2013-2014年八年级数学第一学期期中试卷

合集下载

2013-2014第一学期八年级期中试卷

2013-2014第一学期八年级期中试卷

2013-2014学年度第一学期期中学情分析样题(2)八年级数学(考试时间100分钟,试卷总分100分)一、 选择题(每题2分,共16分)A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等 3.能判定△ABC ≌△A’B’C’的条件是………………………………………………( )A .AB =A’B’,AC =A’C’,∠C =∠C’ B .AB =A’B’,∠A =∠A’,BC =B’C’ C .AC =A’C’,∠A =∠A’,BC =B’C’D .AC =A’C’,∠C =∠C’,BC =B’C’ 4. 如图,在Rt △中,∠°,cm ,cm ,则其斜边为( )A.7 cmB.8 cmC.10cmD.13cm5.如果一个三角形成轴对称图形,且有一个内角为60°,则这个三角形一定是( ). A .直角三角形 B.等腰直角三角形 C.等边三角形 D.上述三种情形都有可能6.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =………………………………………………………( ) A .85° B .90° C .95° D .100°7.若等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的顶角为( )A .60B .120°C .90°D .60°或120° 8.一个正方形和两个等边三角形的位置如图所示,若∠3 = 50°,则∠1+∠2 =()A .100°B .90°C .130°D .180°第8题 第6题B第5题二、填空题(每题2分,共20分) 9. 已知等腰三角形的一个底角等于50°,则它的顶角是 °.10.如图,长2.5m 的梯子靠在墙上,梯子的底部离墙的底端1.5m 。

2013-2014八年级上学期期中考试数学模拟试卷(一)

2013-2014八年级上学期期中考试数学模拟试卷(一)

2013-2014八年级上学期期中考试数学模拟试卷(一)(满分100分,考试时间90分钟)一、选择题(每小题3分,共24分)1.以下列各组数为边长,能构成直角三角形的是()A.12,15,20 B.13,14,15C.0.3,0.4,0.5 D.32,42,522.已知下列各数:3.1415926,0.2,1π,2270.101 001 000 1…(相邻两个1之间0的个数逐次加1),其中是无理数的有()个.A.2 B.3 C.4 D.53.下列等式成立的是()A.=B=C21x=+D.2x=4.2的结果是()A.6-6x B.6x-6 C.-4 D.45.在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(1-a,-b)在第()象限.A.一B.二C.三D.四6.如图,在长方形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F.若CF=1,FD=2,则BC的长为()A.B.C.D.第6题图第7题图7.如图,点A的坐标为(1,0),点B在直线y=-x上运动,已知直线y=-x与x轴的夹角为45°,则当线段AB最短时,点B的坐标为()A.(0,0) B.(2,2-) C.(12-,12-) D.(12,12-)8.已知两个一次函数y1=mx+n,y2=nx+m,它们在同一平面直角坐标系中的图象可能是()A. B. C. D.二、填空题(每小题3分,共21分)9.的平方根是________.10.如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M所表示的数为________.2.3m 1.6mDC BA第10题图第12题图第13题图11.化简________.12.某工厂大门形状如图所示,其上部分为半圆,工厂门口的道路为双行道.要想使宽为1.2米,高为2.8米的卡车安全通过,那么此大门的宽至少应增加________米.13.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24,则AC的长是________.14.当b=________时,直线y=2x+b与y=3x-4的交点在x轴上.15.如图,在正方形ABCD中,AB=12,点E在边CD上,CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=6.其中正确的结论是________.三、解答题(本大题共6小题,满分55分)16.混合运算(每小题5分,共10分):AB CDEFG(1-;-+-.(2)10(1(π 3.14)17.(8分)已知实数a,b,c在数轴上的位置如图所示,化简代数式++-.a c b18.(8分)有一个如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深为AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵.(1)小虫应该怎样走才能使爬行的路线最短呢?请你画出它爬行的最短路线示意图.19.(9分)现有一块三角形菜地,量得两边长为25米、17米,第三边上的高为15米,求此三角形菜地的面积.20.(9分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2.(1)计算△A1B1C1的面积;(2)直接写出点P2的坐标.21.(11分)如图,直线y=kx-2与x轴交于点B,直线112y x=+与y轴交于点C,这两条直线交于点A(2,a).(1)直接写出a的值;(2)求点B,C的坐标及直线AB的表达式;(3)求四边形ABOC的面积.八年级上学期期中考试数学模拟试卷(一)参考答案一、选择题1.C2. B3. C4. D5. D6. B7. D8. C二、填空题9.±210.111.12.13.14.8 3 -15.①②③三、解答题16.(1)2)32-+17.018.(1)如下图所示;(2)100cm.EA19.210平方米或90平方米20.(1)△ABC的面积为7;(2)P2(1.6,1).21.(1)a=2;(2)B(1,0),C(0,1),直线AB:y=2x-2;(3)四边形ABOC的面积为2.。

2013-2014年期中数学试卷(八年级)答案

2013-2014年期中数学试卷(八年级)答案

2013-2014年上期中八年级数学答案一、选择题二、填空题11、12cm 12、140°和50°13、540 °14、45°15、8(5.0 )或(-5.0 ) 或(8.0 ) 或( 0,5 )或(0,6)------ 16、108°17证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.18:解:由题意知AB∥DE,∴∠B=∠D在△BCA和△D CE中∠B=∠DBC=DC∠BCA=∠DCE∴△BCA=△D CE(AAS)∴ AB=DE19:过D点作DF//BE∴∠ABC=∠DFC ∠E =∠ODF------------------------------------------------1分∵AB=AC∴∠ABC=∠C∴∠DFC=∠C∴DF=DC∵BE=DC∴DF=BE-----------------------------------------------------------------------4分在△EBO和△DFO中∠E=∠ODF∠BOE=∠D0FBE=DF△EBO≌△DFO(AAS)OE=OD------------------------------------------------------------------6分20:证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE AB=AC………………………………2分又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD∴∠DAB=∠EAC…………………………4分在△ADB和△AEC中AD=AE∠DAB=∠EACAB=AC∴△ADB≌△AEC(SAS) …………………………7分∴BD=CE……………………………8分21证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;-----------------------------------------------3分(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,∴△AEF≌△BCF(ASA).---------------------------8分22:①证明:∵AB∥CD∴∠BAC=∠DCA在△BAC和△DCA中,AB=CD∠BAC=∠DCAAC=CA△BAC≌△DCA(SAS)∴∠DAC=∠BCA∴ AD//BC----------------------------4分②OE=OF由①得∠E =∠F∵O是AC的中点∴OA=OC在△AOE和△COF中,∠E =∠F∠AOE=∠COFOA=OC△AOE≌△COF(AAS)∴OE=OF-------------------------8分23:(1)∵AB∥CD∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°。

2013——2014学年第一学期八年级数学期中试卷(ABC)

2013——2014学年第一学期八年级数学期中试卷(ABC)

2013-2014学年度第一学期期中模拟八年级数学试题(A 卷)(满分:150分 时间:120分钟)一、选择题(每题4分,共40分)1.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( )A.150°B.80°C.50°或80°D.70°2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )A B C D3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是 ( )A .13cmB .6cmC .5cmD .4cm4、下列图形中,轴对称图形的个数是( )A 、1个B 、2个C 、3个D 、4个5、如图小明从平面镜里看到镜子对面电子钟显示的时间如图1所示,这时的实际时刻应该是( )A 、21∶10B 、10∶21C 、10∶51D 、12∶016.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A 、4B 、5C 、6D 、77.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列不正确的等式是( )A .AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =DE8.在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌△A B C ''',则补充的这个条件是( )A .BC =BC '' B .∠A =∠A ' C .AC =A C ''D .∠C =∠C '9.如图所示,分别表示△ABC 的三边长,则下面与△一全等的三角形( )第4题图第7题图第5题图A B C D10.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA二、填空题(每题5分,共20分)11.若三角形三个内角度数的比为2:3:4,则相应的外角比是 .12.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是 .13、点E(a,-5)与点F(-2,b)关于y轴对称,则a= ,b= ;14.如图所示,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE是度.三、解答题15.(8分)在△ABC中,∠B=3∠A, ∠C=5∠A,求△ABC的三个内角度数16. (8分)现有两条高速公路l1、l2和两个城镇A、B站P出中心站的位置。

