人教版八年级数学上册第十一章三角形练习题

合集下载

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。

人教版初中八年级数学上册第十一章《三角形》经典练习题(含答案解析)

人教版初中八年级数学上册第十一章《三角形》经典练习题(含答案解析)

一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个 3.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 4.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形5.若一个多边形的每个内角都等于160°,则这个多边形的边数是( )A .18B .19C .20D .21 6.以下列各组线段为边,能组成三角形的是( ) A .1,2,3B .1,3,5C .2,3,4D .2,6,10 7.下列长度(单位:cm )的三条线段能组成三角形的是( ) A .13,11,12B .3,2,1C .5,12,7D .5,13,5 8.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,49.如图,线段BE 是ABC 的高的是( )A .B .C .D .10.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°11.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°12.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是()A .43°B .47°C .30°D .60°13.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .414.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .815.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm二、填空题16.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.17.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.18.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.19.如图,点D ,E ,F 分别是边BC ,AD ,AC 上的中点,若图中阴影部分的面积为3,则ABC 的面积是________.20.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.21.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.22.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.23.如图,ABC 的三边的中线AD ,BE ,CF 的公共点为G ,且21AG GD =::.若12ABC S =△,则图中阴影部分的面积是________.24.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.25.如图,已知ABC 的角平分线BD ,CE 相交于点O ,∠A=60°,则∠BOC=__________.26.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题27.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.28.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于点E ,若70C ∠=︒,24B ∠=︒,求P ∠的度数.29.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.30.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF=∠CFE.(2)如图2,过点E作EG⊥AB于点G,请直接写出图中与∠CAE互余的所有角.。

人教版八年级上册数学第十一章 三角形 含答案

人教版八年级上册数学第十一章 三角形 含答案

人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、如图所示,在△ABC中,AD为BC边上的中线,若AB=5cm,Ac=3cm,则△ABD的周长比△ACD周长多()A.5cmB.3cmC.8cmD.2cm2、若正多边形的一个外角是 60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°3、下列命题中,正确的有几个()( 1 )三角形的一个外角大于任何一个内角(2)三角形的一条中线将三角形分成两个面积相等的三角形(3)两边和其中一边的对角分别相等的两个三角形全等(4)三角形的三条高都在三角形内部(5)有两边和其中一边上的高分别相等的两个三角形全等.A.0B.1C.2D.34、三角形的两边长分别是5和8,则第三边长不可能是()A.3B.5C.7D.95、如果一个多边形的内角和等于它的外角和,则这个多边形是()边形.A.四B.五C.六D.七6、等腰三角形两边的长分别为3 cm和7 cm,则这个三角形的周长是()A.13 cmB.17 cmC.13 cm或17 cmD.在13 cm到17 cm之间7、如图,AB∥CD,∠A=50°,∠C=30°,则∠1的大小为()A.20°B.30°C.50°D.80°8、如图,在直角△ABC中,,AB=AC,点D为BC中点,直角绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;② AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④9、如图,射线射线CD,与的平分线交于点E,,点P是射线AB上的一动点,连结PE并延长交射线CD于点给出下列结论:是直角三角形;;设,,则y关于x的函数表达式是,其中正确的是()A. B. C. D.10、如图,AB∥CD,∠D=30°,∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°11、如图,是的两条角平分线,,则的度数为()A. B. C. D.12、三角形的重心是指()A.三边高的交点B.三角角平分线的交点C.三边中线的交点 D.三边中垂线的交点13、若一个三角形三个内角的度数之比是,则这个三角形一定是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定14、如图,在中,AC=BC,点D在AC边上,点E在CB的延长线上,DE 与AB相交于点F,若∠C=50°,∠E=25°,则∠BFD的度数为()A. B. C. D.15、如图,在△ABC中,E,F分别是AD,CE边的中点,且S△BEF =4cm2,则S△ABC为()A.1cm 2B.2cm 2C.8cm 2D.16cm 2二、填空题(共10题,共计30分)16、如图,在四边形中,于点,且平分,若的面积为,则的面积为________ .17、如图1,已知∠B=60°,∠C=75°,把△ABC沿DE折叠,使点A落在点A’处,∠1+∠2的度数是________.18、如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是________.19、如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点A、B、C为顶点的三角形的面积是________,周长是________.20、如图,在△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的大小等于________度.21、一个内角为140°的正多边形的边数为________.22、在矩形ABCD中,AB=5,AD=12,P是AD上的动点,PE⊥AC于点E,PF⊥BD 于点F,则PE+PF=________ .23、如图2所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E的度数是________.24、如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,若△ABC的面积为16,则图中阴影部分的面积为________.25、如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE 的度数为________.三、解答题(共5题,共计25分)26、求出下列图中x的值。

人教版八年级上册数学第十一章 三角形经典练习题附详细解析学生版

人教版八年级上册数学第十一章 三角形经典练习题附详细解析学生版

人教版八年级上册数学第十一章三角形经典练习题附详细解析一、单选题1.若有两条线段长分别为3cm和4cm,则下列长度的线段能与其组成三角形的是()A.1cm B.5cm C.7cm D.9cm2.若三角形的三边分别为3、4、a,则a的取值范围是()A.a>7B.a<7C.1<a<7D.3<a<63.下列长度的三条线段能组成三角形的是()A.1,2,3B.3,4,5C.3,1,1D.3,4,74.已知等腰三角形的一边长为2,一边长为4,则它的周长等于()A.8B.10C.8或10D.10或125.如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为()A.14B.1C.2D.76.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A.1cm2B.2cm2C.8cm2D.16cm27.如图四个图形中,线段BE 是△ABC 的高线的是( )A.B.C.D.8.在三角形中,一定能将其面积分成相等两部分的是()A.中线B.高线C.角平分线D.某一边的垂直平分线9.如图,在△ABC中,点D为BC边上一点,连接AD,取AD的中点P,连接BP,CP.若△ABC 的面积为4cm2,则△BPC的面积为()A.4cm2B.3cm2C.2cm2D.1cm210.如图,AE△BC于E,BF△AC于F,CD△AB于D,△ABC中AC边上的高是线段()A.BF B.CD C.AE D.AF11.如图△ABC中,△A=96°,延长BC到D,△ABC与△ACD的平分线相交于点A1△A1BC与△A1CD的平分线相交于点A2,依此类推,△A4BC与△A4CD的平分线相交于点A5,则△A5的度数为()A.19.2°B.8°C.6°D.3°12.如图,△A +△B +△C +△D +△E +△F等于()A.180°B.360°C.540°D.720°13.如图,则△A+△B+△C+△D+△E=()度A.90B.180C.200D.36014.已知一个多边形的内角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形15.一个正多边形的每个外角都是36°,这个正多边形是()A.正六边形B.正八边形C.正十边形D.正十二边形16.如果一个多边形的每个内角都为150°,那么这个多边形的边数是()A.6B.11C.12D.1817.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是()A.9B.14C.16D.不能确定二、填空题18.三角形三边长为7cm、12cm、acm,则a的取值范围是.19.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.20.如图,自行车的三角形支架,这是利用三角形具有性.21.在△ABC中,△B,△C的平分线交于点O,若△BOC=132°,则△A=度.22.如图,△1+△2+△3+△4=°。

