200MW煤粉电站锅炉汞排放特性
燃煤电厂汞的释放研究
燃煤电厂汞的释放研究摘要本文研究了电厂中汞释放规律,常规燃煤电厂装备静电除尘器和湿式烟气脱硫系统。
在锅炉全负荷运行期间,采集了煤矿,煤矿灰,ESP(电除尘器)灰以及除尘后的颗粒进样和出样。
固体中的汞浓度在进行适当的处理和酸解以后用冷蒸汽原子吸收光谱测定法进行测量,气态汞用高锰酸钾和硫酸的混合溶液收集后通过冷蒸汽原子吸收光谱测定法进行测量,该结果用来检测:①汞浓度在发电厂中的相对分布;②用MALT-2计算模型来均衡汞的存在形式;③烟囱排放中的汞浓度。
烟道气中总的汞浓度分别是1.113,0.422 和0.712 ugm3N。
在烟囱排放中超过99.5%的汞以气态形式存在,固体颗粒形式所占的比例是极少的。
汞在ESP,FGD和烟气道中的相对分布分别是从8.3到55.2%,13.3到69.2%和12.2%到44.4%。
结果表明燃烧条件而不是煤中的汞浓度和污染控制设备的效率是煤电厂中影响汞排放的重要因素。
用MALT2程序计算的汞均衡分布情况表明用浓缩机制来解释汞的存在形式对电除尘器中汞的去除效率变化的影响是非常有必要的。
关键词燃煤电厂;释放研究;汞引言燃煤电厂的汞释放规律,对某电厂燃烧的三种形式的煤,含汞量分别为:0.0063,0.0367和0.065 mg/kg。
基于研究结果,本文进行了以下内容的测量:①物料守恒;②汞浓度在发电厂中的相对分布;③汞存在形式的平衡计算;④烟囱排放中的汞浓度。
1 实验方法1.1 取样在锅炉全负荷运行期间,我们采集了进样和出样例如煤矿,粗灰(炉渣,煤渣,空气预热器灰,省煤器灰,引风机灰),ESP(电除尘器)灰,FGD(烟气脱硫)石膏,烟道气,处理水。
1.2 测量固体中的汞浓度检测方法为对样品进行合适的预处理后用冷蒸汽原子吸收光谱测定法进行测定。
总的气态汞在非等速条件下使用高锰酸钾和硫酸的混合溶液在撞击滤尘器中收集。
收集样品中汞浓度用冷蒸汽原子吸收光谱测定法进行检测,检测之后的废液酸解[1]。
燃煤电厂汞排放特性实验研究
第37卷第5期2007年9月东南大学学报(自然科学版)J OURNAL O F SOUTHEAST UN I V ERS I TY (Natural S ci en ce Ed iti on)V o l 37No 5Sep.t 2007燃煤电厂汞排放特性实验研究杨立国 段钰锋 杨祥花 江贻满 王运军 赵长遂(东南大学洁净煤发电及燃烧技术教育部重点实验室,南京210096)摘要:选取了我国6个比较有代表性的燃煤电厂,采用美国EP A 推荐使用的OH 方法,对其入炉煤、底渣、飞灰、脱硫产物及烟气进行了取样分析,并针对系统汞的排放进行了平衡计算.测量了不同电厂的除尘器灰的含碳量,以分析其对飞灰中汞富集因子的影响.实验结果表明:在所测的6个燃煤电厂中,底渣排汞量不到总汞的1%,煤中的汞在燃烧区域以后绝大部分以气态和飞灰吸附态的形式排放,并随着机组容量的增大,气态汞的排放比例也有所增大.飞灰中的残碳对气态汞向飞灰的富集有促进作用,飞灰的含碳量与飞灰中汞的富集因子呈正相关关系.烟气中的氯元素可以提高可溶性二价汞的含量.实验研究表明,循环流化床燃烧方式可以极大地减少气态汞的排放量,其机理还有待于进一步研究.关键词:燃煤电站;汞排放;汞平衡;飞灰中图分类号:TK224 9+3 文献标识码:A 文章编号:1001-0505(2007)05 0817 05M ercury e m ission characteristics fro m coal fire d po wer pl antsY ang L iguo D uan Y ufeng Y ang X ianghua Jiang Y i m an W ang Y un jun Zhao C hangsui(Key Labo rat o ry o f C l ean C oalPow er G eneration and C om bu sti on T echno l ogy o fM i n istry of Education,S out h eastUn iversity ,N an ji ng 210096,C h i na)Abst ract :To eva l u ate the m ercury e m issi o ns ,and to co m prehend and com pare t h e s pec iati o n characteristics o f m ercury i n differ ent pow er plants ,six representa ti v e coa l fired po w er plants w ere selected ,of w hich t h ere w ere five pul v erized coal bo ilers and one circu l a ti n g flui d ized bed bo iler ,w ho se capac i ti e s ranged fro m 50MW to 600MW w ith different fl u e gas cleaning up dev i c es such as electro static precipitator (ESP),fabric filter (FF)and fl u e g as desulfuri z ation (FGD ).Sa m p les o f feed i n g coa,l bo ttom ash ,fl y ash ,desulfurization sorbent and flue gasw ere taken at the inlet and outl e t of po ll u tion contr o l dev ices fro m the si x differen t coa l fir ed pow er p lants .The resu lts of m ercury e m issi o n and m ercury balance s how that the m ercury speciation distri b uti o n changes g r eatly dependi n g on coal types ,co m busti o n bo ilers and d ifferent a ir po llution contro l dev i c es (APCD ).The fly ash exerts dif ferent i n fl u ence s onm ercur y adso r ption ,and the chlorine content i n flue gas can convertm o re ox i d ized m ercury .It is show n that circulating flui d ized bed com busti o n (CFBC )can decrease the to tal g aseous m ercury e m issi o n ,how ever the m echan is m needs to be further i n v esti g a ted .K ey w ords :co al fired pow er plan;t m ercury e m issi o n;m ercury ba l a nce ;fl y ash 收稿日期:2007 01 08.基金项目:国家重点基础研究发展计划(973计划)资助项目(2002CB 211604,2006CB 200301)、985教育部 振兴行动计划 一期联合资助项目.作者简介:杨立国(1978!),男,博士生;段钰锋(联系人),男,博士,教授,博士生导师,yfduan@seu .汞是一种神经毒物,而且是一种生物积累物质,对人类健康威胁很大.研究表明[1],燃煤汞排放是主要的人为大气汞排放源.根据Chu 等[2]研究,目前全球人为源汞散发量约4000t/a ,1995年中国燃煤大气排汞量为213 8,t 约占总量的5%.中国一次性能源以煤炭为主,1995年我国煤炭消耗量为13 8亿,t 居世界第一位[3],中国燃煤大气汞排放量自1978年至1995年年平均增长速度为4 8%,全国累积汞排放量为2493 8t [4].