12新课标地区重点中学2014年高考数学模拟试题(十二)

合集下载

2014届高三数学文科高考模拟试卷及答案

2014届高三数学文科高考模拟试卷及答案

2014届高三数学文科高考模拟试卷考生须知:1、全卷分试卷I 、II ,试卷共4页,有三大题,满分150分。

考试时间120分钟。

2、本卷答案必须做在答卷I 、II 的相应位置上,做在试卷上无效。

3、请用蓝、黑墨水笔或圆珠笔将姓名、准考证号分别填写在答卷I 、II 的相应位置上,用2B 铅笔将答卷I 的准考证号和学科名称所对应的方框内涂黑。

参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积, h 表示棱柱的高 P (A ·B )=P (A )·P (B )棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积, h 表示棱锥的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式棱台的体积公式S = 4πR 2)2211(31S S S S h V ++=球的体积公式其中S 1, S 2分别表示棱台的上.下底面积, h 表示棱台 V =34πR 3的高 其中R 表示球的半径选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,全集}9,7,6,4,2,1{=I , 其中}9,7,4,2{=M ,}9,7,4,1{=P ,}7,4,2{=S 是I 的3个子集,则阴影部分所表示的集合等于 ( ▲ )(A )}9,7,4{ (B )}9,7{ (C )}9,4{ (D )}9{2.已知a R ∈,则“2a >”是“22a a >”成立的( ▲ )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件3.已知βα,是不同的两个平面,n m ,是不同的两条直线,则下列命题中不正确...的是( ▲ ) (A )若α⊥m n m ,//,则α⊥n (B )若,m m αβ⊥⊥,则αβ∥(C )若βα⊂⊥m m ,,则αβ⊥ (D )若,m n ααβ=∥,则m n ∥ 4.下列函数中,既是偶函数又在) , 0(∞+上单调递增的是( ▲ )(A )||ln x y = (B )2x y -= (C )x e y = (D )x y cos =5. 某中学高三理科班从甲、乙两个班各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如右图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为( ▲ )(A )8 (B )7 (C )9 (D )168(第5题)乙甲y x 6119261180567986. 函数)(x f y =的图象向右平移3π单位后与函数x y 2sin =的图象重合,则)(x f y =的解析式是( ▲ ) (A )()f x =)32cos(π-x (B )()f x =)62cos(π-x (C )()fx =)62cos(π+x (D )()f x =)32cos(π+x7.已知函数n mx x x f 231)(23+-=(n m ,为常数),当2=x 时,函数)(x f 有极值,若函数)(x f 只有三个零点,则实数n 的取值范围是( ▲ )(A )]35,0( (B ))32,0( (C ))35,1[ (D )]32,0[ 8.已知向量OA ,OB 的夹角为60°,|OA |=|OB |=2,若OC =2OA +OB ,则△ABC 为( ▲ )(A )直角三角形 (B )等腰三角形 (C )等边三角形 (D )等腰直角三角形9.P 为双曲线221916x y -=右支上一点,12,F F 分别是双曲线的左焦点和右焦点,过P 点作 12PH F F ⊥,若12PF PF ⊥,则PH = ( ▲ )(A )645 (B )85 (C )325 (D )16510.已知函数⎪⎩⎪⎨⎧≥-<-=2,132|,12|)(x x x x f x ,若方程0)(=-a x f 有两个不同的实数根,则实数a的取值范围为 ( ▲ ) (A ))3,1( (B ))3,1[(C ))1,0( (D ))3,0(非选择题部分(共100分)二、填空题: 本大题共7小题, 每小题4分, 共28分。

2014年高三数学高考模拟卷(附详细答案)

2014年高三数学高考模拟卷(附详细答案)

2014届高三数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合11,2xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭3{|log 0}B x x =>,则()U A C B ⋂=A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是 A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥- 3. 下列函数中,满足22()[()]f x f x =的是A .()ln f x x =B .()|1|f x x =+C .3()f x x = D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“sin 2A >”的充要条件。

④命题 “00,0xx R e ∃∈≤”是真命题. 其中正确的命题的个数是A. 3B. 2C. 1D. 06. 定义行列式运算⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3;将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x 的图象向左平移n (n >0)个单位,所得图象对应的函数为偶函数,则n 的最小值为( )A.π6B.π3C.5π6D.2π37. 函数x x e x y e x+=-的一段图象是8. 设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩ 其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线y=)0(>+k k kx 与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是 A .]31,41( B .]41,0( C .]31,41[ D .)31,41[二、填空题:本大题共6小题,每小题5分,满分30分.9. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .10. 已知1sin()33πα-=,则5cos()6πα-=_____________. 11. 曲线0,,2y y x y x ===-所围成的封闭图形的面积为 .12. 已知函数2()1,f x x mx =++若命题“000,()0x f x ∃><”为真,则m 的取值范围是___. 13. 设25a b m ==,且112a b+=,则m = _________. 14. 若关于x 的方程24xkx x =+有四个不同的实数解,则实数k 的取值范围是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分) 已知函数R x x x x f ∈--=,21cos 2sin 23)(2(I )求函数)(x f 的最小正周期;(II )确定函数)(x f 在⎥⎦⎤⎢⎣⎡2,0π上的单调性并求在此区间上)(x f 的最小值.16.(本小题满分12分)已知函数f (x )=A sin ⎝⎛⎭⎫π3x +φ,x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.17. (本小题满分14分)已知等比数列{}n a 中,232a =,812a =,1n n a a +<. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21222log log log n n T a a a =++⋅⋅⋅+,求n T 的最大值及相应的n 值.18. (本小题满分14分)设二次函数2()(0)f x ax bx c a =++≠满足条件:(1)(1)(1)f x f x -+=--;(2)函数在y 轴上的截距为1,且3(1)()2f x f x x +-=+. (1)求()f x 的解析式;(2)若[,1],()x t t f x ∈+的最小值为()h t ,请写出()h t 的表达式; (3)若不等式()11()f x tx ππ->在[2,2]t ∈-时恒成立,求实数x 的取值范围.19.(本题满分14分)已知函数32()f x x ax bx c =+++的图象如图,直线0y =在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274.(1)求()f x 的解析式(2)若常数0m >,求函数()f x 在区间[],m m -上的最大值.20.(本小题满分14分)已知函数()ln f x x x a x =--,a ∈R .(Ⅰ)若2a =,求函数()f x 在区间[]1e ,上的最值; (Ⅱ)若()0f x ≥恒成立,求a 的取值范围. 注:e 是自然对数的底数2014届高三数学(理)试题数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合112xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,3{|log 0}B x x =>则()U A C B ⋂=( C )A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是( A ) A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥-3. 下列函数中,满足22()[()]f x f x =的是 ( C ) A .()ln f x x =B .()|1|f x x =+C .3()f x x =D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 ( C ) A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“2sin 2A >”的充要条件。

2014高考数学新课标试卷精校版(含答案)

2014高考数学新课标试卷精校版(含答案)

2014高考数学新课标试卷精校版(含答案)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =--≥,{|22}B x x =-≤<,则AB = A.[2-,1]- B.[1-,2) C.[1-,1] D.[1,2) 2.32(1)(1)i i +-= A.1i + B.1i - C.1i -+ D.1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A.()()f x g x 是偶函数B.|()|()f x g x 是奇函数C.()|()|f x g x 是奇函数D.|()()|f x g x 是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A.3 B.3 C.3m D.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 A.18 B.38 C.58 D.786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,]π上的图象大致为A. B.C. D.7.执行下图的程序框图,若输入的a 、b 、k 分别为1、2、3,则输出的M =A.203B.165C.72D.158 8.设(0α∈,)2π,(0β∈,)2π,且1sin tan cos βαβ+=,则 A.32παβ-= B.22παβ-= C.32παβ+= D.22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(x ∀,)y D ∈,22x y +≥-;2p :(x ∃,)y D ∈,22x y +≥; 3P :(x ∀,)y D ∈,23x y +≤;4p :(x ∃,)y D ∈,21x y +≤-.其中真命题是A.2p ,3pB.1p ,4pC.1p ,2pD.1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = A.72 B.3 C.52D.2 11.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为A.(2,)+∞B.(1,)+∞C.(-∞,2)-D.(-∞,1)-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A.62B.6C.42D.4二、填空题:本大题共四小题,每小题5分。

最新2014年全国高考理科数学二模试题及答案-新课标

最新2014年全国高考理科数学二模试题及答案-新课标

绝密*启用前最新2014年全国高考理科数学二模试题及答案(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2014年高三数学二模试卷(理科含答案)

2014年高三数学二模试卷(理科含答案)

1 / 42014年高考模拟考试试卷高三数学(理科)(考试时间120分钟,满分150分)考生注意:1. 每位考生应同时领到试卷与答题纸两份材料,所有解答必须写在答题纸上规定位置,写在试卷上或答题纸上非规定位置一律无效;2. 答卷前,考生务必将姓名、准考证号码等相关信息在答题纸上填写清楚; 3. 本试卷共23道试题,满分150分,考试时间120分钟。

