电力系统潮流计算-概念方程及计算方法51-PPT文档资料
合集下载
第11章 电力系统的潮流计算WJYPPT课件
Step5:利用Step4计算得到的节点电压Vb,Vc ,Vd ,重复Step3、Step4,直到精7 度满足要求为止。
电力系统的潮流计算—开式网络的电压和功率分布计算
复杂开式网络潮流的计算机算法 Step2:支路顺序编号(消去叶节点法,分层
方法,等) Step3:回代计算:按照支路编号顺序,计算 A
度满足要求为止。
6
电力系统的潮流计算—开式网络的电压和功率分布计算
开式网络的电压和功率分布计算步骤 Step1:制定一相等值电路; Step2:计算运算负荷Sb,Sc ,Sd ; Step3:回代计算:设定各节点电压初值(VN),从末端d节点开始,计算各支
路功率损耗和首末端功率,直到A点; Step4:前推计算:从A节点开始,计算各各支路电压降落和节点电压;
CH11 电力系统的潮流计算
开式网络的电压和功率分布计算
配电网潮流算法:前推回代法
简单闭式网络的功率分布计算
环网功率分布:循环电势的概念
环网潮流控制
复杂电力系统潮流计算
潮流计算的数学模型
-拉夫逊法潮流计算
P-Q分解法潮流计算
1
电力系统的潮流计算—开式网络的电压和功率分布计算
Review:网络元件的电压降落与功率损耗计算
回代
S
P22 Q22 V22
R
jX
P1 jQ1 P2 jQ2 S
Step3:已知V1, S1
P1
jQ1
,
计算V1
,
V1
,V2(k
1)
,
(k 2
1)
前推
step4:如果
V (k 1) 2
V2(k )
,或k kmax ,计算结束,否则
配电网潮流计算PPT课件
点有多个馈出支路)
负荷功率 -- 任意节点流出到用户中
的功率
15.05.2020
.
4
2.3 配电网的描述 —— (辐射表)
辐射表反映配电网支路与节点的关系
在配电网中,每一个负荷节点只有
源节点(根节点)
0
对应于变电站母
一个馈入支路,其馈入支路编号与
1
6
7
负荷节点编号相一致。馈入支路与
1
6
负荷节点是一对一的。
或已计算得出,计算各支路的功率
对末端节点的馈入电流有
i
I j I Lj
IL j — 负荷电流
ILj
Sˆ Lj Vˆ j
SOjVk Iˆj
Ik
SˆLk Vˆk
Sˆoj
(j末端节点) k
k j
j
这样的计算一直进行到源节点的馈出支路,
末端节点
从而全部节点的各馈出复功率都求解出来。
15.05.2020
.
11
V kV i cosk (i)(PIiRiQIiXi)V i2
V kV i sink(i)(PIiXiQIiRi)
上面两式作平方和,有
V i4 2 ( P I iR i Q I iX i) V k 2 V i2 ( P I i2 Q I i2 )R i 2 ( X i 2 ) 0
5
5 末端节点
图 辐射表的例
Ik
SO k Vˆi
7
由基尔霍夫电流定律,对于节点i,有
I i I Li I ok
Iok 节点i馈出支路的电流
IL i 负荷电流
IL i
Sˆ L i Vˆi
对于源节点的馈出支路电流,有
I1 SˆLi
《电力系统潮流计算》PPT课件
< •
•
Ma |Uxi(K1)UiK|
其中K为迭代次数.
整理ppt
17
三.说明
(1)平衡节点不参加迭代.
