹣4ac<0;②ab+ac<0;③方程ax2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是_________.12.已知x=(b2﹣4c>0),则x2+bx+c的值为_________.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离_________.14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为_________.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是_________.16.如图,△ABC是边长为a的等边三角形,将三角板的角的顶点与A重合,三角板30°角的两边与BC交于D、E点,则DE长度的取值范围是_________.三、解答题(共8小题,共72分)17.解方程:x2+x﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(﹣4),求这个二次函数的解析式.19.已知x1、x2是方程x2﹣3x﹣5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x2﹣2015的值.密学校 班级 姓名 学号密 封 线 内 不 得 答 题20.如图所示,△ABC 与点O 在10×10的网格中的位置如图所示(1)画出△ABC 绕点O 逆时针旋转90°后的图形; (2)画出△ABC 绕点O 逆时针旋转180°后的图形;(2)若⊙M 能盖住△ABC ,则⊙M 的半径最小值为_________.21.如图,在⊙O 中,半径OA 垂直于弦BC ,垂足为E ,点D 在CA 的延长线上,若∠DAB+ ∠AOB=60°(1)求∠AOB 的度数; (2)若AE=1,求BC 的长.22.飞机着陆后滑行的距离S (单位:m )关于滑行时间t (单位:s )的函数解析式是:S=60t ﹣1.5t 2(1)直接指出飞机着陆时的速度; (2)直接指出t 的取值范围;(3)画出函数S 的图象并指出飞机着陆后滑行多远才能停来?23.如图,△ABC 是边长为6cm 的等边三角形,点D 从B 点出发沿B →A 方向在线段BA 上以a cm/s 速度运动,与此同时,点E 从线段BC 的某个端点出发,以b cm/s 速度在线段BC 上运动,当D 到达A 点后,D 、E 运动停止,运动时间为t (秒)(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时:密封 线 内 不 得①求∠AFC 的度数; ②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1.B . 2.A . 3. B .4.C .5.D .6.D .7.B .8.D . 9. D .密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题10.C .二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x 2﹣x ﹣1的对称轴是 直线x=﹣ . 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为 0 .13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离 7cn 或17cm .14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为 ﹣2 .15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是 x >3或x <﹣1 .16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 (2﹣3)a ≤DE ≤a . .三、解答题(共8小题,共72分)17. 解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0,题解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作; (2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°, ∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2, 解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°, ∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA ,密 封 内∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°, ∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°. 设AF=x ,FC=y ,则有FG=AF=x ,BG=CF=y . 在Rt △BHG 中,BH=BG •sin ∠BGH=BG •sin60°=y ,GH=BG •cos ∠BGH=BG •cos60°=y , ∴FH=FG ﹣GH=x ﹣y . 在Rt △BHF 中,BF 2=BH 2+FH 2 =(y )2+(x ﹣y )2=x 2﹣xy+y 2.∴==1;(2)过点E 作EN ⊥AB 于N ,连接MC ,如图3,由题可得:∠BEN=30°,BD=1×t=t ,CE=2(t ﹣3)=2t ﹣∴BE=6﹣(2t ﹣6)=12﹣2t ,BN=BE •cosB=BE=6﹣t , ∴DN=t ﹣(6﹣t )=2t ﹣6, ∴DN=EC .∵△DEM 是等边三角形, ∴DE=EM ,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°∴∠NDE=∠MEC . 在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴M 点运动的路径为过点C 垂直于BC 的一条线段.当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC •sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3.24.解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y+|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n 2由y=x 2向下平移n 2个单位所得, ∴其焦点为A (0,﹣n 2),准线为y=﹣﹣n 2, 由定义知P 为抛物线上的点,则PA=PH , ∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2, ∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2),设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密 封 线 得 人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共15题,每题3分共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( )A .11B .13C .11或13D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( )A .﹣4B .﹣1C .1D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( )A .12B .6C .9D .166.关于x 的一元二次方程9x 2﹣6x+k=0则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于(A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3到的抛物线,其解析式是( )A .y=2(x+1)2+3B .y=2(x ﹣1)2﹣3C .y=2(x+1)2﹣3D .y=2(x ﹣1)2+3 10.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1)11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题12.已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:x ﹣1 0 1 2 3y51﹣1 ﹣1 1则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x= 13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.解方程:x 2﹣4x+2=0.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD . (1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店日净收入.( 日净收入=每天的销售额﹣套餐成本﹣每天固定支出 )(1)当5<x ≤10时,y= ;当x >10时, y= ;(2)若该店日净收入为1560元,那么每份售价是多少元?20.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.21.已知关于x的一元二次方程.(1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.某房地产开放商欲开发某一楼盘,于2010年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2012年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2014年初完工并还清银行贷款),同时开始房屋出售,总面积为5万平方米,费用的5%开发商聘请调查公司进行了市场调研,发现在该片区,定位每平方米3000100元,则会少卖1000平方米,且卖房时间会延长2.5房地产开发商预计售房净利润为8660万.(1)问:该房地产开发商总的投资成本是多少万?(2)若售房时间定为2年(2发商不再出售,准备作为商业用房对外出租)每平方米多少元?23.正方形ABCD中,将一个直角三角板的直角顶点与点A 合,一条直角边与边BC交于点E(点E不与点B和点C另一条直角边与边CD的延长线交于点F.(1)如图①,求证:AE=AF;(2)如图②,此直角三角板有一个角是45°,它的斜边与边CD交于G,且点G是斜边MN的中点,连接EGEG=BE+DG;(3)在(2)的条件下,如果=,那么点G是否一定是边CD的中点?请说明你的理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,已知点A (0,1),C (4,3),E (,),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的一动点,点D 在y 轴上,抛物线y=ax 2+bx+1以P 为顶点. (1)说明点A ,C ,E 在一条直线上;(2)能否判断抛物线y=ax 2+bx+1的开口方向?请说明理由; (3)设抛物线y=ax 2+bx+1与x 轴有交点F 、G (F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点,这时能确定a 、b 的值吗?