阻容耦合放大电路里耦合电容及旁路电容的深度分析

合集下载

模电第五章答案解析

模电第五章答案解析

【例5-1】电路如图 (a)、(b)所示。

(1)判断图示电路的反馈极性及类型;(2)求出反馈电路的反馈系数。

图(a) 图(b)【相关知识】负反馈及负反馈放大电路。

【解题思路】(1)根据瞬时极性法判断电路的反馈极性及类型。

(2)根据反馈网络求电路的反馈系数。

【解题过程】(1)判断电路反馈极性及类型。

在图(a)中,电阻网络构成反馈网络,电阻两端的电压是反馈电压,输入电压与串联叠加后作用到放大电路的输入端(管的);当令=0时,=0,即正比与;当输入信号对地极性为♁时,从输出端反馈回来的信号对地极性也为♁,故本电路是电压串联负反馈电路。

在图(b)电路中,反馈网络的结构与图(a)相同,反馈信号与输入信号也时串联叠加,但反馈网络的输入量不是电路的输出电压而是电路输出电流(集电极电流),反馈极性与图(a)相同,故本电路是电流串联负反馈电路。

(2)为了分析问题方便,画出图(a) 、(b)的反馈网络分别如图(c)、(d)所示。

图(c) 图(d)由于图(a)电路是电压负反馈,能稳定输出电压,即输出电压信号近似恒压源,内阻很小,计算反馈系数时,不起作用。

由图(c)可知,反馈电压等于输出电压在电阻上的分压。

即故图(a)电路的反馈系数由图(d)可知反馈电压等于输出电流的分流在电阻上的压降。

故图(b)电路的反馈系数【例5-2】在括号内填入“√”或“×”,表明下列说法是否正确。

(1)若从放大电路的输出回路有通路引回其输入回路,则说明电路引入了反馈。

(2)若放大电路的放大倍数为“+”,则引入的反馈一定是正反馈,若放大电路的放大倍数为“−”,则引入的反馈一定是负反馈。

(3)直接耦合放大电路引入的反馈为直流反馈,阻容耦合放大电路引入的反馈为交流反馈。

(4)既然电压负反馈可以稳定输出电压,即负载上的电压,那么它也就稳定了负载电流。

(5)放大电路的净输入电压等于输入电压与反馈电压之差,说明电路引入了串联负反馈;净输入电流等于输入电流与反馈电流之差,说明电路引入了并联负反馈。

旁路、耦合电容

旁路、耦合电容

什么是退耦?退耦(Decouple), 最早用于多级电路中,为保证前后级间传递信号而不互相影响各级静态工作点的而采取的措施。在电源中退耦表示,当芯片内部进行开关动作或输出发生变化时,需 要瞬时从电源在线抽取较大电流,该瞬时的大电流可能导致电源在线电压的降低,从而引起对自身和其他器件的干扰。为了减少这种干扰,需要在芯片附近设置一个 储电的“小水池”以提供这种瞬时的大电流能力。
选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容。
什么是旁路?旁路(Bypass),是指给信号中的某些有害部分提供一条低阻抗的通路。电源中高频干扰是典型的无用成分,需要将其在进入目标芯片之前提前干掉,一般我们采用电容到达该目的。用于该目的的电容就是所谓的旁路电容(Bypass Capacitor),它利用了电容的频率阻抗特性(理想电容的频率特性随频率的升高,阻抗降低,这个地球人都知道),可以看出旁路电容主要针对高频干扰(高是相对的,一般认为20MHz以上为高频干扰,20MHz以下为低频纹波)。
在电源电路中,旁路和退耦都是为了减少电源噪声。旁路主要是为了减少电源上的噪声对器件本身的干扰(自我保护);退耦是为了减少器件产生的噪声对电源的干扰(家丑说是不准确的,高速芯片内部开关操作可能高达上GHz,由此引起对电源线的干扰明显已经不属于低频的范围,为此目的的退耦电容同样需要有很好的高频特性。所以我们在一般的讨论中并不刻意区分退耦和旁路,认为都是为了滤除噪声,而不管该噪声的来源
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

各种电容的参数及作用

各种电容的参数及作用

各种电容的参数及作用一、什么是电容电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。

二、电容的作用电容器的基本作用就是充电与放电,但由这种基本充放电作用所延伸出来的许多电路现象,使得电容器有着种种不同的用途,例如在电动马达中,我们用它来产生相移; 在照相闪光灯中,用它来产生高能量的瞬间放电等等; 而在电子电路中,电容器不同性质的用途尤多,这许多不同的用途,虽然也有截然不同之处,但因其作用均来自充电与放电。

下面是一些电容的作用列表:•耦合电容:用在耦合电路中的电容称为耦合电容,在阻容耦合放大器和其他电容耦合电路中大量使用这种电容电路,起隔直流通交流作用。

•滤波电容:用在滤波电路中的电容器称为滤波电容,在电源滤波和各种滤波器电路中使用这种电容电路,滤波电容将一定频段内的信号从总信号中去除。

•退耦电容,用在退耦电路中的电容器称为退耦电容,在多级放大器的直流电压供给电路中使用这种电容电路,退耦电容消除每级放大器之间的有害低频交连。

•高频消振电容:用在高频消振电路中的电容称为高频消振电容,在音频负反馈放大器中,为了消振可能出现的高频自激,采用这种电容电路,以消除放大器可能出现的高频啸叫。

•谐振电容:用在LC谐振电路中的电容器称为谐振电容,LC并联和串联谐振电路中都需这种电容电路。

•旁路电容:用在旁路电路中的电容器称为旁路电容,电路中如果需要从信号中去掉某一频段的信号,可以使用旁路电容电路,根据所去掉信号频率不同,有全频域(所有交流信号)旁路电容电路和高频旁路电容电路。