(2)PV节点的处理:在迭代中需增加一个判断
如碰到PV节点,每一次迭代出来的电压始终保持幅值为常
量,相位为变量 •
• n *•
UiU i s i(K1),Q iIm Ui( yiU j j)
整理ppt
ቤተ መጻሕፍቲ ባይዱ
19
(1)节点间相位差很大的重负荷系统 (2)包含有负电抗支路(如某些三绕组变压器或线路串联电容
等)的系统. (3)具有较长的辐射性线路的系统. (4)长线路与短线路接在同一节点上,而且长短线路的比值又
很大的系统. 此外,平衡节点的不同选择也会影响到收敛性能.一般取
•
Ui 10o
整理ppt
f
x1
f 1(Χ )
f Χ
f x2
f
(梯 度 ), F (Χ)
f
2
(
Χ
)
f
fn( Χ )
xn
整理ppt
12
f 1 f 1
f
T 1
x1
x2
F
f
T 2
f 2 x1
f 2 x2
fnT
fn
fn
x1 x2
f 1
xn
f 2 xn
fi xj
j1
高斯-赛德尓迭代的算法的计算性能和特点
优点:原理简单,程序设计容易占用内存少.每次计算量也很 少,一般电力系统每个节点平均和2~4个节点相连,相应导 纳矩阵具有对称性和高度稀疏性.
整理ppt
18
缺点:收敛速度很慢.根据迭代公式,各节点在数学上是 松散耦合的,每次迭代,每个节电电压值只能影响与之 相关的几个节点,所以收敛速度很慢.且,算法所需迭代 次数和节点数目有密切关系,将随其数目的增加而急剧 增加.此算法另外一个重要限制是对于如下的病态条件 的系统,往往会收敛困难.
电力系统潮流计算的计算机算法概述
j 1 n
Qi fi j1 Gij e j Bij f j
ei Gij f j Bij e j
j 1
电力系统分析
(19.14)
19.3.2牛顿-拉夫逊法潮流计算
PQ节点的有功功率和无功功率是给定的,第i个节点的给定功率设 为Pis和Qis。假定系统中的第1,2,……,m号节点为PQ节点, 对其中每一个节点可列方程
为PQ机(或PQ给定型发电机)。在潮流计算中,系统大部分 节点属于PQ节点。
电力系统分析
2.PU节点 给出的参数是节点的有功功率P及电压幅值U,待求量为该节 点的无功功率Q及电压向量的相角θ。通常选择有一定无功功率 贮备的发电机母线或者有无功补偿设备的变电所母线作PU节点。 PU节点上的发电机称之为PU机(或PU给定型发电机)。 3.平衡节点
电力系统分析
3.2牛顿-拉夫逊法潮流计算
1.采用直角坐标 结点电压和导纳可表示为:
Yij G ij jBij
Ui
e i
jf i
将上述表示式代入
Pi
jQi
Ui
n
Y ij U
j
的右端,
j 1
展开并分出实部和虚部,便得:
Pi
ei
n
j 1 n
Gij e j
Bij
fj
n
fi Gij f j Bij e j
电力系统潮流计算的计算机算法
重点提示 1概 述 2 潮流计算的基本方程 3 牛顿-拉夫逊法潮流计算 4 PQ分解法潮流计算 小结
电力系统分析
本章提示
节点分类的概念; 潮流计算的基本方程式; 牛顿—拉夫逊法潮流计算的计算机算法; P—Q分解法潮流计算的计算机算法。
电力系统分析
Qi fi j1 Gij e j Bij f j
ei Gij f j Bij e j
j 1
电力系统分析
(19.14)
19.3.2牛顿-拉夫逊法潮流计算
PQ节点的有功功率和无功功率是给定的,第i个节点的给定功率设 为Pis和Qis。假定系统中的第1,2,……,m号节点为PQ节点, 对其中每一个节点可列方程
为PQ机(或PQ给定型发电机)。在潮流计算中,系统大部分 节点属于PQ节点。
电力系统分析