一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1、经过点 (1, 0)A 且法向量为(2, 1)n =-的直线l 的方程是 .2、已知集合1|1, A x x R x ⎧⎫=<∈⎨⎬⎩⎭,集合B 是函数lg (1)y x =+的定义域,则A B = .3、方程22124x y m +=+表示焦点在y 轴上的双曲线,则实数m 取值范围是 .4、已知数列{}n a 是首项为1,公差为2的等差数列,()n S n N *∈表示数列{}n a 的前n 项和,则2lim1nn S n →∞=- .5、在261)x x-(的展开式中,含3x 项的系数等于 .(结果用数值作答) 6、方程sin cos 1x x +=-的解集是 . 7、实系数一元二次方程20x ax b ++=的一根为131ix i+=+(其中i 为虚数单位),则 a b += .8、某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在 全校学生中抽取1名学生,抽到高二年级女生的概率为0.19,现采用分层抽样(按年级分层) 在全校抽取100人,则应在高三年级中抽取的人数等于 .9、已知()2x f x =的反函数为111(), ()(1)(1)y f x g x f x f x ---==--+,则不等式()0g x <的解集是.10、已知圆柱M 的底面圆的半径与球O 的半径相同,若圆柱M 与球O 的表面积相等,则它们的体积之比V V 圆柱球:= (结果用数值作答). 11、在极坐标系中,圆4sin ρθ=的圆心到直线 ()6R πθρ=∈的距离等于 .12、如果函数(]()210,1()311,ax x f x ax x ⎧-∈⎪=⎨-∈+∞⎪⎩,2()log g x x =,关于x 的不等式()()0f x g x ⋅≥ 对于任意(0, )x ∈+∞恒成立,则实数a 的取值范围是 .2 / 413、已知二次函数2() ()f x x ax a x R =-+∈同时满足:①不等式()0f x ≤的解集有且只有一个元素;②在定义域内存在120x x <<,使得不等式12()()f x f x >成立.设数列{}n a 的前n 项 和为n S ,且()n S f n =.规定:各项均不为零的数列{}n b 中,所有满足10i i b b +⋅<的正整数i 的个数称为这个数列{}n b 的变号数.若令1n nab a =-(*n N ∈),则数列{}n b 的变号数等 于 .14、已知圆22: (01)O x y c c +=<≤,点 (, )P a b 是该圆面(包括⊙O 圆周及内部)上一点,则a b c ++的最小值等于 .二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。

2014年高考数学模拟试题二新课标(全解全析)

2014年高考数学模拟试题二新课标(全解全析)

2014年高考数学模拟试题第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.(理)已知集合{34}M x x =-<,集合2{0,}1x N xx Z x +=≤∈-,那么M N = ( ) A.{11}x x -<≤ B. {1,0}- C .{0} D .{0,1}2. 已知→a =(cos40︒,sin40︒),→b =(cos80︒,sin80︒),则→a ·→b = ( ) A. 1 B.32 C .12 D .223.(理)复数2lg(3)(441)()xxz x i x R -=+-+-∈,z 是z 的共轭复数,复数z 在复平面内对应的点位于 ( ) A. 第一象限 B. 第二象限 C .第三象限 D .第四象限 4.已知()f x 的定义域为R ,()f x 的导函数()f x '的图象如图所示,则 ( ) A .()f x 在1x =处取得极小值 B .()f x 在1x =处取得极大值 C .()f x 是R 上的增函数D .()f x 是(-∞,1)上的减函数,(1,+∞)上的增函数5.下列结论错误..的个数是 ( ) ①命题“若p ,则q ”与命题“若,q ⌝则p ⌝”互为逆否命题;②命题:[0,1],1x p x e∀∈≥,命题2:,10,q x R x x ∃∈++<则p q ∨为真; ③ “若22,am bm <则a b <”的逆命题为真命题; ④若q p ∨为假命题,则p 、q 均为假命题.A. 0B. 1 C .2 D .3 6. (理)由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为 ( )A.329B. 2ln3- C .4ln3+ D .4ln3- 7.(理)同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .408.(理) 函数f (x )=lgsin(π4-2x )的一个增区间为( )A .(3π8,7π8)B .(7π8,9π8)C .(5π8,7π8)D .(-7π8,-3π8)9.(理) 如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的体积是 ( ) A .163πB .8πC .16πD .323π 10. 已知双曲线的两个焦点分别为1F (-5,0),2F (5,0),P 是双曲线上的一点,1212PF PF PF PF 2⊥⋅且=,则双曲线方程是( )A.22123x y -=B. 2214x y -=C. 22132x y -= D .2214y x -= 11. 在如图所示的程序框图中,当()*N1n n ∈>时,函数()n f x 表示函数()n 1f x -的导函数,若输入函数()1f x sinx cosx =+,则输出的函数()n f x 可化为( )A. 2sin(x +π4) B .-2sin(x -π2) C.x -π4) D .2sin(x +π4)12. 已知函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,若方程a x x f +=)(有且只有两个不相等的实数根,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(-∞,1]D.[0,+∞)第Ⅱ卷 (非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13. 如图所示两个立体图形都是由相同的小正方体拼成的.图(1)的正(主)视图与图(2)的________视图相同. 14.(理)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是 .15.已知两点(2,0),(0,2)A B -,点C 是圆0222=-+x y x 上任意一点,则ABC ∆面积的最小值是 .16. (理)在ABC ∆中,c b a ,,分别是C B A ∠∠∠,,的对边长,已知A A cos 3sin 2=.且有mbc b c a -=-222,则实数m = .三.解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)(理)已知二次函数()y f x =的图像经过坐标原点,其导函数为()62f x x '=-,数列{}n a >2014n的前n 项和为n S ,点*(,)()n n S n ∈N 均在函数()y f x =的图像上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13,n n n n b T a a +=是数列{}n b 的前n 项和, 求使得20n m T <对所有*n N ∈都成立的最小正整数.m18. (本小题满分12分)(理)如图所示,在矩形ABCD 中,AB=1,AD=a , PA ⊥平面ABCD ,且PA=1.(Ⅰ)在BC 边上是否存在点Q ,使得PQ ⊥QD ,说明理由; (Ⅱ)若BC 边上有且仅有一个点Q ,使PQ ⊥QD , 求AD 与平面PDQ 所成角的正弦大小;19. (本小题满分12分)(理)某车间在两天内,每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部每天要在生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过。

2014年高考数学模拟试题及答案二

2014年高考数学模拟试题及答案二

2014年高考数学模拟试题及答案二高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.考生务必将答案答在答题卡上,在试卷上作答无效.2.答题前考生务必用黑色字迹的签字笔在答题卡上填写姓名、准考证号,然后再用2B 铅笔将与准考证号对应的信息点涂黑.3.答题卡上第Ⅰ卷必须用2B 铅笔作答,将选中项涂满涂黑,黑度以遮住框内字母为准,修改时用橡皮擦除干净.第Ⅱ卷必须用黑色字迹的签字笔按照题号顺序在各题目的答题区域内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分.时间:120分钟 满分:150分一.选择题(每小题5分,共75分)1. 若a 是R 中的元素,但不是Q 中的元素,则a 可以是A.3.14B. -5C. 372.集合﹛0,2,3﹜ 的所有子集个数是A.7B.8C.6D.53. 设f(x)=(2a-1)x+b 在R 上是增函数,则有A.a≥12B. a≤12C. .a ﹥12D. .a ﹤124.设集合A={x ︱-1≤x ﹤2},B={x ︱x ﹤a },若A ∩B≠φ,则a 的取值范围是A.a ﹤2B.a ﹥-2C.a ﹥-1D.-1﹤a 25.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,,5},T={3,6}则Cu(S ∪T)等于A. φB. {2,4,7,8}C. {1,3,5,6}D. {2,4,6,8}6.A={x ︱x 2+x-6=0},B={x ︱mx+1=0},且A ∪B=A,则m 的取值范围为A. {13, 12} B. {0,-13, —12} C. { 0,13, -12} D. {-13, —12}7.如图:可表示函数y= f(x)的图像只能是B. C. D.8.函数 f(x)=2x11+ 的值域是 A.(0,1) B.[0,1) C.(0,1] D.[0,1]9.函数x113y --=的定义域是 A.(-∞,1) B.( -∞,0)∪(0, 1] C.(-∞,0)∪(0,1) D.*1,+∞)10.函数y=x 2+2x+1,x ∈[-2,2] ,则A.函数有最小值0,最大值9B. 函数有最小值2,最大值5C.函数有最小值2,最大值9D. 函数有最小值1,最大值511.函数f(x)是定义在区间[-6,6]上的偶函数,且f(3) ﹥f(1)则下列各式一定成立的是A.f(0) ﹤f(6)B.f(3)﹥f(2)C.f(-1) ﹤f(3)D.f(2) ﹥f(0)12.若 f(x)=-x 2+2ax 与g(x)= 1a x + 在区间[1,2]上都是减函数,则a 的取值范围是 A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1) D.(0,1]13.函数y=a x-2+1(a ﹥0且a≠1)的图象必经过点A.(0,1)B.(1,1)C.(2,0)D.(2,2)14.若 -1﹤x ﹤0 ,则不等式中成立的是x y x x y y xA.5-x ﹤5x ﹤0.5xB. 5x ﹤0.5x ﹤ 5-xC. 5x ﹤ 5-x ﹤ 0.5xD. 0.5x ﹤ 5-x ﹤5x15.已知函数 f(x)=x 5+ax 3+bx-8 ,且 f(-2)=10,那么f(2) 等于A.-26B.-18C.-10D.10二.填空题(每小题5分,共25分)16.已知集合A={a2,a+1,-3},B={a-3,2a-1,a 2+1},若A ∩B ={-3}, 则实数a 的值为_____18.已知函数f(x)=4x 2-4mx+1,在(-∞,-2)上递减,在(-2,+∞)上递增.则f(x)在[1,2]上的值域为________19.已知y=(3-a)x 在定义域R 内是减函数,则实数a 的取值范围是____________20.已知y= f(x)是定义在R 上的奇函数,当x ﹥0时, f(x)=x2+x+1,则x ﹤0时,f(x)=_________________三.解答题(共50分) 21.计算.(1)48373)27102(1.0)972(03225.0+-++--π;(2)63125.132⨯⨯. 22.已知函数 f(x)=x 2+2ax+2,x ∈[-5,5](1). 当a=-1时,求函数f(x)的最大值和最小值。

