天津市五区县2013届高三质量检查试卷(一)理科数学 Word版含答案

合集下载

2013年天津市高考理科数学试题Word版含答案

2013年天津市高考理科数学试题Word版含答案

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+ ·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A)(,2]-∞(B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512(D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18;②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③(D) ②③(5)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2(D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠=(A)(B)(C)(D)(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1(B) 2(C) 3(D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C)⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D)⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10)6x ⎛ ⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1,60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 . (13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与x 轴垂直的直线被椭圆截.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=,求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 +a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =. (Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.第11 页共11 页。

2013年天津市高考数学试卷(理科)及答案(Word版)

2013年天津市高考数学试卷(理科)及答案(Word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为, 则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A) 10 (B) 10 (C) 310 (D) 5 (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) 15,0⎛⎫- ⎪ ⎪⎝⎭ (B) 13,0⎛⎫- ⎪ ⎪⎝⎭(C) 15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 5,1⎛⎫-- ⎪ ⎝⎭∞⎪ 2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x x ⎛- ⎪⎝⎭的二项展开式中的常数项为. (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为.(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为.(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26, 求线段AM 的长.(18) (本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为3, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为43. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。

2013年天津高考数学理试题(含答案)

2013年天津高考数学理试题(含答案)

2013年(天津卷)理 科 数 学第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号. 本卷共8小题, 每小题5分, 共40分. 参考公式:·如果事件A , B 互斥, 那么那么)()()(B P A P A P B È=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么那么)()(()B P A A P P B =·球的体积公式34.3V R p = 其中R 表示球的半径. 一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B Ç=(A) (,2]-¥ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ³--£+-ì-£ïíïî则目标函数z = y -2x 的最小值为的最小值为(A) -7 (B) -4 (C) 1 (D) 2 (3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等②若两组数据的平均数相等, , , 则它们的标准差也相等则它们的标准差也相等则它们的标准差也相等; ;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: (A) ①②③①②③ (B) ①②①②(C) ②③②③ (D) ②③②③(5) 已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p = 2,p 1010310515-13,0-1513+-51ö- = . x 的二项展开式中的常数项为的二项展开式中的常数项为 . | = . 的长为的长为 . 的长为的长为 .  = 时2sin23 2243。

2013年天津市高考数学试卷(理科)及答案(Word版)

2013年天津市高考数学试卷(理科)及答案(Word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页。

答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后, 再选凃其他答案标号。

2. 本卷共8小题, 每小题5分, 共40分。

参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高。

·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π=其中R 表示球的半径。

一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B ) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7 (B ) -4(C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x的值为1, 则输出S 的值为(A ) 64 (B) 73(C) 512 (D ) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切。

2013年高考数学天津理(word版含答案)

2013年高考数学天津理(word版含答案)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号. 2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+ ·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]2.设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7 (B) -4 (C) 1 (D) 23.阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 4.已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③ (D) ②③5.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2 (D) 36.在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D)7.函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 48.已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学 第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.9.已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .10.6x⎛⎝的二项展开式中的常数项为 .11.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .12.在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .13.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .14.设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.15.(本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(1) 求f (x )的最小正周期;(2) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.16.(本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(1) 求取出的4张卡片中, 含有编号为3的卡片的概率.(2) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.17.(本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(1) 证明B 1C 1⊥CE ;(2) 求二面角B 1-CE -C 1的正弦值.(3) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.18.(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直(1) 求椭圆的方程;(2) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.19.(本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (1) 求数列{}n a 的通项公式; (2) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.20.(本小题满分14分) 已知函数2l ()n f x x x =.(1) 求函数f (x )的单调区间;(2) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(3) 设(2)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.2013年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分40分.1.D2.A3.B4.C5.C6.C7.B8.A二、填空题:本题考查基本知识和基本运算. 每小题5分,满分30分.9.12i + 10.15 11. 12.12 13.8314.2-三、解答题15.本小题主要考察两角和与差的正弦公式/二倍角的正弦与余弦公式,三角函数的最小正周期/单调性等基础知识,考察基本运算能力.满分13分()解:(x)f cos4π=⋅-sin+3sin 2x cos2x 4π⋅-=2s i n 2x 2c o s -=s i n 2x 4π⎛⎫-⎪⎝⎭ 所以(x)f 的最小正周期2T==2ππ (2)解:因为(x)f 在区间308π⎡⎤⎢⎥⎣⎦,上是增函数,在区间382ππ⎡⎤⎢⎥⎣⎦,上是减函数,又f ( 0)=-2,f ( 38π)=f ( 2π)=2,故函数()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值为-2.16. 本小题主要考察古典概型及其概率计算公式,互斥事件、离散型随机变量的分布列与数学期望等基础知识。

天津市五区县高三数学质量检查试卷(一)试题 理 新人教A版(含解析)

天津市五区县高三数学质量检查试卷(一)试题 理 新人教A版(含解析)