2013~2014学年度第一学期期中质量检测八年级数学试题

2013~2014学年度第一学期期中质量检测八年级数学试题

2013~2014学年度第一学期期中质量检测八年级数学试题【友情提醒】全卷共三大题,23小题,满分150分,考试时间120分钟。

一、选择题(每小题4分,共40分)1.点A (5-,4)在第 象限。

( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各曲线中,能够表示y 是x 的函数的是( )3.函数y =中自变量x 的取值范围是( ) A .x ≥3- B .x ≥3-且1x ≠ C .1x ≠ D .3x ≠-且1x ≠ 4.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗?5.一个三角形的两边长分别为3和8,则第三边长可能是( )A .5B .6C .3D .116.点1P (1x ,1y )、2P (2x ,2y )是一次函数b kx y +=(0<k )图象上的两个点,且21x x <,则1y 与2y 的大小关系是( )A .21y y >B .21y y =C .21y y <D .无法确定 7.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A .125°B .120°C .140°D .130°9.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(1-,2-),“象”位于点(4,1-),则“炮”位于点( ) A .(2,1-) B .(1-,2) C .(2-,1) D .(2-,2) 10.下列四组点中,可以在同一个正比例函数图象上的一组点是( )A .(2,3-)、(4-,6)B .(2-,3)、(4,6)C .(2-,3-)、(4,6-)D .(2,3)、(4-,6) 二、填空题(每小题5分,共20分)11.在直角坐标系中,把点A (3-,2)先向右平移3个单位,再向下平移2个单位,得到的点的坐标是 。

2013-2014年八年级上册数学期中试卷及答案

2013-2014年八年级上册数学期中试卷及答案

2013-2014年八年级上册数学期中试卷及答案八年级数学试卷一、选择题(每题3分,共30分)1、在△ABC 和△DEF 中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF ,则补充的条件是( )A 、BC=EFB 、∠A=∠DC 、AC=DFD 、∠C=∠F 2、下列命题中正确个数为( ) ①全等三角形对应边相等;②三个角对应相等的两个三角形全等; ③三边对应相等的两个三角形全等; ④有两边对应相等的两个三角形全等.A .4个B 、3个C 、2个D 、1个 3、已知△ABC ≌△DEF ,∠A=80°,∠E=40°,则∠F 等于 ( )A 、 80°B 、40°C 、 120°D 、 60° 4、已知等腰三角形其中一个内角为70°,那么那个等腰三角形的顶角度数为( )A 、70°B 、70°或55°C 、40°或55°D 、70°或40° 5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你能够推断这时的实际时刻是( )A 、10:05B 、20:01C 、20:106、等腰三角形底边上的高为腰的一半,则它的顶角为( ) A、120° B 、90° C 、100° D 、60° 7、点P (1,-2)关于x 轴的对称点是P1,P1关于y 轴的对称点坐标是P2,则P2的坐标为( )A 、(1,-2)B 、(-1,2)C 、(-1,-2)D 、(-2,-1)8、已知()221x y -++=0,求yx 的值( )A 、-1B 、-2C 、1D 、29、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=8cm ,AB =10cm ,则△EBC 的周长为( )A 、16 cmB 、18cmC 、26cmD 、28cm 10、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是A D 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为( )A 、2cm ²B 、4cm ²C 、8cm ²二、填空题(每题4分,共20分)11、等腰三角形的对称轴有 条. 12、(-0.7)²的平方根是 . 13、若2)(11y x x x +=-+-,则x-y= .14、如图,在△ABC 中,∠C=90°AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为__ .15、如图,△ABE ≌△ACD ,∠ADB=105°,∠B=60°则∠BAE= .三、作图题(6分)16、如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址P 应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址Q 应选在哪个位置?请将上述两种情形下的自来水厂厂址标出,并保留作图痕迹.四、求下列x 的值(8分)ED ABCFE DBE DBAA B CD第9题图第10题图第14题图第15题图•A•BD E CB A O 17、 27x ³=-343 18、 (3x-1)²=(-3)²五、解答题(5分)19、已知5+11的小数部分为a ,5-11的小数部分为b ,求 (a+b)2012的值。

2013-2014学年八年级数学上册期中考试卷

2013-2014学年八年级数学上册期中考试卷

20013-2014学年上学期期中考试八年级·数学(全卷满分100分,考试时间:120分钟)一、选择题(每小题3分,共24分)1、如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB . AM ∥CNC .AB = CD D . AM =CN2、如图,△ABC ≌△CDA ,AB=5,BC=6,AC=7,则AD 的边长是( )A .5B .6C .7D .不能确定3、已知等腰三角形的两边长分别为4cm 、8cm ,则该等腰三角形的周长是( )A .12cmB .16cmC .16cm 或20cmD .20cm4、已知:如图,AC=AE ,∠1=∠2,AB=AD ,若∠D=25°,则∠B 的度数为 ( ) A 、25° B 、30°C 、15°D 、30°或15°5、在△ABC 内一点P 满足PA=PB=PC ,则点P 一定是△ABC ( )A 、三条角平分线的交点B 、三边垂直平分线的交点C 、三条高的交点D 、三条中线的交点6、一个多边形的内角和是外角和的2倍,则这个多边形的边数是( )A 、4B 、5C 、6D 、77、如图,△ABC 中,∠C=90°,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )A 、10cmB 、15cmC 、20cmD 、25cm二、填空题:(本题共8个小题,每小题3分,共24分)11、已知等腰三角形的一个角是80°,则它的底角是_____________.12、如图,在△ABC 中,AB =AC ,AD ⊥BC 于D 点,点E 、F 分别是AD 的三等分点,若△ABC 的面积为182cm ,则图中阴影部分面积为_________2cm .A BDCMN第4题第7题*13、如图,在△ABC 中,∠C =90°,BD 平分∠ABC ,若CD =3cm ,则点D 到AB 的距离为____________cm.14、如图把Rt △ABC (∠C=90°)折叠,使A 、B 两点重合,得到折痕ED •,•再沿BE 折叠,C 点恰好与D 点重合,则∠A 等于________度. .*16、如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,CD 是斜边AB 上的高,若AB =8,则BD=__________.三、解答题 21.(8分)如图7,AD 是△ABC 的中线,CE ⊥AD 于E , BF ⊥AD 交AD•的延长线于F ,求证:CE=BF 。