人教版八年级数学上册第十一章《三角形》考试卷(含答案)

人教版八年级数学上册第十一章《三角形》考试卷(含答案)

人教版八年级数学上册第十一章《三角形》考试卷(含答案)一、选择题(共10小题)1. 如图,窗户打开后,用窗钩AB可将其固定,所运用的几何原理是( )A. 两点之间线段最短B. 三角形两边之和大于第三边C. 三角形的稳定性D. 两点确定一条直线2. 下列各组数中,能作为一个三角形三边长的是( )A. 1,1,2B. 1,2,4C. 2,3,5D. 2,3,43. 如图,AB∥CD,AC,BD相交于点E,若∠DEC=100∘,∠C=40∘,则∠B的度数是( )A. 30∘B. 40∘C. 50∘D. 60∘4. 一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )A. 3B. 4C. 6D. 125. 把一把直尺与一块三角板如图放置,若∠1=45∘,则∠2的度数为( )A. 115∘B. 120∘C. 145∘D. 135∘6. 如图,∠C,∠1,∠2之间的大小关系是( )A. ∠1<∠2<∠CB. ∠2>∠1>∠CC. ∠C>∠1>∠2D. ∠1>∠2>∠C7. 已知一个多边形的内角和是1080∘,则这个多边形是( )A. 六边形B. 七边形C. 八边形D. 九边形8. 如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于( )A. 2cm2B. 1cm2C. 12cm2 D. 14cm29. 在△ABC中,如果∠A:∠B:∠C=1:2:3,那么△ABC的形状是( )A. 直角三角形B. 锐角三角形C. 等腰三角形D. 等腰直角三角形10. 如图,在△ABC中,点D是∠ABC和∠ACB的平分线的交点,∠A=80∘,∠ABD=30∘,则∠DCB的度数为( )A. 25∘B. 20∘C. 15∘D. 10∘二、填空题(共8小题)11. 三角形中,其中两条边长分别为4cm和7cm,则第三边c的长度的取值范围是.12. 一副三角板按如图所示摆放,则α的度数为.13. 如图,在△ABC中,∠C=90∘,∠A=20∘,BD为∠ABC的平分线,则∠BDC=.14. 如图,在△ABC中,∠ABC=∠C,∠A=40∘,BD⊥AC于点D,则∠DBC=度.15. 一个多边形截去一个角(截线不过顶点)后,形成的多边形的内角和是2520∘,则原多边形的边数是.16. 将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为.17. 如图,在△ABC中,∠ACB=90∘,∠A=50∘.如果将△ABC沿着CD所在直线翻折,使点A溶在边CB上Aʹ处,那么∠AʹDB=.18. 已知,如图1,在△ABC,∠ABC、∠ACB的角平分线交于点O,则∠BOC=90∘+12∠A=1 2×180∘+12∠A.如图2,在△ABC中,∠ABC、∠ACB的两条三等分角线分别对应交于O1、O2,则∠BO1C=23×180∘+13∠A,∠BO2C=13×180∘+23∠A.根据以上阅读理解,你能猜想(n等分时,内部有n−1个点)(用n的代数式表示)∠BO1C=.三、解答题(共6小题)19. 如图所示,已知AD,AE分别是△ABC高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90∘.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE与△ABE的周长的差.20. 请回答下列问题.(1)如图(1),BD,CD分别是△ABC的内角∠ABC,∠ACB的平分线,请说明∠BDC与∠A∠A.之间的等量关系是∠BDC=90∘+12(2)如图(2),BD,CD是△ABC的两个外角的平分线,请你探究∠BDC与∠A之间有怎样的等量关系.(3)如图(3),BD,CD分别是△ABC的一个内角的平分线与一个外角的平分线,试探究∠BDC与∠A之间的等量关系.21. 在△ABC中,CD是AB边上的中线,如果△BCD的周长比△ACD的周长多3cm,且AC=4cm,求边BC的长.22. 如图,在△ABC中,∠BAC=45∘,AD是∠BAC的角平分线,BE是边AC上的高,AD,BE相交于点O,求∠AOB的度数.23. 如图,在△ABC中,AD是∠BAC的角平分线,BE是边AC上的高,AD,BE相交于点O,如果∠AOE=67.5∘,求∠ABE的度数.24. 如图,在△ABC中,已知∠BAC=86∘,BD平分∠ABC,CD∥AB,∠ACB=34∘,求∠D的度数.参考答案1. C2. D【解析】A选项:1+1=2,故不能作为三角形三边长;B选项:1+2=3<4,故不能作为三角形三边长;C选项:2+3=5,故不能作为三角形三边长;D选项:2+3=5>4,故能作为三角形三边长.3. B4. B【解析】正多边形的每个内角的度数都等于相邻外角的度数,则外角的度数为90∘,360÷90∘=4,则正多边形的边数是4.5. D【解析】易知∠2=∠1+90∘,∵∠1=45∘,∴∠2=45∘+90∘=135∘.6. D7. C【解析】设这个多边形是n边形,由题意知,(n−2)×180∘=1080∘,所以n=8,所以该多边形的边数是八边形.8. B【解析】S阴影=12S△BCE=14S△ABC=1cm2.9. A10. B【解析】∵BD平分∠ABC,∴∠ABC=2∠ABD=2×30∘=60∘,∴∠ACB=180∘−∠A−∠ABC=180∘−80∘−60∘=40∘,∵CD平分∠ACB,∴∠DCB=12∠ACB=12×40∘=20∘.11. 3cm<c<11cm【解析】三角形两边的和大于第三边,两边的差小于第三边,由题意得7−4<c<7+4,即3<c<11.12. 105∘13. 55∘14. 2015. 15【解析】设截去一个角后的多边形的边数为n,于是(n−2)⋅180∘=2520∘,解得n=16.一个多边形截去一个角(截线不过顶点)后边数增加1,所以原多边形有15条边.16. 105∘17. 10∘18. n−1n ×180∘+1n∠A【解析】根据题中所给的信息,总结可得:∠BO1C=n−1n ×180∘+1n∠A,故答案为:∠BO1C=n−1n ×180∘+1n∠A.19. (1)∵∠BAC=90∘,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810=4.8(cm),即AD的长为4.8cm.(2)∵△ABC是直角三角形,∠BAC=90∘,AB=6cm,AC=8cm,∴S△ABC=12AB⋅AC=12×6×8=24(cm2),又∵AE是△ABC的中线,∴BE=EC,∴12BE⋅AD=12EC⋅AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=12(cm2),∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE与△ABE的周长的差是2cm.20. (1)略.∠A.(2)∠BDC=90∘−12∠A(3)∠BDC=1221. 因为CD是△ABC的中线,所以AD=BD.因为C△ACD=AC+AD+CD,C△BCD=BC+BD+CD,所以(BC+BD+CD)−(AC+AD+CD)=3.所以BC−AC=4.因为AC=3cm,所以BC=7cm.22. ∠AOB=112.5∘.23. ∵AD是∠BAC的角平分线(已知),∠BAC(角平分线的意义),∴∠BAD=∠CAD=12∵BE是边AC上的高(己知),∴∠BEA=90∘(垂直的意义),∵∠AOE+∠CAD+∠BEA=180∘(三角形的内角和180∘),且∠AOE=67.5∘(已知),∴∠CAD=22.5∘(等式性质),∴∠BAD=22.5∘(等量代换),∵∠AOE=∠ABE+∠BAD(三角形的一个外角等于与它不相邻的两个内角之和),∴∠ABE=45∘(等式性质).24. 因为∠BAC=86∘,∠ACB=34∘,所以∠ABC=180∘−86∘−34∘=60∘,因为BD平分∠ABC,∠ABC=30∘,所以∠ABD=12因为CD∥AB,所以∠D=∠ABD=30∘.。