2013年天津市五区县高考数学一模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•天津一模)i是虚数单位,复数等于()解:复数==2.(5分)(2013•天津一模)设x∈R,则“x>0“是““的(),“∴“时,则“x>0“是“3.(5分)(2013•天津一模)阅读右边的程序框图,运行相应的程序,当输入的值为10时,输出S的值为()4.(5分)(2013•天津一模)在的二项展开式中,x2的系数为()解:的展开式的通项为(﹣r﹣5.(5分)(2013•天津一模)在等比数列{a n}中,,则a3=(),=3,=3两式相除,可得6.(5分)(2013•天津一模)设△ABC的内角A,B,C的对边分别为a,b,c,且,.为三角形的内角,∴sinC==,,sinC=,,∴由正弦定理sinA==7.(5分)(2013•天津一模)直角三角形ABC中,∠C=90°,AB=2,AC=1,点D在斜边AB上,且,λ∈R,若,则λ=().,利用两个向量的数,∴BC=,=,∴A=B==)•(=••2××cos,8.(5分)(2013•天津一模)定义在R上奇函数,f(x)对任意x∈R都有f(x+1)=f(3﹣x),若f(1)二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•天津一模)某奥运代表团由112名男运动员,84名女运动员和28名教练员组成,现拟采用分层抽样的方法抽出一个容量为32的样本,则女运动员应抽取12 人.=84×10.(5分)(2013•天津一模)某几何体的三视图如图所示,则该几何体的体积为36π.V=•11.(5分)(2013•天津一模)已知集合A={x∈R||x﹣1|>2},集合B={x∈R|x2﹣(a+1)x+a<0},若A∩B=(3,5)则实数a= 5 .12.(5分)(2013•天津一模)若直线x﹣y+t=0被曲线(θ为参数)截得的弦长为,则实数t的值为﹣2或6 .解:由,得被曲线(为参数)截得的弦长为则半弦长为.13.(5分)(2013•天津一模)如图,在⊙O中,CD垂直于直径AB,垂足为D,DE⊥BC,垂足为E,若AB=8,CE•CB=7,则AD= 1 .14.(5分)(2013•天津一模)设函数若f(﹣3)=f(﹣1),f(﹣2)=﹣3,则关于x的方程f(x)=x的解的个数为 3 个.所以,解得所以.三、解答题:本大题共6小题,共80分.15.(13分)(2013•天津一模)已知函数f(x)=sin2x+acos2x,a,a为常数,a∈R,且.(I)求函数f(x)的最小正周期.(Ⅱ)当时,求函数f(x)的最大值和最小值.)由的范围,根据正弦函数的图象求出﹣(Ⅰ)由已知得,(Ⅱ)由,得所以)的最大值为;最小值为16.(13分)(2013•天津一模)一盒中装有9个大小质地相同的小球,其中红球4个,标号分别为0,1,2,3;白球3个,标号分别为0,1,2;黑球2个,标号分别为0,l;现从盒中不放回地摸出2个小球.(I)求两球颜色不同且标号之和为3的概率;(Ⅱ)记所摸出的两球标号之积为ξ,求ξ的分布列与数学期望.种,颜色不同且标号之和为;;;;;17.(13分)(2013•天津一模)在三棱锥S﹣ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,,E,F分别为AB、SB的中点.(I)证明:AC⊥SB;(Ⅱ)求锐二面角F﹣CE﹣B的余弦值;(Ⅲ)求B点到平面CEF的距离.各点的坐标,从而得到向量的坐标,计算出数量积的一个法向量,而为平面量,利用空间向量的夹角公式算出的距离为,,,,,即得(Ⅱ)由(Ⅰ)得,为平面,取.的一个法向量为又∵的余弦值为,可得18.(13分)(2013•天津一模)已知数列{a n}中a1=2,,数列{b n}中,其中 n∈N*.(Ⅰ)求证:数列{b n}是等差数列;(Ⅱ)设S n是数列{}的前n项和,求;(Ⅲ)设T n是数列的前n项和,求证:.,再由,从而得到=,用裂项法求出=的解析式,可得T(Ⅰ),∴是首项为,于是,故有==6.∴.+…+19.(14分)(2013•天津一模)设椭圆的中心在坐标原点,对称轴是坐标轴,一个顶点为A(0,2),右焦点F到点的距离为2.(I)求椭圆的方程;(Ⅱ)设经过点(0,﹣3)的直线l与椭圆相交于不同两点M,N满足,试求直线l的方程.到点的坐标,由依题意,设椭圆方程为,则其右焦点坐标为,,得,故.=∴所求椭圆方程为.,知点得是方程①的两个不等的实根,故有从而有,的坐标为的斜率为⊥MN,得,解得,∴20.(14分)(2013•天津一模)已知函数f(x)=ax3+bx2在点(2,f(2))处的切线方程为6x+3y﹣10=0,且对任意的x∈[0,+∞)f'(x)≤kln(x+1)恒成立.(I)求a,b的值;(Ⅱ)求实数k的最小值;(Ⅲ)证明:.=,令,得代入切线方程得,∴①②联立,解得(Ⅱ)由(Ⅰ)得,,即时,设由分析题意可知当∴k﹣1≥0,k≥1,∴令,得∴<。

2013年高考天津数学理科试题及答案(全word版)

2013年高考天津数学理科试题及答案(全word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅰ卷一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]2.设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7 (B) -4(C) 1 (D) 23.阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585 4.已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③ (B) ①② (C) ②③ (D) ②③5.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =(A) 1 (B) 3 (C) 2 (D) 36.在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠ =7. 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 48.已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞ 第Ⅱ卷二.填空题: 本大题共6小题, 每小题5分, 共30分.9.已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .10.6x ⎛ ⎝的二项展开式中的常数项为 . 11.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . 12.在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 . 13.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为.14.设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值. 三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.15. (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.16.(本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 在取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.17. (本小题满分13分) 如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为, 求线段AM的长.18.(本小题满分13分)设椭圆22221(0)x y a b a b +=>>的左焦点为F , , 过点F 且与x 轴垂直的. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.19.(本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且 335544,,S a S a S a +++ 成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.20.(本小题满分14分)已知函数2l ()n f x x x =. (Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =. (Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。

2013年全国高考数学理科试卷天津卷(word版)

2013年全国高考数学理科试卷天津卷(word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分。

考试用时120分钟。

第Ⅰ卷1至2页, 第Ⅱ卷3至5页。

答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高。

·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A ) (,2]-∞ (B ) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A ) -7 (B ) -4(C ) 1 (D ) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B ) 73(C ) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A ) ①②③(B ) ①② (C ) ②③ (D ) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点。

2013年全国高考数学理科试卷天津卷(word版)

2013年全国高考数学理科试卷天津卷(word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码。

答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号。

2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高。

·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A)(,2]-∞ (B) [1,2] (C ) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z= y -2x 的最小值为(A ) -7 (B ) -4(C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B ) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切。