2013-2014学年八年级(上)期中数学试卷

2013-2014学年八年级(上)期中数学试卷

钟书教育一对一辅导2013-2014学年八年级(上)期中数学试卷一、选择题.(4分&#215;10=40分)1.(4分)如图,已知△ABC≌△EFD,∠C=∠D,AB=EF,则下列说法错误的是()A.B C=FD B.A C=EF C.∠A=∠DEF D.A E=BF2.(4分)如图,OA=OB,OC=OD,∠O=50°,∠C=28°,∠BED的度数是()A.62°B.55°C.74°D.50°3.(4分)下列条件中,不一定能证明两个三角形全等的是()A.两边和一角对应相等B.两角和一边对应相等C.三边对应相等D.两边对应相等的两个直角三角形4.(4分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(4分)在三角形内部,到三角形三边距离相等的点是()A.三条中线的交点B.三条高线交点C.三个内角平分线交点D.三边垂直平分线交点6.(4分)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF;③CD=DN;④△ACN≌△ABM,其中正确的有()A.4个B.3个C.2个D.1个7.(4分)下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,148.(4分)如图,△ABC中,BC=10,边BC的垂直平分线DE分别交AB、BC于点E、D,BE=6,则△BCE的周长是()A.16 B.22 C.26 D.219.(4分)三角形中下列结论可能存在的有()①最小内角是20°②最大内角是100°③最小内角为89°④三个内角都等于60°⑤有两个内角都等于80°.A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤10.(4分)画△ABC一边上的高,下列画法正确的是()A.B.C.D.二、填空题.(5分&#215;6=30分)11.(5分)等腰三角形中,有一个底角是65°,则另外两个角分别为_________.12.(5分)两边长分别为为4cm、8cm的等腰三角形的周长是_________.13.(5分)(2004•哈尔滨)一个多边形的每一个外角都等于36°,则该多边形的内角和等于_________度.14.(5分)如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件_________时,既可以得到△ABC≌△FED.(只需填写一个你认为正确的条件)15.(5分)在△ABC中,∠A:∠B:∠C=1:2:3,则∠A=_________,∠B=_________,∠C=_________.16.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为_________.三、作图题.(保留作图痕迹,本题8分)17.(8分)已知:△ABC,求作:△A′B′C′,使△A′B′C′≌△ABC.四、解答题.(共72分)18.(8分)已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.19.(8分)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.20.(10分)如图,AB=AC,BD⊥AC于点D,∠A=50°,求∠DBC的度数.21.(10分)(2012•横县一模)已知:如图,∠1=∠2,∠3=∠4.求证:AC=AD.22.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.23.(12分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.(12分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.2013-2014学年广东省汕尾市陆丰市内湖中学八年级(上)期中数学试卷参考答案与试题解析一、选择题.(4分&#215;10=40分)1.(4分)如图,已知△ABC≌△EFD,∠C=∠D,AB=EF,则下列说法错误的是()A.B C=FD B.A C=EF C.∠A=∠DEF D.A E=BF考点:全等三角形的性质.分析:根据全等三角形对应边相等,对应角相等对各选项分析判断后利用排除法求解.解答:解:A、∵△ABC≌△EFD,∴BC=FD,正确,故本选项错误;B、∵△ABC≌△EFD,∴AC=DE,故本选项正确;C、∵△ABC≌△EFD,∴∠A=∠DEF正确,故本选项错误;D、∵AB=EF,∴AB﹣EB=EF﹣EB,即AE=BF,故本选项错误.故选B.点评:本题考查了全等三角形的性质,是基础题,熟记性质是解题的关键.2.(4分)如图,OA=OB,OC=OD,∠O=50°,∠C=28°,∠BED的度数是()A.62°B.55°C.74°D.50°考点:全等三角形的判定与性质.分析:首先证明△AOD≌△BOC,可得∠C=∠D,再利用三角形内角和定理计算出∠OBC,然后再利用内角与外角的关系可得答案.解答:解:在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴∠C=∠D=28°,∵∠O=50°,∠C=28°,∴∠OBC=180°﹣50°﹣28°=102°,∴∠BED=102°﹣28°=74°,故选:C.点评:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形对应角相等.3.(4分)下列条件中,不一定能证明两个三角形全等的是()A.两边和一角对应相等B.两角和一边对应相等C.三边对应相等D.两边对应相等的两个直角三角形考点:全等三角形的判定.分析:根据三角形全等的判定定理,结合选项进行判定.解答:解:A、有两条边和一个角对应相等的三角形不一定全等,因为角的位置没有确定,不一定全等,故本选项正确;B、两角和一边对应相等,运用的是全等三角形判定定理中的AAS或ASA,可以证明两个三角形全等,故本选项错误;C、三边对应相等,运用的是全等三角形判定定理中的SSS,可以证明两个三角形全等,故本选项错误;D、两边对应相等的两个直角三角形全等,若是两条直角边,可以根据SAS判定全等,若是直角边与斜边,可根据HL判定全等,故本选项错误;故选A.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(4分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形考点:三角形的稳定性.分析:稳定性是三角形的特性.解答:解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选C.点评:稳定性是三角形的特性,这一点需要记忆.5.(4分)在三角形内部,到三角形三边距离相等的点是()A.三条中线的交点B.三条高线交点C.三个内角平分线交点D.三边垂直平分线交点考点:角平分线的性质.分析:根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,即可得出答案.解答:解:由角平分线的性质,得出到三角形三边距离相等的点是三个内角平分线交点.故选:C.点评:此题主要考查了角平分线的性质,熟练利用角平分线的性质是解决问题的关键.6.(4分)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF;③CD=DN;④△ACN≌△ABM,其中正确的有()A.4个B.3个C.2个D.1个考点:全等三角形的判定与性质.分析:由∠E=∠F=90°,∠B=∠C,AE=AF,根据直角三角形全等的判定得到Rt△ABE≌Rt△ACF,则BE=C,∠EAB=∠FAC得到①②正确;易证Rt△AEM≌Rt△AFN,得到AM=AN,则MC=BN,易证得△ACN≌△ABM,得到④正确;△DMC≌△DMB,则DC=DB,得到③错误.解答:解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF,∴BE=CF,所以②正确;∴∠EAB=∠FAC,∴∠1=∠2,所以①正确;∴Rt△AEM≌Rt△AFN,∴AM=AN,而∠MAN公共,∠B=∠C,∴△ACN≌△ABM,所以④正确;∵AC=AB,AM=AN,∴MC=BN,而∠B=∠C,∴△DMC≌△DMB,∴DC=DB,所以③错误;故选B.点评:本题考查了全等三角形的判定与性质:有两组角对应相等,并且有一条边对应相等相等的两个三角形全等;全等三角形的对应边相等,对应角相等.也考查了直角三角形全等的判定.7.(4分)下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,14考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵5+6<11,∴不能组成三角形,故本选项错误;B、∵8+8=16,∴不能组成三角形,故本选项错误;C、∵5+4<10,∴不能组成三角形,故本选项错误;D、∵6+9>14,∴能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.8.(4分)如图,△ABC中,BC=10,边BC的垂直平分线DE分别交AB、BC于点E、D,BE=6,则△BCE的周长是()A.16 B.22 C.26 D.21考点:线段垂直平分线的性质.分析:由DE垂直平分线BC,可求得CE=BE=6,继而求得△BCE的周长.解答:解:∵DE垂直平分线BC,∴CE=BE=6,∵BC=10,∴△BCE的周长是:BE+CE+BC=22.故选B.点评:此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.9.(4分)三角形中下列结论可能存在的有()①最小内角是20°②最大内角是100°③最小内角为89°④三个内角都等于60°⑤有两个内角都等于80°.A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤考点:三角形内角和定理.分析:根据三角形内角和定理对各小题进行逐一分析即可.解答:解:①若最小内角为20°,则其余两角的和等于160°,故本小题正确;②若最大内角是100°,则其余两角的和等于80°,故本小题正确;③若最小内角为89°,则3×89°=267°>180°,故本小题错误;④三个内角都等于60°,则此三角形是等边三角形,故本小题正确;⑤若两个内角都等于80°,则另一个内角等于20°,故本小题正确.所以正确的有:①②④⑤.故选D.点评:本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.10.(4分)画△ABC一边上的高,下列画法正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:根据三角形的高线的定义对各选项分析判断后利用排除法求解.解答:解:A、AB、CD不垂直,所以CD不是AB边上的高,故本选项错误;B、AD、BC不垂直,所以AD不是BC边上的高,故本选项错误;C、AD⊥BC,所以CD是AB边上的高,故本选项正确;D、AD、BC不垂直,所以AD不是BC边上的高,故本选项错误.故选C.点评:本题考查了三角形的高线的定义,是基础题,熟记高线的定义及图形是解题的关键.二、填空题.(5分&#215;6=30分)11.(5分)等腰三角形中,有一个底角是65°,则另外两个角分别为65°,50°.考点:等腰三角形的性质.分析:因为等腰三角形的两个底角相等,三角形的内角和是180°,从而可以分别求另外两个内角的度数.解答:解:另一个底角是65°,则顶角的度数:180°﹣65°×2=50°;则另外两个角分别为65°,50°.故答案为:65°,50°.点评:此题主要考查三角形的内角和及等腰三角形的性质:等腰三角形的两个底角相等.12.(5分)两边长分别为为4cm、8cm的等腰三角形的周长是20cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①8cm为腰,4cm为底,此时周长为20cm;②8cm为底,4cm为腰,则两边和等于第三边无法构成三角形,故舍去.∴其周长是20cm.故答案为:20cm.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)(2004•哈尔滨)一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.考点:多边形内角与外角.专题:计算题;压轴题.分析:任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n﹣2)•180°即可求得内角和.解答:解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.点评:本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.14.(5分)如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=DE时,既可以得到△ABC≌△FED.(只需填写一个你认为正确的条件)考点:全等三角形的判定.专题:开放型.分析:添加条件BC=DE,根据AD=CF可得AC=DF,再加上条件AD=FC,AB=FE可用SSS定理证明△ABC≌△FED.解答:解:添加条件BC=DE,理由:∵AD=CF,∴AD+DC=CF+DC,即AC=DF,在△ABC和△FED中,,∴△ABC≌△FED(SSS).故答案为:DE=BC.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.(5分)在△ABC中,∠A:∠B:∠C=1:2:3,则∠A=30°,∠B=60°,∠C=90°.考点:三角形内角和定理.分析:设∠A=x°,∠B=2x°,∠C=3x°,根据∠A+∠B+∠C=180°得出方程x+2x+3x=180,求出x即可.解答:解:∵∠A:∠B:∠C=1:2:3,∴设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°,∴x+2x+3x=180,x=30,∴∠A=30°,∠B=60°,∠C=90°,故答案为:30°,60°,90°.点评:本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.16.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.考点:轴对称的性质.分析:P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.解答:解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.三、作图题.(保留作图痕迹,本题8分)17.(8分)已知:△ABC,求作:△A′B′C′,使△A′B′C′≌△ABC.考点:作图—复杂作图;全等三角形的判定.分析:作AC=A′C′,A′B′=AB,BC=B′C′.根据全等三角形的判定可得△A′B′C′≌△ABC.解答:解:如图所示:点评:此题主要考查了复杂作图,关键是掌握三边对应相等的两个三角形全等.四、解答题.(共72分)18.(8分)已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.考点:全等三角形的判定;全等三角形的性质.分析:根据SSS推出△ABD≌△CDB,根据全等三角形性质推出即可.解答:证明:在△ABD和△CDB中,∴△ABD≌△CDB(SSS),∴∠A=∠C.点评:本题考查了全等三角形性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.19.(8分)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.考点:角平分线的性质.分析:根据角平分线性质得出P在∠AOB的角平分线上,推出∠AOB=2∠BOC,求出即可.解答:解:∵PM⊥OA于M,PN⊥OB于N,PM=PN,∴P在∠AOB的角平分线上,∴∠AOB=2∠BOC=2×30°=60°.点评:本题考查了角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.20.(10分)如图,AB=AC,BD⊥AC于点D,∠A=50°,求∠DBC的度数.考点:等腰三角形的性质.分析:根据等腰三角形的性质和已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=50°,∴∠ABC=∠ACB=65°∵BD⊥AC,∴∠DBC=90°﹣65°=25°.故∠DBC的度数是25°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.21.(10分)(2012•横县一模)已知:如图,∠1=∠2,∠3=∠4.求证:AC=AD.考点:全等三角形的判定与性质.专题:证明题.分析:已知∠3=∠4,可知∠ABD=∠ABC,然后根据角边角定理可判断△ABD≌△ABC,即可求证AC=AD.解答:证明:∵∠3=∠4,∴∠ABD=∠ABC(等角的补角相等),在△ABD与△ABC中,,∴△ADB≌△ACB(ASA),∴AC=AD.点评:此题主要考查学生对全等三角形的判定与性质的理解和掌握,解答此题的关键是根据等角的补角相等的性质求出∠ABD=∠ABC.22.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.考点:全等三角形的判定与性质.分析:(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.解答:(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.(12分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;(3)根据SAS证出△DOF≌△COF,得出DF=FC,再根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.解答:证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴Rt△OED≌Rt△OEC(HL),∴OC=OD;(3)在△DOF和△COF中,∵,∴△DOF≌△COF,∴DF=FC,∵ED=EC,∴OE是线段CD的垂直平分线.点评:本题考查了角平分线性质,线段垂直平分线的判定,等腰三角形的判定,三角形全等的相关知识.关键是明确图形中相等线段,相等角,全等三角形.24.(12分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.考点:全等三角形的判定与性质.分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.解答:(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴△BHF∽△CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.参与本试卷答题和审题的老师有:CJX;sd2011;sjzx;星期八;lf2-9;zhjh;HJJ;自由人;zjx111;dbz1018;zcx;HLing;zzz;hnaylzhyk;caicl;gsls;fxx;zhangCF(排名不分先后)菁优网2013年12月31日。