煤炭利用过程中,大量的汞被释放到大气中,对人类健康造成直接或潜在的危害.本文采用美国国家环保署(EP A )标准燃煤电厂汞取样分析方法对选取的我国6个燃煤电厂进行了系统全面的取样分析测试研究工作,获取了我国现阶段燃煤电站配置条件下汞排放特性的实验数据,掌握了目前我国部分燃煤电厂汞排放现状和规律,为将来我国燃煤电厂汞排放控制政策的制定提供了有益的参考.1 实验系统本文选取了我国6个比较有代表性的燃煤电厂锅炉系统进行实验研究,各个电厂系统配置如表1所示.实验对电厂的入炉煤样、底渣、预除尘器灰、除尘器灰、脱硫产物和烟气等进行了取样分析研究.固态产物的取样与烟气采样同时进行.取样点的布置如图1所示.表1 6个燃煤电厂锅炉容量和污染物控制装置电厂地点锅炉类型机组容量/MW设计煤种污染物控制1#北京W型火焰、飞灰复燃、液态排渣直流炉220神华煤静电除尘器2#内蒙古四角切圆燃烧方式煤粉炉200准格尔烟煤布袋除尘器3#内蒙古单炉膛 型煤粉炉50准格尔烟煤布袋除尘器4#内蒙古直流式燃烧器四角切圆燃烧方式、固态排渣煤粉炉600准格尔烟煤静电除尘器5#河北四角切圆方式、单炉膛 型露天布置、固态排渣煤粉炉600神华煤静电除尘器+湿法脱硫6#江苏固态排渣、超高压循环流化床蒸汽锅炉135混和煤种静电除尘器图1 电场飞灰取样点示意图烟气取样采用美国环保署(EPA)和能源部(DOE)等机构推荐的汞测试分析的标准方法OH 方法,如图2所示,其流程为:采样系统从烟气流中等速取样,取样管线的温度维持在120∀以上.取样系统主要由石英取样管及加热装置、过滤器(玻璃纤维滤筒)、吸收瓶(置于冰浴中)、流量计、真空泵等组成.颗粒态汞由位于取样枪前端的玻璃纤维滤筒捕获,氧化态汞由3个盛有KC l溶液的吸收瓶收集,元素汞由1个装有HNO3+H2O2溶液和3个装有KM nO4+H2SO4溶液的吸收瓶收集,最后由盛有干燥剂的吸收瓶吸收烟气中的水分.取样结束后,进行样品的恢复和消解;所有消解过的样品称重后立即送入全自动测汞仪H ydra AA进行检测.固态产物中汞含量的测定采用全自动汞测量仪DM A80来进行,DM A80固液相自动测汞仪将样品的加热过程和原子吸收光谱检测装置集于一身,能直接测定固体或液体中的总汞含量.图2 OH方法烟气汞等速取样系统简图2 结果与分析通过对6个燃煤电厂全负荷运行条件下的煤、底渣、飞灰、烟气(及脱硫产物)汞浓度数据和运行工况的计算分析,可以得到电厂在全负荷运行工况下的汞平衡,如表2和图3所示.表2 不同电厂不同形态汞的排放量g/h电厂煤中汞底渣中汞除尘器前不同形态汞排放量Hg0H g2+H g P除尘器脱除汞除尘器后不同形态汞排放量Hg0H g2+H g PW FGD脱除汞脱硫装置后不同形态汞排放量Hg0Hg2+H g P1#0 810 000 720 070 020 040 570 050 00!!!!2#26 40 0410 812 00 720 455 7017 60 00!!!!3#8 700 010 862 552 804 400 181 170 15!!!!4#69 60 2886 713 20 372 1236 530 90 00!!!!5#10 00 757 990 310 030 049 541 230 000 869 740 410 00 6#2 720 130 020 001 311 970 010 000 02!!!!2.1 汞平衡及排放因子煤燃烧后,汞被再分配到粉煤灰、炉渣和烟气中,通过实验研究,发现所测试的6个电厂中,进入飞灰中的汞占3 3%~99%,其中江苏某电厂135818东南大学学报(自然科学版) 第37卷图3 6个燃煤电厂的汞平衡MW的循环流化床锅炉高达99%.进入炉渣中的汞占0 00%~0 97%.排入大气中的汞占0 96%~90 9%,135MW 的循环流化床锅炉只有0 96%.汞排放因子(EF)表示燃煤电厂烟气中的汞排放到大气中的排放量,即人们通常所说的最终向大气排放的汞强度.根据1996年美国DOE 对9个电厂的汞浓度现场测试,结果显示其排放因子为0 82~9.46m g /G J [5],本文汞排放因子计算参照此文献,但使用了国际单位,具体定义如下:E f =m Hg GQ式中,E f 为汞排放因子;m Hg 为排放到大气中的汞量;G 为给煤量;Q 为煤的低位发热量.图4 燃煤电厂不同形态汞排放比例由图4可以看出,不同电厂燃煤汞的排放因子有很大差别,这主要是由煤质特性(主要是汞含量和低位发热量)决定的.而不同电厂又由于燃烧设备、运行工况以及污染物控制设备的不同,导致燃煤烟气汞排放因子有所不同.1#,2#,4#和5#电厂表明在全负荷运行条件下,现有的污染物控制装置对气态汞排放的控制没有多大作用,煤中汞几乎全部以不同气态汞形态排入大气;3#和6#电厂由于机组容量较低和循环流化床燃烧方式,导致飞灰含碳量较高(见表3),从而使得煤中汞绝大多数以固态产物形式得以脱除,只有极小一部分被排入大气.表3 各个电厂飞灰含碳量电厂取样编号除尘器(ESP 或FF)灰含碳量%一电场二电场三电场四电场1#507212 922 632 592 57507241 432 043 833 03507252 853 153 192 54507262 822 082 532 242#50803A0 9250803B 0 92508041 333#50807A2 8750807B3 18508092 594#508131 340 70 7950814A 0 90 920 930 8350814B 0 826#50912A 11 29 8950912B 12 0310 *******C1110 34图5所示为电厂汞以不同形态的排放比例按电厂机组容量的变化情况.说明汞的排放形式与电厂机组容量有很大关系.从本实验所得结果来看,较低的锅炉容量和循环流化床燃烧方式可以比较有效地控制燃煤电厂汞的大气排放.CFB 对汞的高脱除效率也被EP A 的现场测试所报道.美国EPA 对84台锅炉进行了现场测试工作,其中共选取了5台带FF 的CFB 锅炉,发现这种燃烧方式具有从66%~99%的汞脱除效率[6],平均值为86%.图5 燃煤电厂不同形态汞排放比例2 2 飞灰含碳量对汞排放特性的影响近年来,国内外学者对汞的吸附脱除做了大量的研究,取得了一系列成果,普遍认为燃煤飞灰能吸附烟气中的汞[7-9].飞灰作为汞的一种廉价吸附剂正日益受到人们的重视.表3列出了不同电厂除尘器灰的含碳量.图6所示为不同电厂的除尘器电场灰中汞的富集因子I k 随飞灰含碳量的变化趋势.由图6可以看出,同一电厂的不同除尘器电场819第5期杨立国,等:燃煤电厂汞排放特性实验研究灰中汞的富集因子随着含碳量的增大而增大;不同电厂的除尘器灰其汞的富集因子基本上也是与含碳量呈正相关性,只不过受烟气成分(主要是C l 元素)等其他因素的影响而有所偏离.图6 电场灰中汞的富集因子随飞灰含碳量的变化如图7所示,可以从飞灰含碳量来解释不同机组容量对汞排放特性的影响:锅炉容量越小,炭颗粒在炉内的停留时间越短,则飞灰中含碳量越高,导致飞灰中汞的富集因子增大,从而汞的气态排放量越小;反之则越大.循环流化床锅炉飞灰含碳量最高,所以汞的富集因子较高.图7 除尘器灰的含碳量随电厂锅炉容量及锅型变化2.3 烟气成分对燃煤电厂汞形态分布的影响规律文献[10]研究了20~900∀范围内燃煤烟气中各气体成分的化学反应性质,发现H g 0(g)与HC l (g),C l 2(g)可迅速反应.以下为H g 0(g)与烟气中C l 2和HC l 可能发生的反应:H g 0(g )+C l 2(g)#H gC l 2(s ,g)H g 0(g)+C l 2(g)#H g 2C l 2(s)H g 0(g)+HC l (g)#H gC l 2(s ,g)+H 2(g)H g(g)+HC l (g)+O 2(g)#H gC l 2(s)+H 2O (g)H a ll 等[10]同时还发现汞-氯系统中C l 2(g)的活性更大.本文通过对6个燃煤电站汞排放特性和烟气成分的分析研究,总结了几个影响烟气中气态二价汞H g 2+(g)含量的因素,如图8和图9所示.图8 氧化汞所占烟气总汞百分比随HC l 浓度的变化图9 氧化汞所占烟气总汞百分比随C l 2浓度的变化可以看出,烟气中二价汞比例与烟气中C l 的含量基本上是正相关性的.烟气中的气态二价汞H g 2+(g)易溶于水,可以被湿法脱硫装置(W FGD )脱除,因此提高烟气中气态二价汞H g 2+(g)的含量,是一种汞排放控制的有效手段.