新课标地区重点中学高考数学模拟试题

新课标地区重点中学高考数学模拟试题

新课标地区重点中学高考模拟试题数 学 试 题(文)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,有且只有一项是符合题目要求的) 1.设集合{1,2},{1,2,3},{2,3,4},A B C === 则(A B)C ( )A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4} 2.复数31ii-=- ( )A .2+iB .2-iC .1+2iD .1-2i3220220y m x y x -+=+--=与圆相切,则实数m 等于 ( )AB .C .-D .-4.如果执行右面的程序框图,输入正整灵敏n=5,m=4,那么输出的p 等于 ( ) A .5 B .10 C .20 D .1205.函数y =的定义域是( )A .[)1,+∞B .2,13⎛⎤⎥⎝⎦C .2[,1]3D .2(,)3+∞6.已知向量(1,2),(2,4),||a b c ==--=5(),2a b c +⋅= 则a 与c 的夹角为 ( )A .30°B .60°C .120°D .150 °7.已知等差数列{}n a 的前n 项和为159111,,20,2n S a a a S +==且则= ( )A .260B .220C .130D .1108.已知直线,,,,,l m l m αβαβ⊥⊂平面且,给出四个命题: ①若//αβ,则;l m ⊥ ②若,/l m αβ⊥则③若,//l m αβ⊥则④若//,l m αβ⊥则 其中真命题的个数是 ( ) A .4 B .3C .2D .19.将一条长为6的线段分成长度为正整数的三条线段,则这三条线段可以构成三角形的概率是 ( )A .12B .13C .14D .1510.若A 为不等式组0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过区域A 中部分的面积为( )A .1B .5C .34D .7411.已知方程10|lg |xx -=的两根为12,x x ,则( )A .1201x x <<B .121x x =C .1210x x -<<D .12110x x <<12.已知1()3nn a =,把数列{}n a 的各项同排成如下的三角形:记(,)A s t 表示第s 行的第t 个数,则A (11,12)= ( )A .671()3B .681()3C .1111()3D .1121()3二、填空题:本大题共4小题,每小题5分,共20分。

2014年高考模拟卷理科数学(新课标版)

2014年高考模拟卷理科数学(新课标版)

2014年高考模拟卷理科数学(新课标版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分,考试时间120分钟。

考试结束后,将本试卷和答题纸一并交回。

第Ⅰ卷(选择题 共60分)注意事项:1.答题前,考生在答题纸上务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x||2x -1|<1},B ={-1,0,12,2},则(∁R A)∩B 等于A .{-1,12,2}B .{-1,0,2}C .{0,12}D .{-1,0,12,2}2.已知a 、b 是单位向量,且夹角为60°,则a(a -b)等于A .1B .12C .34D .1-323.已知i 是虚数单位,则z =a 2-1+a +1i(a ∈R)是纯虚数的充分必要条件是A .a =1B .a>1C .-1≤a ≤1D .a ≤-14.函数y =|x|与y =f(x)的图象如图所示,则函数y =f(x)的解析式可能是A .y =x 2+1B .y =x 2-1C .y =x 2D .y =2x 2+425.若f(x)=a x (a>0,a ≠1),定义由如下框图表述的运算(函数f1(x)是函数f(x)的反函数),若输入x =-2时,输出y =14,则输入x =18时,输出y 等于A .2B .-2C .3D .-3 6.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况7.下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是A .①②B .①③C .①④D .②④ 8.曲线y =13x 3+12x 2在x =1处的切线与两坐标轴围成的三角形的面积为A .4936B .49144C .4918D .49729.第16届亚运会于2010年11月12日正式开幕,为了帮助孩子们记住这一天,某小学老师在黑板上写出“2,0,1,0,1,1,1,2”要求学生对这8个数字进行任意排列,则恰好可以排列成20101112或者21110102的概率为A .1210B .1360C .1420D .28!10.已知函数f(x)=sin(2x -π3)的图象沿x 轴向左平移π3个单位后可得y =g(x)的图象,则函数y =g(x)的一个单调递增区间是A .[-5π6,π6]B .[7π12,13π12]C .[-π6,π3]D .[-5π12,π3]11.在△ABC 中,设a 、b 、c 分别是角A 、B 、C 所对边的边长,且直线bx +ycosA +cosB =0与ax +ycosB +cosA =0平行,则△ABC 一定是A .锐角三角形B .等腰三角形C .直角三角形D .等腰或直角三角形12.抛物线顶点在原点,准线过双曲线x 2a 2-y 2b 2=1(a>0,b>0)的一个焦点,且与双曲线的实轴垂直,已知抛物线与双曲线交点为M(32,6),则双曲线的方程为A .x 24-y 23=1B .4x 2-y 23=1 C .x 24-4y 23=1D .4x 2-4y 23=1 第Ⅱ卷(非选择题 共90分)注意事项:1.答题前,考生先在答题纸上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2014年高考模拟试题-理科数学试题

2014年高考模拟试题-理科数学试题

f
x 满足 f
x
y
数),则称 f x 为 R 上的线性变换,现有下列命题:①f f x x f y ,(x, y, , 均为实 若 f x 是 R 上的显性变换,则 f kx kf x k R ③若 f x2x与是gR x上的均线为性R变上换的②线
性变换,则 f x g x 是 R 上的线性变换④ f x 是 R 上的线性变换的充要条件为
⑤ sin2 ( 25 ) cos2 55 sin( 25 ) cos 55 .(1)从上述五个式子中选择一个,求出常数 a ;
(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.
17、已知集合 A {x | x2
2ax
a2
1
0}, B
{x |
若复合命题“ p 或 q ”为真命题,“ p 且 q ”为假命题axx,1求2}实,数命a题的P取:值2 范A围,。命题 q :1 B ,
D.21
1
A. 2
B.1
3
C. 2
D.2
9、 已 知 函 数 的 导 函 数 为
,且
,如果
,则实数 a 的取值范围是 ( )
A. (0,1)B. NhomakorabeaC.
D.
10、 对 于 实 数 x , 定 义 [x] 表 示 不 超 过 x 大 整 数 ,已 知 正 数 数 列 {an } 满 足 :
a1 1,S n
A. m 3
B. m 0
C. m 3 或 m 0 D. m 3 或 m 0
11 7、等比数列{an}的公比 q>1,第 17 项的平方等于第 24 项,则使 a1+a2+…+an>a +a
+…+a1 恒成立的正整数 n 的最小值为( )

