DCDC反激开关电源相关翻译

合集下载

反激式开关电源外文翻译

反激式开关电源外文翻译

Measurement of the Source Impedance of Conducted Emission Using Mode Separable LISN: Conducted Emission of a Switching Power SupplyJUNICHI MIY ASHITA,1 MASAYUKI MITSUZAW A,1 TOSHIYUKI KARUBE,1KIYOHITO Y AMASAW A,2 and TOSHIRO SA TO21Precision Technology Research Institute of Nagano Prefecture, Japan2Shinshu University, JapanSUMMARYIn the procedure for reducing conducted emissions, it is helpful to know the noise source impedance. This paper presents a method of measuring noise source complex impedances of common and differential mode separately. We propose a line impedance stabilization network (LISN) to measure common and differential mode noise separately without changing LISN impedances of each mode. With this LISN, conducted emissions of each mode are measured inserting appropriate impedances at the equipment under test (EUT) terminal of the LISN. Noise source complex impedances of switching power supply are well calculated from measured results. © 2002 Scripta Technica, Electr Eng Jpn, 139(2): 72 78, 2002; DOI 10.1002/eej.1154Key words:Conducted emission; noise terminal voltage; noise source impedance; line impedance stabiliza-tion network (LISN); EMI.1. IntroductionSwitching power supplies are employed widely in various devices. High-speed on/off operation is accompa-nied by harmonic noise that may cause electromagnetic interference (EMI) with communication devices and other equipment. To prevent the interference, methods of meas-urement and limit values have been set for conducted noise (~30 MHz) and radiated noise (30 to 1000 MHz). Much time and effort are required to contain the noise within the limit values; hence, the efficiency of noise removal tech-niques is an urgent social problem. Understanding of the mechanism behind noise generation and propagation is necessary in order to develop efficient measures. In particu-lar, the propagation of conducted noise must be investi-gated.Modeling and analysis of equivalent circuits have been carried out in order to investigate conducted noise caused by switching [1, 2]. However, the stray capacitance and other circuit parameters of each device must be known in order to develop an equivalent circuit, which is not practicable in the field of noise removal. On the other hand, noise filters and other noise-removal devices do not actually provide the expected effect [3, 4], which is explained by the difference between the static characteristics measured at an impedance of 50 Ω, and the actual impedance. Thus, it is necessary to know the noise source impedance in order to analyze the conducted noise.Regulations on the measurement of noise terminal voltage [5] suggest using LISN; in particular, the vector sum (absolute voltage) of two propagation modes, namely, common mode and differential mode, is measured in terms of the frequency spectrum. Such a measurement, however, does not provide phase data, and propagation modes cannot be separated; therefore, the noise source impedance cannot be derived easily. There are publications dealing with the calculation of the noise source impedance; for example, common mode is only considered as the principal mode, and the absolute value of the noise source impedance for the common mode is found from the ground wire current and ungrounded voltage [6], or mode-separated measure-ment is performed by discrimination between grounded and ungrounded devices [7]. However, measurement of the ground wire current is impossible in the case of domestic single-phase two-line devices. The complex impedance can be found using an impedance analyzer in the nonoperating state, but its value may be different for the operating state. Thus, there is no simple and accurate method of measuring source noise impedance as a complex impedance.© 2002 Scripta TechnicaElectrical Engineering in Japan, V ol. 139, No. 2, 2002Translated from Denki Gakkai Ronbunshi, V ol. 120-D, No. 11, November 2000, pp. 1376 1381The authors assumed that the noise source impedance could be found easily using only a spectrum analyzer, provided that the noise could be measured separately for each mode, and the LISN impedance could be varied. For this purpose, a LISN with a balun transformer was devel-oped to ensure noise measurement, with the common mode and differential mode strictly separated. An appropriate known impedance is inserted at the EUT (equipment under test) terminals, and the noise source impedance is found from the variation of the noise level. This method was used to measure the conducted noise of a switching power sup-ply, and it was confirmed that the noise source impedance could be measured as a complex impedance independently for each mode. Thus, significant information for noiseremoval and propagation mode analysis was acquired.This paper presents a new method of measuring the noise source impedance of conducted emission using mode-separable LISN.2. Separate Measurement for Common Mode andDifferential ModeThe conventional single-phase LISN circuit for measurement of the noise terminal voltage is shown in Fig.1. The power supply is provided with high impedance by a 50-µH reactor, and a meter with an input impedance of 50Ω is connected between one line and the ground via a high-pass capacitor, and another line is terminated by 50 Ω. Thus, the LISN impedance as seen at the EUT is 100 Ω in the differential mode, and 25 Ω in the common mode. The measured value is the vector sum of both modes, and the noise must be found separately in order to find the noise source impedance for each mode. There is LISN with Y-to-delta switching to provide mode separation [8], but its impedance is 150 Ω, giving rise to a problem of data compatibility with 50-Ω LISN. Thus, a new mode-separa-ble LISN was developed as shown in Fig.2. The circuit is identical to that in Fig. 1 from the power supply through the high-pass capacitor. Switching of the connection pattern ensures measurement with one line of the balun transformer terminated by 50 Ω, and another line connected to the meter.In Fig. 2, the secondary side of the 2:1 balun trans-former is terminated by 50 Ω, while the primary side has 200 Ω; in the differential mode, the impedance (line-to-line) is 100 Ω since 200 Ω at the high-pass capacitor is connected in parallel. With the switch set at D, the meter is connected to the secondary side of the balun transformer. The voltage is one-half that of the line-to-line voltage, and measurement is performed in the standard way.The common mode current flows from both sides of the balun transformer via the middle tap to the 50-Ω termi-nal. The currents in the windings are antiphase, and no voltage is generated at the secondary side. Therefore, the impedance of the primary side is the terminal resistance of the tap. Since this impedance is connected in parallel to 50Ω (two 100 Ω in parallel) at the high-pass capacitor, the impedance between the common line and ground is 25 Ω. With the switch set at C, the meter is connected to the middle tap of the balun transformer, and the common-mode voltage is the line-to-ground voltage.3. Measurement of Noise Source Impedance3.1 Measurement circuit and calculationThough the propagation routes are different in the two modes, propagation from the noise source to the LISN can be represented in a simplified way as shown in Fig. 3. In the initial measurement, the load impedance Z L is the LISN impedance. Z L can be varied by inserting a knownimpedance at the EUT terminals. Consider three load im-Fig. 1. Standard 50-Ω/50-µH LISN.Fig. 2.Mode-separable LISN.Fig. 3. Schematic circuit of noise propagation.pedances, namely, LISN only and LISN with two different impedances inserted, Z L 1(R 1 + jX 1), Z L 2(R 2 + jX 2), andZ L 3(R 3+ jX 3). Using the values I 1, I 2, I 3 (scalars) measured in the three cases, Z 0(R 0 + jX 0) is found. Since V 0 = |Z L | × I ,the following expressions can be derived:From the above,Here a , b , and c are as follows:Substituting Eq. (2) into Eq. (1), the following quadratic equation for R 0 is obtained:Thus, R 0 and X 0 have two solutions each. The series of frequency points with positive R 0 is taken as the noise source impedance.3.2 Method of measurementAn impedance is inserted at the EUT terminals in order to measure the noise source impedance in the LISN as seen at the EUT. As shown in Fig. 4, the impedance is inserted so as to vary only the impedance in the mode under consideration, thus preventing an influence on the imped-ance in the other mode. In the diagram, V m is the voltage at the meter connected to the LISN, while the input impedance of the meter (50 Ω) is represented by the parallel resistance.Since parameters of both the LISN and the inserted imped-ance are known, the noise current I can be calculated from V m . Now Z 0 is calculated for each mode from the measured data obtained while varying Z L , by using Eqs. (2) and (3).With the differential mode shown in Fig. 4(a), CR is inserted between the two lines, thus varying the load im-pedance Z L . In the differential mode, Z 0 is assumed to be a low impedance, and hence the inserted impedance exerts a significant effect on the measured value. For this reason, 1Ω/0.47 µF and 0 Ω/0.1 µF were inserted, which are rather small compared to the LISN impedance.The measurement of the common mode shown in Fig.4(b) employs common-mode chokes that basically have no impedance in the differential mode. The common-mode chokes are provided with a secondary winding (ratio 1:1),so that the impedance at the secondary side can be varied.In the common mode, Z 0 is assumed to have a particularly high impedance in the low-frequency band. For this reason,5.1 k Ω and 100 pF were used as the secondary load for the common-mode choke to obtain a high inserted impedance.The measured data for the inserted impedance in the case of resistive and capacitive loads are presented in Fig. 5. The impedance of the common-mode choke includes its own inductance and the secondary load. In the case of a capaci-tive load, the resonance point is around 200 kHz; at higher frequencies, the impedance becomes capacitive.A single-phase two-line switching power supply (an ac adapter for a PC with an input of ac 100 V , a rated power of 45 W, and PWM switching at 73 kHz) was used as the EUT, and the rated load resistance was connected at the dcside. Filters were used for both the common and differential(1)modes, except for the case in which one common-mode choke was removed, in order to obtain the high noise level required for analysis. Both the EUT and the loads had conventional commercial ratings, and were placed 40 cm above a metal ground plate; the power cord was fixed.4. Measurement Results and Discussion The results of conventional measurement as well as common-mode and differential-mode measurement for the LISN without inserted impedance are shown in Fig. 6. The measurements were performed in the range of 150 kHz through 30 MHz, divided into three bands, using a spectrum analyzer with frequency linear sweep. Time-variable data were measured at their highest levels using the Max Hold function of the spectrum analyzer, and only the peak values were employed for calculation of Z 0. For this purpose, the values measured in every frequency band were subjected to the FFT, and all harmonics higher than the fundamental frequency were removed. The data were smoothed, and about 10 peak points were detected in every frequency band. In addition, only those peaks that were stronger than the meter s background noise by at least 6 dB were consid-ered.The results in Figs. 6(b) and 6(c) pertain to the LISN only; the level would vary with inserted impedance. The noise source impedance for both modes calculated from the measured data (using triple measurement) is given in Figs.7 and 9, respectively. The bold and dashed lines pertain to data acquired with the impedance analyzer at the EUT power plug, with the EUT not in operation. With the differ-ential mode, there were no high-frequency components, as shown in Fig. 6(b), and hence the impedance is calculated only for significant low-frequency peaks.The noise source impedance in differential mode can be represented schematically as in Fig. 8. The noise sourceimpedance is equal to the impedance between the LISNFig. 5.Inserted impedance in common mode.Fig. 6. Measured results of standard, differential-mode,and common-mode.Fig. 7. Noise source impedance for differential mode.terminals when the noise source is short-circuited. With switching power supplies, filtering is usually performed by a capacitor of 0.1 to 1 µF inserted between the lines. Since the impedance of the power cord is small in the measured frequency range, one may assume that the impedance as seen at the LISN is low, and that the phase changes from capacitive toward inductive as with the measured static characteristics. However, in the case of the given EUT, a nonlinear resistor was inserted between the power cord and the filter as shown in Fig. 8, and hence the impedance is rather high in the nonoperating state. In addition, there are rectifying diodes on the propagation route, but they do not conduct at the measurement voltage of the impedance ana-lyzer. The noise levels show considerable variation at 120Hz, which corresponds to the on/off frequency of the recti-fying diodes; however, only the peak values are measured and then used for calculation, and hence the impedance obtained by the proposed method is considered to pertain to the conductive state. For this reason, the results do not agree well with static characteristics. Thus, the impedance in the operating state cannot be measured in the differential mode.On the other hand, the measured data for |Z 0| in common mode agree well with the static characteristics, as shown in Fig. 9. The phase, too, exhibits a similar variation,although the scatter is rather large. The resistive part of three load impedances and Z 0 may be presented in a simplified way as in Fig. 10. From Eq. (1), the following is true for R 2,R 3, and Z 0:The distance ratio from Z 0 to R 3 and R 2 on the R X plane that satisfies this equation is I 2:I 3, which corresponds to a circle with radius r as in Eq. (4), with the center lying on the line R 3R 2:Similar circles for R 1 and R 2 are also shown in the diagram.When Z 0 and the load impedances lie on one line, the twocircles have a common point. Equation (4) indicates that if I 3 increases slightly, the outer circle becomes bigger, and the two circles do not adjoin. On the other hand, when the outer circle becomes smaller, the two circles intersect at two points, and X 0 varies more strongly than R 0. In practice, the difference in noise level due to the inserted impedance may drop below 1 dB at some frequencies, so that the solution for Z 0 becomes unavailable because of the scatter, or the phase scatters too much. The measurement accuracy is governed by the difference in noise level, and thus the inserted impedance should have a large enough variation compared to the measurement scatter; in addition, there should be a phase difference so that the two circles are not aligned, as in Fig. 10.Figures 7 and 9 pertain to one of the solutions of Eq.(3) with larger R 0. Here R 0 is not necessarily positive and the other solution is not necessarily negative. The two solutions may be basically discriminated from the fre-quency response and other characteristics, but other inser-tion data are employed for the sake of accuracy.Fig. 8. Equivalent circuit of differential-mode noisesource impedance.(4)Fig. 9.Noise source impedance for common mode.Fig. 10. Load impedances and Z 0 on R X plane.Figure 11 compares the measured data and calculated data for the variation of noise level due to insertion of a commercially available common-mode choke, with the cal-culation based on the results of Fig. 9 and the impedance of the common-mode choke. As is evident, the calculation agrees well with the measured values. On the other hand, a considerable discrepancy was confirmed for the other solu-tion. The noise source impedance found as explained above is accurate enough to predict the filtering effect.The noise source resistance in the common mode can be represented as in Fig. 12. Here Z 1 is the stray capacitance between the internal circuit and the case, and Z 2 is the stray capacitance between the case and the ground plate (or in the case of the ground wire, the impedance of the wire). The common-mode noise source impedance for a single-phase two-line EUT is primarily Z 2, becoming capacitive at low frequencies. Since the EUT is equipped with a filter, the influence of the primary rectifying diodes is not related to common-mode, and hence the data measured by the pro-posed method are very close to the static characteristics.However, this is not necessarily true in the case of a grounded line (Z 2 short-circuited) with no filter installed.In addition, here the full impedance as seen at the LISN is found; in practice, however, a filter or Z 1 is employed to suppress noise. Therefore, the impedance of the power cord is required as well as Z 1 and Z 2 in order to analyze the filtering effect. The impedance of the power cord or grounded wire can be easily determined by measurement or calculation. In our experiments without ground, the impedance is very close to Z 2; on the other hand, Z 1 might be measured by grounding the case and removing the filter (Fig. 12), and then used to analyze the filtering effect between the case and the lines. However, noise propagation in the inner circuit must be further investigated in order to estimate the noise-suppressing efficiency of Z 1.5. ConclusionsA new mode-separable LISN is proposed that sup-ports noise measurement without changing the impedance depending on the mode. The proposed LISN ensures accu-rate measurement for each mode, thus supporting imped-ance analysis.With the proposed LISN, an appropriate impedance is inserted at the EUT terminals, and the noise impedance can be found as a complex impedance, just as simply as with conventional measurement of the noise terminal voltage.The value of the inserted impedance must be chosen prop-erly in order to determine the phase accurately. The pro-posed method ensures sufficient accuracy not only to investigate noise propagation and design efficient counter-measures, but also to predict the filtering effect. The pro-posed technique can supply important data for future analysis of noise generation and propagation in switching power supplies.REFERENCES1.Matsuda H et al. Analysis of common-mode noise in switching power supplies. NEC Tech Rep 1998;51:60 65.2.Ogasawara S et al. Modeling and analysis of high-frequency leak currents generated by voltage-fed PWM inverter. Trans IEE Japan 1995;115-D:77 83.3.Iwasaki M, Ikeda T. Evaluation of noise filters for power supply. Tech Rep IEICE EMCJ 1999;90:1 6.4.Kamita M, Toyama K. A study on attenuation char-acteristics of power filters. Tech Rep IEICE EMCJ 1996;96:45 50.rmation technology equipment Radio distur-bance characteristics Limits and method of meas-urement. CISPR 22, 1997.Fig. 11. V ariation of noise level due to insertion ofanother impedance (measured and calculated data).Fig. 12. Equivalent circuit of common-mode noisesource impedance.6.K amita M, Oka N. Calculation of common-mode noise output impedance during operation. Tech Rep IEICE EMCJ 1998;98:59 65.7.Ran L, Clare C, Bradley K J, Chriistoopoulos C.Measurement of conducted electromagnetic emis-sions in PWM motor drive without the need for an LISN. IEEE Trans EMC 1999;41:50 55.8.Specification for radio disturbance and immunity measuring apparatus and method Part 1: Radio dis-turbance and immunity measuring apparatus. CISPR 16-1, 1993.AUTHORS (from left to right)Junichi Miyashita (member) graduated from Tohoku University in 1981 and joined the Precision Technology Research Institute of Nagano Prefecture. His research interests are EMC measurement and prevention. He is a member of IEICE.Masayuki Mitsuzawa (nonmember) graduated from Nagoya University in 1984 and joined the Precision Technology Research Institute of Nagano Prefecture. His research interests are EMC measurement and prevention. He is a member of JIEP .Toshiyuki Karube (nonmember) graduated from Waseda University in 1991 and joined the Precision Technology Research Institute of Nagano Prefecture. His research interests are EMC measurement and prevention. He is a member of IEICE and JIEP .Kiyohito Yamasawa (member) completed the M.E. program at Tohoku University in 1970. He has been a professor at Shinshu University since 1993. His research interests are magnetic device integration, microswitching power units, and microwave sensors. He holds a D.Eng. degree and is a member of IEICE, SICE, the Magnetics Society of Japan, the Japan AEM Society, and IEEE.Toshiro Sato (member) completed his doctorate at Chiba University in 1989 and joined Toshiba Research Institute. He has been an associate professor at Shinshu University since 1996. His research interests are magnetic thin-film devices. He received a 1994 IEE Japan Paper Award and a 1999 Japan Society of Applied Magnetism Paper Award. He holds a D.Sc. degree,and is a member of IEE Japan, IEICE, and the Magnetics Society of Japan.。