若能,请求出a ,b 的值;若不能,请确定a 、b 的取值范围.参考答案一、选择题(共15题,每题3分共45分)1.B .2. C .3. B .4. C .5.B .6.A .7.A .8.D .9.A . 10.B .11.B .12.D .13.A .14.D .15.C .二、解答题(本大题共9小题,共75分) 16.解:x 2﹣4x=﹣2 x 2﹣4x+4=2 (x ﹣2)2=2或 ∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4, ∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形.答 题∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元;20.解:(1)作图如右:△A 1B 1C 1即为所求;(2)作图如右:△A 2B 2C 2即为所求;(3)x 的值为6或7.21.解:(1)密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2, 原方程为x 2﹣5x+6=0⇒x 1=2,x 2=3即,等腰三角形的三边为3,3,2. 则周长为8,面积为若底为3,则原方程为x 2﹣4x+4=0⇒x 1=x 2=2 即,等腰三角形的三边为2,2,3. 则周长为7,面积为22.解:(1)15×100=1500万, 1500×10%×2=300万,1500+3500+3500×5%×2=5350万, 1500×5%×2=150万,四者相加1500+300+5350+150=7300万. 答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x 个100元,依题意有 (5﹣0.1x )=8660+7300, 解得x 1=12,x 2=8,又因为当x 1=12时,卖房时间为30个月,此时超过两年,所以舍去;当x 2=8时,卖房时间为20个月; 则房价为3000+8×100=3800元. 答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD 是正方形, ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD . ∵∠EAF=90°,∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD , ∴∠BAE=∠DAF . 在△ABE 和△ADF 中,∴△ABE ≌△ADF (ASA ) ∴AE=AF ;(2)如图②,连接AG , ∵∠MAN=90°,∠M=45°, ∴∠N=∠M=45°, ∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°.密 封 题∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF , ∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x , ∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k ,∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 上,且P 为顶点,∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0.∴抛物线开口向下; (3)连接GA 、FA .密学校 班级 姓名 学号密 封 线 内 不 得 答 题∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2,又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 的坐标为(3,1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0① 由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,而这条抛物线与线段AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.。
2020-2021学年浙江省宁波市江北区九年级(上)期末数学试卷(含解析)
2020-2021学年浙江省宁波市江北区九年级第一学期期末数学试卷一、选择题(共10小题).1.若3a=2b,则的值为()A.B.C.D.2.下列是有关防疫的图片,其中是中心对称图形的是()A.B.C.D.3.如图所示的几何体的主视图为()A.B.C.D.4.九年级(1)班与九年级(2)班准备举行拔河比赛,根据双方的实力,小明预测:“九年级(1)班获胜的可能性是80%”下列四句话能正确反映其观点的是()A.九年级(2)班肯定会输掉这场比赛B.九年级(1)班肯定会赢得这场比赛C.若进行10场比赛,九年级(1)班定会赢得8次D.九年级(2)班也有可能会赢得这场比赛5.在Rt△ABC中,∠C=90°,AB=10,BC=8,则tan B的值是()A.B.C.D.6.已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠C=50°,则∠BAD的度数是()A.40°B.45°C.50°D.55°7.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表所示,下列说法正确的是()x…013…y…131…A.a>0B.x>1时y随x的增大而减小C.y的最大值是3D.关于x的方程ax2+bx+c=3的解是x1=1,x2=28.如图,在▱ABCD中,点O是对角线BD上的一点,且,连接CO并延长交AD于点E,若△COD的面积是2,则四边形ABOE的面积是()A.3B.4C.5D.69.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,⊙O的半径为2,圆心在AB边上运动,当⊙O与△ABC的边恰有4个交点时,OA的取值范围是()A.7.5<OA<8B.7.5<OA<8或2<OA<5C.<OA<7.5D.7.5<OA<8或2<OA<10.如图,已知⊙O的半径为3,弦CD=4,A为⊙O上一动点(点A与点C、D不重合),连接AO并延长交CD于点E,交⊙O于点B,P为CD上一点,当∠APB=120°时,则AP•BP的最大值为()A.4B.6C.8D.12二、填空题(共6小题).11.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.84估计从该批次口罩中任抽一只口罩是合格品的概率为.12.已知圆锥的高为4cm,母线长为5cm,则圆锥的侧面积为cm2.13.二次函数y=(x﹣1)2+3图象的顶点坐标是.14.如图,A是⊙O外一点,AB,AC分别与⊙O切于点B,C.点P是上任意一点(点P与点B,C不重合),过点P作⊙O的切线,交AB于点M,交AC于点N.若AO=13,BO=5,则△AMN的周长为.15.如图,有一圆形木制艺术品,记为⊙O,其半径为12cm,在距离圆心8cm的点A处发生虫蛀,现需沿过点A的直线PQ将圆形艺术品裁掉一部分,然后用美化材料沿PQ进行粘贴,则美化材料(即弦PQ的长)最少需要cm.16.如图,在Rt△ABC中,∠C=90°,点D,E在BC上,结AD,AE.记CD=a,DE=.=EB=b ,图中所有三角形中,若恰好存在两对相似三角形,则17.计算:20210+|﹣|﹣2sin60°.18.如图,将一个直角三角形形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩底下,可以使木桩向上运动.如果楔子底面的倾斜角为10°,其高度AC为1.8cm,楔子沿水平方向前进一段距离(如箭头所示),留在外面的楔子长度HC为3cm,那么木tan10°≈0.18,结果精确到0.1cm)桩上升了多少厘米?(sin10°≈0.17,cos10°≈0.98,“病毒防疫”知识问答测试成绩频数分布统计表级别成绩(分)频数A95<x≤22100B90<x≤1895C85<x≤90D80<x≤853(1)本次共随机抽取了名学生,在频数分布统计表中,成绩是C级的频数是;(2)在扇形统计图中,成绩是B级的圆心角的度数是多少?(3)学校将从获得A级成绩里最好的4名学生中,任选2名参加“病毒防疫”宣讲,其中小江、小北恰在这4名选手中,请用列表法或画树状图法,求小江、小北两人同时被选中的概率.20.图1是由六个全等且边长为2的小正五边形,以及五个全等且顶角为36°、腰长为2的等腰三角形镶嵌而成的一个大正五边形,正五边形和等腰三角形的顶点称为格点,连接格点而成的三角形称为格点三角形.在图2的三个图中,分别画出一个与图中已知△ABC相似但不全等的格点三角形,并注明三角形的顶点字母.21.如图,已知抛物线y=﹣x2+bx+c与坐标轴交于A,B,C三点,其中A(﹣2,0),B (4,0).(1)求该抛物线的表达式;(2)根据图象,直接写出y>0时,x的取值范围;(3)若要使抛物线与x轴只有一个交点,则需将抛物线向下平移几个单位?22.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.23.扶贫工作小组对果农精准扶贫,帮助果农将一种有机生态水果推广进市场.某水果店从果农处直接批发这种水果,批发价格为每千克24元,当每千克的销售价格定为32元时,每天可售出80千克,根据市场行情,若每千克的销售价格降低0.5元,则每天可多售出10千克(销售单价不低于批发价)现决定降价销售,设这种水果每千克的销售价格为x 元,每天的销售量为y千克.(1)求每天的销售量y千克与销售单价x元之间的函数关系式以及x的取值范围;(2)当销售单价为多少元时,这种水果每天的销售利润最大,最大利润为多少元?24.如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是,的中点,连接DE分别交AC,BC于点F,G.(1)求证:△DFC∽△CGE;(2)若DF=3,tan∠GCE=,求FG的长;(3)如图2,连接AD,BE,若=x,=y,求y关于x的函数表达式.参考答案一、选择题(共10小题).1.若3a=2b,则的值为()A.B.C.D.解:∵3a=2b,∴=.故选:C.2.下列是有关防疫的图片,其中是中心对称图形的是()A.B.C.D.解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:A.3.如图所示的几何体的主视图为()A.B.C.D.解:从正面看所得的图形为,故选:C.4.九年级(1)班与九年级(2)班准备举行拔河比赛,根据双方的实力,小明预测:“九年级(1)班获胜的可能性是80%”下列四句话能正确反映其观点的是()A.九年级(2)班肯定会输掉这场比赛B.九年级(1)班肯定会赢得这场比赛C.若进行10场比赛,九年级(1)班定会赢得8次D.九年级(2)班也有可能会赢得这场比赛解:∵小明预测:“九年级(1)班获胜的可能性是80%”只能说明九年级(1)班获胜的可能性很大,∴九年级(2)班也有可能会赢得这场比赛,故选:D.5.在Rt△ABC中,∠C=90°,AB=10,BC=8,则tan B的值是()A.B.C.D.解:∵Rt△ABC中,∠C=90°,AB=10,BC=8,∴AC==6,则tan B===.故选:A.6.已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠C=50°,则∠BAD的度数是()A.40°B.45°C.50°D.55°解:如图,连接OB,∵∠C=50°,∴∠AOB=2∠C=100°,∵OA=OB,∴∠OAB=∠OBA=40°,则∠BAD的度数是40°.