这表明烟气中的C l 有利于燃煤电厂气态汞排放的控制.3 结论1)对6个燃煤电厂的煤、底渣、飞灰、烟气(及脱硫产物)进行了取样分析,并针对系统汞的排放进行了平衡计算,得到了燃煤电站汞的富集规律和排放特性.2)现阶段还缺乏基于实验数据的对我国燃煤电厂汞排放总量和排放特性的研究.本文所选取的6个有代表性的燃煤电厂的实验研究表明,不同装机容量,燃用不同煤种的电厂其汞排放总量有很大差异,而我国不同煤种,甚至相同煤种的不同煤层之间汞含量的差距很大,这给估算我国燃煤电厂汞排放总量造成困难.3)不同的煤种、机组容量和污染物控制装置造成燃煤电厂汞排放特性的不同,随着机组容量的增大,汞的大气排放量有增大的趋势.4)就本文的研究来看,循环流化床锅炉可以有效地控制汞向大气的排放;烟气中的氯元素可以提高烟气中可溶性二价汞的含量.5)飞灰中的残碳可以增强飞灰对气态汞的吸附作用.不同的燃烧工况和燃烧设备会造成飞灰的820东南大学学报(自然科学版) 第37卷物理化学性质的不同,这导致烟气中颗粒态汞含量差异极大,并直接导致汞向大气中排放量的不同,飞灰对烟气中汞的吸附机理和吸附脱除能力值得进一步研究分析和开发利用.本实验工作是与清华大学热能工程系禚玉群副研究员、陈雷硕士、张亮博士研究生等共同努力工作完成的,在此表示感谢.参考文献(References)[1]M e ij R.T he fa t e o f m ercury i n coa l fired pow er p l antsand t he i nf l uence o f w e t f l ue ga s de s u l phurizati on[J].W a ter,A ir and So il P o lluti on,1991,56(4):21-23. [2]Chu P,Po rcell a D B.M e rcury stack e m issi on s from U SAelectr i c utility pow er plants[J].W a te r,A ir and So il P o ll uti o n,1995,80(1/2/3/4):135-144.[3]王起超,马如龙.煤及其灰渣中的汞[J].中国环境科学,1997,17(1):76-79.W ang Q i chao,M a R ulong.T he m e rcury i n co al and itsci nder[J].C hi na Env iron m enta l Science,1997,17(1):76-79.(i n C hine se)[4]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.W ang Q ichao,ShenW eng uo,M a Z huangw e.i T he esti m ati on o f m ercury em ission from co al com bustion o f Ch i na[J].Ch i na Environ m enta l Science,1999,19(4):318-321.(i n Ch i nese)[5]EERC.A com prehensi v e asse ss m en t o f to x ic em issionsfrom coa l f i red pow er p l ants:phase∃,results from t he U.S.D epart m ent o f Energy S t udy[R].N o rth D ako t a:G rand Fo rks,1996.[6]John H,P av lish E A S,M i chae lD M ann,et a.l Status rev i ew o f m ercury con tro l op tions fo r co a l fired pow er plants[J].Fue l P ro cessing Techno l o gy,2003,82(2/3):89-165.[7]A uro ra R ube,l R o dney A ndrew s,R o l ando G onzalez,eta.l A dsorpti on o f H g and NO x o n co a l by products[J].Fue l,2005,84(7/8):911-966.[8]G ran ite E J,P enn line H W,Ha rg is R A.N ov e l so rben tsfor m ercury re m ov al from flue gas[J].Ind&Eng Che m R es,2000,39(4):1020-1029.[9]H assett D J,Ey l ands K E.M ercury capture on co a l fl yash[J].Fuel,1999,78(2):243-248.[10]H a ll B,Schag er P,L i ndqv ist O.Che m i ca l reacti o ns o fm e rcury on com bustion flue ga ses[J].W a ter,A ir andSo il P o ll uti o n,1991,56(4):3-14.821第5期杨立国,等:燃煤电厂汞排放特性实验研究。
电站锅炉重金属汞的排放规律及控制研究
电站锅炉重金属汞的排放规律及控制研究【关键词】燃煤烟气;汞形态;除汞机理0 引言全世界发电用煤量巨大,燃煤电厂是导致空气污染的最大污染源之一。
尽管汞在煤中的浓度很低,但是由于煤消耗量巨大,国内外对它的研究均十分重视。
在煤燃烧造成的污染物中,除so2,nox 和co2外,还有各种形态的汞排放,大量的汞释放到大气中,对人类健康造成直接或潜在的危害。
美国epa于2005年颁布了燃煤电站锅炉汞排放最终法规,这使得美国成为全球首个制定燃煤电站汞排放限制的国家,而我国对此研究上处于起步阶段。
1 燃煤电站汞的排放规律煤炭中的汞主要以hgs的形式存在,在燃烧过程中氧化成hgo。
在燃烧的高温区域,氧化态汞转化为热力学上稳定的元素态。
通常燃煤电站内的汞排放浓度在100-600ppt之间,而废物燃烧排放浓度则在10000-100000ppt之间。
目前认为烟气中的汞主要有三种形式,元素态汞,二价汞,和颗粒态汞。
煤中的大部分汞蒸发,通常10%的汞与飞灰结合在一起,90%的汞以气相的形态存在于空气预热器出口。
元素态汞,氧化态汞的比例是不确定的。
有结果表明50~90%的汞被氧化。
本质上所有水溶性的hg2+可用常规的烟气脱硫(fgd)装置去除,但元素态汞(hg0)不受fgd影响。
因此汞的去除效率取决于烟气中汞的形态分布。
元素态汞(hg0)一般占总汞的90%,元素态汞占的比例越大,越不容易被脱除。
所以目前很多脱汞方法的机理是将元素态汞转化为氧化态,然后将其脱除的。
2 影响烟气中汞的因素2.1 烟气的温度煤中的汞可以在150℃左右的低温下挥发。
在炉膛内的燃烧温度下,汞将蒸发并以单质汞的形态存在于气相之中,随着烟气温度降低,单质汞会与烟气中的其他成分发生一系列化学反应,一部分转化为气态的氧化汞,一部分转化为固态的颗粒汞并吸附于烟气中的飞灰颗粒上,从而容易地被各种除尘设备捕捉,大部分汞仍然以元素态的形式随烟气排放到大气环境中。
2.2 烟气中氯元素氯化氢的含量直接影响了烟气中汞的形态分布。
燃煤电厂高效协同脱汞技术分析
燃煤电厂高效协同脱汞技术分析燃煤电厂汞排放控制是目前国际上研究的热点,文章对燃煤电厂中汞的排放特性进行研究,对脱汞的协同治理技术和吸附剂喷射脱除技术进行系统的总结,可以为燃煤电厂汞排放控制选择合适的方法提供参考。
标签:脱汞;协同治理;吸附剂引言燃煤电厂是人为汞排放的重要来源之一,世界各国已经引起了足够的重视,燃煤電厂汞排放控制技术包括利用现有的烟气治理设备来最大限度地控制电厂的汞排放和针对汞的专门控制技术,本文就这两个方面的技术进行系统分析。
1 汞排放特性分析燃煤烟气中的汞主要有3种存在形态:元素汞(Hg0)、氧化态汞(Hg2+)和颗粒态汞(Hgp)。
汞的脱除效率很大程度上依赖于所排放的汞的形态分布。