2.PU节点 给出的参数是节点的有功功率P及电压幅值U,待求量为该节 点的无功功率Q及电压向量的相角θ。通常选择有一定无功功率 贮备的发电机母线或者有无功补偿设备的变电所母线作PU节点。 PU节点上的发电机称之为PU机(或PU给定型发电机)。 3.平衡节点
电力系统分析
3.2牛顿-拉夫逊法潮流计算
1.采用直角坐标 结点电压和导纳可表示为:
Yij G ij jBij
Ui
e i
jf i
将上述表示式代入
Pi
jQi
Ui
n
Y ij U
j
的右端,
j 1
展开并分出实部和虚部,便得:
Pi
ei
n
j 1 n
Gij e j
Bij
fj
n
fi Gij f j Bij e j
电力系统潮流计算的计算机算法
重点提示 1概 述 2 潮流计算的基本方程 3 牛顿-拉夫逊法潮流计算 4 PQ分解法潮流计算 小结
电力系统分析
本章提示
节点分类的概念; 潮流计算的基本方程式; 牛顿—拉夫逊法潮流计算的计算机算法; P—Q分解法潮流计算的计算机算法。
电力系统分析
《电力系统潮流计算》课件
01
电力系统潮流计算 的计算机实现
计算机实现的方法与步骤
建立数学模型
首先需要建立电力系统 的数学模型,包括节点 导纳矩阵、系统负荷和
发电量等。
初始化
为电力系统中的各个节 点和支路设置初值。
迭代计算
采用迭代算法,如牛顿拉夫逊法或快速解耦法 ,求解电力系统的潮流
分布。
收敛判定
判断计算结果是否收敛 ,若收敛则输出结果, 否则返回步骤3重新计算
使用实际数据,展示正常运行状态下潮流计算的过 程和结果。
不同运行状态下的潮流计算案例
介绍检修状态下电力系统 的主要变化和特征。
案例二:检修状态下的潮 流计算
分析计算结果对系统运行 状态的影响。
01
03 02
不同运行状态下的潮流计算案例
使用实际数据,展示检修状态下潮流 计算的过程和结果。
分析计算结果对系统运行状态的影响 。
介绍南方电网的地理分布、主 要发电厂和输电线路。
实际电力系统的潮流计算案例
分析该电网的电压等级、负荷分布和 电源结构。
展示实际数据下的潮流计算结果,包 括节点电压、支路功率和功率损耗等 。
不同运行状态下的潮流计算案例
01
案例一:正常运行状态下的潮流计算
02
介绍正常运行状态下电力系统的一般特征。
03
模型建立
针对分布式电源的特点,需要建 立相应的数学模型,以便进行准 确的潮流计算。
优化调度
结合分布式电源的特点和运行需 求,对电力系统进行优化调度, 以实现系统运行的经济性和稳定 性。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
《电力系统潮流计算 》PPT课件
第4章电力系统潮流计算
8.6+j7.5MVA 12.2+j8.8MVA
R1+ jX1 a
U o
jB1/2
R2+ jX2 b
jB2/2
R3+ jX3
Sc
c
jB3/2
线路3阻抗的功率损耗:
P3
Pc2 Qc2
U
2 N
R3
12.22 8.332 1102
13.8
0.25MW
Q3
Pc2 Qc2
U
2 N
X3
12.22 8.332 1102
(1) 计算线路参数
线路1
R1 rl1l1 0.17 40 6.8
X1 xl1l1 0.409 40 16.36 B1 bl1l1 2.82 106 40 1.13104S
18/84
线路2
R2 rl2l2 0.21 30 6.3 X 2 xl2l2 0.416 30 12.48 B2 bl2l2 2.73106 30 0.82 104S
Sd
Sc
Sb
Sa
Sla
jBIII/2
jBc
jBb
jBI/2
(1)
S BI
j
BI 2
U
2 a
Sa
Sla
j
BI 2
U
2 a
*
ΔSI
Pa2 Qa2
U
2 a
RI
j
Pa2 Qa2
U
2 a
XI
dU I
Sa U a
(RI
jX I )
U b dU I Ua
12/84
