六年级奥数上 第17分数、百分数应用题(二)
六年级奥数第14讲:百分数问题(二)
百分数问题(二)百分数有着十分广泛的用途,本节我们将列出不同类型的百数分数。
“整数化”常常能产生简单明了的解法,而且是一种很好的思维训练。
例1、有一堆糖果,其中奶糖占45﹪,再放入16颗水果糖后,奶糖就只占25﹪。
那么,这堆糖果中有奶糖多少颗?做一做:有一堆糖果,其中奶糖占45﹪,再放入32颗水果糖后,奶糖就只占25﹪。
那么,这堆糖中有奶糖多少颗?例2、把一个正方形的一边减少20﹪,另一边增加2米,得到一个长方形,它与原来的正方形面积相等。
那么,正方形的面积是多少?做一做:一个长方形的周长是66厘米,如果它的长增加25﹪,宽减少21,周长仍和原来一样多,那么,原长方形的面积是多少?例3、某次会议,昨天参加会议的男代表比女代表多700人;今天男代表减少了10﹪,女代表增加5﹪,今天共有1995人出席会议。
那么,昨天参加会议的有多少人?做一做:某学校上一年度男生与女生的人数之比是3:1.问:若本年度男生减少12﹪,女生增加20﹪,则本年度全体学生中男生占几分之几?例4、已知甲校学生人数是乙校学生人数的40﹪,甲校女生人数是甲校学生人数的30﹪,乙校男生人数是乙校学生人数的42﹪。
那么,两校女生总数占两校学生总数的百分比等于多少?做一做:某学校男生人数占学生总数的45﹪,会游泳的学生占学生总数的54﹪。
已知男生中会游泳的占72﹪,问:在全校学生中不会游泳的女生占百分之几?例5、有两堆棋子,A堆有黑子350颗和白子500颗,B堆有黑子400颗和白子100颗。
问:为了使A堆中黑子占50﹪,B堆中黑子占75﹪,要从B堆中拿多少颗黑子和多少颗白子到A堆?做一做:有甲、乙两个盒子,甲盒中放着2700颗围棋子,其中30﹪是黑子;乙盒中放着1200颗围棋子,其中90﹪是黑子。
现在从乙盒中取若干颗棋子放到盒子中,结果甲盒中黑子占40﹪,乙盒中黑子仍占90﹪。
问:从乙盒中拿了多少颗棋子到甲盒?例6、某校四年级原来有两个班,现在要重新编为三个班,将原一班人数的31与原二班人数的41组成新一班;将原一班人数的41与原二班人数的31组成新二班;余下的30人组成新三班。
六年级奥数试卷
50、一组割草人去两块地割草,大的一块比小的一块大一倍。上午全部人都在大的一块草地割草,下午一半人留在大草地上,这地到傍晚时割完了;另一半人去割小草地,到傍晚还剩下一块,这块由一人在用一天刚好割完。这组割草人一共有多少人?
9、某校准备把1/10又6本书送给青山小学,把余下的一部分送给少年宫,送给少年宫的比送给青山小学的3倍还多136本,又把第二批余下的75%有80本送给青苗幼儿园,还剩300本,该校一共有多少本图书?
10、两个容器,甲装了一杯水,乙是空的。第一次把甲的水倒给乙1/2,第二次把乙中的水倒给甲1/3,第三次把甲中的水倒给乙1/4.......照这样倒101次后,甲中有水多少?
43、三人共买一辆车,买时甲、乙付的钱,分别是其它二人付钱总数的1/4,假如甲、乙在各付30000元,则丙比乙少付6000元。这辆车多少元?
44、一批零件,原计划甲比乙多做50个,结果乙实际做的比计划做的少70个,他做的总数比乙实际做的总数的3/5多10个,这批零件共多少个?
45、30块糖,弟弟先抓了一把,哥哥看弟弟分的太多,抢下了一半。弟弟不服,从哥哥那要回了一半;哥哥不同意,弟弟就给了哥哥7块,这时哥哥比弟弟多2块,弟弟最初抓了多少块?
32、有四个城区,甲是全市的4/13,乙的人数使甲的5/6,丙是甲、乙和的4/11,丁比丙多4000人,则全市为多少人?
33、某仓库运出5次货,第一次运了一半,第二次运剩下的一半,第三、第四次都运上次的一半,第五次运出后,把余下的分给甲、乙、丙三厂,甲得1/3,乙得1/2,丙得8吨,刚好分定,问仓库原有货多少吨?