电力电子术语中英文对照

电力电子术语中英文对照

电力电子技术术语Absorber Circuit 吸收电路AC/ACFrequency Converter 交交变频电路AC power control 交流电力控制AC Power Controller 交流调功电路AC Power Electronic Switch 交流电力电子开关AC Voltage Controller 交流调压电路Asynchronous Modulation 异步调制Baker Clamping Circuit 贝克箝位电路Bi—directional Triode Thyristor 双向晶闸管Bipolar Junction Transistor—- BJT 双极结型晶体管Boost-Buck Chopper 升降压斩波电路Boost Chopper 升压斩波电路Boost Converter 升压变换器Bridge Reversible Chopper 桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter 降压变换器Commutation 换流Conduction Angle 导通角Constant Voltage Constant Frequency-—CVCF恒压恒频Continuous Conduction——CCM (电流)连续模式Control Circuit控制电路CUK Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter—-CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC—AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式Displacement Factor 位移因数Distortion Power 畸变功率Double End Converter 双端电路Driving Circuit 驱动电路Electrical Isolation 电气隔离Fast Acting Fuse 快速熔断器Fast Recovery Diode 快恢复二极管Fast Recovery Epitaxial Diodes 快恢复外延二极管Fast Switching Thyristor 快速晶闸管Field Controlled Thyristor 场控晶闸管Flyback Converter 反激电流Forced Commutation 强迫换流Forward Converter 正激电路Frequency Converter 变频器Full Bridge Converter 全桥电路Full Bridge Rectifier 全桥整流电路Full Wave Rectifier 全波整流电路Fundamental Factor 基波因数Gate Turn—Off Thyristor-—GTO可关断晶闸管General Purpose Diode 普通二极管Giant Transistor—-GTR 电力晶体管Half Bridge Converter 半桥电路Hard Switching 硬开关High Voltage IC 高压集成电路Hysteresis Comparison 带环比较方式Indirect Current Control 间接电流控制Indirect DC-DC Converter 直接电流变换电路Insulated—Gate Bipolar Transistor--IGBT 绝缘栅双极晶体管Intelligent Power Module-—IPM 智能功率模块Integrated Gate-Commutated Thyristor--IGCT集成门极换流晶闸管Inversion 逆变Latching Effect 擎住效应Leakage Inductance 漏感Light Triggered Thyristo---LTT 光控晶闸管Line Commutation 电网换流Load Commutation 负载换流Loop Current 环流元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double—column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no—load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载:active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current 定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压:high voltage低压:low voltage中压:middle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double—circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine - infinity bus system 机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power无功(功率)reactive power功率因数power factor无功电流reactive current下降特性droop characteristics斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization 阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容:capacitance一般术语电力电子变流器的型式(表1-2)电力电子开关和交流电力电子控制器电力电子设备的基本元件电力电子设备的电路和电路单元电力电子设备的运行电力电子设备的性能电力电子变流器的特性曲线稳定电源。