2014高三数学一模试卷含有答案

2014高三数学一模试卷含有答案

2014高三数学质量调研卷一.填空题1. 若集合}02|{2>-=x x x A ,}2|1||{<+=x x B ,则=B A .2. 设1e 、2e 是平面内两个不平行的向量,若21e e +=与21e e m -=平行,则实数=m .3. 在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2=a ,32=c ,3π=C ,则=b .4. 在nx )3(-的展开式中,若第3项的系数为27,则=n .5. 若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d l im . 6. 函数)1(log )(2-=x x f )21(≤<x 的反函数=-)(1x f.7. 已知椭圆13422=+y x 的左、右两个焦点分别为1F 、2F ,若经过1F 的直线l 与椭圆相交于A 、B 两点,则△2ABF 的周长等于 .8. 数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a . 9. 若函数x x x f 1)(+=,则不等式25)(2<≤x f 的解集为 .10.如图,正四棱柱1111D C B A ABCD -的底面边长2=AB ,若异面直线A A 1与C B 1 所成的角的大小为21arctan,则正四棱柱1111D C B A ABCD -的侧面积为 . 11. 在数列}{n a 中,21=a ,341+=-n n a a (2≥n ),则数列}{n a 的前n 项和=n S . 12. 已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,若43214321b b b b a a a a +++<+++,则集合A 的取法共有 种. 13. 若函数2cos 1)(xx x f ⋅+=π,则=+++)100()2()1(f f f .第10题14.已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 . 二.选择题15.若)(x f 和)(x g 都是定义在R 上的函数,则“)(x f 与)(x g 同是奇函数或偶函数”是“)()(x g x f ⋅是偶函数”的…………………………( ))(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件16. 若a 和b 均为非零实数,则下列不等式中恒成立的是……………………………( ))(A ||2||ab b a ≥+. )(B 2≥+baa b . )(C 4)11)((≥++b a b a . )(D 222)2(2b a b a +≥+. 17.将函数)(x f y =的图像向右平移4π个单位,再向上平移1个单位后得到的函数对应的表达式为x y 2sin 2=,则函数)(x f 的表达式可以是………………………………………( ))(A x sin 2. )(B x cos 2. )(C x 2sin . )(D x 2cos .18. 若i A (n i ,,3,2,1 =)是AOB ∆所在的平面内的点,且OB OA OB OA i ⋅=⋅. 给出下列说法:①||||||||21OA OA n ==== ; ②||i 的最小值一定是||OB ; ③点A 、i A 在一条直线上;④向量及i OA 在向量的方向上的投影必相等.其中正确的个数是…………………………………………………………………………( ))(A 1个. )(B 2个. )(C 3个. )(D 4个.第18题第13题三.解答题19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分. 已知点)0,2(P ,点Q 在曲线C :x y 22=上.(1)若点Q 在第一象限内,且2||=PQ ,求点Q 的坐标; (2)求||PQ 的最小值.20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分. 已知函数x x x x f cos sin 322cos )(+=(1)求函数)(x f 的值域,并写出函数)(x f 的单调递增区间;求函数)(x f 的最大值,并指出取到最大值时对应的x 的值; (2)若60πθ<<,且34)(=θf ,计算θ2cos 的值.21.(本题满分14分) 本大题共有2小题,第1小题6分,第2小题8分.如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径310=r 毫米,滴管内液体忽略不计.(1)如果瓶内的药液恰好156分钟滴完,问每分钟应滴下多少滴?(2)在条件(1)下,设输液开始后x (单位:分钟),瓶内液面与进气管的距离为h (单位:厘米),已知当0=x 时,13=h .试将h 表示为x 的函数.(注:3310001mm cm =)22. (本题满分16分) 已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2nn a -是等比数列,并求数列{}n a 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;高三数学质量调研卷 评分标准一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. )0,3(-; 2.1-; 3. 4;4.3; 5.1; 6. =-)(1x f )0(21≤+x x (不标明定义域不给分); 7. 8; 8.32; 9.)2,21( 10.32; 11. 14--n n (*N n ∈); 13.150;14.2<a ;二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分.【解】设),(y x Q (0,0>>y x ),x y 22=(1)由已知条件得2)2(||22=+-=y x PQ …………………………2分将x y 22=代入上式,并变形得,022=-x x ,解得0=x (舍去)或2=x ……………4分当2=x 时,2±=y只有2,2==y x 满足条件,所以点Q 的坐标为)2,2(………………6分 (2)||PQ 22)2(y x +-=其中x y 22=…………………………7分422)2(||222+-=+-=x x x x PQ 3)1(2+-=x (0≥x )…………10分当1=x 时,3||min =PQ ……………………………………12分(不指出0≥x ,扣1分)20. 【解】(1))62sin(22sin 32cos )(π+=+=x x x x f ………………2分由于2)62sin(22≤+≤-πx ,所以函数)(x f 的值域为]2,2[-………4分由πππππk x k 22)6222+≤+≤+-得ππππk x k +≤≤+-63所以函数)(x f 的单调的增区间为]6,3[ππππ+-k k ,Z k ∈………6分(文科不写Z k ∈,不扣分;不写区间,扣1分)由20π≤≤x 得,67626πππ≤+≤x ………4分 所以当262ππ=+x 时,2)(max =x f ,此时6π=x ………6分(2)由(1)得,34)62sin(2)(=+=πθθf ,即32)62sin(=+πθ……………8分其中2626ππθπ<+<得0)62cos(>+πθ………………10分所以35)62cos(=+πθ……………11分 ]6)62cos[(2cos ππθθ-+=………………13分621521322335+=⨯+⨯=………………14分 21. 解】(1)设每分钟滴下k (*N k ∈)滴,………………1分则瓶内液体的体积πππ1563294221=⋅⋅+⋅⋅=V 3cm ………………3分k 滴球状液体的体积75340103432ππk mm k k V ==⋅⋅⋅=3cm ………………5分所以15675156⨯=ππk ,解得75=k ,故每分钟应滴下75滴。

2014年高考数学模拟试题(带答案理科)

2014年高考数学模拟试题(带答案理科)

2014年高考数学模拟试题(带答案理科)2013-2014学年度高考模拟试题数学(理)一、选择题:本大题共12小题,每小题5分,共60分,1.若集A={x|-1≤2x+1≤3},B={x|≤0},则A∪B=() A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|0≤x≤2}D.{x|0≤x≤1}2.函数的零点是()A.B.和C.1D.1和3.复数与复数在复平面上的对应点分别是、,则等于()A、B、C、D、4.已知函数的定义域为,集合,若:是Q:”充分不必要条件,则实数的取值范围是()A.B.C.D.5.已知等差数列中,,记,S13=()A.78B.68C.56D.526.要得到一个奇函数,只需将的图象()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位7.已知x>0,y>0,若恒成立,则实数m的取值范围是() A.m≥4或m≤-2B.m≥2或m≤-4C.-2<m<4D.-4<m<28.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.9.设、分别是定义在R上的奇函数和偶函数,当时,.且.则不等式的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)10.已知函数,若有四个不同的正数满足(为常数),且,,则的值为() A、10B、14C、12D、12或2011.已知定义在R上的函数对任意的都满足,当时,,若函数至少6个零点,则取值范围是()A.B.C.D.12.在平面直角坐标系xOy中,点A(5,0),对于某个正实数k,存在函数f(x)=a(a>0).使得=λ·(+)(λ为常数),这里点P、Q 的坐标分别为P(1,f(1)),Q(k,f(k)),则k的取值范围为() A.(2,+∞)B.(3,+∞)C.4,+∞)D.8,+∞)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.过点的直线与圆截得的弦长为,则该直线的方程为。