Hg0绝大部分以气相的形式排放到大气中,是烟气中最难捕获的汞形态;氧化态汞主要以Hg2+的形式存在(如HgC12),易被湿法洗涤系统(如湿法脱硫装置)所捕获而脱除;颗粒态汞(Hgp)指的是能与烟尘粒子结合的那部分汞,可随烟气中的飞灰被除尘装置捕获。
因此,降低燃煤烟气中Hg0的比例是提高汞脱除效率的关键。
2 汞脱除技术方案分析燃煤电站现有烟气治理设备,包括除尘器、SCR脱硝装置、脱硫装置和湿式静电除尘器,对重金属元素都有不同程度的直接或间接脱除作用。
已有的研究结果表明,目前的烟气治理设备的综合协同脱汞率可达50~90%以上,对于我国境内的大部分煤种,都可以达到30μg/Nm3的排放标准,因此,应优先考虑采用烟气治理设备协同脱除,如无法达到排放指标或者需要达到更高的排放标准,可以考虑采用吸附剂脱除技术。
3 汞协同治理技术燃煤电站烟气治理设备都对汞都有不同程度的直接间接脱除作用,汞协同脱除技术有除尘器协同脱除、湿法脱硫协同脱除和湿式静电除尘器协同脱除,具体介绍如下。
3.1 除尘器协同脱汞对易挥发的重金属Hg,其脱除效果与颗粒态汞的存在比例及除尘器的类型相关。
根据美国EPA的测试结果,静电除尘器的自然汞脱除率可达36%,布袋对汞自然脱除率最高可达90%。
燃煤电厂汞排放特性实验研究
第3 7卷 第 5期
20 0 7年 9月
东 南 大 学 学 报 (自然科 学版 )
J R L OF S UT E T U I R IY ( trl c n eE io ) OU NA O H AS N VE ST Na a i c d in u S e t
peii tr( S ) fb cftr( F ndf eg s eufr ai F D) a ls f edn o l rc t o E P , ar l F )a u a sl i t n( G .Smpe eigca, pa i ie l d uz o of
b t m s ,fy a h。d s f ia in s r e n u a r a n a e i lta d o te fp lui n ot o ah l s e ul z t o b nta d f e g s we e tke tt ne ur o l h n u lto o l t o
YagLg o DunY fn Y n ag u JagYma WagY nu Z a hn si n iu a ueg agXi h a in i n n n ujn h oC agu
( e aoaoyo la ol o e eea o n o ut nT cn lg f nsyo d ct n K yL b r r f enC a P w rG nrt nadC mb so eh oo yo ir f uai , t C i i Mi t E o
VOl3 N O 5 _7 . Se t 2 07 p. 0
燃 煤 电 厂 汞 排 放 特 性 实 验 研 究
杨 立 国 段 钰 锋 杨 祥 花 江贻 满 王运 军 赵 长 遂
试论燃煤锅炉烟气汞污染控制技术
煤燃料是汞污染的主要来源,汞及其化合物是主要污染物之一,是环境污染控制的重要内容。
自工业革命以来,世界各国尤其是西方国家大量消耗能源资源来实现经济增长,造成了大气中大量污染物的产生,进一步降低了大气质量,不仅对人们的日常生活造成一定的影响,而且也严重破坏了自然生态系统。
目前,对汞排放控制的研究已经成为世界各国研究的热点,汞具有累积性、剧毒性以及持久性等特点,虽然汞的浓度比较低,但是我国每年燃煤量巨大,汞污染问题不容忽视。
1汞的排放形态与特性不同形态汞得化学性质与物理性质有很大的差异。
燃烧之后扩散到空气中的汞有三种形态:单质汞、颗粒汞与气态氧化汞[1]。
在燃烧烟气中,单质汞大约是20%,气态氧化汞大约是50%。
单质汞是汞的主要形式,它具有较低的水溶性与较高的挥发性,在大气中很容易通过长时间当然传输形成全球性的汞污染[2]。
其含量超过环境本身的承载能力,大气质量不断恶化,致使人们的生活、工作、健康以及生态环境等多方面都受到严重的影响与破坏的现象。
由于人类不合理的生产活动对城市大气环境造成一定的破坏,从而影响着整个生物系统,包括对人类、植物与动物的生存空间都造成了很大的危害。
2燃煤锅炉烟气脱汞技术在环保要求不断提高的时代背景下,用于除尘与烟气脱硫脱硝的各种控制设备被广泛的应用,这为烟气脱汞提供更广阔的发展空间。
我国作为人口发展大国,城市环境的质量直接关系人们的身体健康,同时对我国的稳定与长久发展也有一定的影响。
目前,在城市大气污染对人们的身体健康与生态环境都造成了很大的负面影响。
2.1烟气脱硫装置脱汞脱硫装置可以达到一定的除汞目的,烟气中的气态氧化汞化合物可以溶于水。
研究表明湿法脱硫设备可以将烟气中11%~60%的气态氧化汞去除,但是对于不能溶于水的单质汞这种设施并不显著明的是。
自工业革命以来,世界各国尤其是西方国家大量消耗能源资源来实现经济增长,国家只重视社会经济的发展状况,忽视了社会发展对环境造成的破坏。
燃煤电厂中汞的排放与控制的研究
燃煤电厂中汞的排放与控制的研究摘要:本文对煤中微量元素汞的含量以及燃煤烟气中汞的排放情况进行了论述,综述了重金属汞在煤中的存在形态及在燃煤电站中的转化过程,并重点介绍了燃煤烟气中重金属汞的控制方法的最新研究进展,分析了燃煤电厂在汞的控制方面存在的主要问题,并结合我国国情提出了相关建议。
关键词:燃煤电厂;烟气;汞;排放;控制Keywords: coal-fired power plant; flue gas; mercury; emission; control0引言汞对已知的任何生物没有作用,人们很久以前就认识到汞是一种有毒的物质,且属于毒性最强的元素之一。
汞污染对生态环境的影响虽然比较缓慢,但进入生态环境的汞会产生长期的危害,特别是有机汞污染环境后,对人类造成严重威胁。
自然界中汞有三种价态,零阶汞Hg0,一价汞Hg+和二价汞Hg2+。
零阶汞易挥发,且难溶于水,是大气环境中相对比较稳定的形态,在大气中的停留时间很长,平均可达1年左右,可以在大气中被长距离地输运而形成大范围的汞污染。
造成汞环境污染的来源主要是天然释放和人为两方面。
从局部污染来看:人为来源是相当重要的。
以美国为例[1],美国每年汞的排放量占全世界向大气排放汞总量的3%,大约150t左右,其中占33%、份额最大的当属燃煤电站,约50t,垃圾焚烧炉年排放汞量约占20%,医疗垃圾焚烧约占10%。
对于燃煤过程,汞主要是以气态形式排放。
汞的电离势高,高电离势决定了汞易变为原子的特性,因而汞易迁移,难富集,利用一般的污染物控制装置无法有效捕捉而排入大气。
由于全球煤炭消耗量巨大,汞经由燃煤过程的迁移、转化已成为它在生物圈内循环的一个重要途径。
本文在参阅大量文献的基础上,从煤中汞的存在形态谈起,论述了燃煤电站中汞的形态转化过程,简要论述目前学术界对燃煤电站中汞的排放形式及其控制方法,并对该领域的研究提出了一些看法。
1 煤中汞的含量及燃煤烟气中汞的排放情况1.1 煤中汞的含量我国是一个燃煤大国,能源消耗主要以煤炭为主,因而由燃煤造成的汞污染问题也相当严重。
燃煤火力发电厂烟气汞排放问题与建议研究
燃煤火力发电厂烟气汞排放问题与建议研究摘要:汞是一种有毒重金属,在大气和水体中的积累可能对生态系统和人类健康造成潜在风险。
为解决燃煤火力发电厂烟气汞排放问题,必须寻求科学高效的方法,减少汞的排放,保护环境和生态健康。
在燃煤火力发电厂烟气汞排放的解决方案中,汞捕集技术是一种重要的方法。
通过在燃烧过程中采用汞捕集剂,可以有效地将烟气中的汞元素捕获,并将其固定在固体颗粒上,防止其进入大气和水体。
这一方法可以降低燃煤火力发电厂烟气中的汞含量,减少对环境的污染,同时也为后续的汞排放控制提供了有效的途径。
关键词:燃煤;火力发电厂;烟气汞;排放问题;控制建议引言燃煤火力发电是全球主要的电力供应方式之一,燃煤火力发电厂在燃烧过程中会释放大量的烟气污染物,其中包括对环境和健康产生潜在威胁的重金属汞。
烟气中的汞排放不仅对大气造成污染,还可能经由沉降进入水体,造成水生生物中的富集,形成生态链传递,引发环境风险。
在此背景下,燃煤火力发电厂烟气汞排放控制技术的研究和应用显得尤为重要。
1燃煤火力发电厂烟气汞排放概述燃煤火力发电厂烟气中含有大量的汞元素,其排放对环境和人类健康造成严重威胁。
烟气中的汞会被释放到大气中,随着大气传播并最终沉降到地表水体,汞进入水体后会转化为有机汞,累积在水生生物体内,形成食物链传递,引发生态风险。