六年级上册数学小升初常考奥数第17讲 浓度问题
第17讲浓度问题一、知识要点在百分数应用题中有一类叫溶液配比问题,即浓度问题。
我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。
这个比值就叫糖水的含糖量或糖含量。
类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。
因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100%解答浓度问题,首先要弄清什么是浓度。
在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
浓度问题变化多,有些题目难度较大,计算也较复杂。
要根据题目的条件和问题逐一分析,也可以分步解答。
二、精讲精练【例题1】有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。
因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。
原来糖水中水的质量:600×(1-7%)=558(克)现在糖水的质量:558÷(1-10%)=620(克)加入糖的质量:620-600=20(克)答:需要加入20克糖。
练习1:1、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。
第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?【答案】1.需要加糖100克。
(完整版)六年级奥数分数百分数应用题汇总,推荐文档
分数百分数应用题一、单位“1”定长短。
1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。
哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。
哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。
哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。
哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。
哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。
哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。
哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。
哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。
他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。
奥数百分数应用题(二)
百分数应用题(二)例1、甲、乙两人去书店买书,共带去54元,甲用去自己钱数的75%,乙用去自己钱数的80%,两人剩下的钱数相等。
甲、乙两人原来各带去多少元? 同类练习:1、师徒两人共同制造840个零件,完成任务时,师傅做的零件的10%相当于徒弟的25%。
徒弟做多少个零件?2、两个筑路队合修一条公路,甲队修的60%相当于乙队修的75%。
甲队比乙队多修10km ,两队共修多少千米?例2、学校图书馆原有文艺书和科技书5400本,其中科技书比文艺书少20%,最近又买来一批科技书,这时科技书和文艺书的本数的比是9︰10,图书馆买来科技书多少本?例3、某校六年级学生参加航模比赛,分成甲、乙两组,甲、乙两组人数比是7︰8,如果从乙组调8人到甲组,则甲组人数是乙组的125%。
六年级参加航模比赛一共有多少人? 同类练习:1、某厂原有工人315人,其中女工占全厂工人总数的51,后来又招进一批女工,这时女工占全厂工人总数的30%,招进女工多少人?2、某小学六年级上学期男生人数占总人数的55%,今年开学初,转走3名男生,又转来3名女生,这时女生占总人数的48%,现在有男生多少名? 3、一批粮食存放在甲、乙两个仓库,甲仓存粮食占这批粮食的55%,如果从甲仓取出42吨放入乙仓,则乙仓存粮是甲仓的120%,仓库原来存粮多少吨? 4、某班男生人数占全班人数的40%,后来又转出10名女生,这时男生占全班人数的50%,这个班原有男生多少人?例4、机械厂要加工一批零件,甲车间加工这批零件的20%,乙车间加工余下的25%,丙车间加工余下的40%少100个,这时还剩下3700个零件没有加工,这批零件共有多少个? 同类练习:1、修路队修一条公路,第一周修全长的83,第二周修余下的40%,这时还剩下90km 没有修完。
这条公路全长多少千米?2、某人从甲地到乙地,先乘火车,所行的路程比全程的37.5%多80m ,接着乘汽车,所行路程比余下路程的31少55km ,再接着转乘火车,所行的路程比剩下的80%还多40km ,最后步行5km 到达乙地,求甲、乙两地路程? 例5、红岭中学上学年高中男、女生共有300人,本学年高中男生增加4%,女生增加5%,共增加13人,求本学年红岭中学男、女生各有多少人? 同类练习:1、图书馆原有科技书和故事书共500本,今年科技书又增加10%,故事书增加15%,一共增加65本,求现在科技书和故事书各有多少本?2、某人从甲地到乙地需坐火车,从乙地到丙地需坐轮船,原来从甲地到丙地需要250元交通费,现在由于火车票上涨10%,轮船票上涨20%,结果从甲地到丙地共花去280元,火车票现在多少元? 例6、某小学上学期共有学生750人,本学期男生减少20%,女生增加61后,共有710人,本学期男、女生各有多少人? 同类练习:1、袋子里有红球和黑球共180个,将红球减少25%,黑球增加31后,红球和黑球总数变为170个。
小学六年级奥数第17讲 浓度问题(含答案分析)
第17讲浓度问题一、知识要点在百分数应用题中有一类叫溶液配比问题,即浓度问题。
我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。
这个比值就叫糖水的含糖量或糖含量。
类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。
因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100%解答浓度问题,首先要弄清什么是浓度。
在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
浓度问题变化多,有些题目难度较大,计算也较复杂。
要根据题目的条件和问题逐一分析,也可以分步解答。
二、精讲精练【例题1】有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?练习1:1、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。
第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?【例题2】一种35%的新农药,如稀释到1.75%时,治虫最有效。
用多少千克浓度为35%的农药加多少千克水,才能配成1.75%的农药800千克?练习2:1、用含氨0.15%的氨水进行油菜追肥。
现有含氨16%的氨水30千克,配置时需加水多少千克?2、仓库运来含水量为90%的一种水果100千克。
一星期后再测,发现含水量降低到80%。
现在这批水果的质量是多少千克?【例题3】现有浓度为10%的盐水20千克。
再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?练习3:1、在100千克浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液就可以配制成25%的硫酸溶液?2、在20%的盐水中加入10千克水,浓度为15%。
奥数百分数应用题
奥数百分数应用题 SANY GROUP system office room 【SANYUA16H-小学六年级奥数题——分数、百分数应用题1.一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度。
2.甲、乙、丙三人合作生产一批机器零件,甲生产的零件数量的一半与乙生产的零件数量的五分之三相等,又等于丙生产的零件数量的四分之三,已知乙比丙多生产50个零件,问:这批零件共有多少个?3.菜园里西红柿获得丰收,收下全部的3/8时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?4.服装厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间是156人,这个服装厂全厂共有多少人?5.二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占本班人数的3/4,二班少先队员占本班人数的5/6,求两个班各有多少人?参考答案:1.甲、乙两地相距540千米,原来火车的速度为每小时90千米。