2014版数学高考模拟试题精编12套-安徽省

2014版数学高考模拟试题精编12套-安徽省

安徽省数学高考模拟试题精编一【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数z =2i1+i,z 的共轭复数为z ,则z ·z =( ) A .1-i B .2 C .1+i D .02.(理)条件甲:⎩⎨⎧ 2<x +y <40<xy <3;条件乙:⎩⎨⎧0<x <12<y <3,则甲是乙的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件(文)设α,β分别为两个不同的平面,直线l ⊂α,则“l ⊥β”是“α⊥β”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.某程序框图如图所示,该程序运行后输出的k 的值是( )A.4 B.5C.6 D.74.(理)下列说法正确的是()A.函数f(x)=1x在其定义域上是减函数B.两个三角形全等是这两个三角形面积相等的必要条件C.命题“∃x∈R,x2+x+1>0”的否定是“∀x∈R,x2+x+1<0”D.给定命题p、q,若p∧q是真命题,则綈p是假命题(文)若cos θ2=35,sinθ2=-45,则角θ的终边所在的直线为()A.7x+24y=0 B.7x-24y=0C.24x+7y=0 D.24x-7y=05.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35)、[35,40)、[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为()A.0.04 B.0.06C.0.2 D.0.36.已知等比数列{a n }的首项为1,若4a 1,2a 2,a 3成等差数列,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( ) A.3116 B .2 C.3316 D.16337.已知l ,m 是不同的两条直线,α,β是不重合的两个平面,则下列命题中为真命题的是( )A .若l ⊥α,α⊥β,则l ∥βB .若l ⊥α,α∥β,m ⊂β,则l ⊥mC .若l ⊥m ,α∥β,m ⊂β,则l ⊥αD .若l ∥α,α⊥β,则l ∥β 8.(理)在二项式⎝⎛⎭⎪⎪⎫x +12·4x n 的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( ) A.16 B.14 C.13 D.512(文)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .1 B .-1 C .-e -1 D .-e9.将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ(φ>0)个单位,再将图象上每一点横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( ) A.π8 B.3π8 C.3π4 D.π2 10.如图所示是一个几何体的三视图,其侧视图是一个边长为a 的等边三角形,俯视图是两个正三角形拼成的菱形,则该几何体的体积为( ) A .a 3B.a 32C.a 33D.a 34 答题栏二、填空题(本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上)11.向平面区域{}(x ,y )|x 2+y 2≤1内随机投入一点,则该点落在区域⎩⎨⎧2x +y ≤1x ≥0y ≥0内的概率等于________.12.(理)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC→=________.(文)已知向量p =(1,-2),q =(x,4),且p ∥q ,则p ·q 的值为________. 13.给出下列等式:观察各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则依次类推可得a 6+b 6=________.14.已知不等式xy ≤ax 2+2y 2,若对任意x ∈[1,2],且y ∈[2,3],该不等式恒成立,则实数a 的取值范围是________. 15.如图所示,F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支的两个交点分别为A ,B ,且△F 2AB 是等边三角形,则双曲线的离心率为________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程及演算步骤)16.(本小题满分12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+2cos 2x -1(x ∈R )(1)求f (x )的单调递增区间;(2)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=12,b ,a ,c 成等差数列,且AB →·AC→=9,求a 的值.17.(理)(本小题满分12分)已知函数f (x )=e x (ax 2-2x -2),a ∈R 且a ≠0. (1)若曲线y =f (x )在点P (2,f (2))处的切线垂直于y 轴,求实数a 的值; (2)当a >0时,求函数f (|sin x |)的最小值;(3)在(1)的条件下,若y =kx 与y =f (x )的图象存在三个交点,求k 的取值范围. (文)(本小题满分12分)已知函数f (x )=ln x 与g (x )=kx +b (k ,b ∈R )的图象交于P ,Q 两点,曲线y =f (x )在P ,Q 两点处的切线交于点A .(1)当k =e ,b =-3时,求函数h (x )=f (x )-g (x )的单调区间;(e 为自然常数) (2)若A ⎝ ⎛⎭⎪⎫ee -1,1e -1,求实数k ,b 的值.18.(本小题满分12分)如图F 1、F 2为椭圆C :x 2a 2+y 2b 2=1的左、右焦点,D 、E 是椭圆的两个顶点,椭圆的离心率e =32,S △DEF 2=1-32.若点M (x 0,y 0)在椭圆C 上,则点N ⎝ ⎛⎭⎪⎫x 0a ,y 0b 称为点M 的一个“椭点”,直线l 与椭圆交于A 、B 两点,A 、B两点的“椭点”分别为P 、Q .(1)求椭圆C 的标准方程;(2)问是否存在过左焦点F 1 的直线l ,使得以PQ 为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由. 19.(理)(本小题满分13分)如图,在三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C ⊥底面ABC ,AA 1=A 1C =AC =2,AB =BC ,AB ⊥BC ,O 为AC 中点. (1)证明:A 1O ⊥平面ABC ;(2)求直线A 1C 与平面A 1AB 所成角的正弦值;(3)在BC 1上是否存在一点E ,使得OE ∥平面A 1AB ?若存在,确定点E 的位置;若不存在,说明理由. (文)(本小题满分13分)如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,AB =1,AA 1=62,∠ABC =60°. (1)求证:AC ⊥BD 1;(2)求四面体D 1-AB 1C 的体积.20.(本小题满分13分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.21.(理)(本小题满分13分)某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛,其中一道题是连线题,要求将4种不同的工具与它们的4种不同的用途一对一连线,规定:每连对一条得5分,连错一条得-2分.某参赛者随机用4条线把消防工具与用途一对一全部连接起来.(1)求该参赛者恰好连对一条的概率;(2)设X为该参赛者此题的得分,求X的分布列与数学期望.(文)(本小题满分13分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学基本公式大赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.安徽省数学高考模拟试题精编二【说明】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A={1,4,2x},B={1,x2},若B⊆A,则x=()A.0 B.-2C.0或-2 D.0或±22.命题“若x>1,则x>0”的否命题是()A.若x>1,则x≤0 B.若x≤1,则x>0C .若x ≤1,则x ≤0D .若x <1,则x <0 3.若复数z =2-i ,则z +10z =( ) A .2-i B .2+i C .4+2i D .6+3i4.(理)已知双曲线x 2a 2-y 2b 2=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( ) A .5x 2-45y 2=1 B.x 25-y 24=1C.y 25-x 24=1 D .5x 2-54y 2=1(文)已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22x B .y =±2x C .y =±2x D .y =±12x5.设函数f (x )=sin x +cos x ,把f (x )的图象按向量a =(m,0)(m >0)平移后的图象恰好为函数y =-f ′(x )的图象,则m 的最小值为( ) A.π4 B.π3 C.π2 D.2π36.(理)已知⎝ ⎛⎭⎪⎫x 2+1x n的展开式的各项系数和为32,则展开式中x 4的系数为( )A .5B .40C .20D .10(文)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为( ) A .7 B .9C .10D .157.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是( ) A .5 B .6 C .7 D .88.点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A.125π6 B .8π C.25π4 D.25π169.(理)已知实数a ,b ,c ,d 成等比数列,且函数y =ln(x +2)-x 当x =b 时取到极大值c ,则ad 等于( ) A .1 B .0 C .-1 D .2(文)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( ) A .2 B .-1 C .1 D .-210.(理)设函数f (x )=x -1x ,对任意x ∈[1,+∞),f (2mx )+2mf (x )<0恒成立,则实数m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,-12 B.⎝ ⎛⎭⎪⎫-12,0 C.⎝ ⎛⎭⎪⎫-12,12 D.⎝ ⎛⎭⎪⎫0,12(文)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,0)∪(0,1) C .(0,1) D .(0,1)∪(1,+∞) 答题栏二、填空题(本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上)11.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为________.12.一个几何体的三视图如图所示,则该几何体的体积为________.13.若x ,y 满足条件⎩⎨⎧3x -5y +6≥02x +3y -15≤0,y ≥0当且仅当x =y =3时,z =ax -y 取得最小值,则实数a 的取值范围是________.14.已知函数f (x )满足:当x ≥4时,f (x )=⎝ ⎛⎭⎪⎫12x ;当x <4时f (x )=f (x +1),则f (2+log 23)=________.15.(理)已知a n =∫n0(2x +1)d x ,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,数列{b n }的通项公式为b n =n -8,则b n S n 的最小值为________.(文)在△ABC 中,2sin 2A 2=3sin A ,sin (B -C)=2cos B sin C ,则ACAB =________. 三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程及演算步骤)16.(本小题满分12分)已知函数f(x)=3sin ωx +φ2cos ωx +φ2+sin 2ωx +φ2(ω>0,0<φ<π2).其图象的两个相邻对称中心的距离为π2,且过点⎝ ⎛⎭⎪⎫π3,1.(1)求函数f(x)的表达式;(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,a =5,S △ABC =25,角C 为锐角,且满足f ⎝ ⎛⎭⎪⎫C 2-π12=76,求c 的值.17.(理)(本小题满分12分)已知函数f(x)=ax sin x +cos x ,且f(x)在x =π4处的切线斜率为2π8.(1)求a 的值,并讨论f(x)在[-π,π]上的单调性;(2)设函数g(x)=ln (mx +1)+1-x1+x ,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈[0,π2],使得g(x 1)≥f(x 2)成立,求m 的取值范围.(文)(本小题满分12分)已知函数f(x)=12x 2-13ax 3(a >0),函数g(x)=f(x)+e x (x -1),函数g(x)的导函数为g ′(x). (1)求函数f(x)的极值; (2)若a =e ,(ⅰ)求函数g(x)的单调区间;(ⅱ)求证:x >0时,不等式g ′(x)≥1+ln x 恒成立.18.(本小题满分12分)如图,已知椭圆C :x 24+y 23=1,直线l 的方程为x =4,过右焦点F 的直线l ′与椭圆交于异于左顶点A 的P ,Q 两点,直线AP 、AQ 交直线l 分别于点M 、N.(Ⅰ)当AP →·AQ →=92时,求此时直线l ′的方程;(Ⅱ)试问M 、N 两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由. 19.(理)(本题满分13分)如图,四棱锥P -ABCD 的底面ABCD 为一直角梯形,其中BA ⊥AD ,CD ⊥AD ,CD =AD =2AB ,PA ⊥底面ABCD ,E 是PC 的中点. (Ⅰ)求证:BE ∥平面PAD ;(Ⅱ)若BE ⊥平面PCD ,求平面EBD 与平面BDC 夹角的余弦值.(文)(本小题满分13分)如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.(1)求证:AB 1⊥平面A 1BD ;(2)设点O为AB1上的动点,当OD∥平面ABC时,求AOOB1的值.20.(本小题满分13分)已知函数f(x)=x2-2(n+1)x+n2+5n-7.(Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{a n},求证:{a n}为等差数列;(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{b n},求{b n}的前n项和S n.21.(理)(本小题满分13分)某高校组织自主招生考试,共有2 000名优秀同学参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成8组:第1组[195,205),第2组[205,215),…,第8组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.(1)估计所有参加笔试的2 000名同学中,参加面试的同学人数;(2)面试时,每位同学抽取三个问题,若三个问题全答错,则不能取得该校的自主招生资格;若三个问题均回答正确且笔试成绩在270分以上,则获A类资格;其他情况下获B类资格.现已知某中学有3人获得面试资格,且仅有1人笔试成绩在270分以上,在回答三个面试问题时,3人对每一个问题正确回答的概率均为1 2,用随机变量X表示该中学获得B类资格的人数,求X的分布列及期望EX. (文)(本小题满分13分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区某年全年每天的PM2.5日均值监测数据中随机地抽取12天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)求空气质量为超标的数据的平均数与方差;(2)从空气质量为二级的数据中任取两个,求这两个数据的和小于100的概率; (3)以这12天的PM 2.5日均值来估计该年的空气质量情况,估计该年(366天)大约有多少天的空气质量达到一级或二级.安徽省数学高考模拟试题精编三【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若复数z 满足3-iz =1+i ,i 是虚数单位,则z =( ) A .2-2i B .1-2i C .2+i D .1+2i2.若集合A ={x ∈Z |2<2x +2≤8},B ={x ∈R |x 2-2x >0},则A ∩(∁R B )所含的元素个数为( ) A .0 B .1 C .2 D .33.若三棱锥的三视图如右图所示,则该三棱锥的体积为( ) A .80 B .40 C.803 D.4034.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 5.设l 、m 是两条不同的直线,α,β是两个不同的平面,有下列命题: ①l ∥m ,m ⊂α,则l ∥α ②l ∥α,m ∥α,则l ∥m ③α⊥β,l ⊂α,则l ⊥β ④l ⊥α,m ⊥α,则l ∥m其中正确的命题的个数是( ) A .1 B .2 C .3 D .46.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为( ) A .0.852 B .0.819 2 C .0.8 D .0.757.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0),把函数f (x )的图象向右平移π6个单位长度,所得图象的一条对称轴方程是x =π3,则ω的最小值是( ) A .1 B .2 C .4 D.328.按右面的程序框图运行后,输出的S 应为( ) A .26 B .35 C .40 D .579.(理)设不等式组⎩⎪⎨⎪⎧π4≤x ≤5π4|y |≤1所表示的平面区域为D ,现向区域D 内随机投掷一点,且该点又落在曲线y =sin x 与y =cos x 围成的区域内的概率是( ) A.22π B.2πC .2 2D .1-2π(文)函数f (x )=lg|sin x |是( )A .最小正周期为π的奇函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数10.(理)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x-[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A .1 B .2 C .3 D .4(文)在直角三角形ABC 中,∠C =π2,AC =3,取点D 、E 使BD →=2DA →,AB →=3BE →,那么CD →·CA →+CE →·CA →=( ) A .3 B .6 C .