同时,烟气中的汞排放还可能被人体吸入,导致神经系统和免疫系统等严重损害,威胁公众健康。
为了控制燃煤火力发电厂烟气中的汞排放,烟气汞排放控制显得尤为重要。
采取有效的汞排放控制措施可以减少大气中汞的含量,减缓汞在生态系统中的传播和积累,降低对环境和生态的不良影响。
此外,烟气汞排放控制还能够降低人体接触汞的风险,保护公众的健康。
燃煤火力发电厂烟气汞排放控制涉及多种技术手段。
例如,在燃烧过程中通过调整燃烧条件和采用先进的燃烧技术,可以降低汞的生成量;利用脱硫除尘系统可以捕集烟气中的汞颗粒,减少排放量;而通过使用活性炭等吸附材料可以捕集烟气中的汞蒸气。
燃煤电厂汞排放控制技术介绍
燃煤电厂汞排放控制技术介绍摘要:本文浅要分析了汞在燃煤中的赋存形态及其排放特性,并根据影响汞去除率的主要因素,简要介绍了当前一些汞排放控制技术。
关键词:赋存形态去除率洗煤活性炭前言汞是目前主要的全球性污染物之一,在大气中停留时间长、毒性大,并且具有生物累积作用,对人群健康构成很大威胁。
全球每年排放到大气中的汞总量约为5000吨,而燃煤过程中汞排放占相当大的比重。
根据美国环保署(EPA)1997年给美国国会的汞研究报告显示,燃煤电厂是最大的汞排放污染源。
与燃油相比,燃煤产生的汞排放要高出10倍到100倍。
因此燃煤电厂对于汞污染物的排放控制刻不容缓。
一、汞在燃煤中的赋存形态及其排放特性要控制燃煤电厂汞排放,就必须先了解汞在燃煤中的存在形态及其特性,以便对症下药。
煤中大部分汞是以固溶物形式存在于黄铁矿中,以硫化物结合态、有机物结合态和残渣态存在,也可能有部分微细的独立汞矿物分布在黄铁矿和有机物组分中。
汞是煤中较易挥发的痕量元素之一。
煤粉经过燃烧,其中的汞主要分为两部分:一部分伴随着灰渣的形成,直接存留于灰渣和飞灰中;另一部分在火焰温度下随着煤中黄铁矿(Fes:)和朱砂(HgS)等含汞物质的分解,以单质形态释放到烟气中。
,由于炉内高温,单质汞是煤粉中的汞在火焰温度下存在的主要形式。
当烟气流出炉膛,流经换热面,烟气温度逐渐降低时,一部分的气相单质汞会被飞灰通过物理吸附、化学吸附和化学反应等途径吸收,从而转化为以颗粒态存在的汞№(P),这一部分包括HgC12、HgO、HgSO4和HgS等。
一部分的气相单质汞在烟气温度降低到一定范围时,会被烟气中的含氯物质氧化而生成气相氯化汞(HgC12)。
目前学术界认为烟气中气态二价态汞多数为HgCl2(g)。
最后还有一部分气相单质汞仍保持不变,随烟气排出。
研究表明,在空气污染控制器的上游烟气中的气相汞中Hg2+占50 ~80%,单质汞Hg0占20 ~50%。
二、影响汞去除率的主要因素燃煤烟气中的汞主要有三种形态:二价汞(Hg2+)、单质汞(Hg0)、颗粒汞(Hg P)。
200MW煤粉电站锅炉汞排放特性
煤粉电站锅炉的汞形态和质量平衡1罗光前姚洪徐明厚黄永琛闫恒华中科技大学煤燃烧国家重点实验室,武汉,430074摘要:对某200MW燃煤电站的的燃料、底渣、底灰、ESP进出口飞灰、ESP各电场飞灰、ESP进出口烟气在机组满负荷运行时进行采样,测量了样品汞浓度,计算了汞的质量平衡,揭示了该电站汞排放的特点。
根据本研究结果和前人研究的有限数据,总结了国内只配备ESP作为大气污染控制设备的燃煤电站的汞排放特征。
燃煤电站汞排放浓度在1.18μgNm-3到32.10μgNm-3之间。
ESP对燃煤烟气汞的脱除效率在9.0%到35.9%之间,几乎能脱除烟气中所有的颗粒态汞。
部分电站锅炉ESP出口烟气中氧化态汞的比例高达69%。
电站锅炉燃料中的汞超过60%以上以气态的方式排放入大气中。
关键词:燃煤电站,汞形态,ESP,质量平衡Speciation and Mass Balance of Mercury in PCB LUO Guang-qian, YAO Hong, XU Ming-hou, HUANG Yong-chen, YAN Heng State Key Laboratory of Coal Combustion, Huazhong University of Sci. & Tech.,Wuhan,430074Abstract: Emission characterization and mass balance in a pulverized coal-fired power plant were carried out in a 200MW electric utility boiler, using determining the mercury concentration of various samples such as fuel coal, bottom slag, economizer bottom ash, fly ash in different hoppers, flue gas at inlet and outlet of ESP, which were collected from the power plant when it run at its full load. Some conclusions about the mercury emission features of a typical coal-fired power plant in China only equipped with one ESP as the APCD were drew from limited data from the research results of the previous investigators and the present work. The emission concentration of mercury was ranged from 1.18μgNm-3 to 32.10μgNm-3. ESP could remove 9.0%~35.9%of total mercury and nearly all the particulate mercury in the flue gas. The oxidized mercury fraction of the flue gas at the outlet of ESP in partial power plant was up to 69%. More than 60% of the total mercury entered the electric utility boiler was emitted into the atmosphere air in gas phase.Key words: coal-fired power plant, mercury speciation, ESP, mass balance1.引言1953-1959年,日本发生了震惊世界的环境污染事件,被称为“世界八大公害”的“水俣病事件”,汞中毒使人和动物出现严重的脑神经疾病,大量发疯或死亡。
燃煤电厂烟气中汞的排放与控制研究进展
20 0 7年 1 月 2
电 力 环 境
保 护
第2 3卷 第 6期
燃 煤 电厂 烟 气 中汞 的 排 放 与 控 制 研 究 进 展
Th e e r h d v lp e to e c r miso n o to o n e m e s r s e r s a c e eo m n fm r u y e s i n a d c n r lc u tr a u e i u a r m o l — r d p we ln s n f e g s fo c a — f e o rp a t l i
中和粘 土岩 中汞 的 丰度 基 本 处 于 同一 数 量级 , 但煤 中汞 含量相 对 富集 。 同时 由于 汞 的 高 电离 势 , 决定 了汞 易变为 原子 的特性 , 因此 汞 易迁移 , 富集 。据 难 现 有 资 料 介 绍 , 内 外 煤 中 汞 的 含 量 多 数 处 于 国
10 0亿 t但 地 壳 中 9 . 8 的 汞 呈 稀 散 状 态 。 汞 是 6 , 99% 稀 有 的分散 元 素 , 自然 界 多 数 煤 中 汞 的 丰 度 与 地 壳
染水 资 源 , 给环 境 和人 类 的健康 带来严 重危 害 。
l 煤 中重 金 属 概 况
1 1 煤 中 重 金 属 的 丰 度 和 赋 存 状 态 .