2.7503.3844.6005.一班48人,二班42人六百分数应用题(2)年级班姓名得分一、填空题1.甲数比乙数少20%,那么乙数比甲数多百分之.2.每天水分排出量(单位为毫升)如图所示.由肺呼出的水分占每天水分排出的百分之.(400:肺呼出;500:;100:固体废物;1500:水性废物)3.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖中有奶糖块.4.把25克盐放进,制成的这种盐水,含盐量是百分之几有200克这样的盐水,里面含盐克.5.一个有弹性的球从A 点落下到地面,弹起到B 点后又落下高20厘米的平台上,再弹起到C 点,最后落到地面(如图).每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么C 点离地面的高度是厘米..100 500 400 150A B C6.某次会议,昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加了5%,今天共1995人出席会议,那么昨天参加会议的有人.7.有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的百分之.8.开明出版社出版某种书.今年每册书的成本比去年增加10%.但是仍保持原售价,因此每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是.9.甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2.他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米.那A 、B 两地间的距离是.10.有两堆棋子,A 堆有黑子350个和白子500个,B 堆有黑子400个和白子100个,为了使A 堆中黑子占50%,B 堆中黑子占75%,要从B 堆中拿到A 堆;黑子. 个,白子个.二、解答题11.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N ,那么N 件商品售价(单位:元)按:每件成本?(1+20%)?N 算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元12.盈利百分数=买入价买入价买出价-?100% 某电子产品去年按定价的80%出售,能获得20%的盈利,由于今年买入价降低,按同样定价的75%出售,却能获得25%的盈利,那么去年买入价今年买入价是多少13.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜38.4元.已经知道第一次的书价是第三次书价的85,问这位顾客第二次买了多少钱的书.14.有A 、B 、C 三根管子,A 管以每秒4克的流量流出含盐20%的盐水,B 管以每秒6克的流量流出含盐15%的盐水,C 管以每秒10克的流量流出水.C 管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒…三管同时打开,1分种后都关上,这时得到的混合液中含盐百分之几———————————————答案——————————————————————1. 20%?(1-20%)=25%2. 400?(400+500+100+1500)=16%3. 16?[(1-25%)?25%-(1-45%)?45%]=9(块)4. 含盐量是:%20%1001002525=⨯+ 200克这样的盐水里面含盐200?20%=40克5. [68+20?(1-80%)]?(1-80%?80%)-68=132(厘米)6. (1995-700?90%)?(1+5%+90%)?2+700=2100(人)7. (1-10%)?(1+20%)=75%8. 假设每册书成本为4元,售价5元,每册盈利1元,而现在成本为4?(1+10%)=4.4元,售价仍为5元,每册盈利0.6元,比原来每册盈利下降了40%.但今年发行册数比去年增加80%,若去年发行100册,则今年发行100?(1+80%)=180(册).原来盈1?100=100(元),现在盈利0.6?180=108(元).故今年获得的总盈利比去年增加了(108-100)?100=8%.9.相遇到后,甲乙速度之比为1?(1+20%):⨯32(1+30%)=18:13,故A 、B 两地之间的距离是14?4513185253=⎪⎭⎫ ⎝⎛÷-(千米) 10.设要从B 堆中拿到A 堆黑子x 个,白子y 个,则有:()()[]()()[]⎩⎨⎧⨯++-=-⨯+++=+%75100400400%50500350350y x x y x x 解得x =175,y =25. 11. 45?[(1+20%)?1]=37.512. [75%?(1+25%)]?[80%?(1+20%)]=109. 13. 第一次与第二次共应付款13.5?5%=270(元),故第三次书价必定在 500-270=230(元)以上,这样才能使三次书价总数达到优惠10%的钱数.如果分三次购买,第三次的书价也能优惠5%,从而有:第三次书价总数为518-270=248(元)第一次书价总数为24885⨯=155(元) 第二次书价总数为270-155=115(元)14.因60?(5+2)=8…4,故C 管流水时间为5?8+2=42(秒),从而混合液中含盐百分数为()()%10%1004210606460%156%2040=⨯⨯+⨯+⨯⨯+⨯ 在日常生活中和生产中我们经常会遇到一些百分数应用题。
人教版六年级数学上册分数应用题及答案
人教版六年级数学上册分数应用题及答案This manuscript was revised by the office on December 22, 2012(人教版)六年级数学上册分数应用题(二)及答案(一)(1)一条水渠,第一天挖了,还剩175米没挖,第一天修了多少米?(2)洗衣机厂上半年生产洗机厂完成了全年计划的,下半年生产的和上半年同样多,实际超额完成100台,计划生产洗衣机多少台?(3)李明看一本书,第一天看了全书的,第二天看了39页,这时正好看了全书的一半,这本书共有多少页?(4)一辆汽车从甲地开往乙地,第一天行了全程的,第二天行了全程的,离乙地还有112千米。
甲、乙两地相距多远?(5)李看一本书,第一天看了全书的,第二天看了全书的,第三天看了12页,还剩20页没看,这本书共有多少页?(6)建华水泥厂上半年完成全年计划的,下半年生产了12.8万吨,实际全年产量超过计划的,今年计划生产水泥多少吨?(7)挖一条水渠第一周挖了全长的,第二周挖了全长的,第二周比第一周多挖20米,这条水渠全长多少米?参考答案(1)175÷(1-)×=175××=25(米)答:第一天修了25米。
(2)解:设计划生产x台。
答:计划生产500台洗衣机。
(3)==130(页)答:这本书共有130页。
(4)解:设甲乙两地相距千米。
答:甲乙两地相距320千米。
(5)(页)答:这本书共64页。
(6)解:全年计划生产水泥吨。
答:全年生产水泥24吨。
(7)解:(米)答:这条水渠长400米。
六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用
1
,第二天比
2
【巩固】 迎 春农机厂计划生产一批插秧机,现已完成计划的 划产量的 16%.那么,原计划生产插秧机台.
56%,如果再生产 5040 台,总产量就超过计
【例 9】 某运输队运一批大米. 第一天运走总数的 1 多 60 袋,第二天运走总数的 1 少 60 袋.还剩下 220
5
4
袋没有运走。这批大米原来一共有多少袋?
我国人口是部分数, 世界人口就是单
位“ 1”。
解答题关键:只要找准总数和部分数,确定单位“
1”就很容易了。
(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是
带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通
常就作为标准量,也就是单位“ 1”。
分数、百分数应用题(二)
知识框架
一、 知识点概述:
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一
方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”
之间的对应是解题的关键. 关键: 分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称
【例 6】 一个机关精简机构后有工作人员 120 人,比原来工作人员少 40 人,精简了百分之几?
【巩固】 小 强看一本书,每天看 15 页, 4 天后加快进度,又看了全书的 多少页?
2 ,还剩下 30 页,这本故事书有 5
【例 7】 有男女同学 325 人,新学年男生增加 25 人, 女生减少 5%,总人数增加 16 人,那么现有男同学 多少人?