电力电子专业英语词典

电力电子专业英语词典

Absorber Circuit ——吸收电路AC/AC Frequency Converter ——交交变频电路AC power control ——交流电力控制AC Power Controller ——交流调功电路AC Power Electronic Switch ——交流电力电子开关Ac V oltage Controller ——交流调压电路Asynchronous Modulation ——异步调制Baker Clamping Circuit ——贝克箝位电路Bi-directional Triode Thyristor ——双向晶闸管Bipolar Junction Transistor-- BJT ——双极结型晶体管Boost-Buck Chopper ——升降压斩波电路Boost Chopper ——升压斩波电路Boost Converter ——升压变换器Bridge Reversible Chopper ——桥式可逆斩波电路Buck Chopper ——降压斩波电路Buck Converter ——降压变换器Commutation ——换流Conduction Angle ——导通角Constant V oltage Constant Frequency --CVCF ——恒压恒频Continuous Conduction--CCM ——(电流)连续模式Control Circuit ——控制电路Cuk Circuit ——CUK斩波电路Current Reversible Chopper ——电流可逆斩波电路Current Source Type Inverter--CSTI ——电流(源)型逆变电路Cycloconvertor ——周波变流器DC-AC-DC Converter ——直交直电路DC Chopping ——直流斩波DC Chopping Circuit ——直流斩波电路DC-DC Converter ——直流-直流变换器Device Commutation ——器件换流Direct Current Control ——直接电流控制Discontinuous Conduction mode ——(电流)断续模式displacement factor ——位移因数distortion power ——畸变功率double end converter ——双端电路driving circuit ——驱动电路electrical isolation ——电气隔离fast acting fuse ——快速熔断器fast recovery diode ——快恢复二极管fast recovery epitaxial diodes ——快恢复外延二极管fast switching thyristor ——快速晶闸管field controlled thyristor ——场控晶闸管flyback converter ——反激电流forced commutation ——强迫换流forward converter ——正激电路frequency converter ——变频器full bridge converter ——全桥电路full bridge rectifier ——全桥整流电路full wave rectifier ——全波整流电路fundamental factor ——基波因数gate turn-off thyristor——GTO ——可关断晶闸管general purpose diode ——普通二极管giant transistor——GTR ——电力晶体管half bridge converter ——半桥电路hard switching ——硬开关high voltage IC ——高压集成电路hysteresis comparison ——带环比较方式indirect current control ——间接电流控制indirect DC-DC converter ——直接电流变换电路insulated-gate bipolar transistor---IGBT ——绝缘栅双极晶体管intelligent power module---IPM ——智能功率模块integrated gate-commutated thyristor---IGCT ——集成门极换流晶闸管inversion ——逆变latching effect ——擎住效应leakage inductance ——漏感light triggered thyristo---LTT ——光控晶闸管line commutation ——电网换流load commutation ——负载换流loop current ——环流Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control 交流电力控制AC Power Controller 交流调功电路AC Power Electronic Switch 交流电力电子开关Ac V oltage Controller 交流调压电路Asynchronous Modulation 异步调制Baker Clamping Circuit 贝克箝位电路Bi-directional Triode Thyristor 双向晶闸管Bipolar Junction Transistor-- BJT 双极结型晶体管Boost-Buck Chopper 升降压斩波电路Boost Chopper 升压斩波电路Boost Converter 升压变换器Bridge Reversible Chopper 桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter 降压变换器Commutation 换流Conduction Angle 导通角Constant V oltage Constant Frequency --CVCF 恒压恒频Continuous Conduction--CCM (电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode 快恢复二极管fast revcovery epitaxial diodes 快恢复外延二极管fast switching thyristor 快速晶闸管field controlled thyristor 场控晶闸管flyback converter 反激电流forced commutation 强迫换流forward converter 正激电路frequency converter 变频器full bridge converter 全桥电路full bridge rectifier 全桥整流电路full wave rectifier 全波整流电路fundamental factor 基波因数gate turn-off thyristor——GTO 可关断晶闸管general purpose diode 普通二极管giant transistor——GTR 电力晶体管half bridge converter 半桥电路hard switching 硬开关high voltage IC 高压集成电路hysteresis comparison 带环比较方式indirect current control 间接电流控制indirect DC-DC converter 直接电流变换电路insulated-gate bipolar transistor---IGBT 绝缘栅双极晶体管intelligent power module---IPM 智能功率模块integrated gate-commutated thyristor---IGCT 集成门极换流晶闸管inversion 逆变latching effect 擎住效应leakage inductance 漏感light triggered thyristo---LTT 光控晶闸管line commutation 电网换流load commutation 负载换流loop current 环流printed circuit 印制电路printed wiring 印制线路printed board 印制板printed circuit board 印制板电路printed wiring board 印制线路板printed component 印制元件printed contact 印制接点printed board assembly 印制板装配board 板rigid printed board 刚性印制板flexible printed circuit 挠性印制电路flexible printed wiring 挠性印制线路flush printed board 齐平印制板metal core printed board 金属芯印制板metal base printed board 金属基印制板mulit-wiring printed board 多重布线印制板molded circuit board 模塑电路板discrete wiring board 散线印制板micro wire board 微线印制板buile-up printed board 积层印制板surface laminar circuit 表面层合电路板B2it printed board 埋入凸块连印制板chip on board 载芯片板buried resistance board 埋电阻板mother board 母板daughter board 子板backplane 背板bare board 裸板copper-invar-copper board 键盘板夹心板dynamic flex board 动态挠性板static flex board 静态挠性板break-away planel 可断拼板cable 电缆flexible flat cable (FFC) 挠性扁平电缆membrane switch 薄膜开关hybrid circuit 混合电路thick film 厚膜thick film circuit 厚膜电路thin film 薄膜thin film hybrid circuit 薄膜混合电路interconnection 互连conductor trace line 导线flush conductor 齐平导线transmission line 传输线crossover 跨交edge-board contact 板边插头stiffener 增强板substrate 基底real estate 基板面conductor side 导线面component side 元件面solder side 焊接面printing 印制grid 网格pattern 图形conductive pattern 导电图形non-conductive pattern 非导电图形legend 字符mark 标志base material 基材laminate 层压板metal-clad bade material 覆金属箔基材copper-clad laminate (CCL) 覆铜箔层压板composite laminate 复合层压板thin laminate 薄层压板basis material 基体材料prepreg 预浸材料bonding sheet 粘结片preimpregnated bonding sheer 预浸粘结片epoxy glass substrate 环氧玻璃基板mass lamination panel 预制内层覆箔板core material 内层芯板bonding layer 粘结层film adhesive 粘结膜unsupported adhesive film 无支撑胶粘剂膜cover layer (cover lay) 覆盖层stiffener material 增强板材copper-clad surface 铜箔面foil removal surface 去铜箔面unclad laminate surface 层压板面base film surface 基膜面adhesive faec 胶粘剂面plate finish 原始光洁面matt finish 粗面length wise direction 纵向cross wise direction 模向cut to size panel 剪切板ultra thin laminate 超薄型层压板A-stage resin A阶树脂B-stage resin B阶树脂C-stage resin C阶树脂epoxy resin 环氧树脂phenolic resin 酚醛树脂polyester resin 聚酯树脂polyimide resin 聚酰亚胺树脂bismaleimide-triazine resin 双马来酰亚胺三嗪树脂acrylic resin 丙烯酸树脂melamine formaldehyde resin 三聚氰胺甲醛树脂polyfunctional epoxy resin 多官能环氧树脂brominated epoxy resin 溴化环氧树脂epoxy novolac 环氧酚醛fluroresin 氟树脂silicone resin 硅树脂silane 硅烷 polymer 聚合物amorphous polymer 无定形聚合物crystalline polamer 结晶现象dimorphism 双晶现象copolymer 共聚物synthetic 合成树脂thermosetting resin 热固性树脂thermoplastic resin 热塑性树脂photosensitive resin 感光性树脂epoxy value 环氧值dicyandiamide 双氰胺binder 粘结剂adesive 胶粘剂curing agent 固化剂flame retardant 阻燃剂opaquer 遮光剂plasticizers 增塑剂unsatuiated polyester 不饱和聚酯polyester 聚酯薄膜polyimide film (PI) 聚酰亚胺薄膜polytetrafluoetylene (PTFE) 聚四氟乙烯reinforcing material 增强材料glass fiber 玻璃纤维E-glass fibre E玻璃纤维D-glass fibre D玻璃纤维S-glass fibre S玻璃纤维glass fabric 玻璃布non-woven fabric 非织布glass mats 玻璃纤维垫yarn 纱线filament 单丝strand 绞股weft yarn 纬纱warp yarn 经纱denier 但尼尔warp-wise 经向thread count 织物经纬密度weave structure 织物组织plain structure 平纹组织grey fabric 坏布woven scrim 稀松织物bow of weave 弓纬end missing 断经mis-picks 缺纬bias 纬斜crease 折痕waviness 云织fish eye 鱼眼feather length 毛圈长mark 厚薄段split 裂缝twist of yarn 捻度size content 浸润剂含量size residue 浸润剂残留量finish level 处理剂含量size 浸润剂couplint agent 偶联剂finished fabric 处理织物polyarmide fiber 聚酰胺纤维aromatic polyamide paper 聚芳酰胺纤维纸breaking length 断裂长height of capillary rise 吸水高度wet strength retention 湿强度保留率whitenness 白度 ceramics 陶瓷conductive foil 导电箔copper foil 铜箔rolled copper foil 压延铜箔annealed copper foil 退火铜箔thin copper foil 薄铜箔adhesive coated foil 涂胶铜箔resin coated copper foil 涂胶脂铜箔composite metallic material 复合金属箔carrier foil 载体箔invar 殷瓦foil profile 箔(剖面)轮廓shiny side 光面matte side 粗糙面treated side 处理面stain proofing 防锈处理double treated foil 双面处理铜箔shematic diagram 原理图logic diagram 逻辑图printed wire layout 印制线路布设master drawing 布设总图computer aided drawing 计算机辅助制图computer controlled display 计算机控制显示placement 布局routing 布线layout 布图设计rerouting 重布simulation 模拟logic simulation 逻辑模拟circit simulation 电路模拟timing simulation 时序模拟modularization 模块化layout effeciency 布线完成率MDF databse 机器描述格式数据库design database 设计数据库design origin 设计原点optimization (design) 优化(设计) predominant axis 供设计优化坐标轴table origin 表格原点mirroring 镜像drive file 驱动文件intermediate file 中间文件manufacturing documentation 制造文件queue support database 队列支撑数据库component positioning 元件安置graphics dispaly 图形显示scaling factor 比例因子scan filling 扫描填充rectangle filling 矩形填充region filling 填充域physical design 实体设计logic design 逻辑设计logic circuit 逻辑电路hierarchical design 层次设计top-down design 自顶向下设计bottom-up design 自底向上设计net 线网digitzing 数字化design rule checking 设计规则检查router (CAD) 走(布)线器net list 网络表subnet 子线网objective function 目标函数post design processing (PDP) 设计后处理interactive drawing design 交互式制图设计cost metrix 费用矩阵engineering drawing 工程图block diagram 方块框图moze 迷宫component density 元件密度traveling salesman problem 回售货员问题degrees freedom 自由度out going degree 入度incoming degree 出度manhatton distance 曼哈顿距离euclidean distance 欧几里德距离network 网络array 阵列segment 段logic 逻辑logic design automation 逻辑设计自动化separated time 分线separated layer 分层definite sequence 定顺序conduction (track) 导线(通道) conductor width 导线(体)宽度conductor spacing 导线距离conductor layer 导线层conductor line/space 导线宽度/间距conductor layer No.1 第一导线层round pad 圆形盘square pad 方形盘diamond pad 菱形盘oblong pad 长方形焊盘bullet pad 子弹形盘teardrop pad 泪滴盘snowman pad 雪人盘V-shaped pad V形盘annular pad 环形盘non-circular pad 非圆形盘isolation pad 隔离盘monfunctional pad 非功能连接盘offset land 偏置连接盘back-bard land 腹(背)裸盘anchoring spaur 盘址land pattern 连接盘图形land grid array 连接盘网格阵列annular ring 孔环component hole 元件孔mounting hole 安装孔supported hole 支撑孔unsupported hole 非支撑孔via 导通孔plated through hole (PTH) 镀通孔access hole 余隙孔blind via (hole) 盲孔buried via hole 埋孔buried blind via 埋,盲孔any layer inner via hole 任意层内部导通孔all drilled hole 全部钻孔toaling hole 定位孔landless hole 无连接盘孔interstitial hole 中间孔landless via hole 无连接盘导通孔pilot hole 引导孔terminal clearomee hole 端接全隙孔dimensioned hole 准尺寸孔via-in-pad 在连接盘中导通孔hole location 孔位hole density 孔密度hole pattern 孔图drill drawing 钻孔图assembly drawing 装配图datum referan 参考基准1) 元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor(2) 状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer高压侧 high side输电系统power transmission system输电线 transmission line固定串联电容补偿fixed series capacitor compensation 稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC装机容量 installed capacity电网 power system落点 drop point开关站 switch station双回同杆并架double-circuit lines on the same tower 变电站 transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿 reactive power compensation故障 fault调节 regulation裕度 magin三相故障three phase fault故障切除时间 fault clearing time极限切除时间critical clearing time切机 generator triping高顶值 high limited value强行励磁 reinforced excitation线路补偿器LDC(line drop compensation)机端 generator terminal静态 static (state)动态 dynamic (state)单机无穷大系统one machine - infinity bus system 机端电压控制A VR电抗 reactance电阻 resistance功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步loss of synchronization阻尼 damping摇摆 swing保护断路器 circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance1 backplane 背板2 Band gap voltage reference 带隙电压参考3 benchtop supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET8 bucket capcitor 桶形电容9 chassis 机架10 Combi-sense Combi-sense11 constant current source 恒流源12 Core Sataration 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. 超过下面的规格使用可能引起永久的设备损害或设备故障.建议不要工作在电特性表规定的参数范围以外.25 Failling edge 下降沿26 figure of merit 品质因数27 float charge voltage 浮充电压28 flyback power stage 反驰式功率级29 forward voltage drop 前向压降30 free-running 自由运行31 Freewheel diode 续流二极管32 Full load 满负载33 gate drive 栅极驱动34 gate drive stage 栅极驱动级35 gerber plot Gerber 图36 ground plane 接地层37 Henry 电感单位:亨利38 Human Body Model 人体模式39 Hysteresis 滞回40 inrush current 涌入电流41 Inverting 反相42 jittery 抖动43 Junction 结点44 Kelvin connection 开尔文连接45 Lead Frame 引脚框架46 Lead Free 无铅47 level-shift 电平移动48 Line regulation 电源调整率49 load regulation 负载调整率50 Lot Number 批号51 Low Dropout 低压差52 Miller 密勒53 node 节点54 Non-Inverting 非反相55 novel 新颖的56 off state 关断状态57 Operating supply voltage 电源工作电压58 out drive stage 输出驱动级59 Out of Phase 异相60 Part Number 产品型号61 pass transistor pass transistor62 P-channel MOSFET P沟道MOSFET63 Phase margin 相位裕度64 Phase Node 开关节点65 portable electronics 便携式电子设备66 power down 掉电67 Power Good 电源正常68 Power Groud 功率地69 Power Save Mode 节电模式70 Power up 上电71 pull down 下拉72 pull up 上拉73 Pulse by Pulse 逐脉冲(Pulse by Pulse)74 push pull converter 推挽转换器75 ramp down 斜降76 ramp up 斜升77 redundant diode 冗余二极管78 resistive divider 电阻分压器79 ringing 振铃80 ripple current 纹波电流81 rising edge 上升沿82 sense resistor 检测电阻83 Sequenced Power Supplys 序列电源84 shoot-through 直通,同时导通85 stray inductances. 杂散电感86 sub-circuit 子电路87 substrate 基板88 Telecom 电信89 Thermal Information 热性能信息90 thermal slug 散热片91 Threshold 阈值92 timing resistor 振荡电阻93 Top FET Top FET94 Trace 线路,走线,引线95 Transfer function 传递函数96 Trip Point 跳变点97 turns ratio 匝数比,=Np / Ns.(初级匝数/次级匝数)98 Under V oltage Lock Out (UVLO) 欠压锁定99 V oltage Reference 电压参考100 voltage-second product 伏秒积101 zero-pole frequency compensation 零极点频率补偿102 beat frequency 拍频103 one shots 单击电路104 scaling 缩放105 ESR 等效串联电阻106 Ground 地电位107 trimmed bandgap 平衡带隙108 dropout voltage 压差109 large bulk capacitance 大容量电容110 circuit breaker 断路器111 charge pump 电荷泵112 overshoot 过冲。

开关电源关键元件的各个参数中英文对照表!