-3 D .-6 答题栏二、填空题(本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上)11.已知双曲线C 的中心在原点,焦点在坐标轴上,P (1,-2)是C 上的点,且y =2x 是C 的一条渐近线,则C 的方程为________________. 12.(理)在(4x -2-x )6的展开式中,常数项为________.(文)若实数x ,y 满足-1<x +y <4,且2<x -y <3,则p =2x -3y 的取值范围是________.13.已知△ABC 中,BC =1,AB =3,AC =6,点P 是△ABC 的外接圆上一个动点,则BP →·BC→的最大值是________. 14.(理)若曲线y =x -12在点⎝ ⎛⎭⎪⎫m ,m -12处的切线与两坐标轴围成三角形的面积为18,则m =________.(文)已知点P (x ,y )在直线x +2y =3上移动,当2x +4y 取得最小值时,过点P 引圆⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +142=12的切线,则此切线段的长度为________. 15.已知数列a n :11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,则a 99+a 100的值为________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程及演算步骤)16.(本小题满分12分)已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,3sin C cos C -cos 2C =12,且c =3.(1)求角C ;(2)若向量m =(1,sin A )与n =(2,sin B )共线,求a 、b 的值. 17.(本小题满分12分)已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R ). (Ⅰ)若曲线y =f (x )在x =1和x =3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2-2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得f (x 1)<g (x 2),求a 的取值范围.18.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点F 1,F 2分别是椭圆C 的左,右焦点,以原点为圆心,椭圆C 的短半轴为半径的圆与直线x -y +6=0相切. (1)求椭圆C 的方程;(2)若过点F 2的直线l 与椭圆C 相交于M ,N 两点,求△F 1MN 的内切圆面积的最大值和此时直线l 的方程. 19.(理)(本小题满分13分)如图,已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,AB ⊥AC ,M 、N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上,且A 1P →=λA 1B 1→(1)证明:无论λ取何值,总有AM⊥PN;(2)当λ=12时,求直线PN与平面ABC所成角的正切值.(文)(本小题满分13分)如图,在四棱锥P-ABCD中,P A⊥平面ABCD,∠ABC =∠ADC=90°,∠BAD=120°,AD=AB=1,AC交BD于O点.(1)求证:平面PBD⊥平面P AC;(2)求三棱锥D-ABP和三棱锥B-PCD的体积之比.20.(本小题满分13分)数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1(n∈N*),等差数列{b n}满足b3=3,b5=9.(1)分别求数列{a n},{b n}的通项公式;(2)设c n=b n+2a n+2(n∈N*),求证:c n+1<c n≤13.21.(理)(本小题满分13分)某地近年来持续干旱,为倡导节约用水,该地采用了阶梯水价计费方法,具体为:每户每月用水量不超过a吨的每吨2元;超过a吨而不超过(a+2)吨的,超出a吨的部分每吨4元;超过(a+2)吨的,超出(a+2)吨的部分每吨6元.(1)写出每户每月用水量x(吨)与支付费y(元)的函数关系;(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:将12费用,求Y的分布列和数学期望(精确到元);(3)今年干旱形势仍然严峻,该地政府决定适当下调a的值(3<a<4),小明家响应政府号召节约用水,已知他家前3个月的月平均水费为11元,并且前3个月用水量x的分布列为:请你求出今年调整的(文)(本小题满分13分)某地近年来持续干旱,为倡导节约用水,该地采用了阶梯水价计费方法,具体为:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x(吨)与支付费y(元)的函数关系;(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:安徽省数学高考模拟试题精编四【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数z =1+i 2-i (其中是虚数单位),则复数z 在坐标平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(理)已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是真命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )>0B .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0(文)已知命题p :∃x 0∈R ,x 20+2x 0+2≤0,则綈p 为( )A .∃x 0∈R ,x 20+2x 0+2>0B .∃x 0∈R ,x 20+2x 0+2<0C .∀x ∈R ,x 2+2x +2≤0D .∀x ∈R ,x 2+2x +2>0 3.(理)如图所示,要使电路接通即灯亮,开关不同的闭合方式有( ) A .11种 B .20种 C .21种 D .12种(文)已知向量a 、b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=( ) A .3 2 B .2 2 C. 2 D .14.“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件5.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )6.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( ) A.14 B.13 C.12 D.327.(理)下列四个判断:①某校高三(1)班的人数和高三(2)班的人数分别是m 和n ,某次测试数学平均分分别是a ,b ,则这两个班的数学平均分为a +b 2;②从总体中抽取的样本(1,2.5),(2,3.1),(3,3.6),(4,3.9),(5,4.4),则回归直线y ∧=b ∧x +a ∧必过点(3,3.6);③已知ξ服从正态分布N (1,22),且p (-1≤ξ≤1)=0.3,则p (ξ>3)=0.2 其中正确的个数有( )A .0个B .1个C .2个D .3个(文)某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ∧=0.66x +1.562,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( ) A .83% B .72% C .67% D .66%8.阅读程序框图(如图),如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是( )A .{x ∈R |0≤x ≤log 23}B .{x ∈R |-2≤x ≤2}C .{x ∈R |0≤x ≤log 23或x =2}D .{x ∈R |-2≤x ≤log 23或x =2}9.(理)设方程10x =|lg(-x )|的两个根分别为x 1、x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1(文)定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)10.等差数列{a n }的前n 项和为S n ,公差为d ,已知(a 8+1)3+2013(a 8+1)=1,(a 2006+1)3+2013(a 2006+1)=-1,则下列结论正确的是( ) A .d <0,S 2013=2013 B .d >0,S 2013=2013C.d<0,S2013=-2013 D.d>0,S2013=-2013答题栏二、填空题(本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上)11.过抛物线y2=2px(p>0)的焦点F作直线l交抛物线于A,B两点,O为坐标原点,则△AOB的形状为________.12.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为________.13.(理)如图,阴影部分由曲线y=x与y轴及直线y=2围成,则阴影部分的面积S=________.(文)曲线y=x3-2x+3在x=1处的切线方程为________.14.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm3.15.观察下面两个推理过程及结论:(1)若锐角A,B,C满足A+B+C=π,以角A,B,C分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:sin2A=sin2B+sin2C-2sin B sin C cos A,(2)若锐角A ,B ,C 满足A +B +C =π,则⎝ ⎛⎭⎪⎫π2-A 2+⎝ ⎛⎭⎪⎫π2-B 2+⎝ ⎛⎭⎪⎫π2-C 2=π,以角π2-A 2,π2-B 2,π2-C2分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:cos 2A 2=cos 2B 2+cos 2C 2-2cos B 2cos C 2sin A 2.则:若锐角A ,B ,C 满足A +B +C =π,类比上面推理方法,可以得到的一个等式是________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程及演算步骤)16.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知c =1,C =π3.(1)若cos(α+C )=-35,0<α<2π3,求cos α; (2)若sin C +sin(A -B )=3sin 2B ,求△ABC 的面积S . 17.(理)(本小题满分12分)已知函数g (x )=2a ln(x +1)+x 2-2x (1)当a ≠0时,讨论函数g (x )的单调性;(2)若函数f (x )的图象上存在不同两点A ,B ,设线段AB 的中点为P (x 0,y 0),使得f (x )在点Q (x 0,f (x 0))处的切线与直线AB 平行或重合,则说函数f (x )是“中值平衡函数”,切线叫做函数f (x )的“中值平衡切线”.试判断函数g (x )是否是“中值平衡函数”?若是,判断函数g (x )的“中值平衡切线”的条数;若不是,说明理由. (文)(本小题满分12分)已知函数f (x )=ax 3+bx 2+cx +d (a >0)的零点的集合为{0,1},且x =13是f (x )的一个极值点. (1)求ba 的值;(2)试讨论过点P (m,0)且与曲线y =f (x )相切的直线的条数.18.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点D .求证:直线l 过定点,并求出该定点的坐标. 19.(理)(本小题满分13分)如图已知:菱形ABEF 所在平面与直角梯形ABCD 所在平面互相垂直,AB =2AD =2CD =4,∠ABE =60°,∠BAD =∠CDA =90°,点H ,G 分别是线段EF ,BC 的中点. (1)求证:平面AHC ⊥平面BCE ;(2)点M 在直线EF 上,且GM ∥平面AFD ,求平面ACH 与平面ACM 所成角的余弦值.(文)(本小题满分13分)如图,已知三棱柱ABC -A 1B 1C 1.(1)若M 、N 分别是AB 、A 1C 的中点,求证:MN ∥平面BCC 1B 1;(2)若三棱柱ABC -A 1B 1C 1的各棱长均为2,∠B 1BA =∠B 1BC =60°,P 为线段B 1B 上的动点,当P A +PC 最小时,求证:B 1B ⊥平面APC .20.(本小题满分13分)已知数列{a n }的前n 项和S n 和通项a n 满足S n =12(1-a n ). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =na n ,求证:b 1+b 2+…+b n <34.21.(理)(本小题满分13分)空气质量指数PM2.5(单位:μg/m 3)表示每立方米空气中入肺颗粒物的含量,这个值越高,就代表空气污染越严重(如下表):某市某年8月8日~9月6日(30天)对空气质量指数PM2.5进行监测,获得数据后得到如图所示的条形图:(1)以该数据为依据,求该城市一个月内空气质量类别为良的概率;(2)在上述30个监测数据中任取2个,设X为其中空气质量类别为优的天数,求X的分布列和数学期望.(文)(本小题满分13分)某车间将10名技术工人平均分为甲、乙两个小组加工某种零件.已知甲组每名技术工人加工的零件合格的分别为4个、5个、7个、9个、10个,乙组每名技术工人加工的零件合格的分别为5个、6个、7个、8个、9个.(1)分别求出甲、乙两组技术工人加工的合格零件的平均数及方差,并由此比较这两组技术工人加工这种零件的技术水平;(2)假设质检部门从甲、乙两组技术工人中分别随机抽取1人,对他们加工的零件进行检测,若抽到的2人加工的合格零件之和超过12个,则认为该车间加工的零件质量合格,求该车间加工的零件质量合格的概率.安徽省数学高考模拟试题精编五【说明】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数1+2ii 的共轭复数是a +b i(a ,b ∈R ),i 是虚数单位,则点(a ,b )为( ) A .(1,2) B .(2,-1) C .(2,1) D .(1,-2)2.下列说法中,正确的是( )A .命题“若am 2<bm 2,则a <b ”的逆命题是真命题B .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题C .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件D .命题“∃x ∈R ,x 2-x >0”的否定是:“∀x ∈R ,x 2-x ≤0”3.已知a =0.7-13,b =0.6-13,c =log 2.11.5,则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .a <b <c D .b <a <c4.一个棱锥的三视图如图,则该棱锥的全面积(单位:cm 2)为( )A .48+12 2B .48+24 2C .36+12 2D .36+24 2 5.(理)如图,A 、B 两点之间有4条网线连接,每条网线能通过的最大信息量分别为1,2,3,4.从中任取2条网线,则这2条网线通过的最大信息量之和等于5或6的概率是( ) A.56 B.12C.13D.16(文)已知变量x ,y 满足约束条件⎩⎨⎧y ≤2x +y ≥1x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-16.将函数y =sin ⎝ ⎛⎭⎪⎫x +π6(x ∈R )图象上所有的点向左平行移动π6个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π3B .y =sin ⎝ ⎛⎭⎪⎫x 2+π3C .y =sin x 2D .y =cos x27.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为( ) A .8 B .7 C .6 D .5 8.某程序框图如图所示,现输入下列四个函数:f (x )=1x ,f (x )=log 3(x 2+1),f (x )=2x +2-x ,f (x )=2x -2-x ,则输出的函数是( ) A .f (x )=1x B .f (x )=log 3(x 2+1) C .f (x )=2x +2-x D .f (x )=2x -2-x9.(理)将5名学生分到A ,B ,C 三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A 宿舍的不同分法有( ) A .18种 B .36种 C .48种 D .60种(文)设O 在△ABC 的内部,且有OA →+2OB →+3OC →=0,则△ABC 的面积和△AOC的面积之比为( ) A .3 B.53 C .2 D.32 10.如图,在等腰梯形ABCD 中,AB ∥CD ,且AB =2CD ,设∠DAB =θ,θ∈⎝ ⎛⎭⎪⎫0,π2,以A ,B 为焦点且过点D 的双曲线的离心率为e 1,以C ,D 为焦点且过点A 的椭圆的离心率为e 2,设e 1=f (θ),e 1e 2=g (θ),则f (θ),g (θ)的大致图象是( )答题栏二、填空题(本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上)11.已知抛物线的顶点在原点,焦点在x 轴的正半轴上,若抛物线的准线与双曲线5x 2-y 2=20的两条渐近线围成的三角形的面积等于45,则抛物线的方程为________.12.设动点P (x ,y )在区域Ω:⎩⎨⎧x ≥0y ≥xx +y ≤4上(含边界),过点P 任意作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为________.13.已知下列表格所示数据的回归直线方程为y ∧=3.8x +a ,则a 的值为________.14.经过随机抽样获得100辆汽车经过某一雷达测速地区的时速(单位:km/h),并绘制成如图所示的频率分布直方图,其中这100辆汽车时速的范围是[30,80],数据分组为[30,40),[40,50),[50,60),[60,70),[70,80].设时速达到或超过60 km/h 的汽车有x 辆,则x 等于________.15.数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式为a n =________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程及演算步骤)16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos A cos B=-a b +2c .(1)求角A 的大小. (2)求sin B sin C 的最大值.17.(理)(本小题满分12分)已知函数f (x )=ln xa -x .。