小学六年级奥数教程题目
奥数教程(六年级)第一讲 分数的计算例1 计算:4.3695.3)5.3694.3(2009-⨯+⨯⨯ (提示:转化成分母相同) 例2 计算:1341321318428.44.22.113913313118628.106.32.1⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ (提示:找分子分母共同点,变形)例3 计算:10241195121172561151281136411132191617815413211+++++++++(提示:先合并再相加) 例4 计算:)1099()988()877()766()655()544()433()322()211(-⨯-⨯-⨯-⨯-⨯-⨯-⨯-⨯-(提示:先求差)例5 计算:23191713111917132223171311132613117455⨯⨯+⨯⨯+⨯⨯+⨯⨯(分子分解质因数,约分) 例6 计算:()123...891098...32199...531)100...642(22222222++++++++++++++++-++++第二讲 分数的大小比较例1 分数75、1715、94、12440、309103中,哪一个最大?(提示:化简,统一分子)例2 在□内填上相同的自然数,使不等式3619613111>++++ 成立,此时□内的数的最大值是几?例3 若A=12009200912+-, B=2220082009200820091+⨯-,比较A 与B 的大小。
(提示:比较分母)例4 不求和,比较200520022004200420032005+与200520022003200420032006+的大小。
例5 在下列□内填两个相邻的整数,使不等式成立。
□<10191817161514131211+++++++++<□ 例6 已知A=21771 (21611216011)+++,求A 的整数部分是多少?第三讲 巧算分数的和例1 计算:50491...431321211⨯++⨯+⨯+⨯ 例2 计算:100981...861641421⨯++⨯+⨯+⨯ 例3 计算:10099981...43213211⨯⨯++⨯⨯+⨯⨯ 例4 计算:10099...3211...4321132112111++++++++++++++++例5 计算:2019...4321...54321432132121++++++++++++++++ 例6 计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++9911...311211991 (41131121141)3112113121121 第四讲 繁分数例1 计算:20072008200820091200920092009122⨯+-+-÷ 例2 计算:41322111+++例3 规定□表示选择两数中较大的数的运算,△表示选择两数中较小的数的运算。
六年级奥数——百分数应用题(分类整理,讲练结合,直接下载使用)
百分数应用题在小学数学竞赛中,常常出现一类比较复杂的百分数应用题,这类题或者是标准量发生变化,使数量关系变复杂;或者是出现一些附加条件,使具体数量与百分率的对应关系变得扑朔迷离,不易找到.解答这类百分数应用题,与解答分数应用题一样,关键是找准对应关系,然后通过相应的辅助计算,化复杂题为基本题而找到问题的解答方法.例1:(1)体育用品商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球是排球的50%,卖出的篮球有多少个?(2)同学们乘汽车外出春游。
开始上第二辆车的同学有50人,上第一辆车的人数比第二辆车多10%,后来从第一辆车调走一些同学上第二辆车,这时第一辆车上的同学人数是参加这次春游活动总人数的40%。
调整时从第一辆车上调走多少人?参加这次春游活动共有多少人?随堂练习11、(1)有三堆球A、B和C,如果B比A多20%,C比A少10%,那么C比B少百分之几?(2)某俱乐部去年有200名男会员,今年男会员人数减少10%,女会员比今年男会员的人数多5%,这个俱乐部现有多少名会员?(3)某合唱团原有365个学生,如果男生增加25人,女生减少5%,合唱团的男女生人数就一样多,总数将会有380个学生。
女生减少多少人?(4)某工厂男女职工共480人,其中男职工占总数的60%,由于企业调整,男职工调走若干人,这时男职工占总数的36%,那么男职工调走了多少人?例2:(1)某商店购进十二生肖玩具1000个,运输过程中破损了一些,未破损的好玩具卖完后,获取利润50%,破损的玩具只得降价出售,亏损了10%,最后结算,商店获得利润39.2%,他卖出的好玩具有多少个?(2)某企业中有90%的员工是股民,80%的员工是“万元户”,60%的员工是“打工仔”,那么这家企业中的“万元户”中至少有百分之几是股民?“打工仔”中至少有百分之几是“万元户”?随堂练习22、(1)彩色电视机降价20%出售,现在要涨价百分之几才能以原价出售?(2)某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,全市人口将增加4.8%,那么这个市现有多少城镇人口?(3)有一种含水量为14.5%的煤,经过一段时间的风干,含水量降为10%,现在这堆煤的重量是原来的百分之几?例3:(1)有甲、乙、丙、丁四个同学去林中采磨菇,平均每人采得的蘑菇的个数的整数部分是一个十位数为3的两位数。
从课本到奥数(整理稿)
1.百分数应用题(一)1.某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%。
问这个商店卖出这两件商品是赚钱还是亏本?2.一桶油,第一次用了全桶的20%,第二次用了20千克,第三次用了前两次的和,这时桶里还剩8千克,问这桶油还有多少千克?3.甲乙两店都经营同样的某种商品,甲先涨价10%后又降价10%,乙先涨价15%后,又降价15%,请问:两位店主谁比较聪明?4.某班有学生48名,女生占全班人数的37.5%,后来又转来了若干名女生。
这是女生人数恰好是全班人数的2/5,问共转来了多少名女生?5.某工厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间有156人,求这个工厂全厂共有多少人?6.小刚看一本书,第一天看了全书的1/6,第二天看了24页,第三天看前两天看的总数的150%,这时还剩下全书的1/4没有看。