•中和电容:用在中和电路中的电容器称为中和电容。

在收音机高频和中频放大器,电视机高频放大器中,采用这种中和电容电路,以消除自激。

•定时电容:用在定时电路中的电容器称为定时电容。

在需要通过电容充电、放电进行时间控制的电路中使用定时电容电路,电容起控制时间常数大小的作用。

•积分电容:用在积分电路中的电容器称为积分电容。

去耦电容和旁路电容

去耦电容和旁路电容

去耦电容和旁路电容
电容是一种用于储存电量的电子器件,耦合电容和旁路电容是在电路中常用的
电容。

作为电子电路中两个典型的电器件,耦合电容和旁路电容具有很多用途。

其中,耦合电容它通常用来耦合两个线性无关的信号源,并遮蔽其中一边的电源噪声对该信号的影响,从而使其更加清晰。

而旁路电容的功能就是避免非线性的元件,如场效应管或功放中间的非线性,电阻和共模抑制。

耦合电容和旁路电容在电子电路中发挥着重要的作用,但是,它们也会产生有
害的瞬变电流,在高频脉冲下,电容会发生瞬态热效应,电容温度会急剧上升,因而可能造成一些严重的损伤。

而且,由于脉冲电流受到耦合电容和旁路电容的影响,会使得元件受到一定的损伤,可能会影响电路的正常运行。

为了消除这些现象,抑制电路中的瞬变电位,改善信号质量,减少损耗,人们
发明了去耦电容和旁路电容这种替代型电容器件。

跟传统的耦合电容和旁路电容不同,去耦电容和旁路电容的结构和技术条件相同,尺寸相近,但它们不使用电容类元件,而是采用去耦电阻和旁路电阻,能有效地抑制瞬变电位,从而提高电源和信号之间的信号质量。

另外,这种替代型电容器件不仅能有效抑制瞬变电位,而且温度变化不明显,
可以有效解决由于耦合电容和旁路电容温度过高的问题,改善电子电路的整体性能。

综上所述,去耦电容和旁路电容是一种现代设备中用到的新型电容器件,它的
性能优于传统的电容器件的能力,能够有效地抑制瞬变电位,提高信号质量和电路性能,有助于电子电路的流畅运行,受到电子行业的追捧。

滤波电容、去耦电容、旁路电容作用及区别

滤波电容、去耦电容、旁路电容作用及区别

滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。

各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。

交变电流的频率f越高,电容的阻抗就越低。

旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。

对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。

但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。

滤波电容:滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在Vcc引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。

