多项式ppt课件

合集下载

多项式课件-新人教版

多项式课件-新人教版

公式法
公式法是一种基于数学公式进行多项 式因式分解的方法。根据公式,我们 可以将多项式表示为几个整式的积的 形式。常用的公式包括平方差公式、 完全平方公式等。
例如,多项式$a^2 - b^2$可以分解 为$(a + b)(a - b)$,其中使用了平方 差公式。
十字相乘法
01
十字相乘法是一种通过将二次项 和常数项拆分成两个数的乘积, 然后交叉相乘得到一次项系数, 从而找到因式分解结果的方法。
02 多项式的加减法
同次多项式的加减法
同次多项式是指各个项的次数相同的 多项式,例如$2x^3 - 3x^3$。同次 多项式的加减法可以通过系数相加减 ,字母部分不变的方式进行计算。
计算方法:将同次多项式的系数进行 加减运算,例如$2x^3 - 3x^3 = (23)x^3 = -x^3$。
不同次多项式的加减法
解法
通过移项和合并同类项,将方程化为标准形式 ax+b=0,然后求解x=-b/a(当a≠0)。
3
实例
2x+5=0的解是x=-5/2。
一元二次方程的解法
01
定义
一元二次方程是只含有一个未知数,且该未知数的次数为2的方程。
02
解法
通过因式分解或配方法,将方程化为标准形式ax^2+bx+c=0,然后求
解x=[-b±√(b^2-4ac)]/2a。
合并同类项
合并同类项是指将多项式中相同或相似项进行合并,例如 $2x^2 + 4x^2 + 6x^2$。合并同类项可以简化多项式,使 其更易于计算和理解。
计算方法:将多项式中相同或相似项的系数进行相加或相减 ,字母部分不变。例如$2x^2 + 4x^2 + 6x^2 = (2+4+6)x^2 = 12x^2$。

《多项式概念》课件

《多项式概念》课件

根的性质
多项式的根可以是实数、复数或分数,取决 于多项式的系数和指数。
根的求法
通过代入法或因式分解法等数学方法,可以 求出多项式的根。
多项式的因式分解
定义
因式分解是将一个多项式表示为几个整式的积的形式 。
因式分解的方法
包括提公因式法、分组分解法、十字相乘法、公式法 等。
因式分解的意义
因式分解有助于理解和分析多项式的结构,简化计算 和证明。

一次多项式的根(即解)是直线与$x$轴的交点,解的个数为1
03
或2。
二次多项式
01
二次多项式是只包含一个变量最高次幂为2的多项式,形如 $ax^2 + bx + c$,其中$a neq 0$。
02
二次多项式在平面坐标系中表示一个抛物线。
03
二次多项式的根的个数最多为2个,且一定是一对共轭复数 。
多项式的最大公因式
定义
最大公因式是指两个或多个多项式中共同的因 式中次数最高的一个。
最大公因式的求法
通过辗转相除法或分组法等数学方法,可以求 出多项式的最大公因式。
最大公因式的应用
最大公因式在简化多项式、解方程和证明等领域有广泛应用。
THANKS
感谢观看
多项式的根表示与坐标轴的交点,即曲线与坐标轴的交点。
微积分性质
多项式函数的积分也是多 项式函数。
多项式函数的导数仍然是 多项式函数。
多项式函数是可微的,即 其导数存在。
01
03 02
03
CATALOGUE
多项式的运算
多项式的运算
• 多项式是数学中一个基本概念, 通常表示为有限个单项式的代数 和。每个单项式由一个系数和一 个变量幂次相乘得到。例如,多 项式 (2x^3 + 3x^2 - 4x + 5) 包 含四个单项式。

第一章多项式

第一章多项式

二、数域P上的一元多项式的运算

f x an x an 1 x
n n 1
a0 ai xi .
i 0 m
j 0
n
g x bm x m bm1 x m1 b0 b j x j .
是数域P上的两个多项式且设 m n.
(1) 证:若 f ( x ) 0,
2 2