2014版高考数学(课标全国卷)模拟试题精编12无答案

2014版高考数学(课标全国卷)模拟试题精编12无答案

课标全国卷数学高考模拟试题精编十二【说明】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设复数z=1+i(i是虚数单位),则错误!+z2=( )A.-1-i B.-1+iC.1-i D.1+i2.“函数y=a x是增函数”是“log2a>1”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.(理)若错误!n的展开式中,各系数之和为A,各二项式系数之和为B,且A+B=72,则n的值为( )A.3 B.4C.5 D.6(文)设集合A={1,a2,-2},B={2,4},则“a=2”是“A∩B”={4}的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知实数4,m,1构成一个等比数列,则圆锥曲线错误!+y2=1的离心率为()A。

错误!B。

错误!C.22或错误! D.错误!或35.执行如图所示的程序框图,则输出的B的值为() A.63 B.31C.15 D.76.在平面直角坐标系中,若不等式组错误!(a为常数)所表示的平面区域内的面积等于2,则a的值为( )A.2 B.3C.5 D.77.已知集合M={x||x+2|+|x-1|≤5},N={x|a<x<6},且M∩N=(-1,b],则b-a=()A.-3 B.-1C.3 D.78.(理)如图,长方形的四个顶点为O(0,0),A(1,0),B(1,2),C(0,2),曲线y=ax2经过点B。

现将一质点随机投入长方形OABC中,则质点落在图中阴影部分的概率是( )A。

错误! B.错误!C。

34D.错误!(文)已知f(x)=错误!,则f错误!的值为()A.错误!B.-错误!C.1 D.-19.(理)一个班有6名战士,其中正副班长各一名,现从中选4人完成四种不同的任务,每人完成一种任务,正副班长中有且仅有一人参加,另一人要留下值班,则不同的分配方法有( )A.240种B.192种C.2 880种D.1 440种(文)双曲线x2+my2=1的虚轴长是实轴长的2倍,则双曲线的渐近线方程为( )A.y=±2x B.y=±错误!xC.y=±错误!x D.y=±错误!x10.如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=错误!,BD⊥CD,将其沿对角线BD折成四面体ABCD,使平面ABD⊥平面BCD,若四面体ABCD的顶点在同一个球面上,则该球的体积为()A.错误!π B.3πC.错误!π D.2π11.把正奇数数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号一个数,……,依次循环的规律分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第50个括号内各数之和为()A.98 B.197C.390 D.39212.定义在R上的函数f(x),其图象是连续不断的,如果存在非零常数λ(λ∈R),使得对任意的x∈R,都有f(x+λ)=λf(x),则称y=f (x)为“倍增函数",λ为“倍增系数",下列命题为假命题的是()A.若函数y=f(x)是倍增系数λ=-2的倍增函数,则y=f(x)至少有1个零点B.函数f(x)=2x+1是倍增函数,且倍增系数λ=1C.函数f(x)=e-x是倍增函数,且倍增系数λ∈(0,1)D.若函数f(x)=sin 2ωx(ω>0)是倍增函数,则ω=错误!(k∈N*)答题栏案第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填写在题中的横线上)13.如图,网格纸上小正方形的边长为1,粗线或粗虚线画出了某简单组合体的三视图和直观图(斜二测画法),则该简单组合体的体积为________.14.数列{a n}满足a1=3,a n-a n a n+1=1,A n表示{a n}的前n项之积,则A2 013=________.15.(理)某团队有6人入住宾馆中的6个房间,其中的房号301与302对门,303与304对门,305与306对门,若每人随机地拿了这6个房间中的一把钥匙,则其中的甲、乙两人恰好对门的概率为________.(文)若△ABC的面积为错误!,BC=2,C=60°,则边长AB的长度等于________.16.设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程及演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c.已知3cos(B-C)-1=6cos B cos C。

