材料力学公式超级大汇总讲课稿

合集下载

材料力学公式总结

材料力学公式总结

材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它是材料科学的基础和核心。

在材料力学中,有许多重要的公式,它们可以帮助我们理解材料的性能和行为。

本文将对材料力学中的一些重要公式进行总结,希望能对大家的学习和工作有所帮助。

1. 应力和应变的关系公式。

在材料力学中,应力和应变是两个非常重要的概念。

应力是单位面积上的力,通常用σ表示,而应变是材料单位长度的变形量,通常用ε表示。

它们之间的关系可以用胡克定律来描述,即σ = Eε,其中E为杨氏模量,是描述材料抵抗变形能力的一个重要参数。

2. 弹性模量的计算公式。

弹性模量是描述材料在受力后能够恢复原状的能力的一个重要参数。

对于各向同性材料,弹性模量E可以用杨氏模量和泊松比来表示,即E = 2G(1+μ),其中G 为剪切模量,μ为泊松比。

3. 应力-应变曲线的公式。

材料在受力时,应力和应变之间的关系通常通过应力-应变曲线来描述。

对于线弹性材料来说,应力-应变曲线是一条直线,其斜率就是杨氏模量E。

而对于非线性材料来说,应力-应变曲线通常是一条曲线,可以用一些复杂的数学公式来描述。

4. 塑性变形的公式。

当材料受到超过其屈服强度的应力时,就会发生塑性变形。

塑性变形的特点是应力和应变不再呈线性关系,而是出现了一定的变形硬化。

塑性变形的公式通常比较复杂,需要根据具体的材料和加载条件来确定。

5. 断裂力学的公式。

材料在受到过大的应力时会发生断裂,断裂力学是研究材料断裂行为的学科。

在断裂力学中,有许多重要的公式,如格里菲斯断裂准则、弗兰克-雷迪公式等,它们可以帮助我们预测材料的断裂行为。

总结。

材料力学中的公式是我们理解材料性能和行为的重要工具,通过对这些公式的学习和掌握,我们可以更好地应用材料力学知识,解决工程实际问题。

希望本文对大家有所帮助,也希望大家能够深入学习材料力学,为材料科学的发展做出贡献。

材料力学公式大全

材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。

在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。

本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。

1. 应力和应变。

在材料力学中,应力和应变是最基本的概念。

应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。

其中,F为受力,A为受力面积。

应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。

其中,ΔL为长度变化量,L为原始长度。

2. 弹性模量。

弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。

3. 餐极限。

屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。

4. 断裂韧性。

断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。

其中,σ为应力,c为裂纹长度。

5. 疲劳强度。

疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。

6. 塑性体积变形。

塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。

其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。

7. 岛壳理论。

岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。

其中,P为受力,A为受力面积。

8. 塑性流动理论。

塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。

其中,ε0为初始应变,εf为终止应变。

以上就是一些常用的材料力学公式,希望对大家有所帮助。

在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。

材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。

材料力学课程讲义 (10)

材料力学课程讲义 (10)

1
M ( x ) d
l
M

F
l
S
( x )d S

M ( x)M ( x) dx l EI

kS F S ( x )FS ( x ) l GA
实例与分析
已知:E/G=8/3 求 :wB=?
1. 计算 wB


M ( x)M ( x) dx l EI
M ( x) x
Fd l 3 2 Pl 3 wB v 3 EI 3 gEI
例12-2 旋转轴在A端突然被刹停,求轴内应力。轴径为 d,飞轮转动惯量为J。
解:1. 冲击惯性力偶矩计算
2 16 M d l J 2 4 2 Gd
M d d 2
GJ 32l
2. 冲击应力计算
d, max
16 M d 4 GJ 3 d 2l d
例12-3 鼓轮使重量为 P 的物体以速度 v 匀速下降,求当 鼓轮被刹停时绳内的应力。绳的横截面面积为A。
解:
E Vε
EA d st 1 v gPl
Pd
1 v d P gPl st
P