d
RIII+ jXIII
Slc
c RII+ jXII
电力系统的潮流计算PPT课件
ΔQ∝V2,与负荷无直接关系。
2021/4/17
电力系统分析 第十一章 电力系统的潮流计算
12
二、变压器(T型等值电路)
V1 S1 I1 S’I RT jxT S2 I V2
ΔS0
-jBT
GT
励磁损耗 (接地励磁支路消耗有功,铁耗) S0 (G jBT )V12
阻抗损耗(与线路类似)
SS=
电力系统分析 第十一章 电力系统的潮流计算
10
相角也可以化简:
1
arctg
PX V2
/ V2 V2
2
arctg
PX /V1 V1-V1
V ≈QX V
QX V1 V2 V2
V ≈ PX
V
V2
V1
Q' X V1
1. 高压输电系统中,电压降落的纵分量ΔV主要取决于元件所 输送的无功功率Q;横分量δV主要取决于元件所输送的有 功功率P。
ΔQB1
ΔQB2
S 2 SLD
负荷端
S1 S' jQB1 S''SL jQB1 P1 jQ1 S2 jQB2 SL jQB1
S2
1 2
BV22
P2 Q2 V22
(R
jX
)
1 2
BV12
V1
V2
P'' R Q'' X V2
j
P'' X Q'' R V2
2021/4/17
电力系统分析 第十一章 电力系统的潮流计算
d
j B1 2
j B1 2
j B2 2
j B2 2
j B3 2
j B3 2
电力系统潮计算PPT课件
⑴在 B '中尽量去掉那些对有功功率及电压相角影响较小的因素,如
略去变压器非标准电压比和输电线路充电电容的影响;在 B 中'' 尽
量去掉那些对无功功率及电压幅值影响较小的因素,如略去输电 线路电阻的影响。
⑵为了减少在迭代过程中无功功率及节点电压幅值对有功迭代的影 响,将(2-44)右端U各元素均置为标幺值1.0.
• 潮流计算公式作如下修改:
P i a 1 b 1 u u ii0 c 1 u u ii0 2 P i0 (s) u ij iu jG ijc o ij B s ijs iijn
Q i a 1 b 1 u u ii0 c 1 u u ii0 2 Q i (0 s) u ij iu jG ijs iijn B ijc o ij s
(4)和节点导纳矩阵具有相同稀疏结构的分块雅可比矩阵 在位置上对称,但由于数值上不等,说以,雅可比矩阵式 一个不对称矩阵。
2024/6/4
11
四、牛顿潮流算法的性能分析
• 优点:
⑴收敛速度快。
如果初值选择较好,算法将具有平方收敛性,一般迭代4~5次便 可以收敛到一个非常精确地解,而且其迭代次数与计算的网络规模 基本无关。
方程组的解。而牛顿法出于线性近似,略去了高阶项,因此用每次迭
代所求得的修正量对上一次的估计值加以改进后,仅是向真值接近了
一步而已。
2024/6/4
24
为了推导算法的方便,下面将上述潮流方程写成更普遍的齐次二次方 程的形式。
首先作以下定义:
一个具有n个变量的齐次代数方程式的普遍形式为:
(2-65)
2024/6/4
2024/6/4
3
第三节 牛顿潮流算法
一、牛顿法的基本原理
电力系统潮流计算ppt课件
Iij
Vj Iij R
图3-2 向量图
10
输电线路的电压降落和功率损耗
1 电压降落 2 电压损耗和电压偏移 电压损耗:两点间电压绝对值之差称为电压损耗
Vij Vi Vj
11
输电线路的电压降落和功率损耗
2 电压损耗和电压偏移 电压偏移:网络中某点的实际电压同该处的额定电压 之差称为电压偏移
n 学习方法:应用已有知识解决工程问题的思维能力,
不仅仅局限于表面知识的记忆,而要着重于普遍性。
n 一般情况下,PR QX ,应此有:
V PR QX QX
V
V
15
输电线路的电压降落和功率损耗