(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。

耦合电容旁路电容极间电容

耦合电容旁路电容极间电容

耦合电容旁路电容极间电容耦合电容、旁路电容、极间电容——这几个词一听就让人头大,搞不好就让人觉得是高大上的电子术语,根本看不懂。

不过,别急,让我们轻松聊聊这些电容的故事,听起来有点复杂,但其实也没那么难懂。

你想想,电容就像是小小的“储能桶”,它们能存储电能,还能在合适的时候放出来帮忙。

可它们在不同的场合,干的事情可不太一样。

所以,今天我们就来看看,耦合电容、旁路电容和极间电容这三种电容,究竟是怎么一回事。

首先得说说耦合电容。

你可能会想,耦合这两个字是不是有点亲密的意思?嘿嘿,不错,这个“耦合”确实有点像我们平时说的“牵手”或者“合作”。

在电路里,耦合电容的工作就像是一对好搭档,帮助两个电路之间建立联系。

比如说,音频放大器的输出和输入之间就可能通过耦合电容来连接。

它能把一个电路的信号传递到另一个电路,却不会让它们之间直接接触,好像你和朋友通过电话沟通,而不是面对面。

这个时候,耦合电容的任务就是把高频的信号通过,而把低频或者直流成分给“隔离”掉。

你看,耦合电容就是这么一位默默无闻的“信使”,负责传递信息,又不让你们俩直面接触。

是不是感觉很机智?再来说说旁路电容。

旁路这个词可能让你想到了“绕道而行”,对吧?嘿,其实没错,旁路电容就像是在电路中设置了一条“捷径”。

有时候电路中的某些电流不太好,可能会有些杂音、波动,影响整体表现,这时候旁路电容就会出来,给这些不必要的信号提供一条“逃生路线”。

它就像是电路中的守护神,帮忙把电流中的噪声“绕过去”。

就好比你走在热闹的街头,旁边有人吵吵嚷嚷,你肯定会选择绕开他们走,避免被吵到,旁路电容也就是这么干的。

它安静地存在,在你看不见的地方默默地工作,保护着电路免受干扰。

然后是极间电容。

听起来是不是又有点不知所措?放心,这个其实更简单。

极间电容,顾名思义,指的是两个不同电极之间的电容。

这个电容可不是单纯的“储能”那么简单,它负责的可大有文章。

它的作用就是影响电场的分布,帮助电路中的电流流动更加顺畅。

耦合电容和旁路电容的作用

耦合电容和旁路电容的作用

耦合电容和旁路电容的作用
嘿,你问耦合电容和旁路电容的作用呀?这俩家伙在
电路里可重要着呢。

咱先说耦合电容吧。

它就像个小信使,在电路里传递
信号。

比如说,一个电路的一部分产生了信号,要传给另
一部分,这时候耦合电容就上场啦。

它能让信号顺利地通过,同时又能阻止直流电流过去。

就像一个检查站,只让
特定的东西通过。

要是没有耦合电容,信号可能就传不过去,或者传得乱七八糟的。

它能让不同部分的电路协调工作,就像乐队里的指挥,让各个乐器配合得好好的。

再说说旁路电容。

这家伙就像个小保镖,保护电路不
受干扰。

有时候电路里会有一些杂波或者干扰信号,旁路
电容就能把这些坏家伙给引走,不让它们影响正常的电路
工作。

就像你在路上走,旁边有个垃圾桶很臭,旁路电容
就像个屏风,把臭味挡住,让你能安心走路。

它能让电路
更稳定,工作得更顺畅。

我给你讲个事儿吧。

我有个朋友,他自己组装收音机。

一开始他不知道耦合电容和旁路电容的作用,随便装了几
个电容上去。

结果收音机的声音很杂,根本听不清。

后来
他请教了别人,知道了这两个电容的重要性。

他重新安装了合适的耦合电容和旁路电容,嘿,这下收音机的声音可清晰了。

他可高兴了,说以后组装电路一定要注意这些小零件的作用。

所以啊,耦合电容和旁路电容在电路里可重要啦,一个负责传递信号,一个负责排除干扰。

有了它们,电路才能正常工作,发挥出最大的作用。

加油哦!。

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理电容在电路中的作用及电容滤波原理电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻挠低频的特性。

广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。

熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。

1、滤波电容:接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成份,使直流电变平滑。

普通采用大容量的电解电容器或者钽电容,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。

2、去耦电容:战釉诜糯蟮缏返牡缭凑、负极之间,防止由于电源内阻形成的正反馈而引起的寄生震荡。

3、耦合电容:接在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或者脉冲信号通过,使先后级放大电路的直流工作点互不影响。

4、旁路电容:接在交、直流信号的电路中,将电容并接在电阻两端或者由电路的某点跨接到公共电位上,为交流信号或者脉冲信号设置一条通路,避免交流信号成份因通过电阻产生压降衰减。

5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

6、衬垫电容与谐振电容:主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,漳芟灾地提高低频端的振荡频率。

是当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。

7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。

8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管间电容造成的自激振荡。

9、稳频电容:在振荡电路中起稳定振荡频率的作用。

10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。

12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。

多级放大电路3种耦合方式的详细分析

多级放大电路3种耦合方式的详细分析

多级放大电路3种耦合方式的详细分析在实际应用中,常对放大电路的性能提出多方面的要求,单级放大电路的电压倍数一般只能达到几十倍,往往不能满足实际应用的要求,而且也很难兼顾各项性能指标。

这时,可以选择多个基本放大电路,将它们合理连接,从而构成多级放大电路。

组成多级放大电路的每一个基本电路称为一级,级与级之间的连接方式称为级间耦合。

多级放大电路有3种常见的耦合方式,即阻容耦合、变压器耦合和直接耦合。

1、阻容耦合将多级放大电路的前级输出端通过电容接到后级输入端,称为阻容耦合方式。

图1所示为两阻容耦合放大电路,第一级为共射放大电路,第二级为共集放大电路。

图1 两级阻容耦合放大电路阻容耦合的优点是:前级和后级直流通路彼此隔开,每一级的静态工件点相互独立,互不影响。

便于分析和设计电路。

因此,阻容耦合在多级交流放大电路中得到了广泛应用。

阻容耦合的缺点是:信号在通过耦合电容加到下一级时会大幅衰减,对直流信号(或变化缓慢的信号)很难传输。

在集成电路里制造大电容很困难,不利于集成化。

所以,阻容耦合只适用于分立元件组成的电路。

应当指出,由于集成放大电路的应用越来越广泛,只有在特殊需要下,由分立元件组成的放大电路中才可能采用阻容耦合方式。

2、变压器耦合变压器耦合是利用变压器将前级的输出端与后级的输入端连接起来,这种耦合方式称为变压器耦合,如图2所示。

输出信号经过变压器送到负载。

RB1、RB2为T管的偏置电阻,CE是旁路电容,用于提高交流放大倍数。

图2 变压器耦合共射放大电路变压器耦合的优点是:由于变压器不能传输直流信号,且有隔直作用,因此各级静态工作点相互独立,互不影响。

变压器在传输信号的同时还能够进行阻抗、电压、电流变换。

变压器耦合的缺点是:体积大、笨重等,不能实现集成化应用。

但是由于变压器比较笨重,无法实际集成,而且也不能传输缓慢变化的信号,因此,这种耦合方式目前已很小采用。

3、直接耦合直接耦合是将前级放大电路和后级放大电路直接相连的耦合方式,这种耦合方式称为直接耦合,如图3(a)所示。

模拟电子技术(中南大学)智慧树知到答案章节测试2023年

模拟电子技术(中南大学)智慧树知到答案章节测试2023年

第一章测试1.BJT管的输入电阻比MOSFET的输入电阻高。

A:错B:对答案:A2.稳压管的稳压作用是利用了PN结的反向截止特性。

A:错B:对答案:A3.要实现BJT的放大作用,对发射结与集电结的要求是()。

A:发射结正偏,集电结反偏B:发射结反偏,集电结正偏C:发射结正偏,集电结正偏D:发射结反偏,集电结反偏答案:A4.工作在放大区的某晶体三极管,如果当IB从12μA增大到22μA时,IC从1mA变为2mA,那么它的β约为()。