EA
EA Pd P 1 v d A gPl A
单位载荷法的常用公式 组合变形情况 对于线弹性杆或杆系:
d FN ( x )dx EA
d T ( x )dx GI t
d y
M y ( x )dx EI y
d z
M z ( x )dx EI z


l
F N ( x )FN ( x ) M y ( x)M y ( x) M z ( x)M z ( x) T ( x )T ( x ) dx dx dx dx EA GI EI EI t y z

材料力学公式大全

材料力学公式大全

材料力学公式大全一、轴向拉伸与压缩。

1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。

3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。

4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。

1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。

- τ = Gγ,其中G为材料的切变模量,γ为切应变。

三、扭转。

1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。

3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。

1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。

- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。

- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。

- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。

五、弯曲应力。

1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。

材料力学公式大全

材料力学公式大全

材料力学公式大全引言材料力学是材料学和力学的交叉学科,研究材料在外部力作用下的力学行为。

材料力学公式是描述材料力学行为的数学方程式,通过使用这些公式,可以预测和解释材料的力学性能。

本文将介绍一些常见的材料力学公式,帮助读者更好地理解材料的力学行为。

弹性力学霍克定律弹性材料的应力与应变之间的关系可以通过霍克定律来描述。

霍克定律表示为:σ = Eε其中,σ是应力,E是弹性模量,ε是应变。

杨氏模量是一种衡量材料刚度的物理量,表示为:E = σ / ε其中,E是杨氏模量,σ是应力,ε是应变。

泊松比泊松比是一种描述材料压缩应变与正交方向上的伸长应变比例关系的参数。

泊松比的定义如下:ν = -ε_2 / ε_1其中,ν是泊松比,ε_1是材料在一个方向上的伸长应变,ε_2是材料在与该方向正交的方向上的压缩应变。

屈服强度材料的屈服强度是指在材料发生塑性变形之前所能承受的最大应力。

屈服强度可以通过应力-应变曲线中的屈服点来确定。

硬化指数硬化指数是衡量材料抵抗塑性变形的能力的物理量,表示材料在塑性变形过程中的硬度增加速率。

硬化指数可以通过屈服应力与屈服应变之间的关系来计算。

应力松弛应力松弛是指材料在恒定应变条件下,应力随时间逐渐减小的现象。

应力松弛可以通过材料应力与时间之间的关系来描述。

强度理论强度理论是一种预测材料破坏的理论模型。

常用的强度理论包括最大剪应力理论、最大正应力理论和最大能量释放率理论。

裂纹扩展速率裂纹扩展速率是描述材料中裂纹扩展过程的物理量,表示裂纹边缘的扩展速度。

裂纹扩展速率可以通过材料裂纹长度与时间之间的关系来计算。

疲劳力学疲劳寿命疲劳寿命是指材料在循环加载下能够承受的次数或时间。

疲劳寿命可以通过应力与循环次数或时间之间的关系来计算。

疲劳强度是指材料在循环加载下能够承受的最大应力。

疲劳强度可以通过应力循环试验来确定。

结论本文介绍了一些常见的材料力学公式,包括弹性力学、塑性力学、破坏力学和疲劳力学方面的公式。

材料力学》讲稿

材料力学》讲稿

3、几何关系
l2 l1 D l1 a 2a D 2l2 l1
Δl1
Δl2 ΔD
七、拉压静不定问题

1、静力关系
平衡 方程
静不定问题的求解
Y 0, R
2、物理关系
l AC
A
RB P 0.
未知力数目超过平衡方程数目 利用物理关系和几何关系建立 关于未知力的补充方程 RA A a P C b P C A
B 30kN A 0.1m 0.1m 0.1m 10kN 10kN
2
C D 10kN
X 0, N
1、内力计算
CD
10kN ,
X 0, N
N BC N CD 10kN
AB
30 10 20kN
2、变形计算
l AD l AB lBC lCD N AB l AB N BC lBC NCD lCD EAAB EABC EACD
0
4
2 1 p 3 4
P P p cos cos A A
η
σα
α
ηα
p cos cos 2
p sin cos sin
2 sin 2
ξ
四、材料的力学性能
试验设备:万能材料试验机 可以进行拉什、压缩和弯曲试 验 试件: 拉伸试件:l/d=10,l/d=5 压缩试件
σe σp
σs
σb
第三阶段(CD)强化 弹塑性变形 σb---强度极限 第四阶段(DE)局部破坏 颈缩现象 抵抗力下降,变形急剧增 加,直至拉断
1、材料的拉伸试验