天津市五区县2013届高三质量检查试卷(一)理科数学 word版含答案

天津市五区县2013届高三质量检查试卷(一)理科数学 word版含答案

天津市五区县201 3年高三质量调查试卷数 学(理工类)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第1卷1至2页,第Ⅱ卷3至6页,答卷前,考生务必将自己的姓名、准考号填写在答题卡上.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效, 祝各位考生考试顺利l一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数31ii++等于 (A)2i + (B)2i - (C) 12i + (D)12i -(2)设x ∈R ,则“x>0"是“12x x+≥"的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件(3)阅读右边的程序框图,运行相应的程序, 当输入的值为10时,输出S 的值为 (A) 45 (B) 49(C) 52 (D) 54 (4)在5(x 的二项展开式中,2x 的系数为 (A) 40 (B) -40 (C) 80 (D) -80(5)在等比数列{}n a 中,12512511127,3a a a a a a ++⋅⋅⋅+=++⋅⋅⋅+=,则3a = (A)±9 (B)9 (C)±3 (D)3(6)设△ABC 的内角,,A B C 的对边分别为a ,b,c ,且12,3,cos 4a b C ===,则sinA=(7)直角三角形ABC 中,90,2,1C A B A C ∠===,点D 在斜边AB 上,且AD AB λ=,R λ∈,若2CD CB ⋅=,则λ=(A)12 (B)13(D )23(8)定义在R 上奇函数,()f x 对任意x R ∈都有(1)(3)f x f x +=-,若(1)2f =-,则2012(2012)2013(2013)f f -=(A) -4026 (B) 4026(C) -4024 (D) 4024天津市五区县201 3年高三质量调查试卷(一)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共110分,二、填空题:本大题共6小题,每小题5分,共30分. (9)某奥运代表团由112名男运动员,84名女运动员和28名教练员组成,现拟采用分层抽样的方法抽出一个容量为32的样本,则女运动员应抽取_______人.(10)某几何体的三视图如图所示,则该几何体的体积为_______. (11)已知集合{}|12A x R x =∈->,集合 {}2|(1)0B x R x a x a =∈-++<,若(3,5)A B = 则实数a=______. (12)若直线x - y+t=0被曲线14cos 34sin x y θθ=+⎧⎨=+⎩(θ为参数)截得的弦长为t 的值为______。