2013-2014学年度八年级上数学期中考试试题_Microsoft_Word_文档_(3)

2013-2014学年度八年级上数学期中考试试题_Microsoft_Word_文档_(3)

12013-2014学年度八年级上数学期中考试试题卷Ⅰ(选择题,共 30分)一、 选择题 (每题3分,共30分)1、一定能确定△ABC ≌△DEF 的条件是 ( )A 、∠A=∠D ,∠B=∠E ,∠C=∠FB 、∠A=∠E ,AB=EF ,∠B=∠DC 、∠A =∠D ,AB = DE ,∠B =∠E D 、AB=DE , BC=EF ,∠A=∠D 2、已知M (0,2)关于x 轴对称的点为N , 则N 点坐标是( ) A .(0,-2) B .(0,0) C .(-2,0) D .(0,4)3、等腰三角形的周长是18cm ,其中一边长为4cm ,其它两边长分别为( )A .4cm ,10cmB .7cm ,7cmC .4cm ,10cm 或7cm ,7cmD .无法确定 4、下列平面图形中,不是..轴对称图形的是( )5、如图 ,正方形ABCD 的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角形板的两条直角边与CD 交于点F ,与CB 延长线交于点E ,四边形AECF 的面积是( ) A 、16 B 、12 C 、8 D 、4 7、使两个直角三角形全等的条件是 ( )A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条直角边对应相等 8、如图,小强拿一张正方形的纸,沿虚线对折一次得图(2),再对折一次得图(3) 然后用剪刀沿图(3)中的虚线剪去一个角,再打开后的形状是( )ED CBA9题图A B C D2A B C D9、如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为( ) A 、5cm B 、10cm C 、15cm D 、17.5cm 10、.在数学活动课上,小明提出这样一个问题:如图, ∠B =∠C = 90︒, E 是BC 的中点, DE 平分∠ADC, ∠CED = 35︒, 则∠EAB 的度数是 ( ) A .35︒ B .45︒ C .55︒ D .65︒ 11、如图5是小亮在某时从镜子里看到镜子对面电子钟的像,则这个时刻是( ) A.10:21 B. 21:10 C. 10:51 D.12:01卷Ⅱ(非选择题,共 分)二、填空题(每题3分,共24分)12、点A(-2,3)关于x 轴的对称点的坐标是______13、如13题图,在△ABC 中,∠ACB=90°,∠A=30°,CD ⊥AB ,AB=6.则BC=___ _ ∠BCD=____ 14、等腰三角形一个角为50°,则此等腰三角形顶角为_________________15、如图,在△ABC 中,∠ACB=90°,∠A=30°,CD ⊥AB ,BD =1.则BC=___ _ ∠BCD=____16、如图,在中,,平分,BC=9cm ,BD=6cm ,那么点到直线的距离是 cm 17、等腰△ABC 纸片(AB=AC )可按图中所示方法折成一个四边形,点A 与点B 重合,点C 与点D 重合,请问原等腰△ABC 中∠B= °ABC △90C ∠=AD CAB ∠DAB318、等腰三角形一腰上的中线把这个三角形的周长分成15㎝和12㎝,则这个三角形的底边长为 19、在直角坐标系中,已知A (-3,3),在轴上确定一点P ,使△AOP 为等腰三角形,符合条件的点P 共有_________个。