1.1低碳钢
卸载:卸载线为直线,与初始阶段 的直线平行。 卸载后的再加载:冷作硬化现象

材料力学公式总结

材料力学公式总结

材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它在工程领域中具有重要的应用价值。

在材料力学的研究中,我们常常需要运用一些公式来描述材料的力学性能和变形规律。

下面,我将对材料力学中常用的一些公式进行总结和归纳,以便大家更好地掌握和运用这些公式。

1. 应力和应变的关系公式。

在材料力学中,应力和应变是两个基本的物理量。

它们之间的关系可以用应力-应变关系公式来描述。

一般而言,线弹性材料的应力和应变之间满足线性关系,即应力等于弹性模量乘以应变。

其数学表达式为:σ = Eε。

其中,σ表示应力,E表示弹性模量,ε表示应变。

2. 杨氏模量的计算公式。

杨氏模量是描述材料抗拉伸和压缩能力的重要参数,它可以用来表征材料的硬度和刚度。

对于各向同性材料,杨氏模量的计算公式为:E = (σ/ε)。

其中,E表示杨氏模量,σ表示拉伸或压缩的应力,ε表示相应的应变。

3. 泊松比的计算公式。

泊松比是描述材料在拉伸或压缩时横向收缩或膨胀的程度的物理量,它可以用来表征材料的变形性能。

泊松比的计算公式为:ν = -ε横/ε轴。

其中,ν表示泊松比,ε横表示横向应变,ε轴表示轴向应变。

4. 屈服强度的计算公式。

材料的屈服强度是描述材料开始发生塑性变形的应力值,它可以用来评估材料的抗拉伸能力。

一般而言,材料的屈服强度可以通过材料的拉伸试验来测定,其计算公式为:σy = Fy/A0。

其中,σy表示屈服强度,Fy表示屈服点的拉伸力,A0表示原始横截面积。

5. 断裂韧性的计算公式。

断裂韧性是描述材料抗断裂能力的物理量,它可以用来评估材料的抗破坏能力。

一般而言,材料的断裂韧性可以通过材料的冲击试验来测定,其计算公式为:Kc = Yσ√(πa)。

其中,Kc表示断裂韧性,Y表示材料的弹性模量,σ表示应力,a表示裂纹长度。

以上就是我对材料力学中常用的一些公式进行的总结和归纳。

希望这些公式能够对大家在材料力学的学习和工程实践中有所帮助。

材料力学公式大全pdf

材料力学公式大全pdf

材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。

以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。

5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。

6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。

7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。

8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。

9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。

10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。

以上就是材料力学公式大全pdf。

希望能对大家学习和应用材料力学有所帮助。

《材料力学》公式汇总

《材料力学》公式汇总

《材料力学》公式汇总材料力学是研究材料的力学性质和性能的一门学科。

它主要研究材料力学性质的宏观表现以及材料在外界作用下的应力和应变的关系。

以下是一些常见的材料力学公式的汇总。

1.应力和应变的关系应力是指单位面积上的力,可以通过以下公式来计算:σ=F/A其中,σ表示应力,F表示作用在材料上的力,A表示力作用的面积。