2013年高考理科数学天津卷word解析版

2013年高考理科数学天津卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至5页.答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分. 参考公式: ·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ). ·如果事件A ,B 相互独立,那么P (AB )=P (A )P (B ). ·棱柱的体积公式V =Sh .其中S 表示棱柱的底面面积,h 表示棱柱的高.·球的体积公式V =34π3R .其中R 表示球的半径. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013天津,理1)已知集合A ={x ∈R ||x |≤2},B ={x ∈R |x ≤1},则A ∩B =( ).A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1] 答案:D解析:解不等式|x |≤2,得-2≤x ≤2,所以A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤1}.故选D.2.(2013天津,理2)设变量x ,y 满足约束条件360,20,30,x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩则目标函数z =y -2x 的最小值为( ).A .-7B .-4C .1D .2 答案:A解析:作约束条件360,20,30x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩所表示的可行区域,如图所示,z =y -2x 可化为y =2x +z ,z 表示直线在y 轴上的截距,截距越大z 越大,作直线l 0:y =2x ,平移l 0过点A (5,3),此时z 最小为-7,故选A.3.(2013天津,理3)阅读下边的程序框图,运行相应的程序.若输入x 的值为1,则输出S 的值为( ).A .64B .73C .512D .585 答案:B解析:由程序框图,得x =1时,S =1;x =2时,S =9;x =4时,S =9+64=73,结束循环输出S 的值为73,故选B.4.(2013天津,理4)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切, 其中真命题的序号是( ). A .①②③ B .①② C .①③ D .②③ 答案:C解析:设球半径为R ,缩小后半径为r ,则r =12R ,而V =34π3R ,V ′=33344114πππ33283r R R ⎛⎫==⨯ ⎪⎝⎭,所以该球体积缩小到原来的18,故①为真命题;两组数据的平均数相等,它们的方差可能不相等,故②为假命题;圆x 2+y 2=12的圆心到直线x +y +1=0的距离d 2=,因为该距离等于圆的半径,所以直线与圆相切,故③为真命题.故选C.5.(2013天津,理5)已知双曲线2222=1x y a b-(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB p =( ).A .1B .32C .2D .3答案:C解析:设A 点坐标为(x 0,y 0),则由题意,得S △AOB =|x 0|·|y 0|抛物线y 2=2px 的准线为2px =-,所以02p x =-,代入双曲线的渐近线的方程b y x a =±,得|y 0|=2bp a .由2222,,ca abc ⎧=⎪⎨⎪+=⎩得b,所以|y 0|p .所以S △AOB2p =,解得p =2或p =-2(舍去). 6.(2013天津,理6)在△ABC 中,∠ABC =π4,ABBC =3,则sin ∠BAC =( ).ABC.10 D.5答案:C解析:在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=29232+-⨯=5,即得AC由正弦定理sin sin AC BCABC BAC =∠∠3sin BAC=∠,所以sin ∠BAC. 7.(2013天津,理7)函数f (x )=2x |log 0.5x |-1的零点个数为( ).A .1B .2C .3D .4 答案:B 解析:函数f (x )=2x |log 0.5x |-1的零点也就是方程2x |log 0.5x |-1=0的根,即2x |log 0.5x |=1,整理得|log 0.5x |=12x⎛⎫ ⎪⎝⎭.令g (x )=|log 0.5x |,h (x )=12x⎛⎫⎪⎝⎭,作g (x ),h (x )的图象如图所示.因为两个函数图象有两个交点,所以f (x )有两个零点.8.(2013天津,理8)已知函数f (x )=x (1+a |x |).设关于x 的不等式f (x +a )<f (x )的解集为A .若⎣⎡⎦⎤-12,12⊆A ,则实数a 的取值范围是( ).A.⎫⎪⎪⎝⎭ B.⎫⎪⎪⎝⎭C.110,22⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ D.1,2⎛⎫-∞ ⎪ ⎪⎝⎭答案:A解析:f (x )=x (1+a |x |)=22,0,,0.ax x x ax x x ⎧+≥⎨-+<⎩ 若不等式f (x +a )<f (x )的解集为A ,且11,22⎡⎤-⎢⎥⎣⎦A ⊆,则在区间11,22⎡⎤-⎢⎥⎣⎦上,函数y =f (x +a )的图象应在函数y =f (x )的图象的下边. (1)当a =0时,显然不符合条件.(2)当a >0时,画出函数y =f (x )和y =f (x +a )的图象大致如图.由图可知,当a >0时,y =f (x +a )的图象在y =f (x )图象的上边,故a >0不符合条件. (3)当a <0时,画出函数y =f (x )和y =f (x +a )的图象大致如图.由图可知,若f (x +a )<f (x )的解集为A ,且11,22⎡⎤-⎢⎥⎣⎦A ⊆, 只需1122f a f ⎛⎫⎛⎫-+<- ⎪ ⎪⎝⎭⎝⎭即可, 则有2211112222a a a a ⎛⎫⎛⎫⎛⎫--++-+<--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a <0),整理,得a 2-a -1<0a <<.∵a <0,∴a ∈1,02⎛⎫⎪ ⎪⎝⎭.综上,可得a 的取值范围是12⎛⎫- ⎪ ⎪⎝⎭.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分. 9.(2013天津,理9)已知a ,b ∈R ,i 是虚数单位.若(a +i)·(1+i)=b i ,则a +b i =__________.答案:1+2i解析:由(a +i)(1+i)=a -1+(a +1)i =b i ,得10,1,a a b -=⎧⎨+=⎩解方程组,得a =1,b =2,则a +b i =1+2i.10.(2013天津,理10)6x ⎛- ⎝的二项展开式中的常数项为__________.答案:15解析:二项展开式的通项为3662166C (1)C rr r r r r r T x x --+⎛==- ⎝,3602r -=得r =4,所以二项展开式的常数项为T 5=(-1)446C =15.11.(2013天津,理11)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为π4,3⎛⎫⎪⎝⎭,则|CP |=__________.答案:解析:由圆的极坐标方程为ρ=4cos θ,得圆心C 的直角坐标为(2,0),点P 的直角坐标为(2,,所以|CP |=12.(2013天津,理12)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ·BE=1,则AB 的长为__________.答案:12解析:如图所示,在平行四边形ABCD 中,AC =AB +AD ,BE =BC +CE =12-AB+AD.所以AC ·BE =(AB +AD )·12AB AD ⎛⎫-+ ⎪⎝⎭=12-|AB |2+|AD |2+12AB ·AD =12-|AB |2+14|AB |+1=1,解方程得|AB |=12(舍去|AB |=0),所以线段AB 的长为12. 13.(2013天津,理13)如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD =5,则线段CF 的长为__________.答案:83解析:∵AE 为圆的切线,∴由切割线定理,得AE 2=EB ·ED . 又AE =6,BD =5,可解得EB =4. ∵∠EAB 为弦切角,且AB =AC , ∴∠EAB =∠ACB =∠ABC . ∴EA ∥BC .又BD ∥AC ,∴四边形EBCA 为平行四边形. ∴BC =AE =6,AC =EB =4.由BD ∥AC ,得△ACF ∽△DBF , ∴45CF AC BF BD ==. 又CF +BF =BC =6,∴CF =83.14.(2013天津,理14)设a +b =2,b >0,则当a =__________时,1||2||a a b+取得最小值. 答案:-2解析:因为a +b =2,所以1=1||22||a b a a b +⋅+=||||22||4||4||a ba ab a a b a a b++=++≥+14||4||a a a a +=, 当a >0时,5+1=4||4a a ,1||52||4a a b +≥;当a <0时,3+1=4||4a a ,1||32||4a ab +≥,当且仅当b =2|a |时等号成立.因为b >0,所以原式取最小值时b =-2a .又a +b =2,所以a =-2时,原式取得最小值.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(2013天津,理15)(本小题满分13分)已知函数f (x )=π24x ⎛⎫+ ⎪⎝⎭+6sin x cos x -2cos 2x +1,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.解:(1)f (x )=sin 2x·ππcossin 44x ⋅+3sin 2x -cos 2x =2sin 2x -2cos 2x=π24x ⎛⎫- ⎪⎝⎭.所以,f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间3π0,8⎡⎤⎢⎥⎣⎦上是增函数,在区间3ππ,82⎡⎤⎢⎥⎣⎦上是减函数.又f (0)=-2,3π8f ⎛⎫= ⎪⎝⎭,π22f ⎛⎫= ⎪⎝⎭,故函数f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为 2. 16.(2013天津,理16)(本小题满分13分)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望. 解:(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A ,则P (A )=1322252547C C +C C 6C 7=. 所以,取出的4张卡片中,含有编号为3的卡片的概率为67. (2)随机变量X 的所有可能取值为1,2,3,4.P (X =1)=3347C 1C 35=,P (X =2)=3447C 4C 35=, P (X =3)=3547C 2C 7=, P (X =4)=3647C 4C 7=. 所以随机变量X 的分布列是随机变量X 的数学期望EX =1×35+2×35+3×7+4×7=5.17.(2013天津,理17)(本小题满分13分)如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为6,求线段AM 的长. 解:(方法一)(1)证明:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).易得11B C =(1,0,-1),CE =(-1,1,-1),于是11B C ·CE=0,所以B 1C 1⊥CE .(2)1B C=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则10,0,B C CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.x y z x y z --=⎧⎨-+-=⎩消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故11B C=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,11B C 〉=1111||||B C B C ⋅==⋅m m从而sin 〈m ,11B C〉=7.所以二面角B 1-CE -C 1的正弦值为7. (3)AE=(0,1,0),1EC =(1,1,1).设EM =λ1EC =(λ,λ,λ),0≤λ≤1,有AM =AE +EM=(λ,λ+1,λ).可取AB=(0,0,2)为平面ADD 1A 1的一个法向量.设θ为直线AM 与平面ADD 1A 1所成的角,则sin θ=|cos 〈AM ,AB〉|=AM AB AM AB⋅⋅==13λ=, 所以AM(方法二)(1)证明:因为侧棱CC 1⊥底面A 1B 1C 1D 1,B 1C 1⊂平面A 1B 1C 1D 1, 所以CC 1⊥B 1C 1.经计算可得B 1EB 1C 1,EC 1, 从而B 1E 2=22111B C EC +,所以在△B 1EC 1中,B 1C 1⊥C 1E ,又CC 1,C 1E ⊂平面CC 1E ,CC 1∩C 1E =C 1, 所以B 1C 1⊥平面CC 1E ,又CE ⊂平面CC 1E ,故B 1C 1⊥CE .(2)过B 1作B 1G ⊥CE 于点G ,连接C 1G .由(1),B 1C 1⊥CE ,故CE ⊥平面B 1C 1G ,得CE ⊥C 1G , 所以∠B 1GC 1为二面角B 1-CE -C 1的平面角. 在△CC 1E 中,由CE =C 1E,CC 1=2,可得C 1G=3. 在Rt △B 1C 1G 中,B 1G, 所以sin ∠B 1GC 1即二面角B 1-CE -C 1的正弦值为7. (3)连接D 1E ,过点M 作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,连接AH ,AM ,则∠MAH 为直线AM 与平面ADD 1A 1所成的角.设AM =x ,从而在Rt △AHM 中,有MHx ,AHx . 在Rt △C 1D 1E 中,C 1D 1=1,ED 1,得EH13x =.在△AEH 中,∠AEH =135°,AE =1,由AH 2=AE 2+EH 2-2AE ·EH cos 135°,得2217111893x x x =++, 整理得5x 2--6=0,解得x. 所以线段AM18.(2013天津,理18)(本小题满分13分)设椭圆2222=1x y a b+(a >b >0)的左焦点为F,过点F 且与x(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC ·DB+AD ·CB=8,求k 的值.解:(1)设F (-c,0),由3c a =,知a =.过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有2222()1c y a b-+=,解得y ==,解得b =, 又a 2-c 2=b 2,从而a ,c =1,所以椭圆的方程为22=132x y +. (2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组221,132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=226k -,x 1x 2=223623k k-+. 因为A (0),B0),所以AC ·DB +AD·CB =(x 1y 1x 2,-y 2)+(x 2,y 2x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=22212623k k +++.由已知得22212623k k+++=8,解得k =19.(2013天津,理19)(本小题满分14分)已知首项为32的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =1n nS S -(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解:(1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是25314a q a ==. 又{a n }不是递减数列且132a =,所以12q =-.故等比数列{a n }的通项公式为11313(1)222n n n n a --⎛⎫=⨯-=-⋅ ⎪⎝⎭. (2)由(1)得11,121121,.2nn n n n S n ⎧⎫+⎪⎪⎪⎛⎫=--=⎪⎨ ⎪⎝⎭⎪⎪-⎪⎪⎩⎭为奇数,为偶数当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32, 故11113250236n n S S S S <-≤-=-=. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1, 故221134704312n n S S S S >-≥-=-=-. 综上,对于n ∈N *,总有715126n n S S -≤-≤. 所以数列{T n }最大项的值为56,最小项的值为712-.20.(2013天津,理20)(本小题满分14分)已知函数f (x )=x 2ln x .(1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有2ln ()15ln 2g t t <<. 解:(1)函数f (x )的定义域为(0,+∞). f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x =当x 变化时,所以函数f (x )的单调递减区间是⎛ ⎝,单调递增区间是⎫+∞⎪⎭.(2)证明:当0<x ≤1时,f (x )≤0.设t >0,令h (x )=f (x )-t ,x ∈[1,+∞). 由(1)知,h (x )在区间(1,+∞)内单调递增. h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0. 故存在唯一的s ∈(1,+∞),使得t =f (s )成立.(3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1,从而2ln ()ln ln ln ln ln ()ln(ln )2ln ln(ln )2ln g t s s s ut f s s s s s u u====++,11 其中u =ln s . 要使2ln ()15ln 2g t t <<成立,只需0ln 2u u <<. 当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e)=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立.另一方面,令F (u )=ln 2u u -,u >1.F ′(u )=112u -,令F ′(u )=0,得u =2. 当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0.故对u >1,F (u )≤F (2)<0. 因此ln 2uu <成立.综上,当t >e 2时,有2ln ()15ln 2g t t <<.。