故选:A.7.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表所示,下列说法正确的是()x…013…y…131…A.a>0B.x>1时y随x的增大而减小C.y的最大值是3D.关于x的方程ax2+bx+c=3的解是x1=1,x2=2解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,a<0,故A错误;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,∴x=对应的y的值最大,故C错误;∵抛物线开口向下,∴x>时y随x的增大而减小,故B错误;∵抛物线的对称轴为直线x=,且抛物线经过点(1,3),∴点(1,3)关于对称轴的对称点为(2,3),∴关于x的方程ax2+bx+c=3的解是x1=1,x2=2,故D正确;故选:D.8.如图,在▱ABCD中,点O是对角线BD上的一点,且,连接CO并延长交AD于点E,若△COD的面积是2,则四边形ABOE的面积是()A.3B.4C.5D.6解:∵,△COD的面积是2,∴△BOC的面积为4,∵四边形ABCD是平行四边形,∴AD∥BC,S△ABD=S△BCD=2+4=6,∴△DOE∽△BOC,∴=()2=,∴S△DOE=1,∴四边形ABOE的面积=6﹣1=5,故选:C.9.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,⊙O的半径为2,圆心在AB边上运动,当⊙O与△ABC的边恰有4个交点时,OA的取值范围是()A.7.5<OA<8B.7.5<OA<8或2<OA<5C.<OA<7.5D.7.5<OA<8或2<OA<解:∵∠C=90°,BC=6,AC=8,∴AB===10,如图1,当⊙O过点A时,此时⊙O与△ABC的边恰有3个交点,此时OA=2,当⊙O'过点B时,此时⊙O'与△ABC的边恰有3个交点,此时O'B=2,则O'A=8;如图2,当⊙O与AC相切于点E时,此时⊙O与△ABC的边恰有3个交点,连接OE,∴OE⊥AC,∴∠AEO=∠ACB=90°,又∵∠A=∠A,∴△AEO∽△ACB,∴,∴,∴AO=,当⊙O'与BC相切于点F时,此时⊙O'与△ABC的边恰有3个交点,同理可求O'B=2.5,∴O'A=7.5,∴当⊙O与△ABC的边恰有4个交点时,OA的取值范围为7.5<OA<8或2<OA<.故选:D.10.如图,已知⊙O的半径为3,弦CD=4,A为⊙O上一动点(点A与点C、D不重合),连接AO并延长交CD于点E,交⊙O于点B,P为CD上一点,当∠APB=120°时,则AP•BP的最大值为()A.4B.6C.8D.12解:延长AP交⊙O于T,连接BT.设PC=x.∵AB是直径,∴∠ATB=90°,∵∠APB=120°,∴∠BPT=60°,∴PT=PB•cos60°=PB,∵PA•PB=2PA•PT=2PC•PD=2x•(4﹣x)=﹣2(x﹣2)2+8,∵﹣2<0,∴x=2时,PA•PB的最大值为8,故选:C.二、填空题(每小题5分,共30分)11.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:50100150500100020001000050000抽取只数(只)合格频率0.820.830.820.830.840.840.840.84估计从该批次口罩中任抽一只口罩是合格品的概率为0.84.解:∵随着抽样的增大,合格的频率趋近于0.84,∴估计从该批次口罩中任抽一只口罩是合格品的概率为0.84.故答案为:0.84.12.已知圆锥的高为4cm,母线长为5cm,则圆锥的侧面积为15πcm2.解:根据题意,圆锥的底面圆的半径==3(cm),所以圆锥的侧面积=×2π×3×5=15π(cm2).故答案为15π.13.二次函数y=(x﹣1)2+3图象的顶点坐标是(1,3).解:∵二次函数y=(x﹣1)2+3,∴该函数图象的顶点坐标为(1,3),故答案为:(1,3).14.如图,A是⊙O外一点,AB,AC分别与⊙O切于点B,C.点P是上任意一点(点P与点B,C不重合),过点P作⊙O的切线,交AB于点M,交AC于点N.若AO=13,BO=5,则△AMN的周长为24.解:∵AB,AC分别与⊙O切于点B,C,∴AB=AC,OB⊥AB,在Rt△AOB中,AB===12,∵MN与⊙O相切于P,∴MB=MP,NC=NP,∴△AMN的周长=AM+MN+AN=AM+MP+NP+AN=AM+BM+NC+AN=AB+AC=2AB=2×12=24.故答案为24.15.如图,有一圆形木制艺术品,记为⊙O,其半径为12cm,在距离圆心8cm的点A处发生虫蛀,现需沿过点A的直线PQ将圆形艺术品裁掉一部分,然后用美化材料沿PQ进行粘贴,则美化材料(即弦PQ的长)最少需要8cm.解:如图,连接OA,过点A作弦P′Q′⊥OA,连接OQ′,此时P′Q′的值最小.在Rt△OAQ′中,AQ′===4(cm),∵OA⊥P′Q′,∴AQ′=AP′,∴P′Q′=2AQ′=8(cm),故答案为:8.16.如图,在Rt△ABC中,∠C=90°,点D,E在BC上,结AD,AE.记CD=a,DE =EB=b,图中所有三角形中,若恰好存在两对相似三角形,则=或.解:∵恰好存在两对相似三角形,∴其中一对一定为△ADE∽△BDA,∴,∴AD2=DE•BD=b•2b=2b2,第二对:①若△ACD∽△BCA,∴,∴AC2=CD•CB=a(a+2b),∵a2+AC2=AD2,∴a2+a2+2ab=2b2,即a2+2b﹣b2=0,两边同除以b2,可得:,令m=>0,∴m2+m﹣1=0,解得:(舍去),∴,②若△ACD∽△ECA,∴,∴AC2=CE•CD=a(a+b),∴AC2+a2=AD2,∴a2+ab+a2=2b2,∴,两边同除以b2,可得:,令n=,∴,解得:(舍去),∴,综上所述,的值为或.故答案为:或.三、解答题(本题有8小题,共80分17.计算:20210+|﹣|﹣2sin60°.解:原式=1+﹣2×=1+﹣=1.18.如图,将一个直角三角形形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩底下,可以使木桩向上运动.如果楔子底面的倾斜角为10°,其高度AC为1.8cm,楔子沿水平方向前进一段距离(如箭头所示),留在外面的楔子长度HC为3cm,那么木桩上升了多少厘米?(sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,结果精确到0.1cm)解:在Rt△ABC中,∠ABC=10°,tan∠ABC=,则BC=≈=10(cm),∴BH=BC﹣HC=7(cm),在Rt△ABC中,∠ABC=10°,tan∠ABC=,则PH=BH×tan∠ABC≈7×0.18≈1.3(cm),答:木桩上升了大约1.3厘米19.为进一步普及新冠病毒防疫知识,我区某校举行了“病毒防疫”知识问答测试,随机抽取一部分学生的成绩,将成绩绘制成统计图表:“病毒防疫”知识问答测试成绩频数分布统计表级别成绩(分)频数A95<x≤10022B90<x≤9518C85<x≤90D80<x≤853(1)本次共随机抽取了50名学生,在频数分布统计表中,成绩是C级的频数是7;(2)在扇形统计图中,成绩是B级的圆心角的度数是多少?(3)学校将从获得A级成绩里最好的4名学生中,任选2名参加“病毒防疫”宣讲,其中小江、小北恰在这4名选手中,请用列表法或画树状图法,求小江、小北两人同时被选中的概率.解:(1)本次共随机抽取了学生的人数为:3÷6%=50(名),成绩是C级的频数是50﹣22﹣18﹣3=7,故答案为:50,7;(2)在扇形统计图中,成绩是B级的圆心角的度数为:360°×=129.6°;(3)把小江、小北分别记为A、B,其他2名学生记为C、D,画树状图如图:共有12个等可能的结果,小江、小北两人同时被选中的结果有2个,∴小江、小北两人同时被选中的概率为=.20.图1是由六个全等且边长为2的小正五边形,以及五个全等且顶角为36°、腰长为2的等腰三角形镶嵌而成的一个大正五边形,正五边形和等腰三角形的顶点称为格点,连接格点而成的三角形称为格点三角形.在图2的三个图中,分别画出一个与图中已知△ABC相似但不全等的格点三角形,并注明三角形的顶点字母.解:如图,△DEF,△GHQ,△MNP即为所求.图①中,∠EDF=∠BAC=36°,DE=DF,AB=AC;图②中,GH∥AB,HQ∥BC;图③中,∠BAC=108°,AB=AC.21.如图,已知抛物线y=﹣x2+bx+c与坐标轴交于A,B,C三点,其中A(﹣2,0),B (4,0).(1)求该抛物线的表达式;(2)根据图象,直接写出y>0时,x的取值范围;(3)若要使抛物线与x轴只有一个交点,则需将抛物线向下平移几个单位?解:(1)把A(﹣2,0),B(4,0)代入y=﹣x2+bx+c,得,解得,抛物线解析式为y=﹣x2+2x+8;(2)由图象知,当﹣2<x<4时,y>0;(3)∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴抛物线的顶点坐标为(1,9),∴把抛物线y=﹣x2+2x+8向下平移9个单位,抛物线与x轴只有一个交点.22.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.【解答】(1)证明:连接OC,如图1,∵DC=DE,∴∠DCE=∠DEC,∵∠DEC=∠AEO,∴∠DCE=∠AEO,∵OA⊥OE,∴∠A+∠AEO=90°,∴∠DCE+∠A=90°,∵OA=OC,∴∠A=∠ACO,∴∠DCE+∠ACO=90°,∴OC⊥DC,∴CD是⊙O的切线;(2)如图2,过点D作DF⊥CE于点F,∵AC=2,BC=,∴AB===5,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AOE,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴,∴AE=,∴CE=AC﹣AE=2﹣=,∵CD=DE,∴CF=CE=,∠DEC=∠DCE,∵∠DEC=∠AEO,∠AEO=∠B,∴∠DCE=∠B,又∵∠DFC=∠ACB,∴△DFC∽△ACB,∴,∴,∴DC=.23.扶贫工作小组对果农精准扶贫,帮助果农将一种有机生态水果推广进市场.某水果店从果农处直接批发这种水果,批发价格为每千克24元,当每千克的销售价格定为32元时,每天可售出80千克,根据市场行情,若每千克的销售价格降低0.5元,则每天可多售出10千克(销售单价不低于批发价)现决定降价销售,设这种水果每千克的销售价格为x 元,每天的销售量为y千克.(1)求每天的销售量y千克与销售单价x元之间的函数关系式以及x的取值范围;(2)当销售单价为多少元时,这种水果每天的销售利润最大,最大利润为多少元?解:(1)由题意可得,y=80+×10=﹣20x+720,∵销售单价不低于批发价,∴24≤x≤32,即每天的销售量y千克与销售单价x元之间的函数关系式是y=﹣20x+720(24≤x≤32);(2)设销售利润为w元,由题意可得,w=(x﹣24)(﹣20x+720)=﹣20(x﹣30)2+720,∴当x=30时,w取得最大值,此时w=720,即当销售单价为30元时,这种水果每天的销售利润最大,最大利润为720元.24.如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是,的中点,连接DE分别交AC,BC于点F,G.(1)求证:△DFC∽△CGE;(2)若DF=3,tan∠GCE=,求FG的长;(3)如图2,连接AD,BE,若=x,=y,求y关于x的函数表达式.解:(1)∵点D是的中点,∴,∴∠ACD=∠CED,∵点E是的中点,∴,∴∠CDE=∠BCG,∴△DFC∽△CGE;(2)由(1)知,∠ACD=∠CED,∠CDE=∠BCG,∴∠ACD+∠CDE=∠CED+∠BCG,∴∠CFG=∠CGF,∵CF=CG,∵∠ACB=60°,∴△CFG是等边三角形,如图1,过点C作CH⊥FG于H,∴∠DHC=90°,设FH=a,∴∠FCH=30°,∴FG=CF=2a,CH=a,∵DF=3,∴DH=DF+FH=3+a,∵∠GCE=∠CDE,tan∠GCE=,∴tan∠CDE=,在Rt△CHD中,tan∠CDE==,∴=,∴a=1,∴FG=2a=2;(3)如图2,连接AE,则∠AEB=∠ACB=60°,∠DAE=∠CAD+∠CAE=∠ACD+∠CDF=∠CFG=60°,∴∠AEB=∠DAE,∴BE∥AD,设BE与AD的距离为h,∴=,∴S△ABE=•S△ADE,∵D,E分别是,的中点,∴CD=AD,BE=CE,∴S△ABE=•S△ADE,过点D作DM⊥AC于M,∵,∴AD=CD,∴AC=2CM,由(2)知,△CFG是等边三角形,∴∠CFG=60°,∴∠DFM=60°,∴∠MDF=30°,设MF=m,则DM=m,DF=2m,∵=x,∴CF=x•DF=2mx,∴CG=CF=2mx,由(1)知,△DFC∽△CGE,∴,∴=,∴S△ABE=•S△ADE=S△ADE,∴S四边形ABED=S△ADE+S△ABE=S△ADE,∵MF=m,CF=x•DF=2mx,∴CM=MF+CF=m+2mx=(2x+1)m,∴AC=2CM=2(2x+1)m,∴AF=AC﹣CF=2(2x+1)m﹣2mx=2(x+1)m,过点A作AN⊥DF于N,∴S△ADF=AF•DM=DF•AN,∴AN===(x+1)m,过点C作CP⊥FG,由(2)知,PF=CF=mx,CP=mx,∴y===•=•=•=•=.。