应变是指物体长度、体积或形状的变化与原始尺寸之比,可以通过以下公式来计算:ε=ΔL/L其中,ε表示应变,ΔL表示长度的变化量,L表示原始长度。

2.弹性模量弹性模量描述了固体材料在受力后恢复原始形态的能力。

可以通过以下公式计算:E=σ/ε其中,E表示弹性模量,σ表示应力,ε表示应变。

3.轴向应力轴向应力是指作用在物体纵向的应力,可以通过以下公式计算:σ₁=F/A₀其中,σ₁表示轴向应力,F表示作用在材料上的力,A₀表示初始横截面积。

4.泊松比泊松比描述了材料在一方向受拉伸时,在垂直方向上的收缩。

可以通过以下公式计算:v=-ε₂/ε₁其中,v表示泊松比,ε₁表示纵向应变,ε₂表示横向应变。

5.剪切模量剪切模量描述了固体材料抵抗剪切变形的能力。

可以通过以下公式计算:G=τ/γ其中,G表示剪切模量,τ表示剪切应力,γ表示剪切应变。

6. Hooke定律Hooke定律描述了线性弹性材料在小应力下的应力-应变关系:σ=Eε其中,σ表示应力,E表示弹性模量,ε表示应变。

7.横向应力横向应力是指作用在物体横向的应力,可以通过以下公式计算:σ₂=vσ₁其中,σ₂表示横向应力,v表示泊松比,σ₁表示轴向应力。

8.斯特莱克斯公式斯特莱克斯公式描述了固体材料的切变模量和弹性模量的关系:G=E/2(1+v)其中,G表示剪切模量,E表示弹性模量,v表示泊松比。

9.薄壁压力容器的应力对于薄壁压力容器,其轴向应力和周向应力可以通过以下公式计算:σ₈=Pd/2tσ₆=Pd/4t其中,σ₈表示轴向应力,σ₆表示周向应力,P表示内压力,d表示容器的直径,t表示容器的壁厚。

材料力学公式总结完美版

材料力学公式总结完美版

材料力学公式总结完美版材料力学是研究物体变形和破坏行为的一门学科,它涉及材料的弹性、塑性、破坏等方面。

在材料力学中,有许多重要的公式用于描述物体的变形行为和力学特性。

以下是材料力学中一些重要的公式的总结。

1.应变-应力关系在弹性区域内,应变与应力之间存在线性关系,可以用胡克定律来描述:σ=Eε其中,σ是应力,E是弹性模量,ε是应变。

2.应力-应变能力关系材料的应力和应变能力之间存在线性关系,该关系可以用杨氏模量来描述:ε=σ/E其中,ε是应变能力,σ是应力,E是杨氏模量。

3.拉伸变形在拉伸变形中,变形后的长度L和原始长度L0之间存在线性关系,可以用拉伸应变来表示:ε=(L-L0)/L0其中,ε是拉伸应变,L是变形后的长度,L0是原始长度。

4.柯西应力张量柯西应力张量用于描述材料内部的应力状态,它可以用以下公式表示:σ = [σx σxy σxzσyx σy σyzσzx σzy σz]其中,σ是柯西应力张量,σx,σy,σz是应力分量,σxy,σxz,σyx,σyz,σzx,σzy是剪切应力分量。

5.简单剪切应力简单剪切应力是指与横截面积A垂直的平面上的剪切力F和横截面积A之间的比值,可以用以下公式表示:τ=F/A其中,τ是简单剪切应力,F是剪切力,A是横截面积。

6.剪切变形剪切变形是指物体内各处的剪切角度。

在小角度下,剪切变形可以用剪切应变来表示:γ=θL/h其中,γ是剪切应变,θ是变形前后的剪切角度,L是变形前后的长度,h是变形前后的厚度。

7.杨氏模量杨氏模量是描述材料刚度的一项重要指标,可以用以下公式表示:E=σ/ε其中,E是杨氏模量,σ是应力,ε是应变能力。

8.泊松比泊松比是描述材料纵向和横向变形关系的参数,可以用以下公式表示:ν=-εy/εx其中,ν是泊松比,εy是纵向应变,εx是横向应变。

9.体积模量体积模量是描述材料体积变化的一项重要指标,可以用以下公式表示:K=-P/ΔV/V其中,K是体积模量,P是外部施加的压力,ΔV是体积的变化量,V是初始体积。