2013-2014学年八年级上学期期中考试数学试题及答案

2013-2014学年八年级上学期期中考试数学试题及答案

选择题(每小题3分,共30分)1.在平面直角坐标系中,属于第二象限的点是 【 】A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3) 2.下列长度的各组线段中,能组成三角形的是【 】A .1,1,2B .3,7,11C .6,8,9D .3,3,6 3.下列各点,不在..直线y=-5x+1上的是【 】 A 、(-3,16) B 、(2,-9) C 、(53-,4) D 、),(3231 4.函数31x y x +=-中自变量x 的取值范围是【 】 A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠ 5.在直角坐标系内顺次连接下列各点,不能得到正方形的是【 】A .(-2,2)(2,2)(2,-2)(-2,-2)(-2,2)B .(0,0)(2,0)(2,2)(0,2)(0,0)C .(0,0)(0,2)(2,-2)(-2,0)(0,0)D .(-1,-1)(-1,1)(1,1)(1,-1)(-1,-1) 6..若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形【 】A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形7.如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点【 】A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)8.已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是【 】 A.m >0,n <2 B. m >0,n >2 C. m <0,n <2 D. m <0,n >2 9.如果三角形三边之长分别为3,8,1-2a ,则a 的取值范围为【 】 A .-6<a<-3 B .-5<a<-2 C .-2<a<5 D .a<-5或a>2 10.图中两直线L 1,L 2的交点坐标可以看作方程组【 】的解.A .121x y x y -=⎧⎨-=-⎩ B. 121x y x y -=-⎧⎨-=⎩ C .321x y x y -=⎧⎨-=⎩ D. 321x y x y -=-⎧⎨-=-⎩班级:________________姓名:______________考号:________________ ====================================密=============封=============线=============内=============请=============不=============要=============答=============题====================================题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题3分,共24分)11、写出一个图像经过第一、三象限正比例函数,表达式可以是_________________,12、定义:直线y=kx+b(k、b是常数,且k≠0)与x轴交点的横坐标叫直线y=kx+b在x轴上的截距。

2013——2014学年第一学期八年级数学期中试卷

2013——2014学年第一学期八年级数学期中试卷

B16925学__________________班____________________姓名___________________考场_______________座:装 订 线2013—2014学年第一学期八年级数学期中试卷一、选择题(每小题2分,共20分)1.下列几组数据:8, 15, 17;7, 12, 15; 12, 15, 20; 7, 24, 25. 其中能作为直角三角形三边长的有几组( )A.1B.2C.3D.42.如右图字母B 所代表的正方形的面积是 ( ) A.12 B. 13 C.144 D.194 3.81的平方根是( )A.±9B.9C.±3D.34.点P (m +3, m +1)在x 轴上,则点P 坐标为 ( ) A.(0,-2) B.( 2,0) C.( 4,0) D.(0,-4) 5.下列等式不一定成立的是( )A.a a =2B.a a =33C.a a =2)(D.a a =33)(6.一次函数y=ax+b 的图像如图所示,则下面结论中正确的是( ) A.a >0,b >0 B.a >0,b <0 C.a <0,b >0 D.a <0,b <07.在02)(-、22、0、9-、38、0.101001…、2π、722中,无理数的个数是( ) A.2 B.3 C.4D.58.下列式子正确的是( )A.16=±4B.±16 =4C.2)4(- =-4 D.±2)4(- =±49.一辆汽车由淮安匀速驶往南京,下列图象中,能大致反映汽车距南京的路程s (千米)和行驶时间t (小时)的关系的是( )10.直角三角形两边长分别是3、4,第三边是() A.5B.7C.5或7D.无法确定二.填空题(每小题3分,共30分)11.已知弹簧的长度 y (厘米)在一定的限度内是所挂重物质量 x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.则y 与x 之间的关系式为 .12.将直线y=-2x+3向下平移2个单位得到的直线的解析式是 .13.点M(a,b)到x 轴的距离是4,到y 轴距离是3,且在第二象限,则点M 的坐标是 . 14.比较大小:3.15.点P (-1,2)关于y 轴对称的点的坐标是 . 16.函数y=-2x+3中,函数y 随x 的增大而 . 17.直线y=2x+4的图像经过点(m ,8),则m = . 18.函数y=-x+3的不经过第 象限.19.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树梢飞到另一棵树的树梢,至少飞了 米.20.x 是9的平方根,y 是64的立方根,则y x +的值为 . 三、解答题(共70分)21.(4分)在数轴上作出13线段. 22.(4分)画出函数y=32-x +2的图象.23. 计算化简(16分) (1)3612⨯ (2)45 - 1255+ 3(3))533()352(-+ (4)71+28-70024.解方程(8分) (1)049252=-x (2)8)2(3-=-xs t B O s t A O s t CO s tD OA B C BC A 25.(5分)已知一次函数y=kx+b 的图象经过点(0,1)和(3,-3),求此一次函数表达式. 26.(5分)如图,正三角形ABC 的边长为 6 , 建立适当的直角坐标系 ,并写出各个顶点的坐标 .27.(6分)如图AC 是学校的旗杆,旗杆上的绳子AB 垂到地面还多出1米,如果把绳子的下端B拉开离C 点5米后,发现下端刚好接触地面,请你计算旗杆的高度和绳子的长度.28.(6分)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y (元)与租书时间x (天)之间的关系如下图所示.①分别写出用租书卡和会员卡租书金额y 1、y 2(元)与租书时间x (天)之间的关系式. ②两种租书方式每天的收费是多少元?(x<100) 29.(8分)如图长方体长、宽、高分别为3、2、4,一只蚂蚁从A 点沿长方体的表面爬到B 点,爬行的最短路程是多少?30.(8分)求直线42+-=x y 与x 轴、y 轴的的交点坐标,与x 轴y 轴围成的三角形的面积.B。

2013-2014学年初二上期中考试数学试卷(含答案)

2013-2014学年初二上期中考试数学试卷(含答案)