全书共有多少页?【题型概述】商品的打折可以转化成百分数应用题解决,主要的关系式有:定价=成本×(1+利润百分数)利润百分数=(卖价-成本)÷成本×100%【典型例题】把一套西装按50%的利润定价,然后打八八折卖出,可以获得利润480元,这套西装的成本是多少元?【举一反三】1.把一件女装按40%的利润定价,然后打九折卖出,可以获得利润130元,这件女装的成本是多少元?2. 有一批空调,如果按每台20%的利润定价,然后按八折出售,每台空调反而亏损128元,这种空调的进货价是多少?3.一批新书按定价的20%出售时,仍能获得40%的利润,那么定价时所期望的利润率是多少?【拓展提高】一种自行车,甲商店比乙商店的进货价便宜5%,甲商店按20%的利润定价,乙商店按15%的利润定价,结果甲店比乙店便宜3元,乙店的进货价是多少元?【奥赛训练】4.一种商品,甲商店比乙商店的进货价便宜10%,甲商店按30%的利润定价,乙商店按25%的利润定价,结果甲店比乙店便宜40元,甲店的进货价是多少元?5.两家商店购进同一种商品,一店比二店的进货价便宜5%,一店按40%的利润定价,二店按25%的利润定价,结果一店比二店贵16元,二店的进货价是多少元?6.有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。
六年级精品奥数资料秋季第九讲:百分数的应用(二)经济问题'
课前热身6+23= 1-23-14= 13×25%= 45÷32=13+13÷13+23= 15×(13+15)= 13÷25% 26-12.65= 11×10111= 5.24-2.4=专题简析市场经济中有许多数学问题:分段经济、利润问题等。
同学们可能都有和父母一起去买东西的经历,都知道商品有定价,但是这个价格是怎样定的呢?这就涉及到商品的成本、利润等听起来有些陌生的名词。
一、核心公式:1、售价=成本+利润=成本×(1+利润率)2、成本=售价÷(1+利润率)3、定价=成本×(1+期望利润率)4、利润=售价-成本 期望利润=定价-成本5、利润率=利润成本×100%=售价−成本成本×100%=(售价成本-1)×100%注:不能死记硬背公式,关键在于理解之后灵活运用。
嘉题一某商店进货的批发价为50元一袋,规定零售价为70元一袋,求商品的利润率是多少?分析与解:利润=售价-成本利润率=利润成本×100%=70-50 =2050×100%=20(元) =40%答:商品的利润率是40%。
随堂练习商店有作业本100本,每本成本为0.5元,按每本0.7元销售,可获利润多少元?利润率是多少?嘉题二红星商店购回一批商品,按20%的利润定价,然后打八折出售,结果亏损400元,这批商品的成本是多少元?分析与解:此题成本不知道,可设成本为x元,然后运用正向思维解题。
定价:x(1+20%)售价:x(1+20%)·0.8利润:亏损400元,即成本-售价=400元嘉题一分析与解:设这批凉鞋共x 双,成本:6.5x 元 利润:20元 售价:(x-200)·8.7 利润=售价-成本20=(x-200)·8.7-6.5x20=8.7x-1740-6.5x 20+1740=8.7x-6.5x1760=2.2x 2.2x=1760 x=800答:这批凉鞋共800双。
六年级分数、百分数应用题专项训练及答案(二套)
六年级分数、百分数应用题专项训练及答案(二套)目录:六年级分数、百分数应用题专项训练及答案一六年级分数应用题专项练习题二六年级分数、百分数应用题专项训练及答案一1、一桶油第一次取出总数的10%,第二次取出剩下的20%,两次共取出28升.这桶油共有多少升?2、一桶柴油,第一次用了全桶的20%,第二次用去20千克,第三次用了前两次的和,这时桶里还剩8千克油.问这桶油有多少千克?3、服装厂一车间人数占全厂的25%,二车间人数比一车间少`1/5`,三车间人数比二车间多`3/10`,三车间是156人,这个服装厂全厂共有多少人?4、加工一批零件,甲乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件的`4/5`没完成. 已知甲每天比乙少加工4个,这批零件共有多少个?5、某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?赚多少,亏多少?6、甲、乙两只装有糖水的桶,甲桶有糖水60千克,含糖率4%,乙桶有糖水40千克,含糖率为20%,两桶互相交换多少千克才能使两桶糖水的含糖率相等?7、现有浓度为10%的盐水20千克,再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?8、在浓度为40%的酒精溶液中加入5千克水,浓度变为30%,再加入多少千克酒精,浓度变为50%?9、一批商品,按期望获得 50%的利润来定价.结果只销掉 70%的商品.为尽早销掉剩下的商品,商店决定按定价打折扣销售.这样所获得的全部利润,是原来期望利润的91%,问:打了多少折扣10、一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度.六年级分数应用题专项练习题二1、某校参加数学竞赛的男生人数比女生人数的4倍少8人,比女生人数的3倍多24人,这个学校参加数学竞赛的男生有多少人?女生有多少人?2、修一条长200米的水渠,已经修了80米,再修多少米刚好修了这条水渠的3/5?3、一本书600页,第一天看了它的1/4,第二天看了它的2/5,两天一共看了多少页?4、爱达花园小学向希望工程捐款,六(1)班捐的占六年级的1/3,六年级捐的占全校捐款的1/4,全校共捐款2400元,六(1)班捐了多少元?(用两种方法解答)5、甲乙两地相距60千米,汽车从甲地开往乙地,当汽车超过全程中点10千米时,还剩下全程的几分之几?6、学校去年植树120棵,今年植树的棵树比去年的3/4多5棵,今年植树多少棵?7、学校今年植树120棵,比去年的3/5多5棵,去年植树多少棵?8、一筐苹果,第一次卖出它的一半,第二次卖出的是第一次的4/5,还剩下这筐苹果的几分之几没有卖?9、一个乒乓球从25米的高空下落,每次弹起的高度是下落高度的2/5,它第四次下落后又能弹起多少米?10、一批加工服装的任务按4:5分配给甲、乙两个车间,实际甲车间生产了450套,超过分配任务的1/4.这批服装共有多少套?11、某年七月份雨天是晴天的2/3,阴天是晴天的2/5,这个月晴天有几天?12、商场有白、蓝、花布一共1380米,白、花布米数的比是5∶6,花布的米数是蓝布的3/2倍,三种布各有多少米?13、三组同学采集树种,甲组、乙组、丙组的工作效率的比是5∶3∶4.