2
x ( g ( x ) h ( x )) f ( x ) 0,
2 2 g ( x ) h ( x ) 0. 于是 从而
( xg 2 ( x ) xh2 ( x )) ( x( g 2 ( x ) h2 ( x ))) 为奇数.
i j i 0 j 0 k 0 n m l
现证 f x g x h x f x g x h x
左边 f x g x 中s次项的系数是: ai b j
左边 f x g x h x t次项的系数是:
an x n 称为多项式f(x)的首项, an 称为首项
系数,n称为多项式f(x)的次数,记为:
f x n.
例如
f x 3x 2 2 x 1,
f x 3,
f x 2,
f x 0
注:
数域上的每一个非零多项式有一个唯一确定的次数; 首项是零次项的多项式的次数为0; 零多项式是唯一不定义次数的多项式;
f x 3 ix 5 x 2 是C上多项式。
3 1 x 3x 2 2 3 x , ax , x x 1
都不是多项式。
2 多项式相等与零多项式

多项式课件(公开课)(共19张PPT)

多项式课件(公开课)(共19张PPT)

• 2次项为
1 4 m 2 n 3 2 m 3 n 2 m 4 n m n 4
• 2、
• 项为 • 常数(chángshù)项为
;次数是

;这个多项式叫做
第十三页,共19页。
思考(sīkǎo):如果我们要按照某一个顺序来重 新排列上面两个多项式,可以怎么来排?
根据加法交换律,任意(rènyì)两项可以 交换位置,最后的结果不变。
5次 2次 0次
称这个多项式为五次三项式
第十页,共19页。
(4)例题(lìtí) 讲解
1、把多项式t-5,3x+5y+2 ,1 ab 3.14 ,x2+2x+18
2
读一读,想一想它们的项分别是什么(shén me),常数 项分别是什么(shén me)?
答:①t , -5 ; -5 ②3x , +5y , +2 ; +2 ③ 1 ab , 3.14; -3.14
升幂与降幂: 按某一字母指数从大到小的顺序排列(páiliè),这种排列
(páiliè)方式叫做降幂排列(páiliè); 按某一字母指数从小到大的顺序排列(páiliè),这种排列
(páiliè)方式叫做升幂排列(páiliè);
第十四页,共19页。
注意:1、升幂和降幂必须按照某
(2)鸡兔同笼,鸡有a只,兔有b只,则共有(ɡònɡ yǒu)头
2
④x2, +2x, +18 ; 18
第十一页,共19页。
注意: (1)多项式的次数不是所有 (suǒyǒu)项的次数之和;
(2)多项式的项要包括它前 面的符号
第十二页,共19页。
2、填空题
• 1、 3 a b32a bab2

第一章 高等代数多项式ppt课件

第一章 高等代数多项式ppt课件

定义3:若P是一个,且b≠0,有a/b ∈P,则称数集P是一个 数域。
例如:有理数集Q、实数集ppt精R选、版 复数集C都是数域。
9
多项式
§1 数环和数域
例 4 证明 Q (2 ) { a b2|a ,b Q }是一个数域。
例 5 设 P 1{ ab2|a,b Q }P 2 { ab3|a,b Q } P { a b 2 c3 d 6 |a ,b ,c ,d Q }
零多项式:系数全为0的多项式,即f (x)=0。对零多项式不
定义次数,因此,在使用次数符号时,总假定f (x)≠0。
首一多项式:首项系数为pp1t精的选版多项式。
13
多项式
二、多项式的运算
§2 一元多项式的定义和运算
定义4:设
f(x)anxnan1xn1 a1xa0,
g(x)bmxmbm 1xm 1 b1xb0,
34多项式因式分解定理不可约多项式的性质性质1若px是不可约多项式则只有c性质2若px是不可约多项式则对任意的多项式f性质3若px是不可约多项式且对任意两个多项式f推论1若px是不可约多项式且px35多项式设px为数域p上的次数大于零的多项式
高等代数
高等代数
Higher Algebra
湖南大学数学与计量经济学院
性质2 对任意的f (x),g(x)∈P [x],若f (x) | g(x),且g(x) | f (x) 那么f (x) = cg(x)和g(x) = df (x),其中c,d为非零常数。
性质3 对任意的f (x),g(x),h(x)∈P [x],若f (x) | g(x),且 g(x) | h(x),那么f (x) | h(x) 。(整除的传递性)
x2 2在有理数范围内不能进行因式分解,但在实域