浙江省宁波市九校2020-2021学年高一上学期期末联考数学试题含答案
宁波市九校联考高一数学参考答案 第1页 共5页宁波市一2020学年第学期期末九校联考 高一数学参考答案 一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得3分。
三、填空题:本题共4小题,每小题5分,共20分。
13.6 14.21015.3+ 16.(,4)−∞− 四、解答题:本题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.解析:(Ⅰ){|02}A x x =<<,………………………………………………………1分 1|,,a B y y x x a ⎧⎫⎛⎫==∈∞⎨⎬ ⎪⎝⎭⎩⎭+表示函数1,,a y x x a ⎛⎫=∈∞ ⎪⎝⎭+的值域, 当1a =时,1y x=在(1,)∞+上单调递减,值域{|01}B y y =<<, ………………3分 {|10}U B y y y =≥≤,或C ,………………………………………………………………4分()[1,2)U AB=C , (5)分(Ⅱ)由A BA =知AB ⊆,由()U A B U =C 知B A ⊆, 所以(0,2)B A ==,…………………………………………………………………………8分 故0a >,且2(0,)(0,2)a =,即a 分18.解析:(Ⅰ)π()2sin cos()cos 26f x x x x =−+ 212sin sin cos 22cos sin cos 2112cos 222x x x x x x x xx x ⎫++⎪⎪⎝⎭++=++= π1sin(2)62x =++………………………………………………………………………3分 因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以ππ7π2666x ≤+≤,宁波市九校联考高一数学参考答案 第2页 共5页 由πππ2662x ≤+≤得π06x ≤≤, 故单调递增区间为π0,6⎡⎤⎢⎥⎣⎦;………………………………………………………………5分 1πsin 2126x ⎛⎫−≤+≤ ⎪⎝⎭, 所以当π6x =时,()f x 取最大值32, 当π2x =时,()f x 取小值0.………………7分 (Ⅱ)设π26t x =+,()sin h t t =,π7π,66t ⎡⎤∈⎢⎥⎣⎦, “函数()()g x f x a =−有且仅有一个零点”等价于“直线12y a =−与()y h t =有且只有一个交点”,………… …………………………………………………………………10分数形结合可得11111,2222a a −=≤−<或-,即3,012a a =≤<或. 故a 的取值范围为3012a a a ⎧⎫=≤<⎨⎬⎩⎭或.…………………………………………12分 19.解析:(Ⅰ)当0k =时,不等式为4(4)0x −−>,(,4)A =−∞;…………2分当0k >时,4(,4)(,)A k k =−∞++∞;………………………………………4分 当0k <时,4(,4)A k k=+;…………………………………………………6分 (Ⅱ)由(1)知0k <,且465k k−≤+<−,…………………………………………8分 即22540640k k k k ⎧++>⎪⎨++≤⎪⎩……………………………………………………………………10分 解得k 的取值范围是[35,4)(1,35]−−−−−+…………………………………12分20.解析: (Ⅰ)由题意得23244POQ ππ∠=⨯=,弧长π25π5042l =⨯=;………2分(Ⅱ)以轴心O 为原点,与地面平行的直线为x 轴建立平面直角坐标系,0t =时,游客在点(0,50)M −,初始位置所对应的角为π2−,角速度ω为π6rad /min ,由题意可得宁波市九校联考高一数学参考答案 第3页 共5页ππ50sin 60,01262H t t ⎛⎫=−+≤≤ ⎪⎝⎭;………………………………………………6分 (Ⅲ)法1:由4POQ π∠=得乙比甲始终落后π4rad , 故经过t 分钟后,甲乙相对于地面的距离分别为1ππ50sin 6062H t ⎛⎫=−+ ⎪⎝⎭,2π3π50sin 6064H t ⎛⎫=−+ ⎪⎝⎭,012t ≤≤, 若都要获得最佳视觉效果,应满足50sin 608562t ππ⎛⎫−+≥ ⎪⎝⎭, 且π3π50sin 608564t ⎛⎫−+≥ ⎪⎝⎭, ………………………………………………………8分 化简得1sin 622t ππ⎛⎫−≥ ⎪⎝⎭,π3π1sin 642t ⎛⎫−≥ ⎪⎝⎭, 因为012t ≤≤,所以2622t πππ3π−≤−≤,3ππ3π5π4644t −≤−≤, 由6626t πππ5π≤−≤,6646t ππ3π5π≤−≤得48t ≤≤,22t 1119≤≤, 故解得1182t ≤≤, ……………………………………………………………………11分 所以摩天轮旋转一周能有52分钟使甲,乙两位游客都有最佳视觉效果.………12分 法2:经过t 分钟后,甲相对于地面的距离为ππ50sin 6062H t ⎛⎫=−+ ⎪⎝⎭,012t ≤≤, 若要获得最佳视觉效果,应满足50sin 608562t ππ⎛⎫−+≥ ⎪⎝⎭, ………………………8分 化简得1sin 622t ππ⎛⎫−≥ ⎪⎝⎭, 因为012t ≤≤,所以2622t πππ3π−≤−≤, 由6626t πππ5π≤−≤,得48t ≤≤, ………………………………………………10分 由乙比甲始终落后32min ,知乙在111922t ≤≤时获得最佳视觉效果, 要使甲,乙两位游客都有最佳视觉效果,则1182t ≤≤,……………………………11分 所以摩天轮旋转一周能有52分钟使甲,乙两位游客都有最佳视觉效果.…………12分 21.解析:(Ⅰ)函数2()ln x f x x−=的定义域为(0,2), 任取12(0,2)x x ∈,,且12x x <,宁波市九校联考高一数学参考答案 第4页 共5页21212122()()lnln x x f x f x x x −−−=−1122122ln 2x x x x x x −=−,…………………………2分 因为1202x x <<<,所以112212022x x x x x x <−<−, 从而21()()0f x f x −<,即21()()f x f x <,因此函数()f x 在定义域(0,2)内单调递减.…………………………………………4分(Ⅱ)设函数1()(1)ln 1x h x f x x −=+=+,定义域为(1,1)−, 对于任意的(1,1)x ∈−,1()ln ()1x h x h x x +−==−−+,故()h x 为奇函数, 且由()f x 是减函数可知,()h x 也是减函数,由(1)(1)0f a f b +++=,得()()()h a h b h b =−=−,故a b =−. (也可以列方程直接解出a b =−)………………7分由()()0g a g b +=得442(22)20a b a b m m +++−+=,即442(22)20a a a a m m −−+++−+=,令22a a t −=+,由,(1,1),a b a b ∈−≠得52,2t ⎛⎫∈ ⎪⎝⎭,………………………………9分 即220t mt m +−=在52,2⎛⎫ ⎪⎝⎭内有解, 方法1:由220t mt m +−=得222111212111t m t t t t ===−⎛⎫−−− ⎪⎝⎭, 当5(2,)2t ∈时,2131611,425t ⎛⎫⎛⎫−−∈−− ⎪ ⎪⎝⎭⎝⎭,所以21254,163111t ⎛⎫∈−− ⎪⎝⎭⎛⎫−− ⎪⎝⎭, 综上所述,m 的取值范围是254,163⎛⎫−− ⎪⎝⎭……………………………………………12分 方法2:设2()2u t t mt m =+−,(2)34u m =+,525()424u m =+ ①5(2)()02u u <即254163m −<<−; ②25(2)0,()02440522u u m m m ⎧>>⎪⎪⎪∆=+≥⎨⎪⎪<−<⎪⎩,无解; ③(2)0,92,4u m =⎧⎪⎨<−<⎪⎩无解;宁波市九校联考高一数学参考答案 第5页 共5页 ④5()0,295,42u m ⎧=⎪⎪⎨⎪<−<⎪⎩无解. 综上所述,m 的取值范围是254,163⎛⎫−− ⎪⎝⎭…………………………………………12分 22.解析:(Ⅰ)当0a =时,()||f x x =−,对于x ∀∈R ,()||()f x x f x −=−=,故()f x 为偶函数;…………………………………………………………………2分 当0a ≠时,(0)||0f a =−≠,故()f x 不是奇函数;(1)|1|,(1)|1|f a a f a a =−−−=−+,由于0a ≠,故|1||1|a a −≠+,即(1)(1)f f ≠−,故()f x 不是偶函数,综上所述,当0a =时,()f x 是偶函数,当0a ≠时,()f x 既不是偶函数又不是奇函数. ………………………………4分 (Ⅱ)(i )当11a −≤≤时,()0f x bx +≤在[1,3]x ∈恒成立等价于2(1)0ax b x a +−+≤在[1,3]x ∈恒成立,即11b a x x ⎛⎫≤−++ ⎪⎝⎭恒成立,…………………………………5分 若01a ≤≤,则min 110113a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦,所以1013b a ≤−, 故2210113a b a a +≤−+≤,当0a =,1b =时,取到1;…………………………7分 若10a −≤<,则min 1112a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦,所以12b a ≤−, 故22214a b a a +≤−+≤,当1a =−,3b =时,取到4;…………………………9分(ii )当12a <≤时,()0f x bx +≤在[1,3]x ∈恒成立等价于10a ax b x+−−≤在[1,3]x ∈恒成立,………………………………………………………………………10分①当1x a <≤时,11b a x x ⎛⎫≤−−− ⎪⎝⎭,2min 11a x a x ⎡⎤⎛⎫−−−=− ⎪⎢⎥⎝⎭⎣⎦; ②当3a x <≤时,11b a x x ⎛⎫≤−++ ⎪⎝⎭,min 110113a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦; 当12a <≤时,21013a a −≥−,故1013b a ≤−,22104133a b a a +≤−+<− 综上所述,2a b +的最大值为4.………………………………………………………12分。