5. 考虑对地电纳和并联支路时,牢记以上公式计算过程 中,所用电流和功率均为流经R+jX中电流和功率, 分为三步:
V (%) V VN *100 VN
12
输电线路的电压降落和功率损耗
3 功率损耗 Slo
(R
jX )
所以
Ploss
P2 Q2 Vj2
R
Qloss
P2 Q2 Vj2
X
Si S j Sloss
13
输电线路的电压降落和功率损耗
A jIij X D
Iij
Vj Iij R
(V j
PR QX Vj
)2 ( PX QR )2 Vj
图3-2 向量图
tg 1 v
Vj v
9
输电线路的电压降落和功率损耗
当输电线路不长,首末两端的相角差不大时,近似 地有:
Vi Vj V
Vi B
A jIij X D
i
b第一章 电力系统潮流计算.ppt
f
x1
f 1(Χ )
f Χ
f x2
f
(梯 度 ), F (Χ)
f
2
(
Χ
)
f
fn( Χ )
xn
f 1 f 1
f
T 1
x1
x2
F
f
T 2
f 2 x1
f 2 x2
fnT
fn
fn
x1 x2
f 1
xn
f 2 xn
fi xj
雅可比矩阵
fn xn
j1
j1
n
(Gij jBij )UiUjejij (cosij jsinij ) j1
Pi n UiUj (Gij cosij Bij sinij )
j1 n
Qi
UiUj
j1
(Gij
sinij
Bij
cosij
)
三.有关数学知识 1.多元函数对相量求导
f ( x1, x 2, ..., xn)简 记 为 f ( Χ ), Χ ( x1, x 2, ..., xn)T
二.算法构成
首先考虑最简单的情况,即电力系统中除平衡节点外,其
余都属于PQ节点。由潮流计算方程
Pi•jQ i n
•
YijUj(i1,2...n),
Ui
j1
p 得 U • i Y 1ii
s
s
i • jQi n
YijU • j(i1,2,..n.),
Ui
j1 ji
式中 p s i
s
Q i 为节点给定的注入有功功率,无功功率
潮流计算问题一般是属于多元非线性代数方程的求解,必须 利用计算机通过迭代求解。因此潮流算法其基本要求可归纳 成以下几个方面: (1)计算速度; (2)计算机内存占用量; (3)算法收敛的可靠性; (4)算法设计的方便性以及算法扩充移植的通用灵活性
《电力系统潮流计算》PPT课件
电压的基准值=参数和变量归算的额定电压
4.1.2 标幺值
2、各参数或变量标幺值的计算
(1)功率基准值SB
SP SB jQS P BjS Q BP jQ
(2)电压基准值UB(一般取线电压)
(3)电流基准值UB(一般取线电流)
(4)阻抗基准值ZB
Z R jX R X Z Z BZ B Z BjZ BR jX
S~Y
U*2
*
Y
S~Z
P2 Q2 U2
Z
S~Z
P*2 Q*2 U*2
Z*
4.1.2 标幺值
二、基准值改变时标么值的换算
电力系统元件一般以标么值或百分数的形式给出,其
基准值为对应元件本身的额容量SN和额定电压UN。阻
抗阻取基抗容准有量值名和为值电压的Z Z基N准R 值 US为jNNX 2S B和ZUN*BZ 。NZN*U SN N2
U2
P2RU2Q2Xj
P2XU2Q2R
Δ U P 2 R Q 2 X δU P 2 XQ 2 R
U 2
U 2
δ
U1
dU
δU
U2 U
4.2.1 电力线路上的电压降落和功率损耗
U1
线路两端电压幅值差主要由
dU
δU
纵分量决定,而电压相角差 主要由横分量决定
S 2 Z
3U
P2 Q2 U2 Z
S~Z P2U2Q2 Z
4.1.2 标幺值
三相对称系统中用有名值和用标幺值表示公式对 照表
名称
有名值
标幺值
功率表达式 阻抗压降 接地导纳中的功率 阻抗中的功率损耗
S~
3U
I
S~*
U*
I