2013年天津市高考数学试卷(理科)及答案(Word版)

2013年天津市高考数学试卷(理科)及答案(Word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页。

答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径。

一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C ) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z= y -2x 的最小值为(A ) -7 (B ) -4(C ) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C ) 512 (D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③ (B ) ①②(C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =(A ) 1 (B) 32 (C) 2(D ) 3 (6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A) 1010 (B ) 105 (C ) 31010 (D ) 55(7) 函数0.5()2|log |1x f x x =-的零点个数为(A ) 1 (B ) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+。

2013年高考天津数学理科试题及答案(全word版)

2013年高考天津数学理科试题及答案(全word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅰ卷一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞(B) [1,2](C) [2,2](D) [-2,1]2.设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7 (B) -4 (C) 1 (D) 23.阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512(D) 5854.已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③ (D) ②③5.已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O为坐标原点. 若双曲线的离心率为2, △AOB 则p =(A) 1(B)3(C) 2 (D) 36.在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠ =7. 函数0.5()2|log |1x f x x =-的零点个数为(A) 1(B) 2(C) 3(D) 48.已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭ (D) ⎛- ⎝⎭∞ 第Ⅱ卷二.填空题: 本大题共6小题, 每小题5分, 共30分.9.已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . 10.6x⎛⎝的二项展开式中的常数项为 .11.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .12.在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .13.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .14.设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值. 三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. 15. (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.16.(本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 在取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.17. (本小题满分13分) 如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为, 求线段AM的长.18.(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.19.(本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且 335544,,S a S a S a +++ 成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.20.(本小题满分14分)已知函数2l ()n f x x x =. (Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.参考答案一、选择题1.D 提示:||222,[2,1]x x A B ≤⇒-≤≤⋂=- 2.A 提示:作出可行域,如图由图可知,当目标函数通过直线20x y --=与直线3y =的交点(5,3)时取得最小值,min 7z =-。

【解析版】天津市五区县2013年高考数学一模试卷(理科)

【解析版】天津市五区县2013年高考数学一模试卷(理科)