2020-2021学年浙江省宁波市鄞州区七校联考七年级上学期期中数学试卷 (解析版)
2020-2021学年浙江省宁波市鄞州区七校联考七年级第一学期期中数学试卷一、选择题1.(3分)3的相反数是()A.﹣3B.+3C.0.3D.|﹣3|2.(3分)比1小2的数是()A.﹣3B.﹣2C.﹣1D.03.(3分)下列运算正确的是()A.(﹣2)+(﹣3)=﹣5B.2﹣(﹣3)=﹣5C.(﹣2)×(﹣3)=﹣6D.2×(﹣3)=64.(3分)已知a≠b,|a|=|b|,a=﹣3,则b等于()A.3或﹣3B.0C.﹣3D.35.(3分)新冠肺炎疫情肆虐全球.截止2020年北京时间11月1日零时全球新冠肺炎确诊病例已超过4600万例.将数4600万用科学记数法表示为()A.4.6×103B.4.6×104C.4.6×107D.4.6×1086.(3分)小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为()A.﹣1千克B.1千克C.99千克D.101千克7.(3分)若要使多项式3x2﹣(5+x﹣2x2)+mx2化简后不含x的二次项,则m等于()A.1B.﹣1C.5D.﹣58.(3分)已知x2+3x的值为3,则代数式3x2+9x﹣1的值为()A.﹣8B.8C.﹣9D.99.(3分)若|x﹣a|表示数轴上x与a两数对应的点之间的距离,当x取任意有理数时,代数式|x﹣6|+|x﹣2|的最小值为()A.5B.4C.3D.210.(3分)爱动脑筋的小亮同学设计了一种“幻圆”游戏,将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,他已经将4、6、﹣7、8这四个数填入了圆圈,则图中a+b的值为()A.﹣8或1B.﹣6或﹣3C.﹣1或﹣4D.1或﹣1二.细心填一填:(本题共有6小题,每题3分,共18分)11.(3分)近似数8.28万的精确到位.12.(3分)将3个2相乘的积写成幂的形式是.13.(3分)比较大小:﹣(+2)﹣(﹣3).(填“>”、“<”、或“=”符号)14.(3分)若代数式﹣a m b4和3ab n相加后仍是单项式,则m+n=.15.(3分)若﹣2a+2和a﹣5是一个正数m的两个平方根,则m=.16.(3分)若规定这样一种运算:a△b=(|a﹣b|+a+b),例如:2△3=(|2﹣3|+2+3)=3.将1,2,3,…,50这50个自然数,任意分为25组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式a△b中进行计算,求出其结果,25组数代入后可求得25个值,这25个值的和的最大值为.三.耐心做一做:(本题共有8小题,共52分)17.(6分)把下列各数分别填人相应的集合里.﹣5、|﹣|、0、﹣3.14、、﹣12、﹣、+1.99、﹣(﹣6)、0.1010010001…(1)整数集合:{…}(2)分数集合:{…}(3)正数集合:{…}(4)无理数集合:{…}18.(6分)计算:(1)﹣12﹣8+(﹣2)3×(﹣3);(2).19.(6分)某火车站今年9月30日的客流量为3万人次.下表是该火车站十一黄金周期间的客流量统计表,正数表示比前一天多的人数,负数表示比前一天少的人数.日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日客流量/万人次+10﹣3﹣4﹣5+20+3(1)10月7日的客流量与10月4日相比是增加了还是减少了?增加或减少多少人?(2)在十一黄金周期间该火车站的日平均客流量是多少?20.(6分)先化简,再求值:﹣2(2m2﹣mn+)+3(m2+mn),其中m=﹣1,n=1.21.(6分)如图,用三种大小不同的六个正方形和一个有缺角的长方形拼接成一个大长方形ABCD.其中,GH=GK=2cm,设BF=xcm,(1)用含x的代数式表示CM=cm,DM=cm.(2)求长方形ABCD的周长(用x的代数式表示),并求x=3时长方形周长.22.(6分)先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.23.(6分)某工厂第一季度的电费为a元,水费比电费的2倍多40元.第二季度电费比第一季度节约了25%,水费比第一季度多支出了25%.问该工厂第一季度、第二季度的水电费为多少元?第二季度的水电费与第一季度相比是超支还是节约了?超支或节约了多少元?24.(10分)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A 的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?参考答案一.精心选一选:(本题共有10小题,每小题3分,共30分)1.(3分)3的相反数是()A.﹣3B.+3C.0.3D.|﹣3|解:3的相反数为﹣3.故选:A.2.(3分)比1小2的数是()A.﹣3B.﹣2C.﹣1D.0解:1﹣2=﹣1.故选:C.3.(3分)下列运算正确的是()A.(﹣2)+(﹣3)=﹣5B.2﹣(﹣3)=﹣5C.(﹣2)×(﹣3)=﹣6D.2×(﹣3)=6解:A.(﹣2)+(﹣3)=﹣5,此选项计算正确;B.2﹣(﹣3)=2+3=5,此选项计算错误;C.(﹣2)×(﹣3)=6,此选项计算错误;D.2×(﹣3)=﹣6,此选项计算错误;故选:A.4.(3分)已知a≠b,|a|=|b|,a=﹣3,则b等于()A.3或﹣3B.0C.﹣3D.3解:∵,|a|=|b|,a=﹣3,∴|b|=|﹣3|=3,∴b=±3,而a≠b,∴b=3.故选:D.5.(3分)新冠肺炎疫情肆虐全球.截止2020年北京时间11月1日零时全球新冠肺炎确诊病例已超过4600万例.将数4600万用科学记数法表示为()A.4.6×103B.4.6×104C.4.6×107D.4.6×108解:数4600万用科学记数法表示为4.6×107,故选:C.6.(3分)小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为()A.﹣1千克B.1千克C.99千克D.101千克解:4筐白菜的总质量为25×4+(0.25﹣1+0.5﹣0.75)=99千克,故选:C.7.(3分)若要使多项式3x2﹣(5+x﹣2x2)+mx2化简后不含x的二次项,则m等于()A.1B.﹣1C.5D.﹣5解:3x2﹣(5+x﹣2x2)+mx2=3x2﹣5﹣x+2x2+mx2=(3+2+m)x2﹣5﹣x,二次项的系数为:3+2+m,则有3+2+m=0,解得:m=﹣5.故选:D.8.(3分)已知x2+3x的值为3,则代数式3x2+9x﹣1的值为()A.﹣8B.8C.﹣9D.9解:由题意得:x2+3x=3,则原式=3(x2+3x)﹣1=9﹣1=8.故选:B.9.(3分)若|x﹣a|表示数轴上x与a两数对应的点之间的距离,当x取任意有理数时,代数式|x﹣6|+|x﹣2|的最小值为()A.5B.4C.3D.2解:∵|x﹣a|表示数轴上x与a两数对应的点之间的距离,∴|x﹣6|+|x﹣2|表示数轴上数x与6和数x与2对应的点之间的距离之和,∴当2≤x≤6时,代数式|x﹣6|+|x﹣2|有最小值,最小值为|6﹣2|=4,故选:B.10.(3分)爱动脑筋的小亮同学设计了一种“幻圆”游戏,将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,他已经将4、6、﹣7、8这四个数填入了圆圈,则图中a+b的值为()A.﹣8或1B.﹣6或﹣3C.﹣1或﹣4D.1或﹣1解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,∴a+b的值为﹣6或﹣3.故选:B.二.细心填一填:(本题共有6小题,每题3分,共18分)11.(3分)近似数8.28万的精确到百位.解:近似数8.28万的精确到百位,故答案为:百.12.(3分)将3个2相乘的积写成幂的形式是23.解:3个2相乘的积为:2×2×2=23.故答案为:23.13.(3分)比较大小:﹣(+2)<﹣(﹣3).(填“>”、“<”、或“=”符号)解:﹣(+2)=﹣2,﹣(﹣3)=3,∵﹣2<3,∴﹣(+2)<﹣(﹣3).故答案为:<.14.(3分)若代数式﹣a m b4和3ab n相加后仍是单项式,则m+n=5.解:∵代数式﹣a m b4和3ab n相加后仍是单项式,∴﹣a m b4和3ab n是同类项.∴m=1,n=4.∴m+n=5.故答案为:5.15.(3分)若﹣2a+2和a﹣5是一个正数m的两个平方根,则m=64.解:根据题意,得:﹣2a+2+a﹣5=0,解得a=﹣3,则a﹣5=﹣8,∴m=(﹣8)2=64,故答案为:64.16.(3分)若规定这样一种运算:a△b=(|a﹣b|+a+b),例如:2△3=(|2﹣3|+2+3)=3.将1,2,3,…,50这50个自然数,任意分为25组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式a△b中进行计算,求出其结果,25组数代入后可求得25个值,这25个值的和的最大值为950.解:假设a>b,则(|a﹣b|+a+b)=(a﹣b+a+b)=a,所以,当25组中的较大的数a恰好是26到50时.这25个值的和最大.最大值为26+27+28+…+50==950,故答案为:950.三.耐心做一做:(本题共有8小题,共52分)17.(6分)把下列各数分别填人相应的集合里.﹣5、|﹣|、0、﹣3.14、、﹣12、﹣、+1.99、﹣(﹣6)、0.1010010001…(1)整数集合:{﹣5、0、﹣12、﹣(﹣6)…}(2)分数集合:{|﹣|、﹣3.14、、+1.99…}(3)正数集合:{|﹣|、、+1.99、﹣(﹣6)、0.1010010001……}(4)无理数集合:{﹣、0.1010010001……}解:整数集合:{﹣5,0,﹣12,﹣(﹣6)…}分数集合{|﹣|、﹣3.14、、+1.99}正数集合:{|﹣|、、+1.99、﹣(﹣6)、0.1010010001…}无理数集合:{﹣、0.1010010001…},故答案为:﹣5,0,﹣12,﹣(﹣6);|﹣|、﹣3.14、、+1.99;|﹣|、、+1.99、﹣(﹣6)、0.1010010001…;﹣、0.1010010001….18.(6分)计算:(1)﹣12﹣8+(﹣2)3×(﹣3);(2).解:(1)原式=﹣1﹣8﹣8×(﹣3)=﹣1﹣8+24=15;(2)原式=﹣4﹣+2=﹣2.19.(6分)某火车站今年9月30日的客流量为3万人次.下表是该火车站十一黄金周期间的客流量统计表,正数表示比前一天多的人数,负数表示比前一天少的人数.日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日客流量/万人次+10﹣3﹣4﹣5+20+3(1)10月7日的客流量与10月4日相比是增加了还是减少了?增加或减少多少人?(2)在十一黄金周期间该火车站的日平均客流量是多少?解:(1)10月4日的客流量为:3+10﹣3﹣4﹣5=1万人次,10月7日的客流量为:3+10﹣3﹣4﹣5+2+3=6万人次,6﹣1=5(万人次),答:10月7日的客流量与10月4日相比是增加了,增加了5万人次;(2)根据表格可得从10月1日到10月7日客流量分别为:13,10,6,1,3,3,6,(13+10+6+1+3+3+6)÷7=6(万人次);答:在十一黄金周期间该火车站的日平均客流量是6万人次.20.