甲组采集了15千克,乙组比丙组少采集多少千克?14、甲数是乙数的3/5,丙数是甲数的2/3,丙数是乙数的几分之几?15、每台拖拉机每小时耕地5/7公顷,8台拖拉机45分钟耕多少公顷?16、一根绳子,第一次剪去它的1/2,第二次剪去剩下的1/3,第三次剪去又剩下的1/4,剩下的绳子是原来的几分之几?17、含盐量为1/10的盐水300克,要把它变成含盐量为1/4的盐水,需要加盐多少克?18.一项工程,甲单独做10天完成,乙单独做8天完成,甲每天比乙少做()%19.一种混凝土的水泥、黄沙和石子的比是2∶3∶5,如果有3/4吨的水泥搅拌混凝土,需要黄沙和石子个多少吨.20、水结成冰时,体积增加1/10,当冰融成水后,体积要减少几分之几?21、甲乙两队修一条路,甲独修要12天,乙独修要10天.现由甲队先修几天,余下的由乙独修.结果完成时甲比乙多干1天,乙队修了几天?22、一项工程,甲乙两队合做要12天完成,现在甲队独做18天,余下的由乙接着做,8天正好做完,如果由甲独做这项工程,要多少天完成?23、一个池上装有三根水管,甲管是进水管;乙管是出水管,20分钟可将满池水放完;丙管也是出水管,30分钟可将满池水放完.现在先打开甲管,当水池的水刚刚溢出时再打开乙、丙两管,用了18分钟才将这池水放完.这样,当开甲管注满水池时,再打开乙管,而不开丙管,需要多少分钟将这池水放完?。
六年级奥数.应用题.分数百分数应用题(ABC级).学生版
一、 解决分百应用题的关键关键——找出“量”与“率”的对应. 要点——“标准量”,即单位“1”的寻找.二、 单位“1”的标志与线索(1) 明显标志 “占”、“是”、“比”、“相当于”这些词语后面的对象.例:a 是(占、相当于)b 的几分之几,就把b 看作单位“1”. 甲比乙多(少)几分之几,就把乙看作单位“1”. (2) 隐含线索题目没有明确给出比较对象,需要分析增加(减少)了谁的几分之几,一般是指增加(减少)了前面那种状态的几分之几,也就是说前面那种状态下的量就是单位“1”.例:水结成冰后体积增加了几分之几,意思是增加了原来状态(水)的几分之几.三、 “率”的寻找方法明示的“率”自不必说. 没有明确指出的“率”,一般可以画线段图,通过分析整体的组成来找出.四、 常用解题模式(1) 量÷对应率=单位“1” (2) 分数即份数,设数解决(3) 多对象多状态多维度,列表解决(1) 重点:单位“1”和“率”的寻找方法、分百应用题的解题模式(2) 难点:借助线段图寻找隐含的“率”、列表法的应用、三种常见解题模式的适用范围知识框架重难点分数百分百应用题一、 单位“1”不变【例 1】 五年级男生有50人,女生有40人.(1)女生人数是男生人数的几分之几? (2)男生人数比女生人数多几分之几? (3)女生人数比男生人数少几分之几?(4)女生比男生少的人数是全班人数的几分之几?【巩固】 一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重______千克.【例 2】 下图中的扇形图分别表示小羽在寒假的前两周阅读《漫话数学》一书的页数占全书总页数的比例. 由图可知,这本书共有 页.【巩固】 水果店卖出库存水果的五分之一后,又运进水果66000斤,这时库存水果比原来库存量多六分之一,原来库存水果多少万斤?例题精讲【例3】小强看一本书,每天看15页,4天后加快进度,又看了全书的25,还剩下30页,这本故事书有多少页?【巩固】已知小明家2007年总支出是24300元,各项支出情况如图所示,其中教育支出是______元.【例4】小静的书架上有三种不同种类的书,其中漫画书比故事书多2本,小说书比故事书少2本,已知故事书比小说书多25%,那么漫画书比故事书多百分之几?【巩固】小红和小明帮刘老师修补一批破损图书.图中信息计算,小红和小明一共修补图书本.【例5】菜地里黄瓜得到丰收,收下全部的38时,装满了4筐还多36千克,收完其余的部分时,又恰好装满8筐,求共收黄瓜多少千克?【巩固】菜园里西红柿获得丰收,收下全部的38时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?【例6】春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多15,女孩平均身高比男孩高10%,这个班男孩的平均身高是厘米.【巩固】我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的715,那么超过8立方米后,每立方米煤气应收多少元?二、单位“1”变化【例7】养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的114倍.鸭比鸡少几分之几?【巩固】学校男生比女生多37,女生比男生少几分之几?【例8】学校阅览室里有36名学生在看书,其中女生占49,后来又有几名女生来看书,这时女生人数占所有看书人数的919.问后来又有几名女生来看书?【巩固】工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【例9】某校三年级有学生240人,比四年级多14,比五年级少15.四年级、五年级各多少人?【巩固】把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【例10】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【巩固】王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?【例11】某校四年级原有两个班,现在要重新编为三个班,将原一班的13与原二班的14组成新一班,将原一班的14与原二班的13组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多110,那么原一班有多少人?【巩固】某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的12和二车间人数的13分到一车间,将原来的一车间人数的13和二车间人数的12分到二车间,两个车间剩余的140人组成劳动服务公司,现在二车间人数比一车间人数多117,现在一车间有人,二车间有人.三、单位“1”统一【例12】甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。
6年级奥数-分数、百分数应用题2
分数、百分数应用题(二)
1.有大、小两只鸡笼。
小笼里的鸡比大笼里的鸡少12只。
如果从小笼里面拿出9只鸡放进大笼,这样小笼里的鸡相当于大笼里的7
4,求原来大,小鸡笼内各有多少只鸡?