材料力学公式完全版

材料力学公式完全版

材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。

它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。

在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。

1.应力方面应力(σ):表示单位面积上的内力。

常用的单位是Pa(帕斯卡)。

σ=F/A其中,F为受力,A为受力面积。

2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。

ε=ΔL/L其中,ΔL为长度变化,L为初始长度。

3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。

ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。

4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。

σ=E×ε其中,E为弹性模量。

5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。

ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。

6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。

ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。

7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。

σt=F/A其中,F为拉伸力,A为受力面积。

8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。

E=σ/ε其中,σ为应力,ε为应变。

9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。

σt=F/A其中,F为拉伸力,A为受力面积。

10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。

σf=F/A其中,F为断裂力,A为受力面积。

11.龙骨方面龙骨截面面积(A):表示材料的截面面积。

A=b×h其中,b为龙骨宽度,h为龙骨高度。

12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。

σy=F/A其中,F为受力,A为受力面积。

材料力学专业知识讲座

材料力学专业知识讲座

4KNm 52 zc
88
应用公式 My
Iz
t,max
4103 52103 7.64 106
27.2MPa
c,max
4103 88103 7.64 106
46.1MPa
9KN
A
CB
4KN C截面应力计算 C截面应力分布
FA 1m 1m
F1Bm
2.5KNm
M
应用公式
My
Iz
4KNm
t,max
1 bh3, 12
Wz
1 bh2 6
Iz
64
d4,
Wz
32
d3
Iz
(D4
64
d4)
64
D4 (1 4 )
Wz
32
D3 (1 4 )
三、横力弯曲
F
Fs
F
x
M x
FL
横截面上内力
剪力+弯矩
横截面上旳应力 既有正应力, 又有切应力
四 横力弯曲正应力
弹性力学精确分析表白:
对于跨度 L 与横截面高度 h 之比 L / h > > 5旳细长梁,
此类截面旳最大拉应力与最大压应力相等。
所以:
强度条件能够表达为 σmax
M max wz
σ
塑性材料
c、塑性材料制成旳 变截面梁 要综合考虑弯矩M与截面形状Iz
总之, 梁内最大应力发生在: 1.弯矩旳绝对值最大旳截面上;
2.离中性轴最远处。
3 .强度条件为
σmax
M wz
max
σ
2、脆性材料 抗拉压强度不等。
FBY
3、C 截面上K点正应力
弯矩 M C 901 601 0.5 60kN m