八年级数学上册第十一章《三角形》测试题-人教版(含答案)

八年级数学上册第十一章《三角形》测试题-人教版(含答案)

八年级数学上册第十一章《三角形》测试题-人教版(含答案)一、选择题(30分)1.下列说法错误的是()A.三角形的角平分线把三角形分成面积相等的两部分B.三角形的三条中线相交于一点C.直角三角形的三条高交于三角形的直角顶点处D.钝角三角形的三条高所在直线的交点在三角形的外部2.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④3.如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°5.如图,△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE,∠F, ②2∠BEF,∠BAF,∠C,③∠F,∠BAC,∠C,④∠BGH,∠ABE,∠C,其中正确个数是()A.4个B.3个C.2个D.1个6.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.147.如图,直线AB,CD被BC所截,若AB,CD,,1,45°,,2,35°,则∠3,( )A.80°B.70°C.60°D.90°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定9.若a,b,c是△ABC的三边的长,则化简|a,b,c|,|b,c,a|,|a,b,c|的结果是()A.a,b,c B.,a,3b,c C.a,b,c D.2b,2c10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6B.7C.8D.9二、填空题(15分)11.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.12.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x,150°时,对应的和谐数对有一个,它为(10,20);当x,66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________,13.根据如图所示的已知角的度数,求出其中∠α的度数为______.14.在图中过点P任意画一条直线,最多可以得到____________个三角形.15.如图,点O是△ABC的两条角平分线的交点,若△BOC=118°,则△A的大小是。

人教版八年级上册数学第十一章 三角形含答案

人教版八年级上册数学第十一章 三角形含答案

人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A.2B.3C.4D.82、若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形3、如图,在□ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE的度数为()A.55°B.35°C.25°D.30°4、已知一个多边形的对角线条数正好等于它的边数的2倍,则这个多边形的边数是()A.6B.7C.8D.105、如果三角形有一边上的中线长恰好等于这条边长,那么称这个三角形是“有趣三角形”,这条中线为“有趣中线”.如图,在△ABC中,∠C=90°,较短的直角边BC=,且△ABC是“有趣三角形”,则△ABC的“有趣中线”的长为( )A.1B.C.2D.6、等腰三角形的周长是40cm,腰长y (cm)是底边长x (cm)的函数解析式正确的是()A.y=-0.5x+20 ( 0<x<20)B.y=-0.5x+20 (10<x<20)C.y=-2x+40 (10<x<20)D.y=-2x+40 (0<x<20)7、一个多边形裁去一个角后,形成另一个多边形的内角和为2 520°,则原多边形的边数是( )A.17B.16C.15D.17或16或158、如果一个三角形两边的长分别等于一元二次方程x2-13x+36 =0的两个实数根,那么这个三角形的周长可能是( )A.13B.18C.22D.269、如图,在五边形中,,,分别平分,,则的度数()A.70°B.65°C.60°D.55°10、如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH'L、四边形EKE'A、△BGF的周长分别为C1、C2、C3,且G1=2G2=4G3,已知FG=LK,EF=6,则AB的长是()A.9.5B.10C.10.5D.1111、一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12B.13C.14D.1512、如图,已知直线AB∥CD,∠C=125°,∠E=80°,则∠A的度数为()A.45°B.50°C.60°D.70°13、如果一个三角形有两个外角的和等于270o,则此三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形14、若下列各组值代表线段的长度,则以它们为边能构成三角形的是()A.6、7、13B.6、6、12C.6、9、14D.10、5、315、若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形"有()对。