(6分)先化简,再求值:﹣2(2m2﹣mn+)+3(m2+mn),其中m=﹣1,n=1.解:原式=﹣4m2+2mn﹣1+3m2+3mn=﹣m2+5mn﹣1,当m=﹣1,n=1时,原式=﹣1﹣5﹣1=﹣7.21.(6分)如图,用三种大小不同的六个正方形和一个有缺角的长方形拼接成一个大长方形ABCD.其中,GH=GK=2cm,设BF=xcm,(1)用含x的代数式表示CM=(x+2)cm,DM=(2x+2)cm.(2)求长方形ABCD的周长(用x的代数式表示),并求x=3时长方形周长.解:(1)根据题意得:CM=(x+2)cm;DM=(2x+2)cm;故答案为:(x+2);(2x+2);(2)长方形ABCD的周长=2(DC+BC)=2(3x+4+3x+2x+4)=(16x+16)cm,当x=3时,长方形ABCD的周长=16×3+16=64.22.(6分)先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.解:(1)原式=×12﹣×12+×12=4﹣2+6=8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.23.(6分)某工厂第一季度的电费为a元,水费比电费的2倍多40元.第二季度电费比第一季度节约了25%,水费比第一季度多支出了25%.问该工厂第一季度、第二季度的水电费为多少元?第二季度的水电费与第一季度相比是超支还是节约了?超支或节约了多少元?解:该工厂第一季度的水电费为:a+(2a+40)=3a+40(元);(2分)(不写单位扣1分)第二季度的水电费为:a×(1﹣25%)+(2a+40)×(1+25%)=a+50(元);(4分)(不写单位扣1分)(元);第二季度的水电费与第一季度相比超支a+10(元).(8分)(不写单位扣1分)24.(10分)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A 的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是G;写出【N,M】美好点H所表示的数是﹣4或﹣16.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?解:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件,故答案是:G.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,点N的右侧不存在满足条件的点,点M和N之间靠近点M一侧应该有满足条件的点,进而可以确定﹣4符合条件.点M的左侧距离点M的距离等于点M和点N的距离的点符合条件,进而可得符合条件的点是﹣16.故答案是﹣4或﹣16.(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,当MP=2PN时,PN=3,点P对应的数为2﹣3=﹣1,因此t=1.5秒;第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2,当2PM=PN时,NP=6,点P对应的数为2﹣6=﹣4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2﹣18=﹣16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2﹣27=﹣25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2﹣13.5=﹣11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,因此t=2.25秒;第七种情况,N为【P,M】的美好点,点P在M左侧,当PN=2MN时,NP=18,因此t=9秒,第八种情况,N为【M,P】的美好点,点P在M右侧,当MN=2PN时,NP=4.5,因此t=2.25秒,综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.。
2020-2021学年浙江省宁波市鄞州区七校联考九年级(上)期中数学试卷 解析版
2020-2021学年浙江省宁波市鄞州区七校联考九年级(上)期中数学试卷一.选择题(每题4分,共40分)1.下列关于二次函数y=2x2+3,下列说法正确的是()A.它的开口方向向下B.它的顶点坐标是(2,3)C.当x<﹣1时,y随x的增大而增大D.当x=0时,y有最小值是32.一个不透明的袋中有4个白球,3个黄球和2个红球,这些球除颜色外其余都相同,则从袋中随机摸出一个球是黄球的概率为()A.B.C.D.3.函数y=x2+2x﹣4的顶点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是()A.李东夺冠的可能性较小B.李东和他的对手比赛10局时,他一定赢8局C.李东夺冠的可能性较大D.李东肯定会赢5.下列抛物线中,与抛物线的形状、大小、开口方向都相等的是()A.B.C.D.y=﹣x2+3x﹣56.下列关于事件发生可能性的表述,正确的是()A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.掷两枚硬币,朝上的一面是一正面一反面的概率为7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5 8.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为P1,摸出的球上的数字小于4的概率记为P2,摸出的球上的数字为5的概率记为P3,则P1,P2,P3的大小关系是()A.P1<P2<P3B.P3<P2<P1C.P2<P1<P3D.P3<P1<P2 9.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()个月.A.5B.6C.7D.810.已知关于x的二次函数y=3x2﹣6ax+4a2+2a+2,其中a为实数,当﹣2≤x≤1时,y的最小值为4,满足条件的a的值为()A.﹣﹣1或﹣1B.﹣或﹣1C.﹣1或﹣D.或﹣1二.填空题(每题5分,共30分)11.(5分)抛物线y=x2﹣4x+4与坐标轴有个交点.12.(5分)若将抛物线y=3x2+1向下平移1个单位后,则所得新抛物线的解析式是.13.(5分)书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是.14.(5分)如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y =ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC 长为.15.(5分)如图,直线AB交坐标轴于A(﹣2,0),B(0,﹣4),点P在抛物线y=(x ﹣2)(x﹣4)上,则△ABP面积的最小值为.16.(5分)如图,已知点A(3,3),点B(0,2),点A在二次函数y=x2+bx﹣9的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交二次函数图象于点C,则点C的坐标为.三.简答题(第17,18,19,20题各8分,第21题10分,第22,23题各12分,第24题14分,共80分)17.在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.18.(8分)已知二次函数y=x2﹣2x﹣3.(1)求图象的开口方向、对称轴、顶点坐标;(2)求图象与x轴的交点坐标,与y轴的交点坐标;(3)当x为何值时,y随x的增大而增大?19.(8分)平面上有3个点的坐标:A(0,﹣3),B(3,0),C(﹣1,﹣4).(1)在A,B,C三个点中任取一个点,这个点既在直线y1=x﹣3上又在抛物线上y2=x2﹣2x﹣3上的概率是多少?(2)从A,B,C三个点中任取两个点,求两点都落在抛物线y2=x2﹣2x﹣3上的概率.20.(8分)新定义:如果二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,0),那么称此二次函数图象为“定点抛物线”.(1)试判断二次函数y=2x2﹣5x﹣7的图象是否为“定点抛物线”;(2)若“定点抛物线”y=x2﹣mx+2﹣k与x轴只有一个公共点,求k的值.21.(10分)一名男生推铅球,铅球的行进高度y(单位:m)与水平距离x(单位:m)之间的关系为,铅球行进路线如图.(1)求出手点离地面的高度.(2)求铅球推出的水平距离.(3)通过计算说明铅球的行进高度能否达到4m.22.(12分)某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现,每月销售量y与销售单价x之间的关系可以近似地看作一次函数:y=﹣5x+150,物价部门规定这种笔记本每本的销售单价不得高于18元.(1)当每月销售量为70本时,获得的利润为多少元;(2)该文具店这种笔记本每月获得利润为w元,求每月获得的利润w元与销售单价x 之间的函数关系式,并写出自变量的取值范围;(3)当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?23.(12分)定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x ﹣m)2+k的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B (点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.24.(12分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.2020-2021学年浙江省宁波市鄞州区七校联考九年级(上)期中数学试卷参考答案与试题解析一.选择题(每题4分,共40分)1.下列关于二次函数y=2x2+3,下列说法正确的是()A.它的开口方向向下B.它的顶点坐标是(2,3)C.当x<﹣1时,y随x的增大而增大D.当x=0时,y有最小值是3【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确.【解答】解:∵二次函数y=2x2+3,∴该函数的图象开口向上,故选项A错误;它的顶点坐标为(0,3),故选项B错误;当x<1时,y随x的增大而减小,故选项C错误;当x=0时,y取得最小值3,故选项D正确;故选:D.2.一个不透明的袋中有4个白球,3个黄球和2个红球,这些球除颜色外其余都相同,则从袋中随机摸出一个球是黄球的概率为()A.B.C.D.【分析】先求出袋子中总的球数,再用黄球的个数除以总的球数即可.【解答】解:∵不透明的袋中有4个白球,3个黄球和2个红球,共有9个球,∴从袋中随机摸出一个球是黄球的概率为=;故选:B.3.函数y=x2+2x﹣4的顶点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把二次函数化为顶点式则可求得顶点的坐标,则可求得答案.【解答】解:∵y=x2+2x﹣4=(x+1)2﹣5,∴抛物线顶点坐标为(﹣1,﹣5),∴顶点在第三象限,故选:C.4.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是()A.李东夺冠的可能性较小B.李东和他的对手比赛10局时,他一定赢8局C.李东夺冠的可能性较大D.李东肯定会赢【分析】根据概率的意义,反映的只是这一事件发生的可能性的大小,不一定发生也不一定不发生,依次分析可得答案.