材料力学公式大全

材料力学公式大全

材料力学公式大全1. 应力(stress)公式:应力是单位面积上的力,常用符号表示为σ。

在一维情况下,应力公式可以表示为:σ=F/A其中,σ是应力,F是作用力,A是力作用的面积。

2. 应变(strain)公式:应变是用于描述物体形变的量,常用符号表示为ε。

在一维情况下,应变公式可以表示为:ε=ΔL/L0其中,ε是应变,ΔL是变形长度,L0是原始长度。

3. 弹性模量(elastic modulus)公式:弹性模量是衡量材料对外力作用下变形能力的指标,常用符号表示为E。

在一维情况下,弹性模量公式可以表示为:E=σ/ε其中,E是弹性模量,σ是应力,ε是应变。

4. 屈服强度(yield strength)公式:屈服强度是材料在变形过程中开始发生塑性变形的临界应力,常用符号表示为σy。

屈服强度公式可以表示为:σy=Fy/A其中,σy是屈服强度,Fy是屈服点的作用力,A是力作用的面积。

5. 拉伸强度(tensile strength)公式:拉伸强度是材料在拉伸过程中最大的抗拉应力,常用符号表示为σts。

拉伸强度公式可以表示为:σts = Fmax / A其中,σts是拉伸强度,Fmax是最大作用力,A是力作用的面积。

6. 断裂强度(fracture strength)公式:断裂强度是材料在破坏前的最大抗拉应力,常用符号表示为σf。

断裂强度公式可以表示为:σf=Ff/A其中,σf是断裂强度,Ff是破坏点的作用力,A是力作用的面积。

以上是一些常用的材料力学公式,这些公式在材料力学的研究和实际应用中有着重要的作用。

通过对这些公式的使用和理解,我们可以更好地了解材料在受力下的性能和行为,对于材料的设计和实际应用有着重要的指导意义。

材料力学公式大全

材料力学公式大全

材料力学公式大全材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

在工程设计和分析中,材料力学公式起着至关重要的作用。

下面为大家详细介绍一些常见的材料力学公式。

一、应力与应变1、正应力公式:轴向拉伸与压缩时,正应力$\sigma =\frac{F}{A}$,其中$F$ 是轴力,$A$ 是横截面面积。

圆轴扭转时,横截面上的切应力$\tau =\frac{T}{Ip}$,$T$ 是扭矩,$Ip$ 是极惯性矩。

2、线应变公式:轴向拉伸与压缩时,线应变$\epsilon =\frac{\Delta L}{L}$,$\Delta L$ 是长度的改变量,$L$ 是原长。

3、切应变公式:圆轴扭转时,切应变$\gamma =\frac{r\theta}{L}$,$r$ 是半径,$\theta$ 是扭转角,$L$ 是轴的长度。

二、胡克定律1、轴向拉伸与压缩时:$\sigma = E\epsilon$ ,其中$E$ 是弹性模量。

2、剪切胡克定律:$\tau = G\gamma$ ,$G$ 是剪切模量。

三、杆件的内力1、轴力$F_N$ :通过截面法求解,沿杆件轴线方向的内力。

2、扭矩$T$ :外力偶矩对杆件产生的内力。

3、剪力$F_Q$ 和弯矩$M$ :在梁的弯曲分析中,通过截面法求解。

四、梁的弯曲应力1、纯弯曲时的正应力:$\sigma =\frac{M y}{I_z}$,$y$ 是所求应力点到中性轴的距离,$I_z$ 是横截面对于中性轴的惯性矩。

2、横力弯曲时的正应力:需要考虑切应力的影响,进行修正。

五、梁的弯曲变形1、挠度$y$ 和转角$\theta$ 的计算公式:通过积分法或叠加法求解。

2、挠曲线近似微分方程:$EIz''= M(x)$。

六、组合变形1、拉(压)弯组合:分别计算拉伸(压缩)应力和弯曲应力,然后叠加。

2、弯扭组合:先计算弯曲应力和扭转切应力,然后根据强度理论进行强度校核。

材料力学公式超级大汇总

材料力学公式超级大汇总

材料力学公式超级大汇总材料力学是研究物体在外力作用下的变形和破坏行为的学科,是工程学基础学科之一、在学习和应用材料力学时,需要掌握各种公式和理论,以便解决实际工程问题。