人教版八年级上册数学 第十一章 三角形练习题

人教版八年级上册数学 第十一章 三角形练习题

八年级上册数学试题:第十一章三角形练习题一.精心选一选(共12小题)1.下列说法错误的是()A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点2.已知一个多边形的外角和比它的内角和少540°,则该多边形的边数为()A.7 B.8 C.9 D.103.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A.4 B.5 C.9 D.144.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN 5.如图,在△ABC中,AB⊥AC,DE∥BC,∠B=46°,则∠AED的度数是()A.44°B.46°C.54°D.56°6.一个正多边形的外角等于36°,则这个正多边形的内角和是()A.1440°B.1080°C.900°D.720°7.如图,在△ABC中,AC边上的高是()A.BE B.AD C.CF D.AF8.一个多边形所有内角与外角的和为1260°,则这个多边形的边数是()A.5 B.7 C.8 D.99.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转……如此下去,当他第一次回到A点时,发现自己走了60米,θ的度数为()A.28°B.30°C.33°D.36°10.如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()A.110°B.120°C.130°D.140°11.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠BAE=30°,∠CAD=20°,则∠B=()A.45°B.60°C.50°D.55°12.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°<α<90°),若DE⊥B′C′,则∠α为()A.36°B.54°C.60°D.72°13.正五边形的一个外角的大小为度.14.已知三角形的两条边长分别为3cm和2cm,如果这个三角形的第三条边长为奇数,则这个三角形的周长为cm.15.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB,CD两根木条),这其中的数学原理是.16.如图,六边形ABCDEF的各角都相等,若m∥n,则∠1+∠2=°.17.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.18.将一副三角板ABC如图放置,使点A在DE上,BC∥DE,其中,则∠E=30°,则∠AFC的度数是.19.(1)如图1,已知△ABC中,AB=AC,BD⊥AC,垂足为D,∠A=40°,则∠DBC =°.(2)若把(1)中∠A=40°改为∠A=n°,其它条件不变,请用含n的式子表示∠DBC,并证明你的结论.(3)如图2,四边形ABCD中,AD∥BC,点E在四边形ABCD内部,在△CDE中,∠DEC=90°,且AD=BC=DE=CE,连接AE,BE,求∠AEB的度数.20.如图,在△ABC中,点D在BC上,∠ADB=∠BAC,BE平分∠ABC,过点E作EF ∥AD,交BC于点F.(1)求证:∠BAD=∠C;(2)若∠C=20°,∠BAC=110°,求∠BEF的度数.21.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P 与∠B、∠C之间存在的数量关系,并证明理由.22.已知(如图1)在△ABC中,∠B>∠C,AD平分∠BAC,点E在AD的延长线上,过点E作EF⊥BC于点F,设∠B=α,∠C=β.(1)当α=80°,β=30°时,求∠E的度数;(2)试问∠E与∠B,∠C之间存在着怎样的数量关系,试用α、β表示∠E,并说明理由;(3)若∠EFB与∠BAE平分线交于点P(如图2),当点E在AD延长线上运动时,∠P是否发生变化,若不变,请用α、β表示∠P;若变化,请说明理由.23.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD 于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案一.选择题1.解:A、三角形的高、中线、角平分线都是线段,故正确;B、三角形的三条中线都在三角形内部,故正确;C、锐角三角形的三条高一定交于同一点,故正确;D、三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.故选:D.2.解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=540°,解得n=7.故选:A.3.解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有9符合条件.故选:C.4.解:∵线段AN是△ABC边BC上的高,∴AN⊥BC,由垂线段最短可知,AM≥AN,故选:B.5.解:∵DE∥BC,∠B=46°,∴∠ADE=∠B=46°(两直线平行,同位角相等);又∵AB⊥AC,∴∠A=90°,∴在△ADE中,∠AED=90°﹣∠ADE=44°;故选:A.6.解:∵一个正多边形的外角等于36°,∴这个正多边形是正十边形,∴内角和为(10﹣2)×180°=1440°,故选:A.7.解:在△ABC中,AC边上的高是线段BE,故选:A.8.解:多边形的内角和是:1260°﹣360°=900°,设多边形的边数是n,则(n﹣2)•180=900,解得:n=7,故选:B.9.解:∵第一次回到出发点A时,所经过的路线正好构成一个正多边形,∴正多边形的边数为:60÷5=12,根据多边形的外角和为360°,∴则他每次转动θ的角度为:360°÷12=30°,故选:B.10.