A:90B:100C:83D:50答案:B5.在放大电路中,测得BJT管三个管脚电位分别为6V、6.7V、12V,则这三个管脚分别是()。

A:C、B、EB:E、C、BC:E、B、CD:C、E、B答案:C6.A:8.7B:4.3C:5.7D:73答案:C7.设某增强型N沟道MOS管UGS(th)=3V,试问当它的栅源电压uGS=2.5V时,该管处于()区。

A:击穿B:截止C:放大D:可变电阻答案:B8.A:cB:aC:bD:d答案:AB9.A:cB:dC:bD:a答案:AD10.A:bB:cC:dD:a答案:AC第二章测试1.阻容耦合两级放大电路各级的Q点相互独立,所以可以各级独自计算各自的Q点。

A:错B:对答案:B2.耗尽型NMOS管的多子与少子都参与导电。

()A:对B:错答案:B3.A:12B:0.5C:6D:0.7答案:A4.设某增强型N沟道MOS管UGS(th)=3V,试问当它的栅源电压uGS=2.5V时,该管处于()状态。

A:截止B:饱和C:击穿D:放大答案:A5.A:5.7B:4.24C:6D:4.03答案:D6.A:= -1200B:>1200C:=1200D:<1200答案:D7.A:10B:100C:40答案:B8.现有直接耦合基本放大电路如下,有电流放大作用的电路是()。

A:共集电路B:共源电路C:共基电路D:共漏电路E:共射电路答案:ABDE9.A:B:C:D:答案:BCD10.在多级放大电路下列三种三种耦合方式中,()耦合不能放大直流信号。