下面是材料力学中一些常用的公式的超级大汇总。

一、受力分析1.受力平衡条件:对于一个处于静止或运动的物体,受力平衡要求合力和合力矩均为零。

2.力的单位转换:1 N = 1 kg·m/s^23.平行四边形法则:如果两个力的大小、方向和作用线夹角相等,且方向相反,则合力为零。

二、受力元的应力、应变及应变能1.黏性流动模型:取任意的流动规律,流体微团的应变率与应力呈线性关系。

2.应力应变关系:材料的应力与应变之间的关系可以通过材料的应力应变曲线得到。

3.应变能:在外力作用下,物体发生形变时,外力所做的功可储存为应变能。

三、梁的受弯1.简支梁受弯弯矩:梁在距离中点等分的两个端点处受到的弯矩大小相等,方向相反。

2.弯曲应力:横截面上的剪应力分布不均匀,最大剪应力出现在离中轴线最远的位置上。

3.弯曲应变:弯曲应变与剪应力成正比,与距离中轴线的距离成线性关系。

4.一般性弯曲方程:在一般情况下,梁的弯曲方程由横向方程和竖向方程组成。

四、柱的受压1.等径柱受压的轴向力:柱受压时,柱材上任意一截面的轴向力大小相等。

2.压缩应变:柱体受压后,柱体上每个截面上任一点距离该端面的力产生的长度缩短与原长度的比值。

3.应力-应变关系:材料的应力与应变之间的关系可以通过材料的应力应变曲线得到。

五、材料的拉伸和挤压1.应力-应变关系:材料的应力与应变之间的关系可以通过材料的应力应变曲线得到。

2.屈服强度:拉伸试样在加载过程中出现塑性变形的应力大小。

3.断裂强度:拉伸试样失效前材料承受的最大应力。

六、材料的剪切1.剪应力:剪应力是以一个平面上单位面积上的内力(反平行力对)除以单位面积得到的。

2.剪应变:在材料发生剪切形变时,材料上不同层之间的相对位移与剪切面上的偏移量之比。

材料力学重点及其公式

材料力学重点及其公式

材料力学重点及其公式材料力学是研究材料在受力下的力学性质和变形行为的一门学科,是工程力学中的一个重要分支。

在这篇文章中,我将重点介绍材料力学的一些重要概念、公式和应用。

材料力学的重点概念包括应力、应变、弹性、塑性、破坏等。

应力是材料受到外力作用时单位面积上的力,可以分为正应力和剪应力。

正应力是指作用在材料上的垂直于该面的力,剪应力是指作用在材料上的平行于该面的力。

应变是材料在受力下发生的相对形变,可以分为线性弹性应变和非线性塑性应变。

弹性是指材料在受力后能恢复原有形态的性质,塑性是指材料在受力后会发生永久性变形的性质。

破坏是指材料在受力过程中出现破裂、断裂或失效的现象。

材料力学的公式和方程主要包括物质弹性力学方程、材料的本构关系等。

1.物质弹性力学方程物质弹性力学方程描述了材料在受力下的力学性质和变形行为。

最基本的方程为胡克定律:σ=Eε其中,σ为应力,E为弹性模量,ε为应变。

该方程描述了材料的线性弹性行为。

2.线弹性材料的本构关系线弹性材料具有线性的应力-应变关系,可以通过杨氏模量和泊松比来描述。

杨氏模量描述了材料在受拉伸或压缩时的刚度,表示应力与应变的比值;泊松比描述了材料在受拉伸或压缩时横向收缩或膨胀的程度,表示横向应变与纵向应变的比值。

3.形状恢复力形状恢复力是指材料在受力后恢复原有形状的能力。

对于线弹性材料来说,形状恢复力可以通过胡克定律计算得到。

4.塑性材料的本构关系塑性材料的本构关系可以通过流变学方程来描述。

最简单的流变模型是屈服准则,常用的屈服准则有线性硬化模型、赫阳模型和冯·米塞斯模型等。

材料力学的应用广泛,包括结构力学、材料设计、材料加工等领域。

在材料设计中,材料力学可以用于选择合适的材料,设计耐久性强的结构。

在材料加工中,材料力学可以用于预测材料的形变和变形行为,以指导加工工艺的选取。

总结起来,材料力学是研究材料在受力下的力学性质和变形行为的学科。

重点涉及了应力、应变、弹性、塑性和破坏等概念,以及相应的公式和方程。

材料力学》讲稿(二)

材料力学》讲稿(二)
A
横截面对于中性轴 z 的静矩等于零, 是要求中性轴 z 通过横截面的形心;

A
y d A 0;显然这
一、纯弯曲下的应力
对z轴力矩的平衡
M z ydA M
z
A
x
ydA E
A A
y

ydA
E

y 2 dA
A
E

Iz

பைடு நூலகம்
1


M EI z
y 可以证明,其他平衡关系均自动 满足 正应力分布公式
交界处a点处(图b)的正应力。
由型钢规格表查得56a号工字钢截面
Wz 2342 cm3 I z 65586 cm4
max
M max 375 10 3 N m 160 MPa Wz 2342 10 6 m 3
危险截面上点a 处的正应力为
M max Fl 375 kN m 4
上式中的EIz称为梁的弯曲刚度。 显然,由于纯弯曲时,梁的横截面上 的弯矩M 不随截面位置变化,故知对 于等截面的直梁包含在中性层内的那