4.1 第2课时 多项式 课件(共16张PPT)

4.1  第2课时 多项式  课件(共16张PPT)

③ax2+bx+c;
2
⑥ .
−1
2.填表
多项式

次数
ab+c
-a 2+2b +2c
x4-x2-1
-3a2-3b2+1
ab、c
4
2
2
2
-a 2 、2b 、2c x 、-x 、-1 -3a 、-3b 、1
2
2
4
2
探究 多项式相关概念





注意:
①要确定一个多项式的次数,先要确定此多项式中各项(单项式)的次数,然后找到







定义:几个单项式的和

项:其中的每个单项式叫多项式的项.

多项式
(其中不含字母的项叫做常数项)


次数:多项式中次数最高的项的次数.







1.填空:-
4
5
,二次项为
4
2
a b3
ab+1是

,常数项为
项式,其中三次项系数是
,

写出所有的项:
.
2.判断下列各式是不是整式.
最高次项,最后确定多项式的次数;
②一个多项式的最高次项可以不唯一.

3x -y+3xy +x -1
2
3
探究 整式的概念





单项式与 多项式统称整式.
识别方法:
①单项式是整式;
②多项式是整式;
③如果一个式子既不是单项式又不是多项式,那么它一定不是整式.

多项式课件

多项式课件

高次多项式
总结词
复杂函数关系
详细描述
高次多项式的一般形式为 a_nx^n+a_(n-1)x^(n1)+...+a_1x+a_0,其中 n>2。它描 述的函数关系比一次和二次多项式更 为复杂,可以表示各种不同的数学关 系和物理现象。
04
多项式的因式分解
因式分解的定义与性质
总结词
理解因式分解的概念和性质是掌握因 式分解方法的基础。
02
多项式的表示方法
代数表示法
代数表示法是用字母和数字的组合来表示多项式,例如: $P(x) = ax^3 + bx^2 + cx + d$。这种表示方法可以清晰 地展示多项式的各项系数和指数,方便进行代数运算和解析 。
代数表示法的优点是简洁明了,易于理解和计算。它适用于 需要精确表达多项式数学关系的情况,如数学公式、定理证 明等。
表格表示法是将多项式的系数以表格的形式呈现出来,方便进行对比和查找。这 种表示方法适用于需要展示多项式系数的详细情况,如数据统计、表格报告等。
表格表示法的优点是详细全面,能够清晰地展示多项式的各项系数。它适用于需 要精确记录多项式系数的情况,如科学实验、工程设计等。
03
多项式的分类
一次多项式
总结词:线性关系
应用数学
在应用数学中,求根公式广泛 应用于物理、工程等领域。
06
多项式的应用
在数学中的应用
代数方程
多项式是代数方程的基本 组成部分,用于表示和解 决各种数学问题。
函数
多项式可以用来表示连续 函数,有助于理解函数的 性质和图像。
微积分
多项式在微积分中用于近 似复杂函数的积分和导数 。

《多项式》PPT课件1-七年级上册数学人教版

《多项式》PPT课件1-七年级上册数学人教版
一个单项式中,所有字母的指数的 和,叫做这个单项式的次数。
多项式里,次数最高项的次数, 就是多项式的次数。
例题讲解
例 2 如图,用式子表示圆环的面积,当R=15 cm, r=10 cm时,求圆环的面积(π取3.14).
解:圆环的面积是πR2- πr2 .
r
当R=15 cm, r=10 cm时,圆环的面积是
跟踪练习 比一比,看谁快
多项式 项
2x-3
2x,-3
3x+5y+2z 1 ab r2 -x3-2x+18
2
3x,5y,2z
1 ab, 2
r 2
-x2,-2x,18
项数 2
3
2
3
次数 1
1
2
3
名称
一次 二项式
一次 三项式
二次 二项式
三次 三项式
想一想
多项式的次数与单项式的次数有 什么区别和联系?
整 单对项自式己次系说数 数,你::所 单有有 项什字 式么母 中收的 的获指 数?数 字的因和数
式 对老师项说:,每你个有单什项么式疑叫惑多?项式的畅项所欲言哦
多对项同式学说(,你其有中不什含么字温母馨的项提叫示做?常数项) 次数:多项式中次数最高的项的次数
R
πR2- πr2=3.14×152-3.14×102
=392.5(cm2).
这个圆环的面积是392.5 cm2 .
巩固新知
1.一个关于字母x的二次三项式的二次项 系数 为4,一次项系数为1,常数项为7,则这个 二次三项式为_ 4x2+x+7_.
2.a,b 分别表示梯形的上底和下底,h 表示
梯形的高,则梯形面积 a=2 cm,b =4 cm,h=5