旁路电容和耦合电容详解讲解

旁路电容和耦合电容详解讲解

关于旁路电容和耦合电容精讲从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合. 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定.旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF.分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔可以减少板层电容,但会增加电感.分布电感是指在频率提高时,因导体自感而造成的阻抗增加.电容器选用及使用注意事项:1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器.2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致.在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格.3,电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器.4,优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境.我们知道,一般我们所用的电容最重要的一点就是滤波和旁路,我在设计中也正是这么使用的.对于高频杂波,一般我的经验是不要过大的电容,因为我个人认为,过大的电容虽然对于低频的杂波过滤效果也许比较好,但是对于高频的杂波,由于其谐振频率的下降,使得对于高频杂波的过滤效果不很理想.所以电容的选择不是容量越大越好.疑问点:1.以上都是我的经验,没有理论证实,希望哪位可以在理论在帮忙解释一下是否正确.或者推荐一个网页或者网站.2.是不是超过了谐振频率,其阻抗将大大增加,所以对高频的过滤信号,其作用就相对减小了呢?3.理想的滤波点是不是在谐振频率这点上???(没有搞懂中)4.以前只知道电容的旁路作用是隔直通交,现在具体于PCB设计中,电容的这一旁路作用具体体现在哪里?在用电容抑制电磁骚扰时,最容易忽视的问题就是电容引线对滤波效果的影响.电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用.然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策.出现这种情况的一个原因是忽略了电容引线对旁路效果的影响. 实际电容器的电路模型是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网络. 理想电容的阻抗是随着频率的升高降低,而实际电容的阻抗是图1所示的网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR.在谐振点以上,由于ESL的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性.在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失. 电容的谐振频率由ESL和C共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越差.ESL 除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低.因此在实际工程中,要使电容器的引线尽量短.根据LC电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低.许多人认为电容器的容值越大,滤波效果越好,这是一种误解.电容越大对低频干扰的旁路效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差.表1是不同容量瓷片电容器的自谐振频率,电容的引线长度是 1.6mm(你使用的电容的引线有这么短吗?).表1电容值自谐振频率(MHz) 电容值自谐振频率(MHz)1m F 1.7 820 pF 38.50.1m F 4 680 pF 42.50.01m F 12.6 560 pF 453300pF 19.3 470 pF 491800 pF 25.5 390 pF 541100pF 33 330 pF 60 尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的.当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上.从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合.去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定.去耦和旁路都可以看作滤波.正如ppxp所说,去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波.具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算.去耦电容一般都很大,对更高频率的噪声,基本无效.旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性.电容一般都可以看成一个RLC串联模型.在某个频率,会发生谐振,此时电容的阻抗就等于其ESR.如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线.具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF.一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰,在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象.在供电电源和地之间也经常连接去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰.我来总结一下,旁路实际上就是给高频干扰提供一个到地的能量释放途径,不同的容值可以针对不同的频率干扰.所以一般旁路时常用一个大贴片加上一个小贴片并联使用.对于相同容量的电容的Q值我认为会影响旁路时高频干扰释放路径的阻抗,直接影响旁路的效果,对于旁路来说,希望在旁路作用时,电容的等效阻抗越小越好,这样更利于能量的排泄.数字电路输出信号电平转换过程中会产生很大的冲击电流,在供电线和电源内阻上产生较大的压降,使供电电压产生跳变,产生阻抗噪声(亦称开关噪声),形成干扰源.一、冲击电流的产生:(1)输出级控制正负逻辑输出的管子短时间同时导通,产生瞬态尖峰电流(2)受负载电容影响,输出逻辑由“0”转换至“1”时,由于对负载电容的充电而产生瞬态尖峰电流. 瞬态尖峰电流可达50ma,动作时间大约几ns至几十ns.二、降低冲击电流影响的措施:(1)降低供电电源内阻和供电线阻抗(2)匹配去耦电容三、何为去耦电容在ic(或电路)电源线端和地线端加接的电容称为去耦电容.四、去耦电容如何取值去耦电容取值一般为0.01~0.1uf,频率越高,去耦电容值越小.五、去耦电容的种类(1)独石 (2)玻璃釉 (3)瓷片 (4)钽六、去耦电容的放置去耦电容应放置于电源入口处,连线应尽可能短.旁路电容不是理论概念,而是一个经常使用的实用方法,在50 -- 60年代,这个词也就有它特有的含义,现在已不多用.电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件.例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容.后来也有的资料把它引申使用于类似情况.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于 10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF.一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件有源器件在开关时产生的高频开关噪声将沿着电源线传播.去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地.在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等.由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等.本文介绍电容器的主要参数及应用,可供读者选择电容器种类时用.1、标称电容量(CR):电容器产品标出的电容量值.云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容量居中(大约在0005μF10μF);通常电解电容器的容量较大.这是一个粗略的分类法.2、类别温度范围:电容器设计所确定的能连续工作的环境温度范围,该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等.3、额定电压(UR):在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值.电容器应用在高压场合时,必须注意电晕的影响.电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿.在交流或脉动条件下,电晕特别容易发生.对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不的超过直流电压额定值.4、损耗角正切(tgδ):在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率.这里需要解释一下,在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如下图所示.图中C为电容器的实际电容量,Rs是电容器的串联等效电阻,Rp是介质的绝缘电阻,Ro是介质的吸收等效电阻.对于电子设备来说,要求Rs愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角δ要小.这个关系用下式来表达: tgδ=Rs/Xc=2πf×c×Rs 因此,在应用当中应注意选择这个参数,避免自身发热过大,以减少设备的失效性.5、电容器的温度特性:通常是以20℃基准温度的电容量与有关温度的电容量的百分比表示.补充:1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容).电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件.电容的特性主要是隔直流通交流.电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关.容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等.2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种.电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF).其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率.如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF3、电容容量误差表符号 F G J K L M允许误差±1% ±2% ±5% ±10% ±15% ±20%如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%.6使用寿命:电容器的使用寿命随温度的增加而减小.主要原因是温度加速化学反应而使介质随时间退化.7绝缘电阻:由于温升引起电子活动增加,因此温度升高将使绝缘电阻降低.电容器包括固定电容器和可变电容器两大类,其中固定电容器又可根据所使用的介质材料分为云母电容器、陶瓷电容器、纸/塑料薄膜电容器、电解电容器和玻璃釉电容器等;可变电容器也可以是玻璃、空气或陶瓷介质结构.以下附表列出了常见电容器的字母符号.电容分类介绍名称:聚酯(涤纶)电容(CL)符号:电容量:40p--4u额定电压:63--630V主要特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路名称:聚苯乙烯电容(CB)符号:电容量:10p--1u额定电压:100V--30KV主要特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路名称:聚丙烯电容(CBB)符号:电容量:1000p--10u额定电压:63--2000V主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路名称:云母电容(CY)符号:电容量:10p--0.1u额定电压:100V--7kV主要特点:高稳定性,高可靠性,温度系数小应用:高频振荡,脉冲等要求较高的电路名称:高频瓷介电容(CC)符号:电容量:1--6800p额定电压:63--500V主要特点:高频损耗小,稳定性好应用:高频电路名称:低频瓷介电容(CT)符号:电容量:10p--4.7u额定电压:50V--100V主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路名称:玻璃釉电容(CI)符号:电容量:10p--0.1u额定电压:63--400V主要特点:稳定性较好,损耗小,耐高温(200度) 应用:脉冲、耦合、旁路等电路名称:铝电解电容符号:电容量:0.47--10000u额定电压:6.3--450V主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等名称:钽电解电容(CA)铌电解电容(CN)符号:电容量:0.1--1000u额定电压:6.3--125V主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容名称:空气介质可变电容器符号:可变电容量:100--1500p主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等名称:薄膜介质可变电容器符号:可变电容量:15--550p主要特点:体积小,重量轻;损耗比空气介质的大应用:通讯,广播接收机等名称:薄膜介质微调电容器符号:可变电容量:1--29p主要特点:损耗较大,体积小应用:收录机,电子仪器等电路作电路补偿名称:陶瓷介质微调电容器符号:可变电容量:0.3--22p主要特点:损耗较小,体积较小应用:精密调谐的高频振荡回路名称:独石电容最大的缺点是温度系数很高,做振荡器的稳漂让人受不了,我们做的一个555振荡器,电容刚好在7805旁边,开机后,用示波器看频率,眼看着就慢慢变化,后来换成涤纶电容就好多了.独石电容的特点:电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好等.应用范围:广泛应用于电子精密仪器.各种小型电子设备作谐振、耦合、滤波、旁路.容量范围:0.5PF--1UF耐压:二倍额定电压.里面说独石又叫多层瓷介电容,分两种类型,1型性能挺好,但容量小,一般小于0.2U,另一种叫II型,容量大,但性能一般.就温漂而言:独石为正温糸数+130左右,CBB为负温系数-230,用适当比例并联使用,可使温漂降到很小. 就价格而言:钽,铌电容最贵,独石,CBB较便宜,瓷片最低,但有种高频零温漂黑点瓷片稍贵.云母电容Q值较高,也稍贵.。