解:∴∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∴∠DBC+∠DCB=∠ABC+∠ACB﹣∠1﹣∠2=130°﹣30°﹣40°=60°,∴∠BDC=180°﹣(∠DBC+∠DCB)=120°,故选:B.11.解:∵AE平分∠BAC,∴∠BAE=∠CAE=30°,∴∠EAD=∠EAC﹣∠DAC=30°﹣20°=10°,∵AD⊥BC,∴∠ADE=90°,∴∠AED=90°﹣∠EAD=80°,∵∠AED=∠B+∠BAE,∴∠B=80°﹣30°=50°,故选:C.12.解:DE与B′C′相交于点O,如图,∵五边形ABCDE为正五边形,∴∠B=∠BAE=∠E==108°,∵正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),∴∠BAB′=α,∠B′=∠B=108°,∵DE⊥B′C′,∴∠B′OE=90°,∴∠B′AE=360°﹣∠B′﹣∠E﹣∠B′OE=360°﹣108°﹣108°﹣90°=54°,∴∠BAB′=∠BAE﹣∠B′AE=108°﹣54°=54°,即∠α=54°.故选:B.二.填空题(共6小题)13.解:正五边形的一个外角==72°.故答案为:72.14.解:设第三边长为x.根据三角形的三边关系,则有3﹣2<x<2+3,即1<x<5,因为第三边的长为奇数,所以x=3,所以周长=3+3+2=8.故答案为:8;15.解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.16.解:延长DC,交直线n于点G,∵六边形ABCDEF的各角都相等,∴AF∥DC,∴∠2=∠3,又∵m∥n,∴∠3+∠4=180°,∵∠4=∠1,∴∠1+∠2=180°,故答案为:180.17.解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=(180°﹣70°)=55°,∵∠A=55°,∴∠ADE=∠EDA′=180°﹣55°﹣55°=70°,∴∠A′DB=180°﹣140°=40°,故答案为40°.18.解:∵BC∥DE,∴∠BCE=∠E=30°,∵∠B=45°,∴∠AFC=∠B+∠BCF=45°+30°=75°.故答案为75°.三.解答题(共5小题)19.解:(1)∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣40°)=70°,∵BD⊥AC,∴∠ABD=90°﹣40°=50°,∴∠DBC=∠ABC﹣∠ABD=70°﹣50°=20°故答案为20.(2)结论:理由:∵AB=AC,∴,∵BD⊥AC,∴在Rt△BCD中,.(3)过点E作EF⊥AD于F,延长FE交BC于点G,则∠AFG=90°,∵AD∥BC,∴∠BGF=180°﹣∠AFG=90°,∴EG⊥BC,在△DEC中,∠1+∠2=180°﹣∠DEC=90°,∵AD∥BC,∴∠3+∠4=180°﹣(∠1+∠2)=90°,在△ADE中,AD=DE,EF⊥AD,在△BCE中,BC=CE,EG⊥BC,由(2)得,∴,∴∠AEB=180°﹣(∠5+∠6)=135°.20.(1)证明:∵∠ABC+∠BAC+∠C=180°,∠ABC+∠BDA+∠BAD=180°,∠BDA =∠BAC,∴∠BAD=∠C.(2)解:∵∠C=20°,∠BAC=110°,∴∠ABC=180°﹣20°﹣110°=50°,∵BE平分∠ABC,∴∠EBF=∠ABC=25°,∵∠BDA=∠BAC=110°,∴∠BHD=180°﹣∠HBD﹣∠BDA=180°﹣25°﹣110°=45°,∵AD∥EF,∴∠BEF=∠BHD=45°.21.(1)证明:在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①3;4;故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.22.解:(1)∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵AD平分∠BAC,∴∠BAD=BAC=35°,∴∠EDF=∠ADB=180°﹣35°﹣80°=65°,∵EF⊥BC,∴∠EFD=90°,∴∠E=90°﹣65°=25°;(2)∵∠EDF=∠C+∠CAD,∠CAD=∠BAC=(180°﹣α﹣β),∴∠EDF=∠C+90°﹣α﹣β=90°﹣(α﹣β),∵∠EFD=90°,∴∠DEF=(α﹣β);(3)设AP与BC交于G,∵AD平分∠BAC,∴∠BAD=BAC=(180°﹣α﹣β),∵AP平分∠BAE,∴∠BAP=BAD=(180°﹣α﹣β),∴∠PGF=∠AGB=180°﹣∠B﹣∠BAP=180°﹣α﹣(180°﹣α﹣β)=135°﹣α+β,∵PF平分∠EFB,∴∠PFB=45°,∴∠P=180°﹣∠PFB﹣∠PGF=180°﹣45°﹣(135°﹣α+β)=α﹣β,故∠P不会发生变化.23.解:(1)结论:AB∥CD.理由:如图1中,∵EM平分∠AEF交CD于点M,∴∠AEM=∠MEF,∵∠FEM=∠FME.∴∠AEM=∠FME,∴AB∥CD.(2)①如图2中,∵AB∥CD,∴∠BEG=∠EGH=β=60°,∴∠AEG=120°,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=60°,∵HN⊥EM,∴∠HNE=90°,∴∠EHN=90°﹣∠HEN=30°.②猜想:α=β或α=90°﹣β理由:①当点G在F的右侧时,∵AB∥CD,∴∠BEG=∠EGH=β,∴∠AEG=180°﹣β,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=90°﹣β,∵HN⊥EM,∴∠HNE=90°,∴α=∠EHN=90°﹣∠HEN=β.②当点G在F的左侧时,可得α=90°﹣β,。