2014届高三高考预测试题数学含答案

2014届高三高考预测试题数学含答案

2014届高考预测交流试题1.已知集合{},,21n a a a A =其中),,2,1(0*∈=>N n n k a k ,,集合{}A b a B b A a b a B ∈-∈∈=,,),(,则集合B 的元素至多有 ( )A .n 个B .2)1(+n n 个 C .2)1(n n -个 D .2n 个 1.【答案】C 【解析】集合B 的元素至多有2)1(2)1)(11()1(321-=--+=-++++n n n n n 个,选项C 正确2.在三角形ABC 中,D 为底边BC 的中点,M 为AD 上的任一点,过M 点任作一直线l 分别交边AB 与AC 于E ,F ,(E ,F 不与端点重合),且AD k AM AC n AF AB m AE ===,,,则k n m ,,满足的关系是 ( ) A k n m 211=+ B.211k n m =+ C.k n m 111=+ D.k n m =+2.【答案】A 【解析】由题AD k AM AC n AF AB m AE ===,,可知AM kAD AF n AC AE m AB 1,1,1===,又)(21AC AB AD +=,所以AF nk AE m k AM AF n AE m AM k 22)11(211+=⇒+=,而122=+n k m k ,即有kn m 211=+,选项A 正确 3.如图,在四棱锥ABCD P -中,平面⊥PAD 平面ABCD ,AB ∥,DC PA PD =,已知,102==DC AB 834==AD BD (1) 设M 是PC 上的一点,求证:平面⊥MBD 平面PAD ; (2) 当三角形PAD 为正三角形时,点M 在线段PC (不含线段端点)上的什么位置时,二面角M AD P --成3π3.【解析】(1)因为834==AD BD ,得6,8==AD BD ,又因为10=AB ,所以有222AB BD AD =+即BD AD ⊥…………………2分,又因为平面⊥PAD 平面ABCD ,且交线为AD ,所以PAD BD 平面⊥,BDM BD 平面⊂,故平面⊥MBD 平面PAD ……….4分(2)由条件可知,三角形PAD 为正三角形,所以取AD 的中点O ,连PO ,则PO 垂直于AD ,由于平面⊥PAD 平面ABCD ,所以PO 垂直于平面ABCD ,过O 点作BD 的平行线,交AB 于点E,则有AD OE ⊥,所以分别以OP OE OA ,,为z y x ,,轴,建空间直角坐标系所以点)33,0,0(),0,8,3(),0,0,3(),0,0,3(),0,0,0(P B D A O --,由于DC AB //且DC AB 2=,得到)0,4,6(-C ,设λ=PCPM ()10<<λ,则有))1(33,4,6(λλλ--M ,因为由(1)的证明可知PAD BD 平面⊥,所以平面PAD 的法向量可取:)0,8,0(1=n ,设平面MAD 的法向量为),,(2z y x n =,则有14,33,00))1(33,4,36)(,,(0)0,0,6)(,,(0022-===⇒⎩⎨⎧=-+-=-⇒⎪⎩⎪⎨⎧=⨯=⨯λλλλλz y x z y x z y x DM n AD n 则有令即有)14,33,0(2-=λλn 由二面角M AD P --成3π得139)1(16278324213cos 222121=⇒-+⨯=⇒⨯⨯=λλλπn n n n 故当M 满足:PC PM 139=时符合条件1.已知i 是虚数单位,且313(1)()22z i i +=-+,则在复平面内,z 对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 Ox y zE1.【答案】B 【解析】由313(1)()22z i i +=-+=1可得111122z i i ==-+,则z 对应复平面内的点在第四象限. 2.已知直线10ax y +-=与20x ay +-=垂直,则a = .2.【答案】0【解析】由条件可得110a a ⨯+⨯=,故0a =.3.不等式2||0x x -<的解集为 .3.【答案】(1,0)(0,1)-⋃【解析】由2||0x x -<可得0||1x <<,所以10x -<<或01x <<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标地区重点中学2014年高考模拟试题(十二)
数 学 试 题(文)
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数
11i -的共轭复数为 A .1122i - B .1122i + C .1122i -- D .1122
i -+ 2.已知集合21{|1,},{|,1}A y y og x x B y y x x
==≥==>则A B = A .[0.1) B .[0,1] C .(0,1)
D .(0,1] 3.下列说法正确的是:
A .若命题p q ⌝ 都是真命题,则命题“p p ∧”为真命题
B .命题“若0xy =,则x=0或y=0”的否命题为“若0xy ≠,则0x ≠或y 0≠”
C .命题“,20x x R ∀∈>”的否定是“0,20x
x R o ∃∈≥” D .“x=-1”是“x 2—5x 一6=0”的必要不充分条件
4.下列函数中,在(0,1)上单调递减的是
A .|1|y x =-
B .2(1)y x =+
C .1
2y x = D .12x y +=
5.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是
A .1
B .2
C .3
D .4
6.执行如图所示的程序框图,若输出b 的值为15,则图中判断框内①处应填的数是
A .2
B .3
C .4
D .5
7.已知数列{a n }的通项公式为*1()(1)n a n N n n =∈+,其前n 项和910n S =,则直线11x y n n
+=+与坐标轴所围成三角形的面积为
A .36
B .45
C .50
D .55
8.已知函数2()1f x og x = ,若在[1,4]上随机取一个实数x 0,则使得0()1f x ≥成立的概率为
A .13
B .12
C .23
D .34
9.已知函数 ()sin()(0,||)2f x x π
ωθωθ=+><的最小正周期是π,若将其图象向右平移3
π个单位后得到的曲线关于原点对称,则函数f (x )的图象
A .关于点(12π, 0)对称
B .关于直线x=
12π对称 C .关于点(512π,0)对称 D .关于直线x=512π对称 z 十3y -3≥0,
10.已知实数x .y 满足约束条件330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩
,若函数z=x 十y 的最大值为9,则实数m 的值
为 A .-2 B .-1 C .2 D .1
11.已知'()f x 是定义在R 上的函数()f x 的导函数,且5
()(5),()'()02
f x f x x f x =--< 若1212,5x x x x <+<,则下列结论中正确的是
A .12()()f x f x <
B .12()()f x f x >
C .12()()0f x f x +<
D .12()()0f x f x +>
12.已知函数6(3)3,7,(),7,x a x x f x a x ---≤⎧=⎨>⎩
若数列{a n }满足*()()n a f n n N =∈,且{a n }是递增数列,则实数a 的取值范围是
A .9
,34⎡⎫⎪⎢⎣⎭ B .(94,3) C .(2,3) D .(1,3)
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知向量a ,b
满足|||2,()a b a b ==-⊥a ,则向量a 与b 的夹角为 。

14.已知a ∈R ,函数 32
()(3)f x x ax a x =++-的导函数是偶函数,则曲线()y f x =在原点处
的切线方程为 。

15.设抛物线M :2
2(0)y px p =>的焦点F 是双曲线22
22:1(0.0)x y N a b a b -=>>的右焦点,若M 与N 的公共弦AB 恰好过点F ,则双曲线N 的离心率e= 。

16.在三棱锥P —ABC 中,△ABC 是边长为2的正三角形,PA=PB=PC .且PA ,PB ,PC 两两互相垂
直,则三棱锥P —ABC 外接球的表面积为 。

三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2)cos cos 0c a B b A --=。

(I )若b=7,a+c=13,求△ABC 的面积;
sin()6
A C π
+-的取值范围. 18.(本小题满分12分)
为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将他们的体重数据整
理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(I )求该校报考体育专业学生的总人数n;
(Ⅱ)已知A ,a 是该校报考体育专业的两名学生,A 的体重小于55千克,a 的体重不小于
70千克.现从该校报考体育专业的学生中选取体重小于55千克的学生1人、体重不小
于70千克的学生2人组成3人训练组,求A 不在训练组且a 在训练组的概率.
19.(本题满分12分)
已知斜三棱柱AB C —A 1B 1C 1中,∠ACB=90°,AC=BC=2,点D 为AC 的中点,A 1D ⊥平面ABC ,
A 1
B ⊥A
C l
(I )求证:AC 1⊥ A l C;
(Ⅱ)求三棱锥C l —ABC 的体积
20.(本小题满分12分)
已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12
,点F 1,F 2分别是椭圆C 的左,右焦点,
以原点为圆心,椭圆C 的短半轴为半径的圆与直线 0x y -+=相切.
(I )求椭圆C 的方程;
(Ⅱ)若过点F 2的直线l 与椭圆C 相交于点M ,N 两点,求使△F l MN 面积最大时直线l 的方程.
21.(本小题满分12分)
已知函数f (x )=1nx - x .
(I )若不等式 2
()212xf x x ax ≥-+-对一切(0,)x ∈+∞恒成立,求实数a 的取值范围; (Ⅱ)若关于x 的方程 32()20f x x ex bx -+-=恰有一解(e 为自然对数的底数),求实
数b 的值,
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 2:sin 2cos (0)C p a a θθ=>过点P (-2,-4
)的直线2,:(42x l t y ⎧=-⎪⎪⎨⎪=-+⎪⎩
为参数)与曲线 C 相交于点M ,N 两点.
(I )求曲线C 和直线l 的普通方程;
(Ⅱ)若|PM|l ,| MN|,|PN |成等比数列,求实数a 的值。

相关文档
最新文档