无锡市滨湖区2013-2014学年第一学期期中考试.初二数学试卷 2013.11..说明:本试卷满分120分,考试时间:100分钟 ..一、选择题:(本大题共8小题,每小题3分,共24分).1.下列四个图案中是轴对称图形的有----------------------------------------------------------( ) A .1个 B .2个 C .3个 D .4个2.下列说法中,正确的有---------------------------------------------------------------------------( ) A .只有正数才有平方根; B .27的立方根是3±; C .立方根等于-1的实数是-1; D .1的平方根是1; 3.在实数12, -3,-3.14,0,π,2.161 161 161…中,无理数有----( ) A . 1 个 B .2个 C . 3个D .4个4.在△ABC 内部取一点P ,使得点P 到△ABC 的三边的距离相等,则点P 应是△ABC 的下列哪三条线段的交点-------------------------------------------------------------------------------------( ) A .高 B .角平分线 C .中线 D .垂直平分线5.实数a 、ba 的结果是--------( )A .2a +bB .2aC .aD .b6.下列说法正确的是-------------------------------------------------( )A .近似数4.60精确到十分位;B .近似数5000C .近似数4.31万精确到0.01;D.1.45⨯104精确到百位. 7.如图,在下列条件中,不能..证明△ABD ≌△ACD 的条件是…( ). A .∠B=∠C ,BD=DC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .BD =DC ,AB =AC8. 如图,在2×2的正方形网格中,有一个格点△ABC (阴影部分),则 网格中所有与△ABC 成轴对称的格点三角形的个数为 … ( ) A .2 B .3 C .4 D .5 二、填空题(本大题共有13空,每空3分,共39分.) 9.16的平方根为________ ;(-4)3的立方根是____________.10.若实数a 有平方根,则a 的取值范围是 ;若a 的平方根为1x +和3x -,则a = .第7题第8题11.2013年2月28日,全国科学技术名词审定委员会称PM 2.5拟正式命名为“细颗粒物”,网友戏称“霾尘”. PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物.请将0.0000025用科学记数法表示为.122(2)0y +=, 则y x =_____________.13.若等腰三角形的两边长为6,9,则它的周长是 .14.如图,已知AB ∥CF ,E 为DF 的中点,若AB =9 cm ,CF =5 cm ,则BD = cm . 15.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是 .16. 如图,△ABC 为等边三角形,BD ⊥AB ,BD=AB ,则∠DCB = .17.已知在△ABC 中,AB=BC =10,AC =8,AF ⊥BC 于点F ,BE ⊥AC 于点E ,取AB 的中点D ,则△DEF 的周长为 .18.如图,有一个直角三角形ABC ,∠C =90°,AC=8,BC=3,P 、Q 两点分别在边A C 和过点A 且垂直于AC 的射线AX 上运动,且PQ=AB .问当AP = 时,才能使ΔABC 和ΔPQA 全等.19.已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE = .三、解答题(本大题共7小题,共57分.) 20.(本题10分)求下列各式中的x 的值(1) 2490x -= (2) 364(1)125x +=-ADCB 第15题第14题EDCBA F第17题第19题BC第16题__________________学号__________……………………线………………………………21.(本题10分)计算: (1(2)2011()2++22.(本题5分)尺规作图:滨湖区某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P ),到花坛的两边AB 、BC 的距离相等,并且点P 到点A 、D 的距离也相等.请用尺规作图作出栽种桂花树的位置点P (不写作法,保留作图痕迹).23.(本题5分)如图,△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D ,E .求证: BD =CE .24.(本题5分)已知:在Rt △ABC 中,∠C =90°,E 为AB 的中点,且DE ⊥AB 于E ,若∠CAD :∠DAB =1﹕2,求∠B 的度数.BCAEDCBABDCA25.(本题5分)如图,已知直线m ⊥直线n 于点O ,点A 到m 、 n 的距离相等,在直线m 或n 上确定一点P ,使△OAP 为等腰三角形.试回答: (1)符合条件的点P 共有_________个; (2)若符合条件的点P 在直线m 上,请直接写出 ∠OAP 的所有可能的度数.26.(本题7分)如图,在△ABC 的一边AB 上有一点P .(1)能否在另外两边AC 和BC 上各找一点M 、N ,使得△PMN 的周长最短.若能,请画出点M 、N 的位置,若不能,请说明理由;(2)若∠ACB =48°,在(1)的条件下,求出∠MPN 的度数.27. (本题10分)一节数学课后,老师布置了一道课后练习题:如图1,已知在Rt △ABC 中,AB=BC ,∠ABC =90°,O 为AC 中点.(1)如图1,若把三角板的直角顶点放置于点O ,两直角边分别与AB 、BC 交于点M 、N , 求证:BM=CN ;(2)若点P 是线段AC 上一动点,在射线BC 上找一点D ,使PD=PB ,再过点D 作BO 的平行线,交直线AC 于一点E ,试在备用图上探索线段ED 和OP 的关系,并说明理由.mOACBNM OACBOACBAnO初二数学期中试卷参考答案及评分标准 2013.11一、选择题(每小题3分,共24分)1. B2. C3. B4. B 5.D 6. D 7. A 8. D 二、填空题(每空3分,共39分)9. 4±;—4 ; 10. 0,4a ≥; 11. 62.510-⨯ ; 12.19; 13. 21或24; 14. 4; 15. 5; 16.15°;17. 14 ; 18. 3或8; 19. 1.5三、解答题(共57分)20.解方程(2小题,共10分)22192944352x x x ===±()解:4分分分()3125(2)116451345144954x x x x +=-+=-=--∴=-解:分分分分21.计算(本题10分)15(3)2 =5+34 =85=---()分分分21135+()分分22. (本题5分)作出AD 的中垂线………………………2分 作出∠ABC 的角平分线…………………4分 写出P 点 ………………………………5分23.(本题5分)∵BD ⊥AC ,CE ⊥AB , ∴∠ADB=∠AEC =90°……………………2分图1 备用图2备用图1又∵∠A=∠A, AB=AC∴Rt △ABD ≌Rt △ACE (AAS )…………4分 ∴BD=CE .………………………………5分24.(本题5分)解:由题意,设∠CAD =x °,∠DAB =(2 x )°……1分∵E 为AB 的中点,且DE ⊥AB ∴DE 为AB 的中垂线∴AD=DB …………2分 ∴∠B =∠DAB =2 x∴∠B+∠CAB =2 x +3 x =5 x …………3分 ∵在Rt △ABC 中,∠C =90°, ∴∠B +∠CAB =90°, ∴5 x =90°∴ x =18 ……………………………4分 ∴∠B =2 x =36°. ………………………………5分25. (1) (本题3分+4分)作出点P 关于AC 、BC 的对称点D 、G ………1分 连接DG 交AC 、BC 于两点……………………2分 标注字母M 、N …………………………………3分(2)∵PD ⊥AC ,PG ⊥BC , ∴∠PEC=∠PFC =90° ∴∠C+∠EPF =180°∵∠C =48° ∴∠EPF =132°………………………………………4分∵∠D+∠G+∠EPF =180° ∴∠D+∠G =48°……………………………………5分 由对称可知:∠G=∠GPN ,∠D=∠DPM ∴∠GPN+∠DPM =48°………………………………6分 ∴∠MPN =132°—48°=84°……………………………7分 26.(本题5分)(1)8个……………………………………………………1分 (2)22.5°,90°,67.5°,45°……………………………………5分(每写对一个得1分)27. (本题10分) (1)连结OB∵ AB=BC , O 为AC 中点 ∴∠ABO =∠CBO , BO ⊥AC ∵∠ABC =90°∴∠ABO=∠CBO =45°∠A=∠C =45°∴∠ABO =∠C=∠CBO ……………1分EDCBA∴ 0B=OC∵∠MON=90°∴∠MOB+∠BON=∠CON+∠BON=90°∴∠MOB =∠CON…………………2分∴△BOM≌Rt△CON(ASA)∴BM=CN.…………………………3分(2)两张图形画对…………………………4分OP=DE, OP⊥DE………………………5分理由:①若点P在线段AO上,∵BO⊥AC∴∠BOC=90°∵OB∥DE∴∠POB =∠PED=90°∴OP⊥DE,……………………………………6分∵PB=PD,∴∠PDB =∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠OBC=45°,∴∠OBC =∠C=45°,∵∠ PBO =∠PBC—∠OBC,∠DPC=∠PDB—∠C,∴∠PBO =∠DPC,∴∠BOP=∠PED=90°,…………………………7分∴△BPO≌△PDE(AAS);∴OP=DE.………………………………………8分②若点P在线段CO上,同理可证OP⊥DE∵OB∥DE∴∠OBC =∠BDE=45°∵PB=PD,∴∠PDB =∠PBD,又∵∠APB =∠PBD+∠ACB=∠PBD+45°∠PDE =∠PDC+∠BDE =∠PDC+45°∴∠APB=∠PDE…………………………………9分又∵∠BOP=∠PED=90°∴△BPO≌△PDE(AAS);∴OP=DE.…………………………………………10分综上所述:OP=DE,OP⊥DE.备用DC B。