开关电源关键元件的各个参数中英文对照表!

开关电源关键元件的各个参数中英文对照表!肖特基二极管Symbol Parameter 中文翻译VRRM Peak repetitive reverse voltage 反向重复峰值电压VRWM Working peak reverse voltage 反向工作峰值电压VR DC Blocking Voltage 反向直流电压VR(RMS) RMS Reverse Voltage 反向电压有效值IF(AV) Average Rectified Forward Current 正向平均电流IR Reverse Current 反向电流IFSM Non-Repetitive Peak Forward Surge Current 浪涌电流VF Forward Voltage 正向直流电压Cj Typical Junction Capactiance 结电容PD Power Dissipation 耗散功率Tj Operating Junction Temperature 工作结温Tstg Storage Temperature Range 存储温度Rth(j-a) Thermal Resistance from Junction to Ambient 结到环境的热阻二极管Symbol Parameter 中文翻译VR Continuous reverse voltage 反向直流电压IF Continuous forward current 正向直流电流VF Forward voltage 正向电压IR Reverse current 反向电流Cd diode capacitance 二极管电容Rd diode forward resistance 二极管正向电阻Ptot total power dissipation 功率总损耗Tj Junction Temperature 结温Tstg storage temperature 存储温度TVS管Symbol Parameter 中文翻译IPP Maximum reverse peak pulse current 峰值脉冲电流VC Clampling voltage 钳位电压IR Maximum reverse leakage current 最大反向漏电流V(BR) Breakdown voltage 击穿电压VRWM Working peak reverse voltage 反向工作峰值电压VF Forward voltage 正向电压IF Forward current 正向电流IT Test current 测试电流可控硅Symbol Parameter 中文翻译VDRM Peak repetitive off-state voltage 断态重复峰值电压VRRM Peak repetitive reverse voltage 反向重复峰值电压IT(RMS) RMS On-state current 额定通态电流ITSM Non repetitive surge peak on-state current 通态非重复浪涌电流IGM Forward peak gate current 控制极重复峰值电流VTM peak forward on-state voltage 通态峰值电压IGT Gate trigger current 控制极触发直流电流VGT Gate trigger voltage 控制极触发电压IH Holding current 维持电流IDRM Peak repetitive off-state current 断态重复峰值电流IRRM Peak repetitive reverse current 反向重复峰值电流PG(AV) Average gate power dissipation 控制极平均功率Tj operating junction temperature range 工作结温Tstg storage temperature range 存储温度稳压管Symbol Parameter 中文翻译VI input voltage 输入电压Vo output voltage 输出电压ΔVo Load regulation 输出调整率ΔVo Line regulation 输入调整率Iq quiescent current 偏置电流ΔIq quiescent current change 偏置电流变化量VN Output noise voltage 输出噪声电压RR Ripple rejection 纹波抑制比Vd dropout voltage 降落电压Isc short circuit current 短路输出电流Ipk peak current 峰值输出电流Topr operating junction temperature range 结温Tstg storage temperature range 存储温度43系列基准源Symbol Parameter 中文翻译VKA Cathode voltage 阴极电压IK Cathode current range(continous) 阴极电流 Iref Reference input current range ,continous 基准输入电流 PD Power dissipation耗散功率Rth(j-a) Thermal resistance from junction toambient结到环境的热阻Topr operating junction temperature range 工作结温 Tstg storage temperature range 存储温度 Vref Reference input voltage基准输入电压ΔVref(dev)Deviation of reference input voltage over full temperature range 全温度范围内基准输入电压的偏差ΔVref/ΔVKA Ratio of change in reference inputvoltage to the change in cathode voltage基准输入电压变化量与阴极电压变化量的比 ΔIref(dev) Deviation of reference input current over full temperature range 全温度范围内基准输入电流的偏差 Imin Minimum cathode current for regulation 稳压时最小负极电流Ioff off-state cathode current 关断状态阴极电流 |ZKA|Dynamic impedance动态阻抗普通晶体管Symbol Parameter 中文翻译VCBO Collector-Base voltage 发射极开路,集电极-基极电压 VCEO Collector-emitter voltage 基极开路,集电极-发射极电压 VEBO Emitter-base voltage 集电极开路,发射极-基极电压 IC Collector current集电极电流 PC Collector power dissipation 集电极耗散功率 Tj Junction temperature 结温 Tstgstorage temperature存储温度V(BR)CBO Collector-Base breakdown voltage发射极开路,集电极-基极反向电压 V(BR)CEOCollector-emitterbreakdown voltage基极开路,集电极-发射极反向电压V(BR)EBO Emitter-base breakdown voltage 集电极开路,发射极-基极反向电压ICBO Collector cut-off current 发射极开路,集电极-基极截止电流IEBO Emitter cut-off current 集电极开路,发射极-基极截止电流ICEOCollector cut-off current基极开路,集电极-发射极截止电流hFE DC current gain 共发射极正向电流传输比的静态值VCEsatCollector-emitter saturationvoltage集电极-发射极饱和电压VBEsat Base-emitter saturation voltage 基极-发射极饱和电压 VBE Base-emitter voltage 基极-发射极电压 fT Transition frequency 特征频率 Cobo Collector output capacitance 共基极输出电容 Cibo Collector input capacitance 共基极输入电容 F Noise figure 噪声系数 Ton Turn-on time 开通时间 Toff Turn-off time 关断时间 Tr Rise time 上升时间 Ts Storage time 存储时间 Tf Fall time 下降时间 TdDelay time延迟时间MOS 管Symbol Parameter 中文翻译 ID Continuous drain current 漏极直流电流 VGS Gate-source voltage 栅-源电压 VDS Drain-source voltage漏-源电压EASsingle pulse avalchane energy单脉冲雪崩击穿能量Rth(j-a) Thermal resistance from junction toambient 结到环境的热阻Rth(j-c) Thermal resistance from junction tocase 结到管壳的热阻V(BR)DSS Drain-source breakdown voltage 漏源击穿电压 V(GS)th Gate threshold voltage 栅源阈值电压 IGSS Gate-body leakage current 漏-源短路的栅极电流 IDSS Zero gate voltage drain current 栅-源短路的漏极电流 rDS(on) Drain-source on-resistance漏源通态电阻 gfs Forward trans conductance 跨导VSD Diode forward voltage 漏源间体内反并联二极管正向压降 Ciss Input capacitance 栅-源电容 Coss Output capacitance漏-源电容 CrssReverse transfer capacitance反向传输电容Rg Gate resistance 栅极电阻td(on) Turn-on delay time 开通延迟时间tr Rise time 上升时间td(off) Turn-off delay time 关断延迟时间tf Fall time 下降时间IDM Pulsed drain current 最大脉冲漏电流PD Power dissipation 耗散功率Tj operating junction temperature range 结温Tstg storage temperature range 存储温度。

开关电源中英文翻译

开关电源中英文翻译

Switching Power SupplySwitching power supply is a voltage conversion circuit, the main work is the step-up and step-down, are widely used in modern electronic products. Always work because the switching transistor in the "on" and "off" state, so called switching power supply. Switching power supply in real terms is an oscillator circuit, the conversion of electrical energy not only used in power circuit, the circuit in other applications are also common, such as LCD backlight circuits, such as fluorescent lamps. Switch the source compared with the transformer high efficiency, good stability, small size and other advantages, disadvantages is the relatively small power, and high-frequency interference on the circuit, circuit complexity, such as easy maintenance.Talking about switching power supply before you familiar with the feedback oscillator circuit transformer, can produce a regular pulse current or voltage of the circuit is called oscillation circuit, transformer feedback oscillator circuit is able to meet these conditions the circuit; it in the basic amplifier circuit with a feedback loop composed of C2, L1 election to form a parallel resonant frequency circuit, the instantaneous power in the circuit turn-VT, this time in the C2, L1, composed of parallel resonant circuits have a very rich harmonic, when the plus parallel resonance frequency and the natural frequency of the same circuit, the circuit to enter a state of oscillation, and VT through L3 feedback to further enlarge the base, and ultimately the formation of a regular pulse current or voltage output to the load RL. Switching power supply is around the transformer and the feedback oscillator circuit design, but the basis of the original increase in the number of protection and control circuits, analysis of our oscillation circuit can be used to analyze the method of switching power supply.Switching Power Supply vibration by way of sub-swing can be dividedinto self-excited and it excited the two, since there is no need for plus-excited self-oscillation signal source, since the excitation can see it as a feedback oscillator circuit transformer, and it is excited is totally dependent on the outside to maintain the oscillation, in the practical application of self-excitation of a comprehensive range of applications. According to the structure of incentives signal classification; can be divided into pulse-width-modulated pulse amplitude modulation and two pulse-width-modulated signal to control the width, that is, frequency, pulse amplitude modulation control signal of the magnitude of the role of the two the same so that oscillation frequency is maintained at within a certain range, to the effect of voltage stability. Winding transformer can be divided into three types in general, a group involved in the primary winding of the oscillation, a group is to maintain the oscillation of the feedback winding, there is a group of the load windings. Household appliances used in switching power supply,after the AC to 220V bridge rectifier, converted into about 300V DC, filter into the transformer is added after the switch to high-frequency oscillations of the collector, feedback winding back to the base to maintain the oscillation circuit, load sensor windings of the electrical signal, by rectification, filtering, the DC voltage regulator has been to provide power to the load. Winding in the provision of electric power load, but also take up the capacity of voltage stability, the theory is then a circuit voltage output voltage sampling devices to monitor the output voltage changes, timely feedback to adjust the oscillation frequency oscillator circuit to achieve the voltage stability The purpose of the circuit in order to avoid interference, the feedback voltage to the oscillator circuit will be isolated optocoupler. Most switches have a standby power circuit, switching power supply in standby mode still oscillating, but the frequency of normal working hours than lower.Some switching power supply are complex, numerous components, many protection and control circuit, in the absence of technical support, maintenance is a headache with the matter. I face this kind of situation is, first of all, I will find the switch and its participation in the external oscillation circuit, it separated from the circuit to see if it met the conditions for oscillation, such as detection bias and whether it is normal, whether positive feedback failure, as well as its own switches, switching power supply has very large protection, after exclusion of the prosecution and load control and protection circuit.the control circuit while output from the sample, with the set standards, then controlled inverter, change its frequency or pulse width output achieve stability, on the other hand, according to test data provided by the circuit by circuit protection identification, Control circuit for the unit for various protection measures.SMPS developments and trends in the United States in 1955 Roje (GH.Roger) invention of the self-excited oscillation push redeem transistor single transformer DC converters, high-frequency conversion is the beginning of control circuit, 1957 United States investigation tournament (Jen Sen) since the invention of the push-pull double Flyback transformers, 1964 American scientists proposes to abolish the frequency transformer series switching power supply scenario, This power to the right size and weight of the decline was a fundamental way. To the 1969 high-power silicon transistor because the pressure increase diode reverse recovery time shortened, and other components improve, and finally turned into a 25 kHz switching power supply.Currently, switching power supply to small, Light volume and the characteristics of high efficiency has been widely used in electronic computer-driven variety of terminal equipment, Communications equipment almost all electronic equipment, the electronic information industryindispensable to the rapid development of a power mode. Currently the market for sale in the switching power supply using bipolar transistors made of 100kHz. use made of 500kHz MOS power, though practical, but its frequency to be further enhanced. To improve the switching frequency, it is necessary to reduce the switching loss, and to reduce the switching loss, you need to have high-speed switching devices. However, the switching speed, will be affected by the circuit inductance and capacitance diode or stored charge arising from the impact of the surge or noise. This will not only affect the surrounding electronic equipment, but also greatly reduce the reliability of the power supply itself. Among them, with the switch to prevent Kai-closed by the voltage surge, it is R-C or L-C Composite bumpers, and the storage charge by the diode current surge caused by the use made of amorphous cores such as magnetic bumper. However, the high frequency of 1 MHz and above, using resonant circuit, Switch to enable the voltage or current through the switch was a sine, which could reduce the switching loss, This can also control the surge occurred. Switches such as resonant mode switching. Currently such SMPS of very active, because this means no significant increase switching speed can theoretically put switching loss fall to zero. and the noise is small, is expected to become high-frequency switching power supply of one of the main ways. At present, many countries in the world are working on several trillion Hz converter practical research.开关电源开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。