2013年天津市五区县高考数学一模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•天津一模)i是虚数单位,复数等于()解:复数==2.(5分)(2013•天津一模)设x∈R,则“x>0“是““的()“”∴∴∴“时,“3.(5分)(2013•天津一模)阅读右边的程序框图,运行相应的程序,当输入的值为10时,输出S的值为()4.(5分)(2013•天津一模)在的二项展开式中,x2的系数为()解:的展开式的通项为=)r﹣5.(5分)(2013•天津一模)在等比数列{a n}中,,则a3=(),=3∵,∴,=3两式相除,可得6.(5分)(2013•天津一模)设△ABC的内角A,B,C的对边分别为a,b,c,且,..D为三角形的内角,,sinC=,,sinC=c=得:=.7.(5分)(2013•天津一模)直角三角形ABC中,∠C=90°,AB=2,AC=1,点D在斜边AB上,且,λ∈R,若,则λ=()..D的值,根据由(,利用两个向量的数,cosA=,∴A=,B==•(=λ•×cos=2 =8.(5分)(2013•天津一模)定义在R上奇函数,f(x)对任意x∈R都有f(x+1)=f(3﹣x),若f(1)=二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•天津一模)某奥运代表团由112名男运动员,84名女运动员和28名教练员组成,现拟采用分层抽样的方法抽出一个容量为32的样本,则女运动员应抽取12人.,×10.(5分)(2013•天津一模)某几何体的三视图如图所示,则该几何体的体积为36π.V=•π•11.(5分)(2013•天津一模)已知集合A={x∈R||x﹣1|>2},集合B={x∈R|x2﹣(a+1)x+a<0},若A∩B=(3,5)则实数a=5.12.(5分)(2013•天津一模)若直线x﹣y+t=0被曲线(θ为参数)截得的弦长为,则实数t的值为﹣2或6.解:由,得被曲线为参数)截得的弦长为则半弦长为d=13.(5分)(2013•天津一模)如图,在⊙O中,CD垂直于直径AB,垂足为D,DE⊥BC,垂足为E,若AB=8,CE•CB=7,则AD=1.14.(5分)(2013•天津一模)设函数若f(﹣3)=f(﹣1),f(﹣2)=﹣3,则关于x的方程f(x)=x的解的个数为3个.所以,解得所以.三、解答题:本大题共6小题,共80分.15.(13分)(2013•天津一模)已知函数f(x)=sin2x+acos2x,a,a为常数,a∈R,且.(I)求函数f(x)的最小正周期.(Ⅱ)当时,求函数f(x)的最大值和最小值.)由的范围,根据正弦函数的图象求出﹣,1=)由,得所以)的最大值为;最小值为16.(13分)(2013•天津一模)一盒中装有9个大小质地相同的小球,其中红球4个,标号分别为0,1,2,3;白球3个,标号分别为0,1,2;黑球2个,标号分别为0,l;现从盒中不放回地摸出2个小球.(I)求两球颜色不同且标号之和为3的概率;(Ⅱ)记所摸出的两球标号之积为ξ,求ξ的分布列与数学期望.种,颜色不同且标号之和为∴;;;;;0 1 2 3 4 6∴17.(13分)(2013•天津一模)在三棱锥S﹣ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,,E,F分别为AB、SB的中点.(I)证明:AC⊥SB;(Ⅱ)求锐二面角F﹣CE﹣B的余弦值;(Ⅲ)求B点到平面CEF的距离.各点的坐标,从而得到向量的坐坐标,利用垂直向量数量积为零的方法建立方程组解出的一个法向量,而为平面利用空间向量的夹角公式算出的距离为,,,∴,∵∴)得为平面,取.的一个法向量为又∵为平面∴的余弦值为,可得∵18.(13分)(2013•天津一模)已知数列{a n}中a1=2,,数列{b n}中,其中n∈N*.(Ⅰ)求证:数列{b n}是等差数列;(Ⅱ)设S n是数列{}的前n项和,求;(Ⅲ)设T n是数列的前n项和,求证:.)由条件可得,再由,于是,用裂项法求出的值.=T)∴是首项为,==.19.(14分)(2013•天津一模)设椭圆的中心在坐标原点,对称轴是坐标轴,一个顶点为A(0,2),右焦点F到点的距离为2.(I)求椭圆的方程;(Ⅱ)设经过点(0,﹣3)的直线l与椭圆相交于不同两点M,N满足,试求直线l的方程.的坐标,由依题意,设椭圆方程为则其右焦点坐标为,,得,故.=12所求椭圆方程为.,知点得的两个不等的实根,故有从而有,的坐标为的斜率为,解得,∴20.(14分)(2013•天津一模)已知函数f(x)=ax3+bx2在点(2,f(2))处的切线方程为6x+3y﹣10=0,且对任意的x∈[0,+∞)f'(x)≤kln(x+1)恒成立.(I)求a,b的值;(Ⅱ)求实数k的最小值;(Ⅲ)证明:.=)得再令,利用累加求和和裂项求和即可证明.代入切线方程得,∴,时,时,设,可知分析题意可知当,∴,得∴。

2013年天津市高考数学试卷(理科)及答案(Word版)

2013年天津市高考数学试卷(理科)及答案(Word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为, 则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A) 10 (B) 10 (C) 310 (D) 5 (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) 15,0⎛⎫- ⎪ ⎪⎝⎭ (B) 13,0⎛⎫- ⎪ ⎪⎝⎭(C) 15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 5,1⎛⎫-- ⎪ ⎝⎭∞⎪ 2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x x ⎛- ⎪⎝⎭的二项展开式中的常数项为. (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为.(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为.(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26, 求线段AM 的长.(18) (本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为3, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为43. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。

2013年全国高考数学理科试卷天津卷(word版)

2013年全国高考数学理科试卷天津卷(word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分。

考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效。

考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A )(,2]-∞ (B ) [1,2] (C) [-2,2] (D ) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A ) -7 (B ) -4(C) 1 (D ) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A ) 64 (B ) 73(C ) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③ (B) ①②(C )②③(D ) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点。

2013年全国高考数学理科试卷天津卷(word版)

2013年全国高考数学理科试卷天津卷(word版)

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 (A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③(D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠ =(A)(B)(C)(D)(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分. 二.填空题: 本大题共6小题, 每小题5分, 共30分. (9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10) 6x⎛ ⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP |= .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b +取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b +=>>的左焦点为F , 过点F 且与x 轴垂直的直线被椭圆.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市五区县201 3年高三质量调查试卷数 学(理工类)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第1卷1至2页,第Ⅱ卷3至6页,答卷前,考生务必将自己的姓名、准考号填写在答题卡上.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效, 祝各位考生考试顺利l一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数31ii++等于 (A)2i + (B)2i - (C) 12i + (D)12i -(2)设x ∈R ,则“x>0"是“12x x+≥"的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件(3)阅读右边的程序框图,运行相应的程序, 当输入的值为10时,输出S 的值为 (A) 45 (B) 49(C) 52 (D) 54 (4)在5()x x-的二项展开式中,2x 的系数为 (A) 40 (B) -40 (C) 80 (D) -80(5)在等比数列{}n a 中,12512511127,3a a a a a a ++⋅⋅⋅+=++⋅⋅⋅+=,则3a = (A)±9 (B)9 (C)±3 (D)3(6)设△ABC 的内角,,A B C 的对边分别为a ,b,c ,且12,3,cos 4a b C ===,则sinA= (A)154 (B)158 ( C)6 (D)6 (7)直角三角形ABC 中,90,2,1C AB AC ∠===,点D 在斜边AB 上,且AD AB λ=,R λ∈,若2CD CB ⋅=,则λ=(A)12 (B)13(C)3 (D )23(8)定义在R 上奇函数,()f x 对任意x R ∈都有(1)(3)f x f x +=-,若(1)2f =-,则2012(2012)2013(2013)f f -=(A) -4026 (B) 4026 (C) -4024 (D) 4024天津市五区县201 3年高三质量调查试卷(一)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共110分,二、填空题:本大题共6小题,每小题5分,共30分. (9)某奥运代表团由112名男运动员,84名女运动员和28名教练员组成,现拟采用分层抽样的方法抽出一个容量为32的样本,则女运动员应抽取_______人. (10)某几何体的三视图如图所示,则该几何体的体积为_______. (11)已知集合{}|12A x R x =∈->,集合 {}2|(1)0B x R x a x a =∈-++<,若(3,5)A B =则实数a=______. (12)若直线x - y+t=0被曲线14cos 34sin x y θθ=+⎧⎨=+⎩(θ为参数)截得的弦长为42,则实数t 的值为______。