2013-2014学年第一学期期中八年级数学试卷

2013-2014学年第一学期期中八年级数学试卷

2013—2014学年度第一学期期中考试八年级数学一、选择题 (本大题共有8个小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项符合题目的要求,请将正确选项前的字母代号填在表格里相应位置)题号 1 2 3 4 5 6 7 8 答案1.9的值等于( ▲ ) A .3B .-3C .±3D . 32.下面有4个汽车标志图案,其中轴对称图形有 ( ▲ )① ② ③ ④A .1个B .2个C .3个D .4个3.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm ,△ADC 的周长为17cm ,则BC 的长为( ▲ )A .7cmB .10cmC .12cmD .22cm 4.如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE AC 。

若DE=10,AE=16,则BE 的长度为( ▲ )A .10B .11C .12D .135.用尺规画∠AOB 的角平分线的步骤是:①以O 为圆心,适当长为半径作弧,交OA 于M 点,交OB 于N 点; ②分别以M 、N 为圆心,大于MN 21的长为半径作弧,两弧在∠AOB 的内部相交于点C ; ③过点C 作射线OC, 射线OC 就是∠AOB 的角平分线. 这样作角平分线的根据是 ( ▲ )A .SSSB .SASC .ASAD . AAS第3题DEBCAABCDE ABCDE F第4题第5题第6题第8题6.如图为八个全等的正六边形紧密排列在同一平面上的情形, 根据图中标示的各点位置,判断与△ACD全等的是(▲)A.△ACF B.△ADE C.△ABC D.△BCF7.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是(▲)A. OP1⊥OP2B. OP1=OP2C. OP1⊥OP2且OP1=OP2D. OP1≠OP28.已知,如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一条直线上,连接BD、BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的是(▲)A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共有10个小题,每小题3分,共30分,不需写出解答过程,请把答案直接填在横线上)9. 3的平方根是▲.10.如图,在△ABC中,∠C=90°,AD平分∠ABC,若AD=5cm,AC=4cm,则点D到AB的距离为___▲___cm.11.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=▲.12.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是▲ .(只需写一个,不添加辅助线)13.若实数x、y满足|4|80x y-+-=,则以x、y的值为边长的等腰三角形的周长为▲.第10题第11题第12题9. 10. 11. 12. 13.14. 15. 16. 17. 18.14.若等腰三角形的一个角为50°,则它的顶角为 ▲ . 15.如图,AB=AC ,BD=BC ,若∠A=30°,则∠ABD= ▲ °.16.一个正数的两个平方根分别是2a-1和a+4,则a 的值是 ▲ .17.如图,直线a 经过正方形ABCD 的顶点A ,分别过顶点B 、D 作BF ⊥EF 于F ,DE ⊥EF 于E ,若DE=9,EF=15,则BF= ▲ .18.如图,△ABC 中,AB=AC ,∠BAC=56°,∠BAC 的平分线与AB 的垂直平分线OD 交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 度数为 ▲ °.三.解答题(本大项共有10小题,共96分,解答要写出必要的文字说明或计算的过程、步骤)19.(本题8分)已知x 的算术平方根为3,y 的立方根是3-,求x y -的平方根.20. (本题8分)求下列各式中的x .(1)2169x = (2)3(2)8x +=-21. (本题8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和点A 1.利用网格完成下面的作图: (1)画出点B 关于直线AC 的对称点D ;(2)画出一个格点△A 1B 1C 1,并使它的三边长分别是13103、、.DCBA 第15题第17题第18题22. (本题8分)如图,△ABC 中,∠C=90°,AC=9,BC=12,折叠△ABC ,使A ,B 两点重合,折痕分别交BC 、AB 于点D 、E ,求CD 的长.EDBCA23. (本题10分)如图1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上. (1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,∠BAC=45°,请在图中找出一条与BC 相等的线段,并说明理由.FEB CDAEDBCA24. (本题10分)如图,在等腰△ABC 中,∠ABC =90°,D 为底边AC 中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F .若AE =12,FC =5, (1)试说明DE =DF ; (2)求EF 长.25. (本题10分)如图,在△ABC 中, D 、E 两点分别在边AC 、AB 上,AB=AC ,BC=BD ,AD=DE=BE ,求∠A 的度数.GF E CBA26. (本题10分)如图1,已知点P 是线段AB 上的动点(P 不与A ,B 重合),分别以AP 、PB 为边向线段AB 的同一侧作等边△APC 和等边△PBD .连接AD 、BC ,相交于点Q ,AD 交CP 于点E ,BC 交PD 于点F(1)图1中有 对全等三角形;(不必证明)(2分) (2)图1中设∠AQC=α,那么α= °;(不必证明)(2分)(3)如图2,若点P 固定,将△PBD 绕点P 按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?请说明理由.(6分)27. (本题12分)已知:如图,△ABC 中,AC=6,BC=8,AB=10,∠BCA 的平分线与AB 边的垂直平分线相交于点D ,DE ⊥AC ,DF ⊥BC ,垂足分别是E 、F . (1) 求证:AE=BF ; (2) 求线段DG 的长.E F图1mBA图2P EBCDA28. (本题12分) (1)画图探究:(3分)如图1,若点A 、B 在直线m 同侧,在直线m 上求作一点P ,使AP+BP 的值最小 ,保留作图痕迹,不写作法;图3DCBA(2)实践运用:(4分)如图2,在等边△ABC 中,AB=2,点E 是AB 的中点,AD 是高,点P 是高AD 上一个动点,求BP+PE 的最小值.(3)拓展延伸(5分)如图3,四边形ABCD 中,∠BAD=125°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小,并求此时∠MAN 的度数.。

2013-2014学年度第一学期北师大版八年级数学上册期中试题

2013-2014学年度第一学期北师大版八年级数学上册期中试题

2013-2014学年度第一学期北师大版八年级期中考试(总分150分, 时间120分钟)一.单选题(每小题5分,共50分)1.若直角三角形的三边长为6,8,m ,则2m 的值为( )A .10B .100C . 28D .100或282.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到斜边AB 的距离是( )A .365B .125C .9D .63.a 、b 在数轴上的位置如图所示,那么化简2a b a --的结果是 ( )(A )b a -2 (B )b (C )b - (D )b a +-24.已知:5=a ,72=b ,且b a b a +=+,则b a -的值为( )(A )2或12 (B )2或-12 (C )-2或12 (D )-2或-125.下列四个数中,是负数的是( )A .2-B . 2)2(-C .2-D .2)2(-6.在平面直角坐标系中,点P (-1,l )关于x 轴的对称点在( )。