电力电子术语中英文对照

电力电子术语中英文对照

电力电子技术术语Absorber Circuit 吸收电路AC/ACFrequency Converter 交交变频电路AC power control 交流电力控制AC Power Controller 交流调功电路AC Power Electronic Switch 交流电力电子开关AC Voltage Controller 交流调压电路Asynchronous Modulation 异步调制Baker Clamping Circuit 贝克箝位电路Bi-directional Triode Thyristor 双向晶闸管Bipolar Junction Transistor-- BJT 双极结型晶体管Boost-Buck Chopper 升降压斩波电路Boost Chopper 升压斩波电路Boost Converter 升压变换器Bridge Reversible Chopper 桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter 降压变换器Commutation 换流Conduction Angle 导通角Constant Voltage Constant Frequency--CVCF恒压恒频Continuous Conduction--CCM (电流)连续模式Control Circuit控制电路CUK Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式Displacement Factor 位移因数Distortion Power 畸变功率Double End Converter 双端电路Driving Circuit 驱动电路Electrical Isolation 电气隔离Fast Acting Fuse 快速熔断器Fast Recovery Diode 快恢复二极管Fast Recovery Epitaxial Diodes 快恢复外延二极管Fast Switching Thyristor 快速晶闸管Field Controlled Thyristor 场控晶闸管Flyback Converter 反激电流Forced Commutation 强迫换流Forward Converter 正激电路Frequency Converter 变频器Full Bridge Converter 全桥电路Full Bridge Rectifier 全桥整流电路Full Wave Rectifier 全波整流电路Fundamental Factor 基波因数Gate Turn-Off Thyristor--GTO可关断晶闸管General Purpose Diode 普通二极管Giant Transistor--GTR 电力晶体管Half Bridge Converter 半桥电路Hard Switching 硬开关High Voltage IC 高压集成电路Hysteresis Comparison 带环比较方式Indirect Current Control 间接电流控制Indirect DC-DC Converter 直接电流变换电路Insulated-Gate Bipolar Transistor--IGBT 绝缘栅双极晶体管Intelligent Power Module--IPM 智能功率模块Integrated Gate-Commutated Thyristor--IGCT集成门极换流晶闸管Inversion 逆变Latching Effect 擎住效应Leakage Inductance 漏感Light Triggered Thyristo---LTT 光控晶闸管Line Commutation 电网换流Load Commutation 负载换流Loop Current 环流元件设备三绕组变压器:three-column transformer ThrClnTrans 双绕组变压器:double-column transformer DblClmnTrans电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad 有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine - infinity bus system机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power无功(功率)reactive power功率因数power factor无功电流reactive current下降特性droop characteristics斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance一般术语电力电子变流器的型式(表1-2)电力电子开关和交流电力电子控制器电力电子设备的基本元件电力电子设备的电路和电路单元电力电子设备的运行a电力电子设备的性能电力电子变流器的特性曲线稳定电源。

开关电源专业电子中英文词汇

开关电源专业电子中英文词汇

开关电源专业电子中英文词汇Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control交流电力控制AC Power Controller交流调功电路AC Power Electronic Switch交流电力电子开关Ac Voltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit 贝克箝位电路Bi-directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-- BJT双极结型晶体管Boost-Buck Chopper 升降压斩波电路Boost Chopper 升压斩波电路Boost Converter 升压变换器Bridge Reversible Chopper 桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter 降压变换器Commutation 换流Conduction Angle 导通角Constant Voltage Constant Frequency --CVCF 恒压恒频Continuous Conduction—CCM (电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode 快恢复二极管fast revcovery epitaxial diodes快恢复外延二极管fast switching thyristor 快速晶闸管field controlled thyristor 场控晶闸管flyback converter 反激电流forced commutation 强迫换流forward converter 正激电路frequency converter 变频器full bridge converter 全桥电路full bridge rectifier 全桥整流电路full wave rectifier 全波整流电路fundamental factor 基波因数gate turn-off thyristor——GTO可关断晶闸管general purpose diode普通二极管giant transistor——GTR电力晶体管half bridge converter 半桥电路hard switching 硬开关high voltage IC 高压集成电路hysteresis comparison 带环比较方式indirect current control 间接电流控制indirect DC-DC converter 直接电流变换电路insulated-gate bipolar transistor-----IGBT绝缘栅双极晶体管intelligent power module-------IPM智能功率模块integrated gate-commutated thyristor------IGCT集成门极换流晶闸管inversion 逆变latching effect 擎住效应leakage inductance 漏感light triggered thyristo---LTT光控晶闸管line commutation 电网换流load commutation 负载换流loop current 环流Schottky Barrier Diode 肖特基二极管。

电力电子术语中英文对照

电力电子术语中英文对照

电⼒电⼦术语中英⽂对照电⼒电⼦技术术语Absorber Circuit 吸收电路AC/ACFrequency Converter 交交变频电路AC power control交流电⼒控制AC Power Controller交流调功电路AC Power Electronic Switch交流电⼒电⼦开关AC Voltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi-directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-- BJT双极结型晶体管Boost-Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter降压变换器Commutation 换流Conduction Angle 导通⾓Constant Voltage Constant Frequency--CVCF 恒压恒频Continuous Conduction--CCM (电流)连续模式Control Circuit 控制电路CUK Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式Displacement Factor 位移因数Distortion Power 畸变功率Double End Converter 双端电路Driving Circuit 驱动电路Electrical Isolation 电⽓隔离Fast Acting Fuse 快速熔断器Fast Recovery Diode 快恢复⼆极管Fast Recovery Epitaxial Diodes 快恢复外延⼆极管Fast Switching Thyristor 快速晶闸管Field Controlled Thyristor 场控晶闸管Flyback Converter 反激电流Forced Commutation 强迫换流Forward Converter 正激电路Frequency Converter 变频器Full Bridge Converter 全桥电路Full Bridge Rectifier 全桥整流电路Full Wave Rectifier 全波整流电路Fundamental Factor 基波因数Gate Turn-Off Thyristor--GTO 可关断晶闸管General Purpose Diode 普通⼆极管Giant Transistor--GTR 电⼒晶体管Half Bridge Converter 半桥电路Hard Switching 硬开关High Voltage IC ⾼压集成电路Hysteresis Comparison 带环⽐较⽅式Indirect Current Control 间接电流控制Indirect DC-DC Converter 直接电流变换电路Insulated-Gate Bipolar Transistor--IGBT 绝缘栅双极晶体管Intelligent Power Module--IPM 智能功率模块Integrated Gate-Commutated Thyristor--IGCT集成门极换流晶闸管Inversion 逆变Latching Effect 擎住效应Leakage Inductance 漏感Light Triggered Thyristo---LTT 光控晶闸管Line Commutation 电⽹换流Load Commutation 负载换流Loop Current 环流元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电⼚:power plant断路器:Breaker⼑闸(隔离开关):Isolator分接头:tap电动机:motor状态参数有功:active power⽆功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss⽆功损耗:active loss功率因数:power-factor功率:power功⾓:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance 电阻:resistor电抗:reactance电导:conductance电纳:susceptance⽆功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转⼦电流):magnetizing current定⼦:stator功⾓:power-angle上限:upper limit下限:lower limit并列的:apposable⾼压: high voltage低压:low voltage中压:middle voltage电⼒系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer⾼压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功⾓稳定angle stability暂态稳定transient stability电⼚power plant能量输送power transfer交流AC装机容量installed capacity电⽹power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation 补偿度degree of compensation⾼抗high voltage shunt reactor⽆功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping⾼顶值high limited value强⾏励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机⽆穷⼤系统one machine - infinity bus system 机端电压控制AVR电抗reactance电阻resistance功⾓power angle有功(功率)active power⽆功(功率)reactive power功率因数power factor⽆功电流reactive current下降特性droop characteristics 斜率slope额定rating变⽐ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization 阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance 电感:inductance 电容: capacitance ⼀般术语电⼒电⼦变流器的型式(表1-2)电⼒电⼦开关和交流电⼒电⼦控制器电⼒电⼦设备的基本元件电⼒电⼦设备的电路和电路单元电⼒电⼦设备的运⾏电⼒电⼦设备的性能电⼒电⼦变流器的特性曲线稳定电源。

电力系统常用英语词汇

电力系统常用英语词汇

三绕组变压器:three-column transformer ThrClnTrans 双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor(2)状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load 或者PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current 定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer高压侧 high side输电系统 power transmission system输电线 transmission line固定串联电容补偿fixed series capacitor compensation 稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC装机容量 installed capacity电网 power system落点 drop point开关站 switch station双回同杆并架 double-circuit lines on the same tower 变电站 transformer substation补偿度 degree of compensation高抗 high voltage shunt reactor无功补偿 reactive power compensation故障 fault调节 regulation裕度 magin三相故障 three phase fault故障切除时间 fault clearing time极限切除时间 critical clearing time切机 generator triping高顶值 high limited value强行励磁 reinforced excitation线路补偿器 LDC(line drop compensation)机端 generator terminal静态 static (state)动态 dynamic (state)单机无穷大系统 one machine - infinity bus system 机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步 loss of synchronization阻尼 damping摇摆 swing保护断路器 circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitanceAbsorber Circuit ——吸收电路AC/AC Frequency Converter——交交变频电路AC power control——交流电力控制AC Power Controller——交流调功电路AC Power Electronic Switch——交流电力电子开关Ac Voltage Controller——交流调压电路Asynchronous Modulation 异步调制Baker Clamping Circuit 贝克箝位电路Bi-directional Triode Thyristor 双向晶闸管Bipolar Junction Transistor 双极结型晶体管(BJT)Boost-Buck Chopper 升降压斩波电路Boost Chopper 升压斩波电路Boost Converter 升压变换器Bridge Reversible Chopper 桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter 降压变换器Commutation 换流Conduction Angle 导通角Constant Voltage Constant Frequency 恒压恒频(CVCF)Continuous Conduction--CCM (电流)连续模式Control Circuit控制电路Cuk Circuit——CUK斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode 快恢复二极管fast recovery epitaxial diodes 快恢复外延二极管fast switching thyristor 快速晶闸管field controlled thyristor 场控晶闸管flyback converter 反激电流forced commutation 强迫换流forward converter 正激电路frequency converter 变频器full bridge converter 全桥电路full bridge rectifier 全桥整流电路full wave rectifier 全波整流电路fundamental factor 基波因数gate turn-off thyristor——GTO 可关断晶闸管general purpose diode 普通二极管giant transistor——GTR 电力晶体管half bridge converter 半桥电路hard switching 硬开关high voltage IC 高压集成电路hysteresis comparison 带环比较方式indirect current control 间接电流控制indirect DC-DC converter 直接电流变换电路insulated-gate bipolar transistor---IGBT绝缘栅双极晶体管intelligent power module---IPM 智能功率模块integrated gate-commutated thyristor---IGCT集成门极换流晶闸管inversion 逆变latching effect 擎住效应leakage inductance 漏感light triggered thyristo---LTT光控晶闸管line commutation 电网换流load commutation 负载换流loop current 环流。