∞( B),0 1
素
据现 有资 料统计 , 国 已检 测到 的 4 我 7种 微量 元 素 在多数煤 中的平均 分布情 况 如表 1 。
表 1 微 量 元 素 在 煤 中分 布
平均值范 围
≥l0 0 ≥ 5 ~ <1 0 0 0 ≥ l ~ <S O O
n1 0~ ~ n1 数 量 级 , 别 可 能 达 到 n1 数 量 0 个 0
汞在燃煤电厂中的排放与控制
汞在燃煤电厂中的排放与控制燃煤电厂是目前世界上最主要的电力供应方式之一。
然而,煤炭的燃烧会产生大量的汞排放,对环境和人体健康构成了潜在的威胁。
因此,针对燃煤电厂中的汞排放问题,采取有效的控制措施十分必要。
首先,了解汞在燃煤电厂中的来源以及排放途径是至关重要的。
汞在燃煤过程中主要来自于煤炭中的天然含汞物质。
当煤炭燃烧时,天然含汞的物质会被释放出来,并随烟气一起进入大气中。
汞主要以气态元素形式存在,但在某些特定条件下也可转化为固态或液态形式。
针对燃煤电厂中的汞排放问题,可以采取一系列的控制措施来降低其排放量。
首先,进行煤炭的预处理是十分关键的一步。
通过对煤炭进行洗选、除尘以及预处理,可以有效降低煤炭中汞的含量,从而减少燃烧过程中汞的排放。
其次,采用高效的脱硫技术也是降低汞排放的有效手段。
脱硫过程中,除了可以去除煤炭燃烧排放物中的二氧化硫,还可以同时去除其中的汞。
此外,采用先进的脱氮技术也能有效降低氮氧化物排放,并同时减少与汞的相互作用,从而进一步降低汞排放。
此外,对烟气进行高效的除汞处理也是一种常见的控制方法,可以采用压力吸附、催化氧化等技术进行治理。
除了在源头上进行控制外,对燃煤电厂中的汞排放进行监测和评估也是重要的。
通过持续的汞排放监测,可以了解燃煤电厂的汞排放情况,并及时采取相应的控制措施。
监测可以通过连续监测设备或间歇性采样测试等方式进行。
此外,对汞排放进行评估也是十分必要的,可以通过建立适当的数学模型来预测和评估不同控制措施对汞排放的影响。
然而,仅仅依靠燃煤电厂内部的控制措施是不够的,全面控制汞排放还需要政府、企业与公众的共同努力。
政府应制定相关的环保法规与政策,加强对燃煤电厂的监管,并推动采用更环保的能源替代煤炭。
企业应积极引进先进技术,提升汞排放控制的水平。
公众也应增强环境保护意识,倡导减少煤炭的使用,同时支持政府和企业在控制汞排放方面的努力。
总之,燃煤电厂中的汞排放问题不可忽视,对环境和人类健康具有一定的危害性。
浅析燃煤电厂烟气汞的排放及控制
浅析燃煤电厂烟气汞的排放及控制摘要:排放到环境中的汞会对人类健康和环境造成明显的伤害。
汞进入人体后,可能会造成脑组织的损害,当环境中汞的浓度达到一定的范围时,会造成汞中毒。
因此,要对燃煤机组的汞污染进行控制,各国也在针对燃煤机组汞污染的控制进行相关的研究。
关键词:燃煤电厂;烟气汞;排放;控制一、燃煤电厂烟气汞的排放赋存在燃煤中的汞经过燃煤电厂的锅炉机组后,开始在炉内高温下,几乎所有的汞会转变为零价汞进入高温的烟气,经过各污染控制设备和其他设施的过程中,由于温度、烟气成分及飞灰等的影响,汞会发生复杂的物理化学变化而转化为不同的形态,最终表现为三种形态:颗粒态汞、氧化态汞以及元素态汞。
一般颗粒态汞易于被除尘器收集,氧化态汞易溶于水,易于被WFGD脱除;而元素态汞挥发性高、不溶于水,不溶于酸,很难被除尘器去除。
因此,汞的排放形态直接影响汞的脱除效率。
二、燃煤电厂烟气汞形态转化的影响因素1.在燃煤电厂中,不同形态的汞的含量及比例受到多种因素的综合作用,主要包括煤种、锅炉的燃烧方式及燃烧温度、烟气气氛以及烟气中的HCl和飞灰等。
燃煤电厂烟气中的汞含量及形态与燃煤锅炉燃烧的煤种密切相关。
研究表明,烟煤燃烧产生的烟气中的汞是以氧化态为主的,亚烟煤燃烧后,烟气中的二价汞含量与零价汞含量相当,褐煤燃烧后烟气中以零价汞为主。
2.锅炉燃烧温度影响汞的形态,在炉膛温度较高时,烟气中零价汞含量较大,大多数的二价汞形成的氧化物不稳定,会发生分解生成单质汞。
当烟气温度降低于750K时,烟气中汞元素的主要形态是二价汞。
3.锅炉的燃烧方式不同,会影响煤的燃烧情况,从而影响汞的形态分布,例如,在相同的条件下,循环流化床产生的烟气中的二价汞的比例较大,这与循环流化床的低燃烧温度有关。
从燃煤电厂的测试结果发现,使用循环流化床的锅炉排放的烟气飞灰中富集的汞含量较高,这可能是因为循环流化床的燃烧温度较低,形成的飞灰含有较高含量的未燃尽碳,吸附了更多的零价汞。
燃煤电厂烟气脱汞技术探讨及适用性探讨
燃煤电厂烟气脱汞技术探讨及适用性探讨燃煤电厂是当前中国能源供应的主要来源之一,然而燃煤所产生的烟气中含有大量污染物,其中汞是一种极其有害的重金属污染物。
汞的存在会对环境、生态和人类健康造成严重的影响。
因此,开发可行的技术来减少燃煤电厂的汞排放已经成为当前环保领域迫切需要解决的问题。
本文将针对燃煤电厂废气中汞的来源、特性、处理技术及适用性进行探讨。
燃煤电厂废气汞的来源和特性燃煤电厂废气汞的来源主要包括煤炭中天然含有的汞、煤炭处理过程中的损失和燃煤过程中的挥发排放。
汞通常以元素的形式存在于煤中,但煤中汞的含量和形态因煤的类型、区域、年代和开采方式的不同而异。
现有研究表明,中国东北地区的煤中汞含量较高,煤中汞的形态主要为无机汞。
在燃煤过程中,汞主要以元素和无机形态的氧化态汞存在于烟气中。
燃煤电厂的烟气中汞的形态和含量取决于燃烧控制、废气处理设备和煤种等因素。
通常,燃煤电厂大约有80%的汞存在于固体废弃物中,而20%的汞则以气态排放进入大气中。
目前,主要的汞排放控制技术包括吸附剂、氧化剂和活性炭吸附剂的使用以及固定化技术。
这些技术主要用于废气中无机汞的控制,但是对于废气中的有机汞并不是很有效。
吸附剂是一种在固体表面上吸附汞、将其去除的材料。
目前已经研发出一系列吸附材料,如硫酸盐、Zeolite、ZnO、TiO2等。
然而,这些吸附剂的应用也存在一定的限制,例如使用成本昂贵,废液处理存在困难等。
氧化剂是将无机汞转化为更易被去除的氧化态汞的方法。
常见的氧化剂包括氧气、氯化氢、DV等。
然而,这些方法不能去除有机汞,并且本身存在储存和运输等方面的问题。
活性炭吸附是现代常用的技术之一,通过物理吸附吸附汞并达到减排的目的。
活性炭吸附剂具有高比表面、介孔、广谱的吸附性能,是一种应用广泛的废气治理技术。
固定化技术是将废气中的汞转化为固态,通过沉降、过滤等方法将其去除。
这种技术将汞转化为固态,可以有效地降低二次污染,但是对于处理废气和垃圾场中的固体废弃物存在一定的技术难度。
煤中汞在电厂烟气中的排放特征
煤中汞在电厂烟气中的排放特征张晓勇;张金池;俞美香;李海东【摘要】为了解燃煤电厂烟气中汞的排放特征,选择江苏省5个地区的7家燃煤电厂,基于美国EPA 30B方法进行现场采样,分析煤中汞含量、机组容量和不同处理设施等对烟气中汞排放的影响。
结果表明,煤中汞含量与电厂烟气中汞排放浓度的相关性不强,不起决定性作用;机组容量与烟气中汞排放浓度呈极显著负指数关系(P<0�01)。
采用循环流化床锅炉燃烧方式且配置静电除尘器的电厂烟气中汞的脱除效率(98�9%)明显高于煤粉炉配置静电除尘器和石灰石-石膏湿法脱硫装置的脱除效率(67�5%~81�6%)。
循环流化床并配置静电除尘器装置对电厂烟气中汞的脱除更有利。
%To better understand characteristics of the system of emission of mercury with fume from coal⁃burning power plants, seven coal⁃burning power plants located in five different regions in Jiangsu Province were selected for in⁃situ sam⁃pling according to the USA EPA 30B approach for analysis of effects of mercury concentration in coal, generating units ca⁃pacity and emission control facilities on the emission of mercury with fume. Results show that Hg concentration in the fume is not very much related to Hg content in the coal, but in significant negative exponential relation to the generating units capacity ( P<0�01) . It seems that the use of circulating fluidized bed boilers coupled with electrostatic precipitators is very efficient in removing mercury from the fume emitted from coal⁃burning power plants, reaching up to 98�9% in mercuryre⁃moval efficiency, much higher than the efficiency of the use of the pulverized coal furnaces couples with electrostatic pre⁃cipitators andlime⁃gypsum wet desulfurization equipment ( 67�5%-81�6%) . It is, therefore, concluded that the technolo⁃gy of circulating fluidized bed boiler coupled with electrostatic precipitator is more efficient in removing mercury in fume e⁃mitted from coal⁃burning power plants.【期刊名称】《生态与农村环境学报》【年(卷),期】2016(032)002【总页数】6页(P229-234)【关键词】煤炭;电厂;烟气;汞;排放特征;处理设施【作者】张晓勇;张金池;俞美香;李海东【作者单位】南京林业大学林学院,江苏南京 210037; 江苏省环境应急与事故调查中心,江苏南京 210036;南京林业大学林学院,江苏南京 210037;江苏省环境监测中心,江苏南京 210036;环境保护部南京环境科学研究所,江苏南京210042【正文语种】中文【中图分类】X51我国是煤炭消耗大国,也是汞排放大国。
燃煤电厂汞的排放特性和脱汞技术分析_陈瑶姬
能源研究与管理 2016 (1)
DOI:10.16056/j.1005-7676.2016.01.007
窑25窑
燃煤电厂汞的排放特性和脱汞技术分析
陈瑶姬 1, 2,孟 炜 1,胡达清 1
(1. 浙江天地环保工程有限公司,杭州 310003;2. 浙江大学,杭州 310027)
摘 要:对某燃煤电厂中汞的排放特性进行了研究,并依此对脱汞技术进行了简要分析。研究发现,燃煤产生的大
喷
淋 洗 涤
湿式电 除尘器
FGD 脱硫装置,约 50 益
Hg2+
Hg2+
脱除 Hg2+
图 2 现有脱汞技术路线总结
后。炉前主要是指采用洗煤等洁净煤技术,使燃煤 煤中的汞含量,脱除效率可达 80%以上。借助这 2 进入锅炉燃烧之前先脱除大部分的汞,如采用泡沫 种洁净煤技术可使煤在进入锅炉燃烧前减少汞含量 浮选方法进行洗煤,使煤的汞含量可减少 30%以上, 85%。但国内入炉前的洗煤率非常低,而发达国家 进而采用温和热解法,使汞受热蒸发,进一步减少 则有 40%以上的洗煤率[7]。
Mercury removal characteristic of a coal-fired power plant is studied, and mercury removal technology is analysis. According to the result, most mercury from coal remains in bottom ash and flue gas, the percentage is 42% and 39% separately, and the main form is Hg0; most Hg2+ removed in WFGD remains in gypsum slurry, little remains in wastewater. WFGD and WESP have good mercury removal capacity, SCR can convert some Hg0 to Hg2+, and can remove some mercury particles.