【解答】解:根据题意,有人预测李东夺冠的可能性是80%,结合概率的意义,A、李东夺冠的可能性较大,故本选项错误;B、李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C、李东夺冠的可能性较大,故本选项正确;D、李东可能会赢,故本选项错误.故选:C.5.下列抛物线中,与抛物线的形状、大小、开口方向都相等的是()A.B.C.D.y=﹣x2+3x﹣5【分析】根据题目中的函数解析式和二次函数的性质,可以解答本题.【解答】解:∵抛物线的形状是抛物线,开口向下,∴抛物线的形状、大小、开口方向都相等的函数的二次项系数是,故选:B.6.下列关于事件发生可能性的表述,正确的是()A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.掷两枚硬币,朝上的一面是一正面一反面的概率为【分析】根据随机事件和必然事件对A进行判断;根据概率的意义对B进行判断;根据频率估计概率对C进行判断;根据概率公式对D进行判断.【解答】解:A、事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,此选项错误;B、体育彩票的中奖率为10%,则买100张彩票大约有10张中奖,此选项错误;C、在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,此选项正确;D、掷两枚硬币,朝上的一面是一正面一反面的概率为,此选项错误;故选:C.7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.【解答】解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.8.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为P1,摸出的球上的数字小于4的概率记为P2,摸出的球上的数字为5的概率记为P3,则P1,P2,P3的大小关系是()A.P1<P2<P3B.P3<P2<P1C.P2<P1<P3D.P3<P1<P2【分析】由1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,利用概率公式分别计算,再比较大小可得.【解答】解:∵在1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,∴P1=、P2=1、P3=0,则P3<P1<P2,故选:D.9.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()个月.A.5B.6C.7D.8【分析】令W=0,解得x=4或12,求出不等式﹣x2+16x﹣48>0的解即可解决问题.【解答】解:由W=﹣x2+16x﹣48,令W=0,则x2﹣16x+48=0,解得x=12或4,∴不等式﹣x2+16x﹣48>0的解为,4<x<12,∴该景点一年中处于关闭状态有5个月.故选:A.10.已知关于x的二次函数y=3x2﹣6ax+4a2+2a+2,其中a为实数,当﹣2≤x≤1时,y的最小值为4,满足条件的a的值为()A.﹣﹣1或﹣1B.﹣或﹣1C.﹣1或﹣D.或﹣1【分析】分类讨论:a<﹣2,﹣2≤a≤1,a>1,根据函数的增减性,可得答案.【解答】解:当a<﹣2,x=﹣2时,y=12+12a+4a2+2a+2=4a2+14a+14=4,解得:a=﹣1(不合题意舍去),a2=﹣,当﹣2≤a≤1时,x=a时,y最小=3a2﹣6a2+4a2+2a+2=4,解得:a3=﹣1﹣(舍),a4=﹣1+,当a>1,x=1时,y最小=3﹣6a+4a2+2a+2=4,解得:a5=a6=(不合题意舍去),综上所述:a的值为﹣或﹣1,故选:B.二.填空题(每题5分,共30分)11.(5分)抛物线y=x2﹣4x+4与坐标轴有2个交点.【分析】当x=0时,求出与y轴的纵坐标;当y=0时,求出与x轴的交点横坐标,从而求出与坐标轴的交点.【解答】解:当x=0时,y=4,则与y轴的交点坐标为(0,4),当y=0时,x2﹣4x+4=0,解得x1=x2=2.则与x轴的交点坐标为(2,0),∴抛物线y=x2﹣4x+4与坐标轴有2个交点,故答案为:2.12.(5分)若将抛物线y=3x2+1向下平移1个单位后,则所得新抛物线的解析式是y=3x2.【分析】根据向下平移纵坐标减写出平移后的抛物线的顶点坐标,然后利用顶点式解析式即可.【解答】解:∵抛物线y=3x2+1向下平移1个单位后的顶点坐标为(0,0),∴所得新抛物线的解析式是y=3x2.故答案为:y=3x2.13.(5分)书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是.【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果,其中从中随机抽取2本都是小说的结果数为6,所以从中随机抽取2本都是小说的概率==.故答案为.14.(5分)如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y =ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC 长为4.【分析】先求出对称轴,再根据B、D关于对称轴对称,求出点D坐标,根据正方形的性质AC=BD即可解决问题.【解答】解:抛物线的对称轴x=﹣=2,点B坐标(0,3),∵四边形ABCD是正方形,点A是抛物线顶点,∴B、D关于对称轴对称,AC=BD,∴点D坐标(4,3)∴AC=BD=4.故答案为4.15.(5分)如图,直线AB交坐标轴于A(﹣2,0),B(0,﹣4),点P在抛物线y=(x ﹣2)(x﹣4)上,则△ABP面积的最小值为7.5.【分析】根据三角形面积公式可知当点P到直线AB的距离最小时,△ABP面积的最小,求出与直线AB平行且与抛物线相切的直线解析式,即可求得P的坐标,根据待定系数法求得直线AP的解析式,得到与y轴的交点,利用面积公式即可求得结果.【解答】解:∵直线AB交坐标轴于A(﹣2,0),B(0,﹣4),∴直线AB为y=﹣2x﹣4,设与AB平行且与抛物线相切的直线解析式为y=﹣2x+t,与抛物线的解析式联立,消去y得,x2﹣2x+8﹣2t=0,则△=(﹣2)2﹣4×1×(8﹣2t)=0,即t=,∴x2﹣2x+1=0,解得x=1,代入y=(x﹣2)(x﹣4)得,y=,∴P(1,),设直线AP的解析式为y=kx+b,把A(﹣2,0),P(1,)代入得,解得,∴直线AP为y=x+1,∴直线AP与y轴的交点为(0,1),∴S△ABP=×(1+4)×(1+2)=7.5,故答案为7.5.16.(5分)如图,已知点A(3,3),点B(0,2),点A在二次函数y=x2+bx﹣9的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交二次函数图象于点C,则点C的坐标为(﹣2,﹣7).【分析】根据待定系数法求得b,得到二次函数的解析式,过B作BF⊥AC于F,过F 作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,依据全等三角形的性质,即可得出F(2,1),进而得出直线AC的解析式,解方程组即可得到C点坐标.【解答】解:∵点A(3,3)在二次函数y=x2+bx﹣9的图象上,∴9+3b﹣9=3,解得b=1,∴二次函数为y=x2+x﹣9,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB(AAS),设BD=a,则EF=a,∵点A(3,3)和点B(0,2),∴DF=3﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴3﹣a+2﹣a=3,解得a=1,∴F(2,1),设直线AC的解析式为y=kx+b,则,解得,∴y=2x﹣3,解方程组,可得或,∴C(﹣2,﹣7),故答案为:(﹣2,﹣7).三.简答题(第17,18,19,20题各8分,第21题10分,第22,23题各12分,第24题14分,共80分)17.在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画出树状图,得出所有等可能的结果数,再找出张辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解即可.【解答】解:(1)张辉同学选择清理类岗位的概率为:=;故答案为:;(2)根据题意画树状图如下:共有16种等可能的结果数,张辉和夏明恰好选择同一岗位的结果数为4,所以他们恰好选择同一岗位的概率:=.18.(8分)已知二次函数y=x2﹣2x﹣3.(1)求图象的开口方向、对称轴、顶点坐标;(2)求图象与x轴的交点坐标,与y轴的交点坐标;(3)当x为何值时,y随x的增大而增大?【分析】(1)把一般式化成顶点式即可确定二次函数y=x2﹣2x﹣3的图象的开口方向、对称轴、顶点坐标;(2)根据图象与y轴和x轴的相交的特点可求出坐标;(3)根据二次函数的增减性,当a>0时,在对称轴的右侧,y随x的增大而增大.【解答】解:(1)∵a=1>0,∴图象开口向上,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴是x=1,顶点坐标是(1,﹣4);(2)由图象与y轴相交则x=0,代入得:y=﹣3,∴与y轴交点坐标是(0,﹣3);由图象与x轴相交则y=0,代入得:x2﹣2x﹣3=0,解得x1=3,x2=﹣1∴与x轴的交点为(3,0)和(﹣1,0);(3)∵对称轴x=1,图象开口向上,∴当x>1时,y随x增大而增大.19.(8分)平面上有3个点的坐标:A(0,﹣3),B(3,0),C(﹣1,﹣4).(1)在A,B,C三个点中任取一个点,这个点既在直线y1=x﹣3上又在抛物线上y2=x2﹣2x﹣3上的概率是多少?(2)从A,B,C三个点中任取两个点,求两点都落在抛物线y2=x2﹣2x﹣3上的概率.【分析】(1)先根据一次函数图象上点的坐标特征和二次函数图象上点的坐标特征可判断A、B、C都在直线上,A、B两点在抛物线上,C点不在抛物线上,然后根据概率公式求解;(2)先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线y2=x2﹣2x﹣3上的结果数,然后根据概率公式求解.【解答】解:(1)当x=0时,y1=x﹣3=﹣3,y2=x2﹣2x﹣3=﹣3,则A点在直线和抛物线上;当x=3时,y1=x﹣3=0,y2=x2﹣2x﹣3=0,则B点在直线和抛物线上;当x=﹣1时,y1=x﹣3=﹣4,y2=x2﹣2x﹣3=0,则C点在直线上,不在抛物线上,所以在A,B,C三个点中任取一个点,这个点既在直线y1=x﹣3上又在抛物线上y2=x2﹣2x﹣3上的概率=;(2)画树状图为:共有6种等可能的结果数,其中两点都落在抛物线y2=x2﹣2x﹣3上的结果数为2,所以两点都落在抛物线y2=x2﹣2x﹣3上的概率==.20.(8分)新定义:如果二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,0),那么称此二次函数图象为“定点抛物线”.(1)试判断二次函数y=2x2﹣5x﹣7的图象是否为“定点抛物线”;(2)若“定点抛物线”y=x2﹣mx+2﹣k与x轴只有一个公共点,求k的值.【分析】(1)把x=﹣1代入抛物线解析式,判断y的值是否为0,即可解决问题.(2)因为y=x2﹣mx+2﹣k与x轴只有一个公共点,所以(﹣1,0)是抛物线顶点,所以抛物线解析式为y=(x+1)2,由此即可解决问题.【解答】解:(1)当x=﹣1时,y=2+5﹣7=0,∴抛物线y=2x2﹣5x﹣7经过点(1,0),∴二次函数图象为“定点抛物线”.