强电专业英语词汇

强电专业英语词汇

电气专业英语词汇一、词汇翻译技巧(1)中译英磁场Magnetic field感应电动机Induction motor定子T he stator槽trough同步转速The synchronous speed 发电power标么值Standard yao value极数Extreme number绝缘insulation铁心core电流current铁损Metal loss空载no-load直流电动机Dc machines并励excitation串励series-excited互感Mutual inductance自感self-induction发电机generator 起动转矩Starting torque熔断器fuse铁损Metal loss变压器transformer母线bus旋转rotating升压变压器Pressor transformer电压表voltmeter电压降Voltage drop电压互感器Voltage transformer触发器flip-flop力矩torque晶闸管thyristor温度temperature压力pressure串联series可编程控制器Programmable controller接触器contactor继电器relay行程开关travel switch 开关switch转差率slip额定电流rated current 漏极drain栅极grid 集电Integrating electricity 二极管diode短路Short circuit阴极cathode截止deadline源极To source正反馈Positive feedback (2)英译中V oltage source 电压源Ideal current source 理想电流源来进行Electromotive force 电动势Potential 电动势潜在Circuit 电路Inductance 电感Capacitance 电容Loop 环Node voltage analysis 中的节点电压法Superosition theorem Superosition定理Network 网络Average value 平均值Effective value 有效值Instantaneous value 瞬时值Reactance 电抗引入Phase 阶段Power factor 功率因数Series resonance 系列谐振Parallel resonance 并联共振Resonance frequency 谐振频率Quality factor 品质因数Filter 过滤Phase voltage 相电压Phase current 目前阶段Line voltage 电压Line current 线电流Neutral line 中性线Steady state 稳态Flux 流量Magnetic circuit 磁路Synchronous motor 同步电动机Three-phase 三相Normally open contact 常开接触Normally closed contact 正常关闭接触Programmable logic controller 可编程序控制器Statement list 声明列表Ladder diagram 梯形图Hole 洞Diffusion 扩散Diode 二极管Transistor 晶体管Emitter 发射器Collector 收藏家Base 基地Equivalent circuit 等效电路V oltage gain 电压增益Saturation 饱和Cut-off 截止Positive feedback 正反馈Negative feedback 负反馈Input resistance 输入电阻Output resistance 输出电阻Direct current component 直流分量Resistor 电阻Capacitance 电容Inductance 电感Sinusoidal voltage 正弦电压Differentiator 微分器Active filter 有源滤波器Low-pass filter 低通滤波器Cut-off frequency 截止频率Center frequency 中心频率Bandwidth 带宽Open-loop gain 开环增益Closed -loop gain 关闭增益Common-mode gain 共模增益Input impedance 输入阻抗V oltage source 电压源Current source电流源二、句子翻译When two or more synchronous machines are interconnected, the stator voltages and currents of all the machines must have the same frequency and the rotor mechanical speed of each is synchronized to this frequency. Therefore,the rotors of all interconnected machines must be insynchronism.In a generator,the electromagnetic torque opposes rotation of the rotor,so that mechanical torque must be applied by the prime mover to sustain rotation.译文:当两个或多个同步机互相联系,定子电压和电流的所有的机器必须有相同的频率和转子机械速度同步都是这个频率。

DCDC的名词解释

DCDC的名词解释

DCDC的名词解释DCDC,全称为直流-直流转换器(英文全称:DC to DC converter),是一种将输入直流电压转换为输出直流电压的电子设备。

它在电子领域中应用广泛,不仅被用于电源管理、电力传输和通信系统,还被广泛应用于汽车行业、航空航天以及可再生能源领域。

1. DCDC的基本原理DCDC转换器的基本原理是利用电感和电容等元件,通过一系列的电路控制原理,将输入直流电压转换为输出直流电压。

在一个DCDC转换器中,一般包括输入端、输出端、开关管或开关器件、电感和电容等基本元件。

通过控制开关管的导通和断开状态,可以使得电感和电容储存和释放能量,从而实现电压的升降或稳定。

2. DCDC在电源管理中的应用DCDC转换器在电源管理中起到了至关重要的作用。

在电子设备中,往往需要不同电压级别的电源供给不同的功能分块。

通过DCDC转换器,可以将输入电源调节到适合每个功能分块的电压水平,保证各部分正常工作。

此外,DCDC转换器还可以提供稳定的电压输出,有效滤除噪声和纹波,保护设备免受电压波动和干扰的影响。

3. DCDC在电力传输中的应用DCDC转换器在电力传输中也有广泛的应用。

在长距离的电力传输中,由于电阻、电感和电容的存在,直流电压的传输损耗相对较小。

通过使用DCDC转换器,可以将输送线路上的高电压直流电能转换为低压直流电能,减小损耗,提高能量传输效率。

此外,DCDC转换器还可以实现电力系统的稳压和过载保护等功能,提高电力传输的可靠性。

4. DCDC在通信系统中的应用在通信系统中,尤其是在无线通信系统中,DCDC转换器起到了关键的作用。

无线通信设备对电源的要求往往较为苛刻,需要稳定、纹波小、噪声低的电源供应。

DCDC转换器可以满足这些要求,为通信设备提供稳定可靠的电源。

同时,DCDC转换器还可以进行电压的动态调节,根据通信设备的工作负荷变化,调整输出电压,保证设备的正常运行。

5. DCDC在汽车行业中的应用在现代汽车行业中,DCDC转换器也是必不可少的元件。

最新开关电源中英文翻译资料

最新开关电源中英文翻译资料

Switching Power SupplySwitching power supply is a voltage conversion circuit, the main work is the step-up and step-down, are widely used in modern electronic products. Always work because the switching transistor in the "on" and "off" state, so called switching power supply. Switching power supply in real terms is an oscillator circuit, the conversion of electrical energy not only used in power circuit, the circuit in other applications are also common, such as LCD backlight circuits, such as fluorescent lamps. Switch the source compared with the transformer high efficiency, good stability, small size and other advantages, disadvantages is the relatively small power, and high-frequency interference on the circuit, circuit complexity, such as easy maintenance.Talking about switching power supply before you familiar with the feedback oscillator circuit transformer, can produce a regular pulse current or voltage of the circuit is called oscillation circuit, transformer feedback oscillator circuit is able to meet these conditions the circuit; it in the basic amplifier circuit with a feedback loop composed of C2, L1 election to form a parallel resonant frequency circuit, the instantaneous power in the circuit turn-VT, this time in the C2, L1, composed of parallel resonant circuits have a very rich harmonic, when the plus parallel resonance frequency and the natural frequency of the same circuit, the circuit to enter a state of oscillation, and VT through L3 feedback to further enlarge the base, and ultimately the formation of a regular pulse current or voltage output to the load RL. Switching power supply is around the transformer and the feedback oscillator circuit design, but the basis of the original increase in the number of protection and control circuits, analysis of our oscillation circuit can be used to analyze the method of switching power supply.Switching Power Supply vibration by way of sub-swing can be dividedinto self-excited and it excited the two, since there is no need for plus-excited self-oscillation signal source, since the excitation can see it as a feedback oscillator circuit transformer, and it is excited is totally dependent on the outside to maintain the oscillation, in the practical application of self-excitation of a comprehensive range of applications. According to the structure of incentives signal classification; can be divided into pulse-width-modulated pulse amplitude modulation and two pulse-width-modulated signal to control the width, that is, frequency, pulse amplitude modulation control signal of the magnitude of the role of the two the same so that oscillation frequency is maintained at within a certain range, to the effect of voltage stability. Winding transformer can be divided into three types in general, a group involved in the primary winding of the oscillation, a group is to maintain the oscillation of the feedback winding, there is a group of the load windings. Household appliances used in switching power supply,after the AC to 220V bridge rectifier, converted into about 300V DC, filter into the transformer is added after the switch to high-frequency oscillations of the collector, feedback winding back to the base to maintain the oscillation circuit, load sensor windings of the electrical signal, by rectification, filtering, the DC voltage regulator has been to provide power to the load. Winding in the provision of electric power load, but also take up the capacity of voltage stability, the theory is then a circuit voltage output voltage sampling devices to monitor the output voltage changes, timely feedback to adjust the oscillation frequency oscillator circuit to achieve the voltage stability The purpose of the circuit in order to avoid interference, the feedback voltage to the oscillator circuit will be isolated optocoupler. Most switches have a standby power circuit, switching power supply in standby mode still oscillating, but the frequency of normal working hours than lower.Some switching power supply are complex, numerous components, many protection and control circuit, in the absence of technical support, maintenance is a headache with the matter. I face this kind of situation is, first of all, I will find the switch and its participation in the external oscillation circuit, it separated from the circuit to see if it met the conditions for oscillation, such as detection bias and whether it is normal, whether positive feedback failure, as well as its own switches, switching power supply has very large protection, after exclusion of the prosecution and load control and protection circuit.the control circuit while output from the sample, with the set standards, then controlled inverter, change its frequency or pulse width output achieve stability, on the other hand, according to test data provided by the circuit by circuit protection identification, Control circuit for the unit for various protection measures.SMPS developments and trends in the United States in 1955 Roje (GH.Roger) invention of the self-excited oscillation push redeem transistor single transformer DC converters, high-frequency conversion is the beginning of control circuit, 1957 United States investigation tournament (Jen Sen) since the invention of the push-pull double Flyback transformers, 1964 American scientists proposes to abolish the frequency transformer series switching power supply scenario, This power to the right size and weight of the decline was a fundamental way. To the 1969 high-power silicon transistor because the pressure increase diode reverse recovery time shortened, and other components improve, and finally turned into a 25 kHz switching power supply.Currently, switching power supply to small, Light volume and the characteristics of high efficiency has been widely used in electronic computer-driven variety of terminal equipment, Communications equipment almost all electronic equipment, the electronic information industryindispensable to the rapid development of a power mode. Currently the market for sale in the switching power supply using bipolar transistors made of 100kHz. use made of 500kHz MOS power, though practical, but its frequency to be further enhanced. To improve the switching frequency, it is necessary to reduce the switching loss, and to reduce the switching loss, you need to have high-speed switching devices. However, the switching speed, will be affected by the circuit inductance and capacitance diode or stored charge arising from the impact of the surge or noise. This will not only affect the surrounding electronic equipment, but also greatly reduce the reliability of the power supply itself. Among them, with the switch to prevent Kai-closed by the voltage surge, it is R-C or L-C Composite bumpers, and the storage charge by the diode current surge caused by the use made of amorphous cores such as magnetic bumper. However, the high frequency of 1 MHz and above, using resonant circuit, Switch to enable the voltage or current through the switch was a sine, which could reduce the switching loss, This can also control the surge occurred. Switches such as resonant mode switching. Currently such SMPS of very active, because this means no significant increase switching speed can theoretically put switching loss fall to zero. and the noise is small, is expected to become high-frequency switching power supply of one of the main ways. At present, many countries in the world are working on several trillion Hz converter practical research.开关电源开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。

变压器专业英语翻译

变压器专业英语翻译

变压器专业英语翻译1、元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor-------------------------------------------------------------------------------- 2、状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position无功损耗:reactive loss有功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load Load遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current 定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine - infinity bus system 机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power无功(功率)reactive power功率因数power factor无功电流reactive current下降特性droop characteristics斜率slope额定rating变比ratio参考值reference value电压互感器T分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization 阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance-------------------------------------------------------------------------------- Absorber Circuit ——吸收电路AC/AC Frequency Converter ——交交变频电路AC power control ——交流电力控制AC ower Controller ——交流调功电路AC Power Electronic Switch ——交流电力电子开关Ac Voltage Controller ——交流调压电路Asynchronous Modulation ——异步调制Baker Clamping Circuit ——贝克箝位电路Bi-directional Triode Thyristor ——双向晶闸管Bipolar Junction Transistor-- BJT ——双极结型晶体管Boost-Buck Chopper ——升降压斩波电路Boost Chopper ——升压斩波电路Boost Converter ——升压变换器Bridge Reversible Chopper ——桥式可逆斩波电路Buck Chopper ——降压斩波电路Buck Converter ——降压变换器Commutation ——换流Conduction Angle ——导通角Constant Voltage Constant Frequency --CVCF ——恒压恒频Continuous Conduction--CCM ——(电流)连续模式Control Circuit ——控制电路Cuk Circuit ——CUK斩波电路Current Reversible Chopper ——电流可逆斩波电路Current Source Type Inverter--CSTI ——电流(源)型逆变电路Cycloconvertor ——周波变流器DC-AC-DC Converter ——直交直电路DC Chopping ——直流斩波DC Chopping Circuit ——直流斩波电路DC-DC Converter ——直流-直流变换器Device Commutation ——器件换流Direct Current Control ——直接电流控制Discontinuous Conduction mode ——(电流)断续模式displacement factor ——位移因数distortion power ——畸变功率double end converter ——双端电路driving circuit ——驱动电路electrical isolation ——电气隔离fast acting fuse ——快速熔断器fast recovery diode ——快恢复二极管fast recovery epitaxial diodes ——快恢复外延二极管fast switching thyristor ——快速晶闸管field controlled thyristor ——场控晶闸管flyback converter ——反激电流forced commutation ——强迫换流forward converter ——正激电路frequency converter ——变频器full bridge converter ——全桥电路full bridge rectifier ——全桥整流电路full wave rectifier ——全波整流电路fundamental factor ——基波因数gate turn-off thyristor——GTO ——可关断晶闸管general purpose diode ——普通二极管giant transistor——GTR ——电力晶体管half bridge converter ——半桥电路hard switching ——硬开关high voltage IC ——高压集成电路hysteresis comparison ——带环比较方式indirect current control ——间接电流控制indirect DC-DC converter ——间接DC- DC转换器insulated-gate bipolar transistor---IGBT ——绝缘栅双极晶体管intelligent power module---IPM ——智能功率模块integrated gate-commutated thyristor---IGCT ——集成门极换流晶闸管inversion ——逆变latching effect ——擎住效应leakage inductance ——漏感light triggered thyristo---LTT ——光控晶闸管line commutation ——电网换流load commutation ——负载换流loop current ——环流。