2、甲、乙两人共存款108元.如果甲取出自己存款的
2
1 ,乙取出12元后,两人所存的钱数相等。
求甲、乙两人原来各存款多少元?
3金放在水里称重减轻 ,银放在水里称重量减轻 ,一块金银合金重770克,放在水里称,减轻了50克,这块合金含金,银各多少克?
4、两筐苹果共84千克。
第一筐重量的8
5与第二筐重量
的4
3 共重56千克,两筐苹果各重多少千克?
5、今有桃95个,分给甲、乙两班学生吃。
甲班分到桃的
92是坏的,乙班分到桃的
16
3 是坏的,其他的是好
的,甲、乙两班分到好桃多少个?
6、甲、乙两班共有95人,甲班人数的9
5是男生,乙班
人数的5
3是男生,甲乙两班有女生多少人?
7、养殖专业户王大伯家共养牛和羊240头(只),牛卖出
4
1,羊买进82只,则牛羊数相等,求王大伯家原来
有牛、羊各多少?
8、六年级学生春游太湖,分乘大、小两只船。
开始时,小船上比大船上多12人,老师从小船上调27人到大船上后,小船上的人数正好是大船上人数的10
7 ,调整后
大、小船上各乘多少人?
9、育民中学把85元奖学金发给甲、乙两名同学,甲得的9
2与乙得的
4
1相等,甲乙各得多少元?
10、两袋大米,第二袋比第一袋重12千克,第一袋大米重的
31与第二袋大米重的
5
1相等,两袋大米各重多
少千克?。
小学奥数分数、百分数应用题
分数、百分数应用题一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率” 之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1) a是b的几分之几,就把数b看作单位“1” .(2)甲比乙多乙比甲少几分之几? 8I o I o I方法一:可设乙为单位“1”,则甲为1+± =」因此乙比甲少乙』=上8 8 8 8 9方法二:可设乙为8份,则甲为9份,因此乙比甲少1 + 9 =」.9二、怎样找准分数应用题中单位(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?一一世界人口是总数,我国人口是部分数,世界人口就是单位T。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多一一就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于“谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量一一谁就是单位“ I ,,• O(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 5
答案:240吨 答案:240吨
1 2 3 4 5 6 = 12 ÷ ÷ ÷ ÷ ÷ ÷ 2 3 4 5 6 7 1 1 1 1 1 3 4 5 6 7 / / / / / = 12 × 2 × × × × × / / / / / 2 3 4 5 6 1 1 1 1 1 = 84( 个 ) ——————总数
1 = 12( 个 ) ————第一天吃的 7 1 1 84 × (1 − ) × = 12( 个 ) 第二天吃的 7 6 12 + 12 = 24( 个 ) 84 ×
17讲 分数、百分数应用题( 六年级奥数上 第17讲 分数、百分数应用题(二) 有一位农妇有鸡和鸭共92 92只 例1. 有一位农妇有鸡和鸭共92只,当卖掉鸡 1 的 4 和8只鸭后,剩下的鸡和鸭的只数正好相等, 只鸭后,剩下的鸡和鸭的只数正好相等, 农妇原有鸡和鸭各多少只? 农妇原有鸡和鸭各多少只?
答:木杆原来的长是30厘米。
例7甲、乙两个学校的图书馆共有故事书170本,后来甲校又买了它原有故事书的
1 4
,乙校买了它原有故事书的
1 ,这时两校共有故事书208本,现在两校各有 5
故事书多少本?
答案:甲校 答案:甲校100本,乙校 本 乙校108本 本
作业:1.一堆化肥,第一次运走全部重量的 , 5 第二次运走余下的 9 少10吨,第三次运走剩下的74 吨,三次全部运完,这堆化肥共有多少吨?
分析与解:此题可以从多角度思考解答。
6 1 1 1 1 1 看作 ,多出 ( − ) = 7 6 7 42 ,就是1人对应率,找到这个关系即可解决此问题。 6
1 方法1:假设从两个班都选出 6 , × 1 = 15(人),比实际14人多1人,这是因为把 90
1 1 1 ( 列式: 90 × − 14) ÷ ( − ) 6 6 7 1 = 1÷ 42
再和实际条件相联系,问题得以解决。
列式:
( 9 2 − 8 ) ÷ (1 + 1 − 1 ) 4
= 84 ÷ 1
3 4
= 48(只 ) 92 − 48 = 44(只 )
有一位农妇有鸡和鸭共92 92只 例1. 有一位农妇有鸡和鸭共92只, 1 只鸭后, 当卖掉鸡的 4 和8只鸭后,剩下的鸡和 鸭的只数正好相等, 鸭的只数正好相等,农妇原有鸡和鸭各 多少只? 多少只?
答:甲厂上交税金63万元,乙厂上交49万元。
1 1 例6.一个木杆,第一次截去了全长的 2 ,第二次截去所剩木杆的 3,第三次截去 1 1 所剩木杆的 ,第四次截去所剩木杆的 ,这时量得所剩木杆长为6厘米。 4 5 木杆原来的长是多少厘米?
1 1 1 1 6 ÷ (1 − ) ÷ (1 − ) ÷ (1 − ) ÷ (1 − ) 5 4 3 2 4 3 2 1 = 6÷ ÷ ÷ ÷ 5 4 3 2 1 1 1 / / / 5 4 3 2 = 6× × × × / / / 4 3 2 1 1 1 1 = 30( 厘米 )
4 2 2 x + × 112 − x = 42 9 7 7 4 2 x − x = 10 9 7 x = 63 ——甲厂 112 − 63 = 49( 万元 )
例5. 甲厂与乙厂去年共上 交税金112万元, 112万元 交税金112万元,已知甲厂 4 上交税金的 与乙厂上交税 9 2 42万元 万元, 金的 共42万元,两厂去年 7 各上交税金多少万元? 各上交税金多少万元?