实验三阻容耦合放大电路实验报告

实验三阻容耦合放大电路实验报告
60
1200
1690
1760
1760
1700
1570
1540
1500
1460
1420
1390
RL=3K
736
824
872
872
870
856
848
840
832
824
816
四、实验结论和心得
放大电路中,由于耦合电容和旁路电容的作用,实际电压放大倍数随着频率的变化而变化。由于电容具有通交流,耦合电容的容量足够大,对交流信号容抗就可忽略不计。这样,前一级的输出信号就无损失地传送到后一级继续放大。
输入电阻、输出电阻)的测试方法;
4.巩固多级放大电路的有关理论知识。
二、实验原理介绍
本实验中所采用的电路如图3-1所示。
图3-1 阻容耦合放大电路
1.中频段的电压放大倍数
在图3-1电路的中频段,耦合电容和旁路电容可以当作交流短路,三极管的电容效应可以忽略不计。此时,考虑后级放大电路对前级放大电路所构成的负载效应时,也就是将后级放大电路的输入电阻Ri2作为前级放大电路的负载,则前级放大电路的电压放大倍数为
(3-1)
其中,Ri2是后级放大电路的输入电阻,
后级放大电路的放大倍数为
(3-2)
其中,
全电路的电压放大倍数为
(3-3)
2.低频段和高频段的电压放大倍数
在低频段和高频段,放大电路的电压放大倍数是一个复数,它是频率的函数,其模值与相角都随频率而变化。
(1)单级放大电路在低频段和高频段的电压放大倍数
在低频段,三极管的电容效应可以忽略不计;但耦合电容和旁路电容的容抗较大,它们的交流压降不能忽略。电压放大倍数用下式表示:

耦合电容、滤波电容、去耦电容、旁路电容

耦合电容、滤波电容、去耦电容、旁路电容

耦合电容器主要的作用是隔离直流信号。

电容的阻抗和信号的频率成反比,信号的频率越高,衰减越小。

理论上,对于直流信号的阻抗是无穷大。

很多场合需要放大的是交流信号,所以,会用耦合电容去掉信号中的直流部分。

滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。

)2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。

去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地2.旁路电容和去耦电容的区别去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。

去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。

旁路:从元件或电缆中转移出不想要的共模RF能量。

这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。

多级放大电路3种耦合方式的详细分析

多级放大电路3种耦合方式的详细分析

多级放大电路3种耦合方式的详细分析
在实际应用中,常对放大电路的性能提出多方面的要求,单级放大电路的电压倍数一般只能达到几十倍,往往不能满足实际应用的要求,而且也很难兼顾各项性能指标。

这时,可以选择多个基本放大电路,将它们合理连接,从而构成多级放大电路。

 组成多级放大电路的每一个基本电路称为一级,级与级之间的连接方式称为级间耦合。

多级放大电路有3种常见的耦合方式,即阻容耦合、变压器耦合和直接耦合。

 1、阻容耦合
 将多级放大电路的前级输出端通过电容接到后级输入端,称为阻容耦合方式。

图1所示为两阻容耦合放大电路,第一级为共射放大电路,第二级为共集放大电路。

 图1 两级阻容耦合放大电路。

《阻容耦合放大电路》课件

《阻容耦合放大电路》课件

03
阻容耦合放大电路的分析方法
交流等效电路分析法
交流等效电路分析法是一种将电路中的电容和电感视为短路 和开路,只保留电阻元件的分析方法。通过这种方法,可以 简化电路,方便计算放大器的增益、输入输出阻抗等参数。
交流等效电路分析法的优点是计算简单,适用于分析线性交 流电路。但需要注意的是,由于忽略了电容和电感的作用, 这种方法无法分析非线性电路和瞬态电路。
信号转换
输入级通过将信号源的输出信号进行适当的电压或电流转换,以满足后续级的 输入要求。
输出级
输出电阻
输出级的主要功能是将放大后的 信号输出到负载。输出级通常由 一个或多个电阻和电容组成,以 实现信号的阻容耦合。
信号调整
输出级通过调整信号的幅度和波 形,以满足负载的要求。
电压放大倍数
电压放大倍数定义
02
它主要由输入级、中间级和输出 级三部分组成,通过阻容元件将 各级之间进行耦合。
阻容耦合放大电路的工作原理
输入信号通过电阻耦合到输入级,经 过放大后传递到中间级,再经过进一 步放大传递到输出级。
在整个过程中,电容的作用是隔直流 通交流,保证各级之间的直流工作点 互不影响。
阻容耦合放大电路的特点
瞬态分析法
瞬态分析法是一种通过求解电路的微分方程来分析电路瞬态特性的方法。通过这 种方法,可以了解电路在输入信号变化时的动态响应过程。
瞬态分析法的优点是能够全面地了解电路的瞬态特性,适用于分析非线性电路和 瞬态电路。但需要注意的是,这种方法需要求解微分方程,计算过程较为复杂, 需要使用数值计算方法进行求解。
信号放大
阻容耦合放大电路能够将微弱的 电信号放大,因此在测量仪器中 用于信号放大,如电表、示波器 等。