汞撒利类在燃煤电厂中的排放特征和控制技术研究
汞撒利类在燃煤电厂中的排放特征和控制技术研究汞是一种常见的有毒物质,其排放对环境和人类健康造成了严重影响。
特别是燃煤电厂作为重要的汞排放源,其排放对全球大气汞污染有着重要的贡献。
因此,研究燃煤电厂中汞排放的特征和控制技术具有重要意义。
首先,让我们了解汞撒利类在燃煤电厂中的排放特征。
燃煤电厂主要通过燃烧煤炭来产生电力,而燃烧过程中汞主要以元素汞(Hg0)、离子汞(Hg2+)和颗粒态汞(Hgp)三种形态排放。
元素汞是汞的最常见形态,占据了燃煤电厂排放总量的大部分。
离子汞和颗粒态汞的排放量相对较少。
其次,燃煤电厂中汞排放的控制技术是必不可少的。
针对燃煤电厂汞排放的特点,研究和实施有效的控制技术可以显著降低汞排放,并减少对环境的负面影响。
目前,常用的汞排放控制技术主要包括以下几种:1. 燃烧优化技术:通过优化煤种选择和燃烧条件,可以有效降低燃煤电厂中的汞排放。
例如,选择低汞含量的燃料,优化燃烧温度和压力等参数,可以降低燃烧过程中汞的生成和排放。
2. 烟气净化技术:燃煤电厂中常用的烟气净化技术包括静电除尘器和脱硫脱硝设备。
这些设备可以通过捕集汞颗粒和汞物质,将其从烟气中去除。
然而,传统的净化技术对于气态汞的去除效果较差,因此需要结合其他技术进行改进。
3. 激活炭吸附技术:激活炭是一种具有很强吸附性能的材料,可以用于捕集汞。
将激活炭投入燃煤电厂的烟道系统中,可以有效地吸附烟气中的汞,达到减少汞排放的目的。
同时,捕集的汞可以进行有效的回收和处理。
4. 汞稳定剂技术:汞稳定剂是一种能够与汞形成稳定化合物的化学物质。
通过添加汞稳定剂到煤炭或燃烧过程中,可以显著降低汞排放。
这种技术被广泛应用于燃煤电厂和其他燃烧过程中,具有较好的效果。
总的来说,燃煤电厂中汞撒利类的排放特征和控制技术的研究具有重要的意义。
通过深入了解汞排放的来源和特点,有针对性地实施汞排放控制技术,可以有效降低燃煤电厂对环境的污染,减少对人体健康的危害。
200MW燃煤电厂汞分布特征
200MW燃煤电厂汞分布特征1引言我国已成为世界最大的煤炭消费国,2012年煤炭占我国一次能源消费总量的68.5%。
煤中汞的平均含量在0.15-0.22μg/g,利用储量权值方法计算得到中国煤碳中汞的平均值为0.188μg/g。
煤炭燃烧对我国大气汞排放贡献最大,根据田贺忠等的研究,2007年我国大气中由于燃煤排放的汞为306吨。
燃煤电厂是最大的煤炭消耗行业,目前消费了50%左右的煤炭。
根据2014年国家发改委、环保部以及国家能源局下发了关于《煤电节能减排升级与改造行动计划(2014-2020年)》,到2020年在力争使煤炭占一次能源消费比重下降到62%以内的前提下,电煤占煤炭消费比重要提高到60%以上。
如果燃煤电厂不采取技术措施,汞排放及其污染将是相当严重的问题。
汞随着烟气排放到大气中是燃煤电厂汞的主要排放方式。
2011年中国颁布的《火电厂大气污染物排放标准》(GB 13223-2011)中也汞排放提出了明确的限制要求,其中燃煤锅炉汞及其化合物的排放限值为0.03mg/m3。
对汞的总排放的估算基于我国煤中汞含量。
煤炭在燃煤电厂利用过程中,电厂的烟气污染物控制设施对控制汞排放具有一定的作用,例如,催化脱硝技术能够促进气相元素汞(Hg0)向二价汞(Hg2+)的转化,静电除尘器能够捕获部分颗粒汞,湿法脱硫能够吸收可溶的二价汞。
具体到实际的电厂,不同电厂由于采用的燃烧污染物控制技术不同,汞在电厂中的分布和排放具有很大的区别。
因此针对具体的电厂开展汞污染监测具有现实意义。
2取样及测试方法本文针对某200MW燃煤电厂开展了汞监测,该机组锅炉为煤粉炉,污染物脱除装置包括静电除尘器(ESP)及石灰石-石膏湿法烟气脱硫塔(WFGD)。
该机组气体采样利用美国EPA Method 30B方法通过Apex Instruments采样仪采样,固体、液体通过手动采样取得。
所得样品在实验室通过Lumex915汞分析仪分析。
在燃煤电厂锅炉稳定负荷运行条件下,对现场进行固体样品采集,固态样品采样包括煤粉、底渣、除尘器飞灰以及石灰石和脱硫产物石膏,取样点布置如图1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤粉电站锅炉的汞形态和质量平衡1罗光前洪徐明厚黄永琛闫恒华中科技大学煤燃烧国家重点实验室,,430074摘要:对某200MW燃煤电站的的燃料、底渣、底灰、ESP进出口飞灰、ESP各电场飞灰、ESP进出口烟气在机组满负荷运行时进行采样,测量了样品汞浓度,计算了汞的质量平衡,揭示了该电站汞排放的特点。
根据本研究结果和前人研究的有限数据,总结了国只配备ESP作为大气污染控制设备的燃煤电站的汞排放特征。
燃煤电站汞排放浓度在1.18μgNm-3到32.10μgNm-3之间。
ESP对燃煤烟气汞的脱除效率在9.0%到35.9%之间,几乎能脱除烟气中所有的颗粒态汞。
部分电站锅炉ESP出口烟气中氧化态汞的比例高达69%。
电站锅炉燃料中的汞超过60%以上以气态的方式排放入大气中。
关键词:燃煤电站,汞形态,ESP,质量平衡Speciation and Mass Balance of Mercury in PCB LUO Guang-qian, YAO Hong, XU Ming-hou, HUANG Yong-chen, YAN Heng State Key Laboratory of Coal Combustion, Huazhong University of Sci. & Tech.,Wuhan,430074Abstract: Emission characterization and mass balance in a pulverized coal-fired power plant were carried out in a 200MW electric utility boiler, using determining the mercury concentration of various samples such as fuel coal, bottom slag, economizer bottom ash, fly ash in different hoppers, flue gas at inlet and outlet of ESP, which were collected1基金项目:国家自然科学基金项目(50576026);国家重点基础研究发展计划专项经费项目(2005CB724905)。