(13)如图,在O 中,CD 垂直于直径AB ,垂足为D ,DE ⊥BC ,垂足为E ,若AB =8,7CE CB ⋅=,则AD=____. (14)设函数221 (x 0)()(0x f x x bx c x ⎧-+≥⎪=⎨+=<⎪⎩若(3)(1),(2)3f f f -=--=-,则关于x 的方程()f x x =的解的个数为_______个,三、解答题:本大题共6小题,共80分. (15)(本小题满分13分)已知函数2()sin 2cos ,f x x a x a =+,a 为常数,a R ∈,且()04f π=.(I)求函数()f x 的最小正周期。

(Ⅱ)当11,2424x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值, (16)(本小题满分13分)一盒中装有9个大小质地相同的小球,其中红球4个,标号分别为0,1,2,3;白球3个,标号分别为0,1,2;黑球2个,标号分别为0,l ;现从盒中不放回地摸出2个小球. (I)求两球颜色不同且标号之和..为3的概率; (Ⅱ)记所摸出的两球标号之积..为ξ,求ξ的分布列与数学期望. (17)(本小题满分13分)在三棱锥S -ABC 中,ABC ∆是边长为2的正三角形,平面SAC ⊥平面ABC ,3SA SC ==,E ,F 分别为AB 、SB 的中点.(I)证明:AC ⊥SB ;(Ⅱ)求锐二面角F -CE –B 的余弦值; (Ⅲ)求B 点到平面CEF 的距离. 18.(本小题满分13分) 已知数列{}n a 中1112,2n n a a a +==-,数列{}n b 中11n n b a =-。