电容分类以及作用

电容分类以及作用

电容在电路中的作用:具有隔直流、通交流、阻低频,通高频的特性,广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等。

1、滤波电容:它接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电。

2、退耦电容:并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。

3、旁路电容:在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。

4、耦合电容:在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。

5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

6、衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。

7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。

8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。

9、稳频电容:在振荡电路中,起稳定振荡频率的作用。

10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。

12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。

13、克拉波电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。

14、锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。

15、稳幅电容:在鉴频器中,用于稳定输出信号的幅度。

共射放大电路中耦合电容问题分析

共射放大电路中耦合电容问题分析

34 | 电子制作 2021年03月的方法有直接耦合、电容耦合和变压器耦合。

直接耦合效率最高,但前后两级的静态工作点相互影响;而电容器耦合或变压器耦合,能使前后级的静态工作点相互隔离,并使交流信号顺利通过。

但不同的是,用电容传输信号会有相移发生;用变压器传输时信号的高频成分会产生损失[1]。

而小信号传输时,用电容器作为耦合元件,信号所受相移影响可以忽略。

下面详细阐述,作为放大低频小信号(一般几mV,到几十mV)的阻容耦合共发射极放大电路的耦合电容。

1 耦合电容的极性方位NPN 晶体管构成的阻容耦合共射放大电路如图1所示。

要使晶体管处于放大状态,必定满足集电极电位V C >基极电位V B >发射极电位V E 。

由于研究的信号源是低频小信号,信号的强度不影响电路的静态工作点,无论放大电路中加入或未加入动态信号,电容两端的电压基本保持不变。

故极性电容放置的位置关系,主要由静态时电容两极所处位置的电位高低决定。

所以电解电容的正极一端接高电位,电容负极2负载,构成输出闭合回路。

晶体管的集电极电位始终是输出回路的高电位端。

所以,耦合电容C 2的正极接晶体管的集电极[2]。

PNP 晶体管构成的阻容耦合共射放大电路,电容的极图3是NPN 阻容耦合共射放大电路的multisim 仿真智能应用2 耦合电容的作用在NPN晶体管构成的阻容耦合共射放大电路中,一方面,耦合电容C1用来隔断信号源与放大电路之间的直流通路,耦合电容C2用来隔断放大电路与负载之间的直流通路。

另一方面,耦合电容C1、C2又保证交流信号顺畅地经过放大电路。

电源两极间的电压是由电源自身决定的,无论是直流电源还是交流电源。

换句话说,电源两极间的电压具有钳位作用,电源两极接到哪里,那两端的电压就等于电源两极间的电压。

信号源也具有此性质。

在NPN晶体管构成的共射放大电路中,如果不加耦合电容C1,信号源与放大电路直接耦合,信号不失真地传输给放大电路。

为什么三极管放大电路的输入端和输出端都要串联一个电容器?

为什么三极管放大电路的输入端和输出端都要串联一个电容器?

为什么三极管放⼤电路的输⼊端和输出端都要串联⼀个电容器?⼀、⾸先解释⼀下耦合和去耦的意思:耦合:是指两个或两个以上的电路元件或电⽹络的输⼊与输出之间存在紧密配合与相互影响,并通过相互作⽤从⼀侧向另⼀侧传输能量的现象。

去耦:专指去除芯⽚电源管管脚上的噪声,该噪声是芯⽚本⾝⼯作产⽣的。

防⽌发⽣不可预测的反馈,影响下⼀级放⼤器或其它电路正常⼯作。

⼆、介绍⼀下耦合电路及电容的作⽤⼀般对耦合电路的要求是,对信号的损耗越⼩越好。

耦合电路不仅起级间的信号耦合作⽤,还要对信号进⾏⼀些处理,主要有以下情况:1. 通过耦合电路将两级放⼤器之间的直流电路隔离。

2. 通过耦合电路获得两个电压⼤⼩相等相位相反的信号。

3. 通过耦合电路对信号的电压进⾏提升或衰减。

4. 通过耦合电路对前级和后级放⼤器间进⾏阻抗匹配。

⽽我们今天要讲的三极管放⼤电路的耦合就是第1种和第四种情况。

先介绍第四种情况,C1是耦合电容,R1是下⼀级放⼤器的输⼊阻抗。

由于电容C1是有容抗的,与R1构成分压电路。

则当R1阻值⼀定时,耦合电容容量⼤,其容抗⼩,输出信号Uo⼤。

即在去耦电容C1的信号损耗⼩。

所以C1要选择合适的值以达到阻抗匹配。

第1种情况就是要说到今天的三极管放⼤电路的耦合了,电容的作⽤就是隔离直流信号,通过交流信号。

在三极管放⼤电路中,输出端和输⼊端都接有电容的放⼤电路称之为阻容耦合放⼤电路。

下图中C1是输⼊耦合电容,作⽤是通过交流输⼊信号,隔断输⼊直流信号,使前级直流信号不会影响本级的直流⼯作点。

C2是输出耦合电容,作⽤是输出交流信号,隔断输出直流信号,使本级的直流信号不会影响后级直流⼯作点。

电阻Ra可以⽤来防⽌可能出现的⾼频⾃激。

在三极管交流放⼤电路中,⾸先要建⽴稳定合适的静态⼯作点,在下图中由Rb和Rc建⽴直流⼯作点,提供适合的偏置,即发射结正偏,集电结反偏。

如果没有C1隔直作⽤,前级的直流电压(或信号)就会叠加在本级的直流点上,改变本级已经设定的直流⼯作点,三极管就有可能改变⼯作状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