A .第一象限B .第二象限C .第三象限D .第四象限7.若点(,1)P m 在第二象限内,则点Q (,0m -)在( )。

A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上8.若函数(1)5m y m x =--是一次函数,则m 的值为( )A. 1±B. -1C.1D.29.已知函数23(1)m y m x -=+是正比例函数,且图像在第二、四象限内,则m 的值是( )A .2B .2-C .2±D .12- 10.关于x 的一次函数y=kx+k 2+1的图象可能正确的是( )C'E D C B A A. B.C. D.二、填空题(每小题5分,共50分)11.2)81(-的算术平方根是 ,271的立方根是,2绝对值是 ,2的倒数是 .12.已知数轴上点A 表示的数是2-,点B 表示的数是1-,那么数轴上到点B 的距离与点A 到点B 的距离相等的另一点C 表示的数是 .13.等腰△ABC 的腰长AB 为10 cm ,底边BC 为16 cm ,14.一艘轮船以16 km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30 km/h 的速度向东南方向航行,它们离开港口半小时后相距_______km .15.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则P 点坐标为___________16.已知点P (-3, 2),点A 与点P 关于y 轴对称,则A 点的坐标为______17.点A 、点B 同在平行于x 轴的直线上,则点A 与点B 的 坐标相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014年八年级数学第一学期期中试卷
一、精心选一选:(每题2分,共20分)
1.在3π
-,-2,4,2
2
,3.14,
()0
2中无理数的个数是…………………
【 】
A .2个
B .3个
C .4个
D .5个
2.下列图形中,,既是轴对称图形,又是中心对称图形的是……………………… 【 】
3.下列语句中错误..
的是……………………………………………………………… 【 】A .(-3)2的平方根是±3 B .矩形的两条对角线相等 C .近似数8.880万有三个有效数字 D .平行四边形是中心对称图形
4.下列各组数据不能作为直角三角形的三边长的是………………………………… 【 】 A .a =0.3 b =0.4 c =0.5 B .a =6 b =8 c =10 C .a =1 b =
512 c =5
13
D .a =13 b =16 c =18 5.等腰三角形有一个角为100°,则底角为…………………………………………… 【 】
A .100°或40°
B .100°
C . 80°
D .40° 6.下列说法中错误的是:……………………………………………………………… 【 】 A .一组对边平行且一组对角相等的四边形是平行四边形 B .每组邻边都相等的四边形是菱形
C .对角线互相垂直平分的四边形是正方形
D .四个角都相等的四边形是矩形 7.如右上图,在菱形ABCD 中,
E ,
F 分别是AB ,AC 的中点,如果EF =2,那么菱形ABCD
的周长是……………………………………………………………………………… 【 】 A .4 B .8 C .12 D .16
8.如图,在平行四边形ABCD 中,P 是对角线BD 上的一点,过P 分别作EF 、GH ,如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么图中面积相等的平行四边形有………… 【 】
A .2对
B .3对
C .4对
D .5对 9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.
将纸片展开,得到的图形是………………………………………………………… 【 】
A B C
D
第7题
10.在梯形ABCD 中,AD ∥BC ,对角线AC 与BD 互相垂直,那么AD +BC 与AB +CD 的大小关系是…………………………………………………………………………… 【 】 A .AD +BC <AB +CD B .AD +BC =AB +CD C .AD +BC >AB +CD D .无法确定
二、细心填一填:(每题2分,共16分)
11.用“<”或“>”填空:
7+1 4.
12.已知x 、y 为实数,且()
02
12
=-+-y x ,则y x ⋅值的为 .
13.已知梯形的下底长为6㎝,上底长为2㎝,则它的中位线长等于 ㎝.
14.四边形ABCD 中,AB =CD ,AC 交BD 于点O .如果想使该四边形成为平行四边形,那么只需..添加条件: . 15.如图,四边形ABCD 是正方形,△ABE 是等边三角形,则∠AED 等于 . 16.小强站在镜子前,从镜子中看到镜子对面墙上挂着的电子钟读数如图所示,则电子钟的实际时刻是 .
17.如图,点P 在∠AOB 内,PC ⊥OA ,PD ⊥OB ,如果PC =PD ,那么∠AOP =∠BOP .理由是: .
18.如图,一直角三角形,沿着它的中位线剪开,得到的图形可以拼成我们所熟知的不同于三角形的几何图形.可以是: .(只填两个
)
三、用心答一答:(本大题共10题,计64分).
19.(本题4分)计算:
16.0×16
9
1
+22817-÷2243+.
20.(本题4分)求式中x 的值:27
1813=x .
A B C D
第16题 A
O B
C
第17题 D
P 第18题
A
D E
第15题
21.(本题5分)如图,在梯形ABCD 中,AB ∥CD ,若M 为DC 中点,且∠1=∠2, 试说明:梯形ABCD 是等腰梯形.
22.(本题6分)只.利用一把有刻度...的直尺,用度量..的方法,按下列要求画图: (1)在图1中用下面的方法画等腰三角形ABC 的对称轴:
①量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ②画直线AD ,即画出等腰三角形ABC 的对称轴. (2)在图2中画出∠AOB 的对称轴,并简单..
交待画图的方法.
23.(本题6分)木工师傅手里只有一把卷尺(可以测量长度),请你帮他判断四边形窗框ABCD
是否为矩形?说说你的做法和理由.
(1)需测量以下线段的长度: ;
(2)这些线段满足条件 时, 就可以判断窗框是矩形; (3)你的理由是:
24.(本题6分)在等腰△ABC 中,AB =AC ,点D 是直线BC 上一点,DE ∥AC 交直线AB 于E ,DF ∥AB 交直线AC 于点F ,解答下列问题:
(1)如图1,当点D 在线段BC 上时,猜想线段DE 、DF 、AB 之间的关系,并验证猜想; (2)如图2,当点D 在线段BC 的延长线上时,请你参考(1),画出正确的图形,直接写出线
B 图1 A O
图2
A B 2
1
M D C
B
A
A B C D __
段DE 、DF 、AB 之间的关系: .
25.(本题6分)如图,已知:梯形ABCD 中,AD ∥BC ,E 为AC 的中点,连接DE 并延长交BC 于点F ,连接AF .
(1)试说明:AD =CF ;
(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD 成为菱形,并说明理由.
26.(本题8分)在Rt ⊿ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,设 ⊿ABC 的面积为S ,周长为l .
(2)如果a +b -c =m ,观察上表猜想:l
= ,(用含有m 的代数式表示); (3)说出(2)中结论成立的理由.
图1
D
A
B
F E
C
B
A 图2
D
C
E F
B
A
27.(本题9分)已知:点O 到△ABC 的两边AB ,AC 所在直线..的距离相等,且OB =OC . (1)如图1,若点O 在边BC 上,试说明:AB =AC ;
(2)如图2,若点O 在△ABC 的内部, AB =AC 成立吗?为什么?
(3)若点O 在△ABC 的外部,AB =AC 成立吗?为什么?请自己画图研究.
28.(本题10分)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F .
如图1,当点P 与点O 重合时,显然有DF =CF .
⑴如图2,若点P 在线段AO 上(不与点A 、O 重合),PE ⊥PB 且PE 交CD 于点E . ①试说明:DF =EF ;
②写出线段PC 、P A 、CE 之间的一个等量关系,并证明你的结论; ⑵若点P 在线段OC 上(不与点O 、C 重合),PE ⊥PB 且PE 交直线..CD 于点E .请完成图3,并判断⑴中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均.不必证明).
图1 A B E F O
图2 A
B C O
图1

2
图3。

相关文档
最新文档