from the power plant when it run at its full load. Some conclusions about the mercury emission features of a typical coal-fired power plant in China only equipped with one ESP as the APCD were drew from limited data from the research results of the previous investigators and the present work. The emission concentration of mercury was ranged from 1.18μgNm-3to 32.10μgNm-3. ESP could remove 9.0%~35.9%of total mercury and nearly all the particulate mercury in the flue gas. The oxidized mercury fraction of the flue gas at the outlet of ESP in partial power plant was up to 69%. More than 60% of the total mercury entered the electric utility boiler was emitted into the atmosphere air in gas phase.Key words: coal-fired power plant, mercury speciation, ESP, mass balance1.引言1953-1959年,日本发生了震惊世界的环境污染事件,被称为“世界八大公害”的“水俣病事件”,汞中毒使人和动物出现严重的脑神经疾病,大量发疯或死亡。
后来在世界各地也陆续出现了类似的汞中毒事件。
汞对人体的危害开始引起世人的重视。
研究表明,汞可以在全球围迁移和转化,在生物体聚集,威胁人类、鱼类及各种野生生物的健康,尤其对儿童和妊娠期妇女产生健康威胁。
减少汞的使用与排放可以减少这些威胁。
目前汞的排放源主要有两个方面,一个是自然排放源,一个是人为排放源。
最主要的自然排放源是火山和湿地火灾。
汞在地壳中的含量不超过0.03ppm,人类的活动改变了汞的地球化学物理生物循环,造成了汞在生物圈的累积。
全世界汞的重要人为污染排放源包括燃煤电厂、汞生产、水泥生产、废物焚烧和小规模黄金开采。
联合国环境规划署(UNEP)报告指出1995年以上各项排放源汞排放量依次是1470t、200t、130t、110t和300t。
美国政府已经在2005年3月颁布了正式的法律CAMR《清洁空气汞条例》对燃煤汞污染排放进行严格限制。
各国政府和国际组织也在讨论控制汞排放的各种方案以及制订一项国际条约控制汞排放的可能性。
煤中汞具有多种赋存形态,有机态、无机态,主要存在黄铁矿中。
煤中汞绝大多数都是以各种化合物的形式存在,极端情况下才有单质汞存在。
我国煤中汞的平均含量是0.22ppm,美国煤平均含量是0.2ppm,含量高低随煤种和产地变化很大[1]。
煤粉进入炉膛在高温下燃烧,要经历脱水、脱挥发分、挥发分燃烧、炭粒燃烧阶段,煤中几乎所有的汞都以挥发出来,在炉膛高温环境中以气相单质汞的形式存在。
这些气相单质汞和燃烧过程中形成的NOx、SOx、颗粒物、CO2、CO、H2O等燃烧产物一起,在烟道的降温过程中经历一系列的物理化学变化,最后剩余的部分通过烟囱排放进大气中。
在冷却过程中,单质汞会和烟气中的其他气体成分发生氧化还原反应,从而形成氧化态汞。
颗粒物也会和单质汞发生物理吸附和化学吸附,从而形成颗粒态汞。
所以在低温烟气中,汞主要以三种形式存在:气相单质汞Hg0、气相氧化态汞Hg2+和颗粒态汞Hg p。
气相单质汞Hg0的捕集与脱除要比气相氧化态汞Hg2+和颗粒态汞Hg p困难。
目前正在发展的燃煤汞污染控制技术按照脱汞的阶段不同可以分为三类:燃煤前脱汞、燃烧中脱汞和燃烧后脱汞。
燃烧前脱汞包括煤的洗选、低温热解、半气化、细菌分解等方法。
燃烧中脱除包括采用流化床燃烧、炉加入添加剂、分级燃烧及再燃技术等。
燃烧后脱除是指烟气脱汞。
目前国的研究主要集中在这个方面。
包括吸附剂吸附和利用现有大气污染控制设备脱除。
目前最成熟的技术是活性碳吸附(ACs)+布袋除尘器(FF)。
活性碳吸附已经在国外垃圾焚烧炉应用,国也开始应用于城市垃圾焚烧中。
电厂燃煤烟气流量极大,汞浓度极低,所以将活性碳吸附技术用于电厂汞污染控制成本巨大。
目前正在发展飞灰循环、沸石、膨润土等多种新型高效价廉的吸附剂。
利用电厂已有的大气污染控制设备实现汞脱除的效率在很大程度上取决于所处理烟气中的汞的形态分布,而烟气中的汞的形态分布又受到煤种、锅炉与污染控制设备型式、操作参数等的影响。
SCR会在还原氮氧化物的同时将烟气中的单质汞氧化成二价汞。
脱硫设备对氧化态汞有较高的脱除效率。
除尘设备可以去除烟气多数颗粒态汞。
我国2006煤产量达到了23.8亿吨,占到全世界煤炭总产量的39.7%。
这种以煤炭为主的能源结构在我国将长期存在。
我国燃煤电厂95%以上安装静电除尘器(ESP)作为主要的大气污染控制设备,少量用布袋除尘器控制颗粒物的排放。
近年来,较多的电厂开始安装和计划安装烟气脱硫设备(FGD)。
较少的电厂计划安装烟气脱硝设备,包括选择性催化还原技术(SCR)和选择性非催化还原技术(SNCR)。
这些大气污染控制设备在电厂的应用,在控制NOx、SOx、颗粒物排放的同时,也会不同程度的改变汞在烟气中的转化规律和电厂汞的排放特性。
国对于汞排放的研究主要集中在数值模拟和实验室研究阶段[2-4],只有极少数研究在实际电厂开展[5-9]。
朱珍锦等人对某300MW燃用贫煤的煤粉锅炉负荷改变时燃烧产物(渣、底灰、飞灰)中汞的分布特征影响进行了研究。
郭欣等人采用ASTM的Ontario-Hydro方法测定了省市青山热电厂300MW煤粉锅炉中烟气中汞形态分布的情况。
雷等对6个电厂进行了采样,分析了燃煤氯含量及飞灰酸碱度对烟气中汞形态的影响。
周劲松等人在对某600 MW燃煤电站锅炉用煤以及燃烧产物烟气、飞灰、底渣在满负荷及70%左右负荷调峰运行时完成取样后,测定样品中的汞含量,通过研究不同工况下燃烧产物中汞的含量分布以及前后汞形态的变化等,获得了600 MW煤粉锅炉汞的排放特性。
前人研究的锅炉功率皆在300MW 以上。
我国虽然关停了大量100MW及以下级的小火电,但是还有较多200MW级的火电还在运行。
本研究中以选取某电厂一台200MW的煤粉锅炉作为研究对象,研究燃煤电厂汞排放的现状,评估带ESP除尘器的燃煤电厂汞的排放和转化规律。
通过用EPA 的method 5和ASTM的Ontario-Hydro方法对电除尘器的前后烟道进行等速采样,并采集煤样、渣样、底灰样以及电除尘器各电场灰样,然后进行实验室分析工作,得到除尘器前后烟气中汞的形态分布、燃烧固体产物中的浓度、烟气中颗粒物的粒径分布。
根据获得的数据,分析ESP在汞脱除中的作用,并提出一种基于颗粒物捕集的分级效率的汞平衡计算方法。
根据自己的研究结果和前人研究的有限数据,总结了中国只配备ESP作为大气污染控制设备的燃煤电站的汞排放特征。
2.试验2.1电厂情况选取的汞排放测试锅炉为上方锅炉厂生产的670 t/h超高压锅炉,型号为DG670/140-540/540-8,配200 MW机组使用,于二十世纪八十年代中期投产。
锅炉为自然循环、固态排渣煤粉炉,采用钢球磨煤机、中储仓式制粉系统,燃烧器共分4层,为四角切圆布置,第一层为点火燃烧器,其中第2、3层燃烧器为了适应低负荷调峰时稳燃的需要,已改造为浓淡燃烧器,送粉方式采用乏气送粉,燃用的煤种为云岗烟煤。
锅炉尺寸为宽×深×高=11920×10880×42500mm,切圆燃烧,燃烧室容积4250m3,容积热强度484×103kJ/m3,断面热强度15.9×106kJ/m2h,理论燃烧温度1992.6℃,过剩空气系数1.2。