M y Iz
根轴线将弯成圆弧。
二、横力弯曲时的正应力

弯曲变形 ρ
横力弯曲的变形特征
A x dx M 剪切变形 B

M dx
Q
γ
dv
dv dx
d 1 dx
Q dx
剪切变形与剪力成正比,弯曲变形与弯 矩成正比。
二、横力弯曲时的正应力


最大正应力计算
横力弯曲的正应力分布公式
中性轴 z 为横截面对称轴的梁 其横截面
上最大拉应力和最大压应力的值相等;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65. 挤压实用计算的强度条件66. 等截面细长压杆在四种杆端约束情况下的临界力计算公式67. 压杆的约束条件:(a )两端铰支 μ=l(b )一端固定、一端自由 μ=2 (c )一端固定、一端铰支 μ=0.7 (d )两端固定 μ=0.568. 压杆的长细比或柔度计算公式 ,69. 细长压杆临界应力的欧拉公式70. 欧拉公式的适用范围71. 压杆稳定性计算的安全系数法72. 压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数序号 公式名称 公式 符号说明(3.1)截面形心位置AzdA z Ac⎰=,AydA y Ac⎰=Z 为水平方向 Y 为竖直方向 (3.2)截面形心位置∑∑=i i i cA A z z , ∑∑=iii cAA y y4 应力和应变5 应力状态分析2 内力和内力图6 强度计算7 刚度校核8 压杆稳定性校核10 动荷载9 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、拉压 []σσ≤=maxmax AN2、剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I Mz tmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z 2n2w 2n2wr34W M M②第四强度理论 []στσσ≤+=+=z2n2w 2n2w r475.03W M M二、变形及刚度条件 1、拉压 ∑⎰===∆LEAxx N EAL N EANLL d )(ii 2、扭转 ()⎰=∑==Φpp i i p GI dx x T GI L T GI TLπφ0180⋅=Φ=p GI T L (m /ο) 3、弯曲 (1)积分法:)()(''x M x EIy =C x x M x EI x EIy +==⎰d )()()('θD Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EIPL B 22=θ EI qL B 63=θEI ML f B 22= EI PL f B 33= EIqL f B 84=EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθEIML f c 162=EI PL f c 483= EI qL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EI L M U 22==i i i EI L M 22∑=()⎰EIdxx M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式) =∂∂=∆i i P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论1、二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx y x --++= ατασστα2cos 2sin 2xy y x +-=2、二向应力状态极值正应力及所在截面方位角22min max )2(2xy y x y x τσσσσσσ+-±+= y x xy σστα--=22tg 0 3、二向应力状态的极值剪应力22max )2(xyyx τσστ+-= 注:极值正应力所在截面与极值剪应力所在截面夹角为4504、三向应力状态的主应力:321σσσ≥≥ 最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x E μσσε-=)(1x y y E μσσε-= )(y x z E σσμε+-= Gxy xy τγ= (2)、表达形式之二(用应变表示应力) )(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ= PAB MAB A BqL LLLL6、三向应力状态的广义胡克定律()[]z y x x E σσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论(1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤ []bb n σσ=(2)[]σσσσ≤-=313r ()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []s s n σσ=8、平面应力状态下的应变分析(1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫ ⎝⎛---++=xyy x y x +-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫⎝⎛-xy(2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr ③短粗受压杆 s λλ≤ “cr σ”=s σ 或 b σ2、关于柔度的几个公式 i Lμλ= p 2p σπλE= ba s s σλ-=3、惯性半径公式AI i z =(圆截面 4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击) st20d ∆=g v K (水平冲击) 六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D D d =α⎰==6442d dA y I z π ()44164απ-D 123bh 123hb323maxd y I W zz π==()43132απ-D 62bh 62hb2、惯性矩平移轴公式A a I I 2zc z +=。

相关文档
最新文档