(2)∵y=x2﹣mx+2﹣k与x轴只有一个公共点,∴(﹣1,0)是抛物线顶点,∴抛物线解析式为y=(x+1)2=x2+2x+1,∴2﹣k=1,∴k=1.21.(10分)一名男生推铅球,铅球的行进高度y(单位:m)与水平距离x(单位:m)之间的关系为,铅球行进路线如图.(1)求出手点离地面的高度.(2)求铅球推出的水平距离.(3)通过计算说明铅球的行进高度能否达到4m.【分析】(1)令x=0代入即可求出答案.(2)令y=0代入即可求出答案.(3)令y=4代入即可求出答案.【解答】解:(1)令x=0代入,∴y=.(2),解得x1=10,x2=﹣2(舍去)∴铅球推出的水平距离为10米.(3)把y=4代入,得,化简得x2﹣8x+28=0,方程无解,∴铅球的行进高度不能达到4米.22.(12分)某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现,每月销售量y与销售单价x之间的关系可以近似地看作一次函数:y=﹣5x+150,物价部门规定这种笔记本每本的销售单价不得高于18元.(1)当每月销售量为70本时,获得的利润为多少元;(2)该文具店这种笔记本每月获得利润为w元,求每月获得的利润w元与销售单价x 之间的函数关系式,并写出自变量的取值范围;(3)当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?【分析】(1)把y=70代入y=﹣5x+150,求出x即可;(2)每月销售量y=﹣5x+150,乘以每件利润(x﹣10)即可得到每月获得的利润w元的表达式;(3)转化为二次函数求出最大值即可.【解答】解:(1)当y=70时,70=﹣5x+150,解得x=16,则(16﹣10)×70=420元;(2)w=(x﹣10)(﹣5x+150)=﹣5x2+200x﹣1500,∵,∴自变量的取值范围为10≤x≤18;(3)w=﹣5x2+200x﹣1500=﹣5(x﹣20)2+500∵a=﹣5<0,∴当10≤x≤18时,w随x的增大而增大,∴当x=18时,w有最大值,为480元.答:当销售单价定为18元时,每月可获得最大利润,最大利润为480元.23.(12分)定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x ﹣m)2+k的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B (点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.【分析】(1)根据关联直线的定义可求;(2)由题意可得a=2,c=3,设抛物线的顶点式为y=2(x﹣m)2+k,可得,可求m和k的值,即可求这条抛物线的表达式;(3)由题意可得A(1,4a)B(2,3a)C(﹣1,0),可求AB2=1+a2,BC2=9+9a2,AC2=4+16a2,分BC,AC为斜边两种情况讨论,根据勾股定理可求a的值.【解答】解:(1)∵y=x2+6x﹣1=(x+3)2﹣10∴关联直线为y=x+3﹣10=x﹣7(2)∵抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,∴a=2,c=3,可设抛物线的顶点式为y=2(x﹣m)2+k,则其关联直线为y=2(x﹣m)+k=2x﹣2m+k,∴解得∴抛物线y=2x2+3或y=2(x+1)2+1,(3)由题意:A(1,4a)B(2,3a)C(﹣1,0),∴AB2=1+a2,BC2=9+9a2,AC2=4+16a2,显然AB2<BC2且AB2<AC2,故AB不能成为△ABC的斜边,当AB2+BC2=AC2时:1+a2+9+9a2=4+16a2解得a=±1,当AB2+AC2=BC2时:1+a2+4+16a2=9+9a2解得,∵抛物线的顶点在第一象限∴a>0,即24.(12分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.。
浙江省宁波市海曙区第十五中学2020-2021学年九年级上学期期中数学试卷
( ;④
)的图象如图所示,有下列 个结论:①
;②
;⑤
(
).其中正确的结论有
A. 个
B. 个
C. 个
D. 个
10. 如图, 的斜边
和 上,
都是等腰直角三角形,
、 交于 ,若
,
, ,则
,
的顶点 在
的长为( ).
2
A.
B.
C.
D.
二、填空题
11. 已知线段
,
,若线段 是 , 的比例中项,那么
.
12. 在单词
,解得
(舍去)或
; 综上可知当 , , 三点成为“共谐点”时 的值为 或 或 .
19
中点,连接 ,则 的最小值是
.
,点 是⊙ 上一个动点,点 是 的
3
三、解答题 17. 如图,已知点 是
的边 上的一点,连接 ,
,
,
.
( 1 ) 求证:
.
( 2 ) 求线段 的长.
18. 已知二次函数
,设其图象与 轴的交点分别是 、 (点 在点 的左边),与
轴的交点是 ,求:
( 1 ) 、 、 三点的坐标.
A.
B.
C.
D.
3. 如图,点 , , 在⊙ 上,
,则
的度数为( ).
A.
B.
C.
D.
4. 抛物线
的顶点坐标是( ).
A.
B.
C.
D.
5. 已知扇形的圆心角为 ,半径为 ,则扇形的弧长为( ).
A.
B.
C.
D.
6. 如图,点 , 分别为
边 , 上的一点,且
,
,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.将抛物线c沿x轴向右平移 个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
C.将抛物线c沿x轴向右平移 个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
A.7个B.8个C.2个D.3个
5.抛物线y=x2﹣6x+11的顶点坐标是( )
A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)
6.如图,已知⊙O的半径OA=6,∠AOB=90°,则(圆心角为90°的)扇形AOB的面积为( )
A.6πB.9πC.12πD.15π
7.小华做了一个试验:从反扣在桌面上牌面数字分别为6和8的牌中,抽出一张再放回去算一次试验,如果小华做了三次试验,那么所有的不同结果为( )
(1)作出圆心O;(要求用尺规作图,不写作法和证明,保留作图痕迹)
(2)经过点B作直径BF,连接AF,求∠AFB和∠ABF的度数.
24.如图,已知AB是⊙O的直径,点P是弦BC上一动点(不与端点重合),过点P作PE⊥AB于点E,延长EP交 于点F,交过点C的切线于点D.
(1)求证:△DCP是等腰三角形;
12.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为( )
A.﹣ 或﹣12B.﹣ 或2C.﹣12或2D.﹣ 或﹣12
13.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,如图,可见卖油的技艺之高超,若铜钱直径4cm,中间x有边长为1cm的正方形小孔,随机向铜色钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是( )
(2)如果踢三次,球踢到了小明处的可能性最小,应从谁开始踢?(直接写出结论)
20.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
x
…
﹣1
0
1
2
3
…
y
…
8
3
0
﹣1
0
…
(1)当ax2+bx+c=3时,则方程的解为;
(2)求该二次函数的表达式;
(3)将该函数的图象向上(或向下)平移,使图象与直线y=4只有一个公共点,直接写出平移后的函数表达式.
浙江省宁波市三校联考2020-2021学年九年级上学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列事件是必然事件的是( )
A.某人体温是100℃B.太阳从西边下山
C.a2+b2=﹣1D.购买一张彩票,中奖
21.如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.
(1)求扇形OAC的面积;
(2)求弦CD的长.
22.在-2,-1,0,1,2这五个数中任取两数m,n,用列表或画树状图的方法求二次函数 的顶点在坐标轴上的概率.
23.如图,△ABC内接于⊙O,AC=AB,∠BAC=50°,
A. B. C. D.
二、填空题
14.在半径为r的圆中,圆内接正六边形的边长为_____.
15.在某国际乡村音乐周活动中,来自中、韩、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“中—美—韩”顺序演奏的概率是_______.
16.如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为_____(用含m、n的代数式表示).
A.2B.4C.2.5D.3
10.已知水平放置的圆柱形排水管道,管道截面半径是1 m,若水面高0.2 m.则排水管道截面的水面宽度为()
A.0.6 mB.0.8 mC.1.2 mD.1.6 m
11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<0
17.如图,反比例函数 与⊙O的一个交点为P(2,1),则图中阴影部分的面积是_____.
18.顶点为P的抛物线 与y轴交于Q,则PQ的长为_____.
三、解答题
19.九年(1)班的体育课上,小明、小强和小华三人在学习训练足球,足球从一人传到另一人就记为踢一次.
(1)如பைடு நூலகம்从小强开始踢,经过两次踢球后,足球踢到了小明处的概率是多少?请用数状图或列表法说明.
售价(元)/瓶
70
50
(1)请求出y关于x的函数关系;
(2)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对B产品不变,对A产品进行让利,每瓶利润降低 元,厂家如何生产可使每天获利最大?最大利润是多少?
26.在平面直角坐标系中,点A是y轴上一点,其坐标为(0,6),点B在x轴的正半轴上.点P,Q均在线段AB上,点P的横坐标为m,点Q的横坐标大于m,在△PQM中,若PM∥x轴,QM∥y轴,则称△PQM为点P,Q的“肩三角形.
A.3种B.4种C.8种D.9种
8.在△ABC中,已知AB=AC=8cm,BC=12cm,P是BC的中点,以P为圆心作一个6cm为半径的圆P,则A,B,C三点在圆P内的有()个
A.0B.1C.2D.3
9.已知:如图,直线y=kx+b(k,b为常数)分别与x轴、y轴交于点A(﹣4,0),B(0,3),抛物线y=﹣x2+4x+1与y轴交于点C,点E在抛物线y=﹣x2+4x+1的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是( )
(2)若OA=6,∠CBA=30°.
①当OE=EB时,求DC的长;
②当 的长为多少时,以点B,O,C,F为顶点的四边形是菱形?
25.某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和售价如下表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.
A
B
成本(元)/瓶
50
35
3.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠BOD=44°,则∠C的度数是( )
A.44°B.22°C.46°D.36°
4.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有78次摸到红球,则口袋中白球的个数大约有( )