电力电子术语中英文对照【精选文档】

电力电子术语中英文对照【精选文档】

电力电子技术术语Absorber Circuit 吸收电路AC/ACFrequency Converter 交交变频电路AC power control 交流电力控制AC Power Controller 交流调功电路AC Power Electronic Switch 交流电力电子开关AC Voltage Controller 交流调压电路Asynchronous Modulation 异步调制Baker Clamping Circuit 贝克箝位电路Bi-directional Triode Thyristor 双向晶闸管Bipolar Junction Transistor——BJT 双极结型晶体管Boost—Buck Chopper 升降压斩波电路Boost Chopper 升压斩波电路Boost Converter 升压变换器Bridge Reversible Chopper 桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter 降压变换器Commutation 换流Conduction Angle 导通角Constant Voltage Constant Frequency——CVCF恒压恒频Continuous Conduction——CCM (电流)连续模式Control Circuit控制电路CUK Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC—DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit直流斩波电路DC—DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式Displacement Factor 位移因数Distortion Power 畸变功率Double End Converter 双端电路Driving Circuit 驱动电路Electrical Isolation 电气隔离Fast Acting Fuse 快速熔断器Fast Recovery Diode 快恢复二极管Fast Recovery Epitaxial Diodes 快恢复外延二极管Fast Switching Thyristor 快速晶闸管Field Controlled Thyristor 场控晶闸管Flyback Converter 反激电流Forced Commutation 强迫换流Forward Converter 正激电路Frequency Converter 变频器Full Bridge Converter 全桥电路Full Bridge Rectifier 全桥整流电路Full Wave Rectifier 全波整流电路Fundamental Factor 基波因数Gate Turn—Off Thyristor-—GTO可关断晶闸管General Purpose Diode 普通二极管Giant Transistor-—GTR 电力晶体管Half Bridge Converter 半桥电路Hard Switching 硬开关High Voltage IC 高压集成电路Hysteresis Comparison 带环比较方式Indirect Current Control 间接电流控制Indirect DC-DC Converter 直接电流变换电路Insulated-Gate Bipolar Transistor—-IGBT 绝缘栅双极晶体管Intelligent Power Module-—IPM 智能功率模块Integrated Gate—Commutated Thyristor—-IGCT集成门极换流晶闸管Inversion 逆变Latching Effect 擎住效应Leakage Inductance 漏感Light Triggered Thyristo———LTT 光控晶闸管Line Commutation 电网换流Load Commutation 负载换流Loop Current 环流元件设备三绕组变压器:three—column transformer ThrClnTrans 双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power—factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载:active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current 定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压:high voltage低压:low voltage中压:middle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step—up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double—circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine - infinity bus system 机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power无功(功率)reactive power功率因数power factor无功电流reactive current下降特性droop characteristics斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive—side裕度margin同步synchronization失去同步loss of synchronization 阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance一般术语电力电子变流器的型式(表1—2)电力电子开关和交流电力电子控制器电力电子设备的基本元件电力电子设备的电路和电路单元电力电子设备的运行电力电子设备的性能电力电子变流器的特性曲线稳定电源。

开关电源英文原著对应中文翻译

开关电源英文原著对应中文翻译

TOP200-4/14TOPSwitch系列三端离线式PWM开关产品的优点离散开关的低成本替代品• 比其他产品少20到50个组件-降低了成本,提高了可靠性• 源连接选项卡和受控导通的MOSFET可以降低电磁干扰,减少电磁干扰滤波的成本• 在重量和体积方面减少了50%• 在功率超过5瓦的领域内有较强的低耗能竞争力高达90%的反激拓扑效率• 内置启动和电流限制减少直流损耗• 低电容700 V的MOSFET削减交流损耗• CMOS控制器/栅极驱动器功耗仅为6毫瓦• 70%的最大占空比减少传导损耗简化设计缩短上市时间• 支持多种参考设计板• 将PWM控制器和700 V的MOSFET集成在符合行业标准的3引脚TO-220封装里• 只需一个外部电容用作补偿、分路器和启动/自动重启职能系统级故障保护特点• 自动重启和逐周期电流限制功能能够同时处理初级和次级故障• 片上闭锁热关机功能能够防止系统过载高度通用性• 实现降压、升压、反激或转移拓扑结构• 可轻松地与光电元件和初级反馈进行联接• 支持连续或间断的运作模式描述TOPSwitch系列(仅用三个引脚)实现了离线开关式控制系统所必需的所有功能:带受控导通门驱动器的高压N沟道功率MOSFET ;集成了100KHz振荡器的电压模式PWM控制器;高压启动偏置电路;基准电压参考点;偏置并联稳压器/误差放大器用于环路补偿和故障保护电路。

相比离散的MOSFET和控制器或自振荡(RCC)开关转换器的解决方案,TOPSwitch集成电路可以降低总成本,元件数量,尺寸,重量同时提高了效率和系统的可靠性。

这些设备用于在0到100瓦(普通0到50瓦)范围内提供100/110/230伏离线电源和在0到150瓦范围提供230/277伏离线功率因数校正(PFC)功能。

图1 典型应用图2 功能块图引脚功能描述漏引脚输出MOSFET的漏极连接。

在启动过程中通过一个内置的开关高压电流源提供内部偏置电流,内部电流检测点。

常用低压电器产品名称 词汇 中英文对照

常用低压电器产品名称 词汇 中英文对照

目录 contents一、断路器类 Circuit Breaker二、接触器 Contactor三、继电器类 Relays四、电源电器类 Power Supply Apparatus五、开关电器类 Switches Apparatus六、电机驱动类 Motor Drive七、仪表及智能家居类 Meter, Intelligent Home八、照明器类 Lighting九、熔断器类 Fuse十、插座 Socket十一、电器附件 Electric Accessories十二、常用电工电气术语 Terms of Electrics一、断路器类 Circuit Breaker Definition: A circuit breaker is an automatically operated electrical switch designed to protect an electrical circuit from damage caused by overload or short circuit.主要涉及词汇、短语 Related words and phases ¾Electrical life 电气寿命 ¾Mechanical life 机械寿命¾Dielectric strength 介电强度,绝缘强度 ¾rated coil voltage 额定线圈电压¾Contact form 触点形式¾Contact material 触点材料¾contact rating 触点容量¾Coil power 线圈功率¾Pulse width 脉冲宽度,脉冲持续时间 ¾Pick-up voltage 接触电压,起始电压 ¾Drop-out voltage 开断电压¾Contact resistance 接触(接点)电阻,瞬变电阻 ¾Insulation resistance 绝缘电阻¾Operation temperature 工作温度¾Input voltage 输入电压¾Input current 输入电流¾Isolating power 隔离能力¾Rated voltage 额定电压¾Rated current 额定电流¾rated operational current 额定工作电流 ¾rated operational voltage 额定工作电压¾arc extinction 灭弧¾nominal insulation voltage 额定绝缘电压¾rated insultating voltage 额定绝缘电压¾Short-circuit delay protection 短路延时保护 ¾Short-circuit protection 短路保护¾Overload protection 过载保护¾lack voltage protection 欠电压保护 ¾Thermal relay 热继电器¾thermal overload relay 热过载继电器 ¾intermediate relay 中间继电器¾contactor relay 接触器式继电器 ¾time relay 时间继电器¾short-circuit current 短路电流(SCC) ¾low voltage circuit breaker 低压断路器 ¾high voltage circuit breaker 高压断路器 ¾magnetic circuit breaker 磁断路器¾trip breaker 行程断路器¾standards and certification 执行标准以及证书 ¾alternating current(AC) 交流电¾direct current(DC) 直流电¾pollution grade 污染等级¾IP code 防护等级¾Protecting class 防护等级¾Sea level elevation 海拔高度¾Ambient air temperature 周围空气温度 ¾Relative air humidity(RH) 空气相对湿度¾Transportation and storage condition 运输及存储条件¾Impact and vibration 冲击与振动¾Economic principle 经济原则¾Safety principle 安全原则¾Breaking ability 分断能力¾Injection 注塑¾Punching 冲压¾Operation principle figure 工作原理图¾Technical parameter 技术参数¾Dimension and mounting 外型及安装 ¾Type and specification 型号规格¾Mechanical data 机械参数¾Installation mode 安装方式¾Terminal connection capacity 端子接线能力 ¾Case width 外壳宽度¾Two-pole 两极¾Single pole 单极¾Pole No. 极数¾Installation dimensions 安装尺寸¾Case grade rated current 壳架等级电流 ¾Characteristic curve 特征曲线万能式断路器 Air Circuit Breaker (ACB)Rated words and phases¾Power distribution 配电¾Small volume 体积小¾Single-phase earthing/ground protection 单相接地保护¾Modularization 模块化¾Intelligentize 智能化¾Instantaneous release 瞬时脱扣¾Environment friendly 环境友好型¾Environmental 环保的¾Release type 脱扣类型¾Characteristic curve 曲线特性(同前面翻译都存在)¾Power Frequency Voltage-Withstand Test 工频耐压试验¾Leakage acting current 漏电动作电流¾Range of break-off 动作电流范围¾Pure electromagnetic type 纯电磁式¾Rated short circuit broken capability 额定短路分断能力¾Power factor 功率因数¾Tripping curre 脱扣曲线塑料外壳式断路器 Moulded Case Circuit Breaker(MCCB)¾Operation performance 运行特性¾Operational current of magnetic release 运行电流的磁释放¾Arcing-over distance 飞弧距离¾Design code 设计序号¾Breaking capacity grade code 分断能力等级代号¾Rated current of frame 壳架等级电流(此种翻译也存在)¾Small volume, high breaking capacity and short flash-over distance小体积,高分断能力,飞弧距离小¾More convenient and easier to mount function accessories.更方便以及容易安装功能附件(翻译仅供参考)¾Can be mounted with hand-operating device or motor-operating device for remote control.可以与hand-operating(手动)设备或motor-operating(自动)装置同时安装用于远程控制。

电力电子专业的英文词汇

电力电子专业的英文词汇

这里总结了一些大家分享吧:Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control 交流电力控制AC Power Controller 交流调功电路AC Power Electronic Switch 交流电力电子开关Ac Voltage Controller 交流调压电路Asynchronous Modulation 异步调制Baker Clamping Circuit 贝克箝位电路Bi-directional Triode Thyristor 双向晶闸管Bipolar Junction Transistor-- BJT 双极结型晶体管Boost-Buck Chopper 升降压斩波电路Boost Chopper 升压斩波电路Boost Converter 升压变换器Bridge Reversible Chopper 桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter 降压变换器Commutation 换流Conduction Angle 导通角Constant Voltage Constant Frequency --CVCF 恒压恒频Continuous Conduction--CCM (电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode 快恢复二极管fast revcovery epitaxial diodes 快恢复外延二极管fast switching thyristor 快速晶闸管field controlled thyristor 场控晶闸管flyback converter 反激电流forced commutation 强迫换流forward converter 正激电路frequency converter 变频器full bridge converter 全桥电路full bridge rectifier 全桥整流电路full wave rectifier 全波整流电路fundamental factor 基波因数gate turn-off thyristor——GTO 可关断晶闸管general purpose diode 普通二极管giant transistor——GTR 电力晶体管half bridge converter 半桥电路电力电子专业词汇-欢迎大家继续补充!Absorber Circuit 吸收电路AC/ACFrequency Converter 交交变频电路AC power control交流电力控制AC Power Controller交流调功电路AC Power Electronic Switch交流电力电子开关Ac V oltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi-directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-- BJT双极结型晶体管Boost-Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter降压变换器Commutation 换流Conduction Angle 导通角Constant V oltage Constant Frequency --CVCF 恒压恒频Continuous Conduction--CCM (电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode 快恢复二极管fast revcovery epitaxial diodes 快恢复外延二极管fast switching thyristor 快速晶闸管field controlled thyristor 场控晶闸管flyback converter 反激电流forced commutation 强迫换流forward converter 正激电路frequency converter 变频器full bridge converter 全桥电路full bridge rectifier 全桥整流电路full wave rectifier 全波整流电路fundamental factor 基波因数gate turn-off thyristor——GTO 可关断晶闸管general purpose diode 普通二极管giant transistor——GTR 电力晶体管half bridge converter 半桥电路hard switching 硬开关high voltage IC 高压集成电路hysteresis comparison 带环比较方式indirect current control 间接电流控制indirect DC-DC converter 直接电流变换电路insulated-gate bipolar transistor---IGBT 绝缘栅双极晶体管intelligent power module---IPM 智能功率模块integrated gate-commutated thyristor---IGCT 集成门极换流晶闸管inversion 逆变latching effect 擎住效应leakage inductance 漏感light triggered thyristo---LTT 光控晶闸管line commutation 电网换流load commutation 负载换流loop current 环流电力电子专业词汇电力电子-专业词汇1 专业英语作者zhangzhibao @ 2006-04-11 20:01:56Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control交流电力控制AC Power Controller交流调功电路AC Power Electronic Switch交流电力电子开关Ac Voltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi-directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-- BJT双极结型晶体管Boost-Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter降压变换器Commutation 换流Conduction Angle 导通角Constant Voltage Constant Frequency --CVCF 恒压恒频Continuous Conduction--CCM (电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode 快恢复二极管fast revcovery epitaxial diodes 快恢复外延二极管fast switching thyristor 快速晶闸管field controlled thyristor 场控晶闸管flyback converter 反激电流forced commutation 强迫换流forward converter 正激电路frequency converter 变频器full bridge converter 全桥电路full bridge rectifier 全桥整流电路full wave rectifier 全波整流电路fundamental factor 基波因数gate turn-off thyristor——GTO 可关断晶闸管general purpose diode 普通二极管giant transistor——GTR 电力晶体管half bridge converter 半桥电路hard switching 硬开关high voltage IC 高压集成电路hysteresis comparison 带环比较方式indirect current control 间接电流控制indirect DC-DC converter 直接电流变换电路insulated-gate bipolar transistor---IGBT 绝缘栅双极晶体管intelligent power module---IPM 智能功率模块integrated gate-commutated thyristor---IGCT 集成门极换流晶闸管inversion 逆变latching effect 擎住效应leakage inductance 漏感light triggered thyristo---LTT 光控晶闸管line commutation 电网换流load commutation 负载换流loop current 环流)元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor(2)状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current 定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine - infinity bus system机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power无功(功率)reactive power功率因数power factor无功电流reactive current下降特性droop characteristics斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance1 backplane 背板2 Band gap voltage reference 带隙电压参考3 benchtop supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET8 bucket capcitor 桶形电容9 chassis 机架10 Combi-sense Combi-sense11 constant current source 恒流源12 Core Sataration 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, ordevice malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. 超过下面的规格使用可能引起永久的设备损害或设备故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器设计对反激变换器的效率起着至关重要的作用。