人教版 初中数学八年级上册 第十一章 三角形 复习习题 (含答案解析)

人教版 初中数学八年级上册 第十一章 三角形 复习习题 (含答案解析)

人教版初中数学八年级上册第十一章三角形复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,将一张含有30∘角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2= 44∘,则∠1的大小为()A.14∘B.16∘C.90∘−αD.α−44∘2.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A.40°B.45°C.50°D.55°3.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60∘,∠ABE=25∘,则∠DAC的大小是()A.15∘B.20∘C.25∘D.30∘4.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A.105°B.110°C.115°D.120°5.如图,点D、E分别为△ABC的边AB、CB的中点,记△BDE的面积为S1,四边形ADEC的面积为S2,则S1∶S2=()A.1∶4B.1∶3C.1∶2D.1∶16.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.107.已知:一等腰三角形的两边长x,y满足方程组{2x−y=33x+2y=8则此等腰三角形的周长为( )A.5B.4C.3D.5或48.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.119.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°10.若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.1811.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°12.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.1413.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.0.5B.1C.3.5D.714.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm 15.15.如图所示,AB∥CD,EF,HG相交于点O,∠1=40°,∠2=60°,则∠EOH的角度为()A.80°B.100°C.140°D.120°16.适合下列条件的△ABC中, 直角三角形的个数为①a=13,b=14,c=15;②a=6,∠A=45°;③∠A=32°, ∠B=58°;④a=7,b=24,c=25;⑤a=2,b=2,c=4.⑥a:b:c=3:4:5⑦∠A:∠B:∠C=12:13:15⑹a=√5,b=2√5,c=5A.2个B.3个C.4个D.5个17.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.9018.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB 交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:① ∠AOB=90°+ 12∠C②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab其中正确的是( )A.①②B.③④C.①②④D.①③④19.已知△ABC的三个内角为A,B,C且α=A+B,β=C+A,γ=C+B,则α,β,γ中,锐角的个数最多为()A.1B.2C.3D.020.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.二、填空题21.(题文)如图,m∥n,∠1=110°,∠2=100°,则∠3=_______°.22.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A =70°,则∠BOC=______.23.如图,四边形ABCD中,点MN分别在AB,AC上,∠C=80°,按如图方式沿着MN折叠,使FN∥CD,此时量得∠FMN=40°,则∠B的度数是_____.24.若a、b、c是△ABC的三边,且满足|a+b-8|+|a-b-2|=0,则c的取值范围____________..25.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.26.如图,AD是△ABC的中线,CE是△CAD的中线.若△CAE的面积为1,则△ABC 的面积为______.27.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.28.若a、b、c为三角形的三边长,且a、b满足|a﹣3|+(b﹣2)2=0,则第三边长c的取值范围是_____.29.一个三角形的两边长分别是2和7,最长边a为偶数,则这个三角形的周长为______.30.若a、b、c为三角形的三边,且a、b满足√a2−9+(b−2)2=0,则第三边c的取值范围是.31.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____________.32.已知x=2是关于x的方程x2−2mx+3m=0的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ABC的周长为__________.33.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.34.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=88°,则∠C的度数为=___________.35.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O,分别作AB、BC、AC 的垂线,垂足分别为E、F、G,连接EF,若OG=3,则EF为__.36.如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是_____.37.在△ABC中,∠A=160°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1,则∠A1的度数为__;第二步:在△A1BC 上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行___步.38.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x=150°时,对应的和谐数对有一个,它为(10,20);当x=66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________.39.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A.4个B.3个C.2个D.1个40.如图,△ABC中,∠C=90°,AC=6,BC=8,动点P从A点出发,以1cm/s的速度,沿A﹣C﹣B向B点运动,同时,动点Q从C点出发,以2cm/s的速度,沿C﹣B﹣A向A 点运动,当其中一点运动到终点时,两点同时停止运动.设运动时间为t秒,当t=_____秒时,△PCQ的面积等于8cm2.三、解答题41.如图,在△ABC中,∠B=40°,∠C=80°,AD是BC边上的高,AE平分∠BAC.(1)求∠BAE的度数;(2)求∠DAE的度数.42.用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长;(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.43.如图,在△ABC中,BO、CO分别平分∠ABC和∠ACB.计算:(1)若∠A =60°,求∠BOC的度数;(2)若∠A =100°, 则∠BOC的度数是多少?(3)若∠A =120°, 则∠BOC的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.44..如图1,AB∥CD,直线EF 交AB 于点E,交CD 于点F,点G 在CD 上,点P在直线EF 左侧,且在直线AB 和CD 之间,连接PE,PG.(1) 求证:∠EPG=∠AEP+∠PGC;∠EFC,求∠AEP 的(2) 连接EG,若EG 平分∠PEF,∠AEP+ ∠PGE=110°,∠PGC=12度数.(3) 如图2,若EF 平分∠PEB,∠PGC 的平分线所在的直线与EF 相交于点H,则∠EPG 与∠EHG之间的数量关系为.45.如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.46.已知:如图,在△ABC中,AD∥BC,AD平分外角∠EAC.求证:AB=AC.47.如图,已知:点P是△ABC内一点.(1)求证:∠BPC>∠A;(2)若PB平分∠ABC,PC平分∠ACB,∠A=40°,求∠P的度数.48.如图,在六边形ABCDEF中,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的度数.49.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.50.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm,求:(1)CD的长;(2)△ABC的角平分线AE交CD于点F,交BC于E点,求证:∠CFE=∠CEF.51.如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.52.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.53.如图,△ABC,按要求完成下列各题:①画△ABC的中线CD;②画△ABC的角平分线AE;③画△ABC的高BF;④画出把△ABC沿射线BF方向平移3cm后得到的△A1B1C1.54.如图,在Rt△ABC中,∠C=90°,把AB对折后,点A与点B重合,折痕为DE.(1)若∠A=25°,求∠BDC的度数.(2)若AC=4,BC=2,求BD.55.如图,在△ABC中,∠1=100°,∠C=80°,∠2=1∠3,BE平分∠ABC.求∠4的度2数.56.已知在一个十边形中,其中九个内角的和是1320°,求这个十边形另一个内角的度数.57.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.58.读句画图:如图,已知△ABC.(1)画图:①△ABC的BA边上的高线CD;②过点A画BC的平行线交CD于点E;(2)若∠B=30°,则∠AED=°.59.如图,在△ABC 中,DM 、EN 分别垂直平分AC 和BC ,交AB 于M 、N .(1)若△CMN 的周长为21 cm ,求AB 的长;(2)若∠MCN =50°,求∠ACB 的度数.60.如图,在△ABC 中,CD 平分∠ACB ,DE ∥AC ,∠B=70°,∠EDC=30°,求∠ADC 的度数.61.如图直线EF//GH ,点A 、点B 分别在EF 、GH 上,连接AB , FAB ∠的角平分线AD 交GH 于D ,过点D 作DC AB ⊥交AB 延长线于点C ,若036CAD ∠=,求BDC ∠的度数。

人教版八年级上册数学第十一章 三角形含答案

人教版八年级上册数学第十一章 三角形含答案

人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC中,∠A=36°,∠B=60°,EF∥BC,FG平分∠AFE,则∠AFG 的度数为()A.36°B.37°C.42°D.47°2、如图,矩形中,,,将此矩形折叠,使点B与点D 重合,折痕为,则的面积为()A.12B.10C.8D.63、在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB=70°,那么∠BAC等于()A.65°B.55°C.55°或125°D.65°或115°4、已知△ABC的有两个角都是50°,则它的第三个角是()A.50°B.65°C.80°D.130°5、下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.7 cm、5 cm、11 cmB.4 cm、3 cm、7 cmC.5 cm、10 cm、4 cmD.2 cm、3 cm、1 cm6、等腰三角形两边长分别为5 cm和11 cm则该等腰三角形的周长为( )A.21 cmB.21 cm 或27 cmC.25 cmD.27 cm7、如图,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,点B′在线段AB 上,AC,A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°8、如图,BC∥DE,∠1=110°,∠AED=80°,则∠A的大小为()A.20B.25°C.30°D.40°9、已知,,判断之间的关系满足()A. B. C.D.10、如图钢架中,∠A= º,焊上等长的钢条P1P2, P2P3, P3P4, P4P5…来加固钢架.若P1A=P1P2,且恰好用了4根钢条,则下列各数中哪个可能是的值?()A.25ºB.20ºC.30ºD.15º11、如图,在已知的∆ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°12、下列长度的三条线段能组成三角形的是()A.1,2,3B.1,7,6C.2,3,6D.6,8,1013、如图,AB∥CD,∠P=40°,∠D=100°,则∠ABP的度数是()A.140°B.40°C.100°D.60°14、一个正多边形的每个内角都为135°,则这个多边形是几边形()A.正七边形B.正八边形C.正九边形D.正十边形15、分别以2cm、3cm、4cm、5cm的线段为边可构成()三角形.A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=________.17、如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为________(度).18、如图,五边形ABCDE是关于直线FC的轴对称图形,若∠A=130°,∠B=110°,则∠BCD= ________度.19、如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数为________.20、我们知道三角形的内角和是180°,四边形的内角和可以转化成两个三角形的内角和来得到是360°,那十二边形的内角和是________°.21、三角形的三边长为3、7、x,则x的取值范围是________22、如图,△ABC中,∠ABC=90°,AB=12,BC=5,AC=13,BD⊥AC于D,则BD=________.23、如果n边形的每一个内角都等于与它相邻外角的2倍,则n的值是________.24、如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD=________°.25、如图,BO、CO分别平分∠ABC、∠ACB,∠A=100°,则∠BOC的度数为________.三、解答题(共5题,共计25分)26、求出下列图中x的值。