有一位农妇有鸡和鸭共92 92只 例1. 有一位农妇有鸡和鸭共92只, 1 只鸭后, 当卖掉鸡的 和8只鸭后,剩下的鸡和 4 鸭的只数正好相等, 鸭的只数正好相等,农妇原有鸡和鸭各 多少只? 多少只?
分析与解:根据题目特点,可用假设法思考,可以这样想,假设8只鸭不卖,只卖掉鸡的
1 后,剩下的鸡和鸭的只数相等,于是可知鸭相当鸡的(1 − 1 ) ,鸡为“1”,找到这个关系后, 4 4
自己试一试还可以怎样做
例3. 京新小学六年级有两个班共 有学生90人 有学生 人,期末两个班共选出 1 三好学生14人 三好学生 人,其中从甲班选出 , 1 从乙班选出 ,两班各有学生多少 6 7 人?
90 − x = 90 − 48 = 42 ————乙班人数
1 例4. 1只猴子摘了一堆桃子,第一天吃了这堆桃子的 ,第二天吃了余下的桃子的 7
1 ( 90 − 14 × 6) ÷ (1 − × 6) 7
(人) = 84
1 = 6÷ 7 = 42( 人 ) ————乙班人数
甲班人数
90 − 42 = 48(人)
例3. 京新小学六年级有两个班共 有学生90人 有学生 人,期末两个班共选出 1 1 三好学生14人 三好学生 人,其中从甲班选出 , 从乙班选出 ,两班各有学生多少 6 7 人?
答:农妇原来有鸡48只,有鸭44只。
例2. 某人从东站到西站,去时每小时行15千米, 某人从东站到西站,去时每小时行15千米, 15千米 返回时每小时行10千米,求往返的平均速度。 10千米 返回时每小时行10千米,求往返的平均速度。
分析与解:要求平均速度,必须知道路程和时间,根据题目特点可假设路 程为任意一个具体数量,于是问题得以解决。 可以15和10的最小公倍数30为东城到西站的距离,这样设较简便。然 后根据数量关系求出平均速度。 列式:
方法1:假设甲厂上交税金也是 2 ,于是可列式为
7
2 4 2 10 (42 − 112 × ) ÷ ( − ) = 10 ÷ = 63( 万元 ) 7 9 7 63 112 − 63 = 49( 万元 ) 乙厂
则 4 x + 2 (112 − x ) = 42 9 7
甲厂
方法2:解:设甲厂上交税金x万元,则乙厂上交税金 (112 − x )万元
例3. 京新小学六年级有两个班共 有学生90 90人 有学生90人,期末两个班共选出三 好学生14 好学生14人,其中从甲班选出 , 1 14人 1 从乙班选出 ,两班各有学生多 6 7 少人? 少人?
方法2:假设甲班选出
6 (全班人数) 6 乙班应为 1 × 6 = 6 7 7
三好生人数应同时扩大6倍即 14 × 6 列式
(30+30) ÷(30÷15+30÷10)
= 60÷5 =12(千 米
例2. 某人从东站到西站,去时每 某人从东站到西站, 小时行15千米, 15千米 小时行15千米,返回时每小时行 10千米 求往返的平均速度。 千米, 10千米,求往返的平均速度。
答:往返平均速度为12千米。
京新小学六年级有两个班共有学生90 例3. 京新小学六年级有两个班共有学生90 期末两个班共选出三好学生14 14人 人,期末两个班共选出三好学生14人,其中 1 1 从甲班选出 6 ,从乙班选出 7 ,两班各有 学生多少人? 学生多少人?
3
以此类推,如图,这样就可以找到问题的解答方法。
“1” (一) (二) (三) (四) (五) “1”
1 7
1 6
1 5
1 4
1 3
1 2
12 个
12 × 2 = 24
1 1 1 1 1 1 列式: 12 ÷ (1 − ) ÷ (1 − ) ÷ (1 − ) ÷ (1 − ) ÷ (1 − ) ÷ (1 − ) 2 3 4 5 6 7
方法3:此类题用方程解也比较好 解:设甲班有x人,则乙班有
(90 − x ) 人
1 1 x + (90 − x ) = 14 则 6 7 1 90 1 x+ − x = 14 6 7 7 1 1 6 x − x = 14 − 12 6 7 7 1 1 x =1 42 7 x = 48————甲班人数
答:第一天和第二天共吃桃子24个。 此题可通过认真观察图找出非常简捷的解题方法。从图中可以清楚看出第一天吃 的也是12个,第二天吃的还是12个,所以两天吃的是 12 × 2 = 24 (个)。 你观察出来了吗?
甲厂与乙厂去年共上交税金112万元, 112万元 例5. 甲厂与乙厂去年共上交税金112万元, 4 2 已知甲厂上交税金的 9 与乙厂上交税金的 7 42万元 两厂去年各上交税金多少万元? 万元, 共42万元,两厂去年各上交税金多少万元?
1 1 ,第三天吃了余下桃子的 ,第四天吃了余下的 1 ,第五天吃了余下的 6 4 5
1 ,第六天吃了余下的 ,这时还剩下12个桃子,那么第一天和第二天所吃桃子的 2 总数是多少?
1 3
分析与解:根据这道题的特点,用逆推法分析解答较好。逆推法就是从问题的结果 出发思考,可以这样想,第六天吃了余下的 1 ,这时还剩下12个桃子,可以推想 2 12个对应的就是 (1 − 1 ) 1 2 ,于是可以求出第五天吃了余下的 后,还剩的桃子,