例如,通过使高频损耗(通常指“趋肤效应”和“邻近效应”)最小化来提高效率。

趋肤效应是导体内高频交流电流的分布趋向于道题表面。

邻近效应是当导体靠近一个通交流电流的导体时,其内部产生涡流。

线的类型和大小对这种特征有很大的影响,“绞合线(由多个线绕在一起,以减少高频损耗)通常提供了最好的的性能,而多股卷绕股线提供可接受的结果。

堆叠绕组也影响接近效应损耗。

有时,可以权衡邻近效应损耗和直流电阻损耗来确定的股数,使绕组损耗最小。

对反激变换器邻近效应损耗的预测并非易事,需要通过实验室来验证,因为电流不在初次级同时流通,一种预测方法使用的α-参数的曲线图(如图16)在图16中,,Q'与一个固定频率的一层功率损耗成比例。

它可以有方程来估计式中,d是线的直径,do是线的中心到中心的间隙。

其他影响效率的因素为交叉调整率。

例如,用于功率辅助电源轨控制器门开关损耗有着直接的影响。

另外,较差交叉调节可能造成过量的电流有效值低功耗次级绕组和出电容的ESR。

初次级之间高的漏感意味着钳位电路和缓冲电路的更多的能量损耗CCM模式(低传导损耗和磁芯损耗)通常比DCM模式效率更高气隙的边缘磁通。

反激变换器中,保持绕组远离边缘磁场是很好的办法(通常不实际)变压器的匝比,它必须是占空比最优,使效率最高。

图17表明,最佳的占空比可以使传导损耗最小。

初级电流的平方乘以20与次级电流的平方乘以20比较,这个20倍是任意的,假设初级电路的电阻(包括变压器绕组和MOSFET)比次级电路中的电阻高20倍还多。

整个输入电压范围在分析中应该考虑。

F、反激变压器总结反激式变压器是反激式电源的一个重要组成部分。

电源设计人员需要有一个透彻的理解,如何控制和利用变压器的寄生效应以获得最佳的变换器的性能和效率,以下是一个设计准则的总结:初级绕组与主次级绕组(大电流)间漏感最小。

这可能包括最大限度地减少绕组间的距离,并使用具有长而窄的窗口(这也降低了邻近效应损耗)来获得最小的层数。

使主要的次级与用于反馈控制的辅助次级间漏感最小。

然而,不要去使初级与这个绕组的漏感最小。

在必要时,由于振铃效应,插入一个低阻值的辅助绕组。

无反馈调节的辅助输出的应用使所有次级绕组间的漏感最小考虑所有辅助次级绕组使用多股并绕没有必要减少初级与辅助绕组(小电流)的漏感,而是优化绕组从而获得更好的交叉调整率使这次输出尽量工作在CCM与DCM临界,以获得好的交叉调整率使主输出工作在CCM模式下可以获得更好的交叉调整率,一个方法是使用同步整流(同时可以提高效率)如果交叉调整率在轻载时不好,考虑使用假负载不要想当然认为主输出在辅助绕组短路时会自动保护电路。

必要时可以考虑使用专用的短路保护模块来保护输出初级钳位电压对交叉调整率一定的影响。

对于轻载输出,减小钳位电压通常会提高交叉调整率。

然而,如第五节和第六节中所讲,选择钳位电压时要考虑其他因素。

在必要时考虑使用多股并绕或绞合电线可以达到最佳效率。

变压器匝数比对占空比和效率有着直接的影响。

为了验证分析和优化设计,通常在实际环境中去测试变压器性能。

Page 23这种拓扑的第二种特征和工作方式是输出负载电流限制高度依赖于直流输入电压。

在一个比较高的输入电压时,占空比较低,这就意味着一个周期内磁化能量传递给输出端的比例更大。

正常供电控制器有一个基于初级电流检测的固定峰值电流限制阈值,这个阈值与输入电压无关,这就表明磁化电流在关闭的瞬间是相同,正是由于峰值电流控制点,传递至负载的平均电流取决于1-D,56V输入比24V输入时,在电流限制到达前,可达到的负载可用电流是很高的(通常为50%)。

图21可以用式16来解释式中,Ts是开关周期,Rs是电流检测电阻,Vc和Rs定义了峰值电流限制电压的阈值。

此外,在电流限制中,并参考式(13)-(16),输出负载电流可以有式(17)来表示。

式中,IA_LIM是初级的平均磁化电流,VC_LIM是峰值电流限制电压阈值(最大Vc值)。

如果对于高的纹波电流选择一个较低的电感量,峰值电流限制阈值需要增加。

前馈的影响当前馈结合峰值电流控制时,电源的最大输出功率在很宽的输入电压范围内保持不变,从而降低了元器件的成本,否则,在高输入电压时,需处理较高的功率。

图23描述了前馈电阻(图21)对电流限制阈值的影响。

在随后的图解中,前馈的作用(KffXVi)减去误差放大器输出VC,得到更易定义的占空比。

这表示了在电流反馈中加入前馈的作用。

前馈使过载时变换器更易控制,因此,在最坏的条件下,可以减少电源的功率应力。

例如,减少了最大输入电压引起的最坏情况时MOS漏极峰值电压较低的变压器漏感。

图24表明,没有前馈补偿,在电流刚刚达到电流限制是,一个高的输入电流引起一个较高的负载电流。

如果在电流反馈中加入一定比例的输入电压信号,负载电流限制变得较少依赖于输入电压。

有一个相对恒定的电流限制时,欠压闭锁对于短路保护有更好的效果。

图24中,前馈补偿的量在峰值电流限制的13%和33%。

斜坡补偿的影响斜坡补偿用于避免占空比接近或者大于50%时的二次谐波震荡。

图25说明了这种影响。

斜坡补偿的量必须满足式18或者在次级电流斜坡的50%到100%之间。

斜坡补偿对峰值电流的影响根据占空比来定。

使用斜坡补偿时,占空比越高,对于一个固定VC的初级的峰值电流就越小。

这对最低输入电压时减少负载电流限制有影响。

由图20得到的图26说明了这个事实。

在特定条件下,在高电压时,有斜坡补偿的电流限制比没有的要高,因为斜坡信号是交流耦合的,着引起在较低占空比时一个负面影响。

寄生延时的影响:完整模型寄生延迟对电流限制有很大影响。

图27说明了三种延迟。

第一种,tdel_off是关断延迟,包括控制器的延迟(主要是电流检测比较器)和栅极驱动的延迟。

第二种是tRC是由电流检测输入的RC滤波器引入的,它影响电流反馈信号和斜坡补偿信号(斜坡补偿连接到电流检测点)。

第三种是td_CT是初级FET由于时钟斜坡信号引起的开通延迟假设时钟斜坡用于斜坡补偿(如图20所示)。

完整的模型如图27所示。

由于tdel_off和tRC,初级FET关断晚了,导致更高的电流限制。

相反地,同样占空比时,较高的td_CT使其对斜坡补偿信号有更大的贡献,这就意味着较低的电流限制。

详细的输出负载电流限制方程如式(19)所示需要注意的是,如果输出电压接近于零时,变压器伏秒平衡,这是式子是有效的。

如果短路,伏秒不平衡可能造成寄生关断延迟tdel_OFF,这就意味着在随后的开关周期电流逐步上升,直到重新伏秒平衡。

变压器漏感对电流限制的影响反激变压器漏感的一个影响是在能量传递至次级绕组时伏秒数的一个损失。

其引起的后果是,占空比和平均磁化电流都比预期的要高(来自电压反馈环路的补偿),这意味着效率较低,因为导通损耗更高。

虽然增加峰值电流限制可以对维持输出功率有所补偿,但是这种限制使变压器更容易饱和,其结果是,输出负载电流限制更低。

换言之,初级使用一个固定电流限制,初级可用电流将被降低。

EMI和线路阻抗这部分提供的设计技巧对降低反激变换器传导和辐射EMI有很大的帮助。

对EMI更多的讨论见文献[7].线路阻抗也将在本节讨论。

A、最小化反激变换器的EMI的应用对许多设计师来讲,反激变换器被与坏的EMI画上等号。

EMI的原因很多,一个主要的云因是反激变压器。

其绕组的高频开关电流,使得它产生一个H场(磁场)。

部分绕组产生振铃电压的频率比开关频率高很多,使得产生一个变压器的E场(电场)。

绕组间的电容-特别是初次级间的寄生电容—使得变压器变为一个共模的传导发生器,如图30所示。

其他值得注意的电磁干扰源是MOS管的漏极PCB走线、钳位二极管(次级)、PCB走线和PCB布局。

变压器绕组间的电容和绕组的距离有关。

有效电容值通常略小于计算出的物理电容值,因为绕组的电压不是平均的。

必须考虑电压梯度的影响。

交流电压的平均值决定了存储的电荷量,从而决定有效电容值。

(见图30和图31)静电屏蔽采用的共地电平可以有效的消除这种共模电容,迫使任何共模电流通过本地路径返回到初级回路。

以下使反激变换器减少EMI的标准方法变压器应该中间开气隙。

因为暴漏在空气中的边沿磁场是EMI的重要来源。

正如之前提到的接近气隙绕组的边缘磁通电流引起的额外损耗(如图32)如果初级绕组是多层的,在PCB上它应该把绕组的最开始一层连接到MOS的漏极,以使外层屏蔽来自电场的漏极电压的干扰。

这也可以降低电压梯度对绕组间电容的影响(如图31)反激变换器输入输出纹波电流很大,在变压器的输入输出端用高频低阻抗的电容,结合其他电容和滤波器的作用,使变化迅速的dI/dt 面积最小。

输出滤波使用磁芯电感,而不是线圈(因为其产生磁场)。

要注意的是钳位二极管的正向恢复时间,它是磁场释放的源头。

如果正向恢复时间太长,将延长过度时间、增加电子场的散发。

肖特基二极管虽然没有反向恢复问题,但是其寄生并联电容引入共振和寄生电感。

当必要时,在钳位二极管并联一个RC缓冲器。

初级MOS管的开通(而不是关断)应该比二极管的反向恢复时间缓慢PCB布局对较少EMI干扰有很大帮助,有很多文献对此有研究,如参考文献[7]。

相关文档
最新文档