人教版初中八年级数学上册第十一章《三角形》经典练习(含答案解析)

人教版初中八年级数学上册第十一章《三角形》经典练习(含答案解析)

一、选择题1.如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1的度数是()A.10°B.15°C.20°D.25°3.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.1,2,34.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条5.下列长度的三条线段能构成三角形的是()A.1,2,3B.5,12,13C.4,5,10D.3,3,6 6.如图,线段BE是ABC的高的是( )A.B.C.D.7.下列长度的三条线段能组成三角形的是( )A .3,3,4B .7,4,2C .3,4,8D .2,3,5 8.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60° 9.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 10.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm 11.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75° 12.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+C .180b a =+︒D .360b a =+︒ 13.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C.长方形四个角都是直角D.三角形的稳定性14.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条()A.2 B.3 C.4 D.515.做一个三角形的木架,以下四组木棒中,符合条件的是()A.3cm,2cm,1cm B.3cm,4cm,5cmC.6cm,6cm,12cm D.5cm,12cm,6cm二、填空题16.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B两处,用仪器探测生命迹象C,已知探测线与地面的夹角分别是30︒和60︒(如∠的度数是_________.图),则C17.如图1,ABC纸片面积为24,G为ABC纸片的重心,D为BC边上的一个四等<)连结CG,DG,并将纸片剪去GDC,则剩下纸片(如图2)的面分点(BD CD积为__________.18.如图,C为∠AOB的边OA上一点,过点C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H,若∠EFD=α,现有以下结论:①∠COF=α;②∠AOH =180°﹣2α;③CH⊥CD;④∠OCH=2α﹣90°.其中正确的是__(填序号).19.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A=70°,则∠BOC =________.20.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.21.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.22.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.23.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.24.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.25.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.26.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.三、解答题27.如图,在ABC ∆中,48,A CE ∠=︒是ACB ∠的平分线, B C D 、、在同一直线上,,40.BEC BFD D ∠=∠∠=︒(1)求BCE ∠的度数;(2)求B 的度数.28.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C . (1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.29.如图,在ABC 中,90ACB ∠=︒,29A ∠=︒,CD 是边AB 上的高,E 是边AB 延长线上一点.求:(1)CBE ∠的度数;(2)BCD ∠的度数.30.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.。