其中n N ∈. (I)求证:数列{}n b 是等差数列: (Ⅱ)设n S 最是数列13n b ⎧⎫⎨⎬⎩⎭的前n 项和,求12111...nS S S +++; (Ⅲ)设n T 是数列1()3nn b ⎧⎫⋅⎨⎬⎩⎭的前n 项和,求证:34n T <. (19)(本小题满分14分)设椭圆的中心在坐标原点,对称轴是坐标轴,一个顶点为(0,2)A ,右焦点F 到点(2,2)B 的距离为2.(I)求椭圆的方程;(Ⅱ)设经过点(0,-3)的直线Z 与椭圆相交于不同两点M ,N 满足AM AN =,试 求直线l 的方程. (20)(本小题满分14分)已知函数32()f x ax bx =+在点(2,(2))f 处的切线方程为6x+3y -10=0,且对任意 的[)0,x ∈+∞'()ln(1)f x k x ≤+恒成立. (I)求a,b 的值;(Ⅱ)求实数k 的最小值; (Ⅲ)证明:11ln(1) 2 (n N )ni n i =<++∈∑.天津市五区县2013年高三质量调查试卷参考答案数 学(理工类)一、选择题:每小题5分,满分40分.(1)B (2)C (3)D (4)A (5)C (6)C (7)D (8)A二、填空题:每小题5分,共30分.(9)12 (10)36π (11)5 (12)2-或6 (13)1 (14)3三、解答题 (15)(本小题满分13分) 解:(Ⅰ)由已知得2()=sin +cos 0424f a πππ= 即11+=02a ,………………………………………………………………2分 所以=2a - ………………………………………………3分所以2()sin 22cos =sin 2cos 21f x x x x x =--- ……………………4分)14--πx …………………………………5分 所以函数()f x 的最小正周期为π …………………………………6分 (Ⅱ)由112424,ππ⎡⎤∈⎢⎥⎣⎦x ,得22463--,πππ⎡⎤∈⎢⎥⎣⎦x …………………………………7分 则1sin (2)142--,π⎡⎤∈⎢⎥⎣⎦x ……………………………………………………9分所以1)1124----πx …………………………………11分所以函数()y f x =1;最小值为12--…………………13分(16)(本小题满分13分)解:(Ⅰ)从盒中不放回地摸出2个小球的所有可能情况有2936C =种 ………… 2分 颜色不同且标号之和为3的情况有6种 ………………………………… 4分 ∴61366P == …………………………………………… 5分(Ⅱ) 依题意ξ的可取值为0,1,2,3,4,6112363217(0)363612C C C P ξ+====;………………………………………………6分 231(1)3612C P ξ===;………………………………………………7分 11231(2)366C C P ξ===;………………………………………………8分 131(3)3612C P ξ===;………………………………………………9分 1(4)36P ξ==; ………………………………………………10分 121(6)C P ξ=== ………………………………………………11分(不列表不扣分)71111110012346121261236189=⨯+⨯+⨯+⨯+⨯+⨯=E ξ …………………13分(17)(本小题满分13分) 证明:(Ⅰ)法一:取AC 中点O ,连结SO ,BO . ∵SA SC AB AC ==,, ∴AC SO ⊥且AC BO ⊥,∴AC ⊥平面SOB ,又SB ⊂平面SOB ,∴AC SB ⊥…………………………3分 法二:取AC 中点O ,以O 为原点, 分别以OA 、OB 、OS 为x轴、y 轴、z 轴, 建立空间直角坐标系,则(100)A ,,,(00)B(00S ,,1(0)2E ,(022F ,,,(100)C -,,∴(200)AC =-,,,(0SB =,(200)(00AC SB ⋅=-⋅=,,∴SB AC ⊥. ……………………………………………………………………3分(Ⅱ)由(Ⅰ)得331(0),(0222CE EF ==-,,,,,设),,(z y x =为平面CEF的一个法向量,则3021022CE n x y EF n x z ⎧⋅=+=⎪⎪⎨⎪⋅=-+=⎪⎩ 取=1z,x y =∴ )1,6,2(-=. …………………………………………………………6分又(00OS =,为平面ABC 的一个法向量,1cos 3n OS n OS n OS⋅==⋅∴,∴二面角F CE B --的余弦值为31.………………………………………9分 (Ⅲ)由(Ⅰ)(Ⅱ)得1(0)2EB =-,(21)n =-,为平面CEF 的一个法向量 ∴点B 到平面CEF 的距离 223⋅==n EB d n……………………………13分(18)(本小题满分13分) 解:(Ⅰ)11111111nn n n na b a a a ++===---, ………………………………1分 而 11n n b a =-, ∴ 11111n n n n n a b b a a +-=-=--.*N n ∈ …………………………3分 ∴ {n b }是首项为11111b a ==-,公差为1的等差数列. …………4分 (Ⅱ)由(Ⅰ)可知n b n =, ………………………………………………………5分111(1).(12)3336n n n n b n S n +=∴=+++=, …………………………………6分 于是16(1)n S n n =+ =116(),1n n -+ …………………………………………7分故有12111n S S S +++111116(1)2231n n =-+-++-+ =616(1)11nn n -=++ …………………………………9分 (Ⅲ)证明:由(Ⅰ)可知 1()3n n b ⋅1()3n n =⋅, ……………………………10分则211112()().333n n T n =⋅+⋅++⋅()231111111()2()1()33333nn n T n n +⎛⎫=⋅+⋅++-+⋅ ⎪⎝⎭∴. …………11分则232111()()3333n T =+++…+111()()33n n n +-⋅ 11111()()233n n n +⎡⎤=--⋅⎢⎥⎣⎦,∴ n T =131113()()443234n n n ---⋅<. ………………………13分(19)(本小题满分14分)解:(Ⅰ) 依题意,设椭圆方程为)0(12222>>=+b a by a x ,则其右焦点坐标为22,)0,(b a c c F -=, ………………………………1分由=||FB 2,2=,即2(24c +=,故22=c . …………………………………………2分又∵2=b , ∴212a =, ……………………………………………………3分∴所求椭圆方程为141222=+y x . ……………………4分 (Ⅱ)由题意可设直线l 的方程为3y kx =-(0)k ≠, ……………………5分由||||AN AM =,知点A 在线段MN 的垂直平分线上,由⎪⎩⎪⎨⎧=+-=1412322y x kx y 得223(3)12x kx +=- 即22(13)18150k x kx ++=-……(*) ………………………………………6分222=(18)4(13)15144600k k k ∆+⨯=>---即25>12k 时方程(*)有两个不相等的实数根 …………………………7分 设11()M x y ,,22()N x y ,,线段MN 的中点00()P x y , 则1x ,2x 是方程(*)的两个不等的实根,故有1221813kx x k +=+ …………8分从而有12029213x x kx k +==+,22002293(13)331313k k y kx k k +===++--- 于是,可得线段MN 的中点P 的坐标为2293()1313k P k k ++-, ………………9分 又由于0k ≠,因此直线AP 的斜率为22123256139913k k k k k k +==+---- ………10分 由AP MN ⊥,得25619k k k⨯=--- …………………………11分 即2569k +=,解得225312k =>,∴3k =±, …………………………12分 ∴所求直线l的方程为:33y x =±-. …………………………14分 方法二:设直线l 的方程为3-=kx y (0)k ≠, ………………………………5分则⎪⎩⎪⎨⎧=+-=1412322y x kx y 得:22(13)18150k x kx +-+= ………………………………………6分 由2144600k ∆=>-设11(,)M x y 、22(,)N x y 由韦达定理得12212218131513k x x k x x k ⎧+=⎪⎪+⎨⎪=⎪+⎩, ……………8分又22||||AN AM =,则22222121)2()2(-+=-+y x y x ……………9分移项得:k =1212x x y y --=-21214x x y y ++-=-2121()10x x k x x ++-=-2110(13)18k k k+-解得k = …………………………………………………………12分 此时△>0适合题意, ∴所求直线l 的方程为:y =±3x -3 …………………………………14分(20)(本小题满分14分)解:(Ⅰ)2()32,(2)2f x ax bx f ''=+=-, ∴1242a b +=- ① ………………1分将2x =代入直线方程得23y =-,∴2843a b +=- ② ………………2分 ①②联立,解得11,32a b =-= ……………………………………………4分(Ⅱ)由(Ⅰ)得3211()32f x x x =-+2()=f x x x '-+,∴2ln(1)x x k x -+≤+在[)0,x ∈+∞上恒成立;即2ln(1)0x x k x -++≥在[)0,x ∈+∞恒成立; ………………………………5分设2()ln(1)g x x x k x =-++,(0)0g =,∴只需证对于任意的[)0,x ∈+∞有()(0)g x g ≥ …………………………6分[)221()21,0,11k x x k g x x x x x ++-'=-+=∈+∞++设2()21h x x x k =++-,1)当=18(1)0k ∆--≤,即98k ≥时,()0h x ≥,∴()0g x '≥ ()g x 在[)0,+∞单调递增,∴()(0)g x g ≥ ……………………………………7分2)当=18(1)0k ∆-->,即98k <时,设12,x x 是方程2210x x k ++-=的两根且12x x < 由1212x x +=-,可知10x <, 分析题意可知当20x ≤时对任意[)0,x ∈+∞有()(0)g x g ≥;∴10,1k k -≥≥,∴918k ≤<…………………………………8分 综上分析,实数k 的最小值为1. …………………………………9分 (Ⅲ)令1k =,有2ln(1),x x x -+≤+即2ln(1)x x x ≤++在[)0,x ∈+∞恒成立…10分 令1x n =,得221111ln(1)ln(1)ln n n n n n n ≤++=++- ……………………11分 ∴222=111111(ln 2ln1)(ln 3ln 2)[ln(1)ln ]23≤+++++-+-+++-∑n i n n i n222111=1ln(1)23n n ++++++ 1111ln(1)1223(1)n n n <++++++⨯⨯- 12ln(1)n n=-++ ln(1)2n <++∴原不等式得证. ……………………………………………………………14分精心整理资料,感谢使用!。

相关文档
最新文档