进行仿真分析。
关 键 词 :共 射 放 大 电 路 ;耦 合 电 容 ;旁 路 电 容 ;Multisim 12
中 图 分 类 号 :TN722
文献标识码:A
文 章 编 号 :1673-1131(2017)07-0068-04
The depth analysis o f coupling capacitance and bypass capacitor in resistance
° ^ IH
< UB
^ .n
图2
上述性能的改变是该电路结构及元件共同作用的结果。
对 于 一 些 很 明 显 的 性 能 的 改 变 无 需 累 述 ,如 性 能 (1)。有 些 性
能 的 改 变 在 很 多 教 科 书 上 都 做 了 详 细 的 讲 解 ,如 性 能 (4)。而
对 于 该 电 路 里 的 电 容 的 具 体 工 作 过 程 及 原 理 ,却总 是 简 单 地
1 概述
^cc
模 拟 电 子 技 术 是 电 子 类 专 业 专 业 必 修 课 程 ,其中的 基 本
共射放大电 路 是 该 门 课 程 里 的 入 门 基 础 内 容 ,用于讨论晶体
^0
三 极 管 的 放 大 作 用 。在 原 理 型 的 单 管 共 射 放 大 电 路 (图 1 ) 的 基 础 上 ,引 出 了 阻 容 耦 合 单 管 共 射 放 大 电 路 以 改 善 电 路 性 能 , 如 下 图 2 所 示 。该电路是一个经典的实用的放大电路。
的 具 体 工 作 过 程 及 原 理 ,及 加 上 电 容 后 电 路 性 能 的 改 变 结 果 。
2 什么是电容
守使输入信号能够放大所必须遵守的原则,即动态输入信号
电容器都是由间隔以不同介质的两块金属极板组成,当
能够顺利地传送到放大管上进行放大,同时在性能的改变上
在 极 板 上 加 以 电 压 后 ,极 板 上 分 别 聚 集 起 等 量 的 正 负 电 荷 ,并
capacitance coupled am plifier circuit
Qiu Naling (Sichuan College o f Architectural Technology,deyang 618000,china) Abstract:A single tube common emitter amplifier circuit with stable quiescent operating point is a classical circuit in analog circuits,which contaios a lot o f analog circuit knowledge,and the coupling capacitor and bypass capacitor are the important components o f the circuit.The A C /D C path o f the circuit is separated by the capacitors,so that the dynamic performance o f Ihe circuit is improvedlD this paper,Hie working principle and the influence on fhe frequency characteristics o f the coupling cap­ acitor and bypass capacitor in the circuit are further discussed,combmed with the simulation software multisiml2 analysis. K ey w o rd s: Common emitter amplifier circuit;Coupliog c^ acitance;Bypass capacitor;Muldsim 12
即 共 地 ,更 好 地 防 止 了 干 扰 ;
通 过 上 述 定 义 的 描 述 ,可 以 知 晓 电 容 内 部 是 没 有 电 子 流 动 ,
2017年 第 7 期 (总第 175 期)
信息通信 INFORMATION & COMMUNICATI合电容及旁路电容的深度分析
邱娜灵 (四 川建筑职业技术学院,四川 德 阳 618000)
摘 要 :具 有 穗 定 静 态 工 作 点 的 单 管 共 射 放 大 电 路 是 模 拟 电 路 里 的 一 款 经 典 电 路 ,包 含 很 多 的 模 拟 电 路 知 识 ,其 中 耦 合电
带 过 。通 过 教 学 的 经 验 感 受 ,电容在该电路发挥作用的原理
是 一 个 难 点 ,不 容 易 理 解 ,所 以 本 文 将 重 点 讨 论 该 电 路 里 电 容
图1 图 2 电路相较于图1 的一个很大的改变是增加了三个电 容 ,两 个 耦 合 电 容 。、。 和 一 个 旁 路 电 容 C.。改 进 后 的 电 路 遵
可以归结为以下几点:
在 介 质 中 建 立 电 场 而 具 有 电 场 能 量 。将 电 源 移 去 后 , 电荷可
(1) 只 有 一 个 直 流 电 源 ,节 约 了 电 路 :
继 续 聚 集 在 极 板 上 , 电 场 继 续 存 在 。所 以 电 容 器 是 一 种 能 存
(2)
输 入 信 号 、直 流 电 源 、输 出 信 号 均 有 一 端 接 在 公 共 端储 电 荷 或 者 说 储 存 电 场 能 量 的 部 件 气
容 和 旁 路 电 容 是 该 电 路 的 重 要 组 成 部 分 。通 过 电 容 的 特 性 使 电 路 的 交 直 流 通 路 进 行 分 离 ,使 得 该 电 路 的 动 态 性 能 得 到
很 好 的 改 善 。 文 幸 将 对 该 电 路 中 耦 合 电 容 及 旁 路 电 容 的 工 作 原 理 及 对 频 率 特 性 的 影 响 进 行 深 入 讨 论 ,并 结 合 仿 真 软 件
相关文档
最新文档