人教版八年级数学上册 第11章 三角形 单元练习试题

人教版八年级数学上册  第11章 三角形  单元练习试题

第11章三角形一.选择题1.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A.4B.5C.9D.142.要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条()A.1B.2C.3D.43.若△ABC中,∠A=90°,且∠B﹣∠C=30°,那么∠C的度数为()A.30°B.40°C.50°D.60°4.将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°5.已知一个多边形的外角和比它的内角和少540°,则该多边形的边数为()A.7B.8C.9D.106.如图,BP、CP是△ABC的外角角平分线,若∠P=60°,则∠A的大小为()A.30°B.60°C.90°D.120°7.如图,在△ABC中,AD平分∠BAC,EG⊥AD,且分别交AB,AD,AC及BC的延长线于点E,H,F,G,若∠B=45°,∠ACB=75°,则∠G的度数为()A.15°B.22.5°C.27.5°D.30°8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A.EC=EF B.FE=FC C.CE=CF D.CE=CF=EF 9.一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A.8或9B.7或8C.7或8或9D.8或9或10 10.若一个多边形的内角和比外角和的2倍少180°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形二.填空题11.如图,在△ABC中,AD⊥BC于D,那么图中以AD为高的三角形共有个.12.已知三角形的两条边长分别为3cm和2cm,如果这个三角形的第三条边长为奇数,则这个三角形的周长为cm.13.一个五边形剪去一个角后,所得多边形的边数是.14.在△ABC中,∠A=90°,∠B、∠C的角平分线BE、CF交于点O,那么∠BOC的度数是.15.将一副直角三角板如图放置,点E在AC边上,且ED∥BC,∠C=30°,∠F=∠DEF =45°,则∠AEF=度.16.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.三.解答题17.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的,求这个多边形的边数.18.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠B=30°,∠C=70°,则∠DAE=(2)若∠C﹣∠B=30°,则∠DAE=.(3)若∠C﹣∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.20.如图,AD为△ABC的高,AE,BF为△ABC的角平分线,若∠CBF=32°,∠AFB=72°.(1)∠BAD=°;(2)求∠DAE的度数;(3)若点G为线段BC上任意一点,当△GFC为直角三角形时,则求∠BFG的度数.21.如图所示,有一块直角三角板DEF(足够大),其中∠EDF=90°,把直角三角板DEF 放置在锐角△ABC上,三角板DEF的两边DE、DF恰好分别经过B、C.(1)若∠A=40°,则∠ABC+∠ACB=°,∠DBC+∠DCB=°∠ABD+∠ACD=°.(2)若∠A=55°,则∠ABD+∠ACD=°.(3)请你猜想一下∠ABD+∠ACD与∠A所满足的数量关系.22.已知:如左图,线段AB、CD相交于点O,连接AD、CB,如右图,在左图的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在左图中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)在右图中,若∠D=50°,∠B=40°,试求∠P的度数;(写出解答过程)(3)如果右图中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论)参考答案一.选择题1.C.2.A.3.A.4.A.5.A.6.B.7.A.8.C.9.C.10.C.二.填空题11.612.8;13.4或5或6.14.135°.15.165.16.∠CHD=45°.三.解答题17.解:(1)设内角是x°,外角是y°,则得到一个方程组解得.而任何多边形的外角是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9,答:这个多边形的边数为9.18.解:(1)∵AD⊥BC于D,∴∠ADC=90°,∵AE平分∠BAC,∴∠EAC=∠BAC,而∠BAC=180°﹣∠B﹣∠C,∴∠EAC=90°﹣∠B﹣∠C,∵∠DAC=90°﹣∠C,∴∠DAE=∠EAC﹣DAC=90°﹣∠B﹣∠C﹣(90°﹣∠C)=(∠C﹣∠B),若∠B=30°,∠C=70°,则∠DAE=(70°﹣30°)=20°;(2)若∠C﹣∠B=30°,则∠DAE=×30°=15°.(3)若∠C﹣∠B=α(∠C>∠B),则∠DAE=α.故答案为20°,15°.19.解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=50°,∴∠DAC=90°﹣50°=40°,∵在△ABC中,∠C=50°,∠BAC=60°,∴∠ABC=70°,∵在△ABC中,AE,BF是角平分线,∴∠EAC=∠BAC=30°,∠FBC=∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=50°+30°+35°=115°.20.解:(1)∵BF平分∠ABC,∴∠ABC=2∠CBF=64°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣64°=26°,故答案为26.(2)∵∠AFB=∠FBC+∠C,∴∠C=72°﹣32°=40°,∵∠BAC=180°﹣∠ABC﹣∠C=180°﹣64°﹣40°=76°,∵AE平分∠BAC,∴∠BAE=∠BAC=38°,∴∠DAE=∠BAE﹣∠BAD=38°﹣26°=12°.(3)解:分两种情况:①当∠FGC=90°时,则∠BGF=90°,∴∠BFG=90°﹣∠FBC=90°﹣32°=58°;②当∠GFC=90°时,则∠FGC=90°﹣40°=50°,∴∠BFG=∠FGC﹣∠EBF=50°﹣32°=18°;综上所述:∠BFG的度数为58°或18°.21.解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案为:140;90;50.(2)在△ABC中,∵∠A=55°,∴∠ABC+∠ACB=180°﹣55°=125°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=125°﹣90°=35°,故答案为:35;(3)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°﹣∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB﹣(∠DBC+∠DCB)=180°﹣∠A﹣90°.∴∠ABD+∠ACD=90°﹣∠A,故答案为:∠ABD+∠ACD=90°﹣∠A.22.解:(1)∵∠A+∠D+∠AOD=∠B+∠C+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠B+∠C,故答案为∠A+∠D=∠B+∠C.(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1﹣∠3=∠P﹣∠D,∠2﹣∠4=∠B﹣∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P﹣∠D=∠B﹣∠P,即2∠P=∠B+∠D,∴∠P=(50°+40°)÷2=45°.(3)由(2)可知:2∠P=∠B+∠D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B C E A
B
C E
A
B
C E
A
B
C E
A
B
C
D
第十一章三角形练习题
1.如图1所示,共有_____个三角形,其中以AB 为边的三角形有_____,以∠C•为一个内角的三角形有______. 2.以下面各组线段为边,能组成三角形的是( ). A .1cm ,2cm ,4cm B .8cm ,6cm ,4cm C .12cm ,5cm ,6cm D .2cm ,3cm ,6cm
3.D 是△ABC 内一点,那么,在下列结论中错误的是( ).
A .BD+CD>BC
B .∠BDC>∠A
C .BD>C
D D .AB+AC>BD+CD
4.等腰三角形的周长为20cm ,一边长为6cm ,则底边长为______. 5.下列图形中有稳定性的是( )
A .正方形
B .长方形
C .直角三角形
D .平行四边形 6.下列四组图形中,B
E 是△ABC 的高线的图是( )
7.下列说法中正确的是 ( )
A .三角形的内角中至少有两个锐角
B .三角形的内角中至少有两个钝角
C .三角形的内角中至少有一个直角
D .三角形的内角中至少有一个钝角 8.已知在△ABC 中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______. 9.如图2所示,∠α=_______.
10.一个三角形的两个内角分别是55°和65°,•这个三角形的外角不可能是( ). A .115° B .120° C .125° D .130°
11.三角形的三个外角中,钝角的个数最多有______个,锐角最多_____个. 12.在△ABC 中,∠A =60°,∠C =2∠B ,则∠C =__________.
13.正多边形的一个内角等于144°,则该多边形是正( )边形. A .8 B .9 C .10 D .11
14.若n 边形的内角和是1260°,则边数n 为( ).
A .8
B .9
C .10
D .11 15.某人到瓷砖店去购买一种多边形形状的瓷砖,用来铺设无缝地板,•他购买的瓷砖形状不可以是( ). A .正三角形 B .矩形(长方形) C .正八边形 D .正六边形
图1 图2
16.如图,BD 平分∠ABC ,DA ⊥AB ,∠1=60°,∠BDC=80°,求∠C 的度数.
17.如图:(1)画△ABC 的外角∠BCD ,再画∠BCD 的平分线CE .
(2)若∠A=∠B ,请完成下面的证明:
已知:△ABC 中,∠A=∠B ,CE 是外角∠BCD 的平分线.求证:CE ∥AB .
18.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.
19.一个零件的形状如图,按规定∠A= 90°,∠ABD 和∠ACD ,应分别是32°和21°,检验工人量得∠BDC = 148°,就断定这个零件不合格,运用三角形的有
关知识说明零件不合格的理由
20.如图所示,有一块三角形ABC 空地,要在这块空地上种植草皮来美化环境,
已知这种草皮每平方米售价230元,AC =12m,BD =15m ,购买这种草皮至少需要多少元?
21.如图所示,在△ABC 中:(1)画出BC 边上的高AD 和中线AE . (2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.
22.在△ABC 中,已知∠ABC = 66°∠ACB = 54°,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,求∠BHC 的度数。

A
B
C
D
D
A
B
C
15m
12m。

相关文档
最新文档