多项式 课件(共13张PPT)

多项式  课件(共13张PPT)

注意:找多项 式的项,必须 连同前面的正 负号,切记: 符号不能丢哦!
4.多项式中次数最高项的次数就是这个多项式的次数.
5.一个多项式含有几项,就叫做几项式.
多项式的次数:多项式中,次数最高项的次数,就是 这个多项式的次数.
3x2-2x+5,这是__多__项__式_____,有__三____项,分别是
数最高项的次数.
二次三项式.
例题讲解
例1 指出下列多项式的项和次数: (1)a3-a2b+ab2-b3;(2)3n4-2n2+1.
解: (1)多项式 a3-a2b+ab2-b3的项有 a3、-a2b、ab2、
-b3 ,次数是 3.
(2)多项式3n4-2n2+1 的项有3n4 、-2n2 、1,次数 是4.
课堂小结
单项式
系数:单项式中的数因数.
次数:所有字母的指数的和.

式 项:多项式中的每个单项式叫做多项式的项.
多项式
其中不含字母的项叫做常数项
次数:多项式中次数最高项的次数.
谢谢
3.
将式子:
1 3
,1 x+2
,x 3
-y
,π
x 2-y 2
,1 a 2 ,7x-1 , 6
y2+8 x, 9a2+ 1 -2 填入相应的大括号中.
a
单项式:{ 1 ,1 a2 ,…};
36
多项式:{ x -y,π x2-y2 ,7x-1,y2+8x ,…}; 3
整式:{ 1 ,1 a2,x -y,π x2-y2 ,7x-1,y2+8x ,…}. 36 3
以上列出的这些代数式有什 么共同特点?它们与单
项式有什么区别?
获取新知
a+b+c

多项式概念ppt课件

多项式概念ppt课件

个足球需要z元,买3个篮球、5个排球、2个足球共
需要 3x+5y+2z 元。
3、如图三角尺的面积为
1 2
ab
r 2

4、如图是一所住宅区的建筑平面图,这所住宅 的建筑面积是x2+2x+18 ㎡。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
次数
项数

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
9.下列式子中哪些是单项式,哪些是多项式, 哪些是整式?
xy, 5a, 3 xy2z, a, x y,
3
4
1 , 0, 3.14, m1 x
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
作业
❖P59:练习1、2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
2xx223-xy222-xx4-x4-132xy32--1
3x5
2x3xy2,,--42xx2y2,
2x22x,,--x1,-3
1253
234
-4-x33x,5-1
5πr2h+6r 3x3y +(-5) -5a
7a2 7a2+(-5a)
单项式
ห้องสมุดไป่ตู้
多项式
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•知识要点
•一、由单项式相加组成的代数式叫做多项式.
•二、多项式中的每个单项式叫做这个多项式的项 .
• 判断. 下列代数式哪些是多项式?
• (1)a
(2)
• (3)x+2
(4)x2+xy+y2
• 下列多项式是哪些单项式的和?
•2ab+2ah-2bh
பைடு நூலகம்
•2ab、2ah、-2bh
•5x-4
•5x、-4
•能力提高:
•1.多项式:3x2ym+(n-2)xy+16 •如果多项式的次数为4次,则m为多少

•如果多项式只有二项,则n为多少? 2.一个关于字母x的二次三项式的二次项 系数
为4,一次项系数为1,常数项为7 则这个二次三项式为_______.
多项式ppt课件
•学习目标
• 1.理解并掌握多项式,多项式项,常数项 、多项式次数的概念,并说明其中的联系和区别 • 2、能够确定一个多项式的项数与次数.区 别多项式的次数与单项式的次数
•观察下面这些式子有什么特点.
•v+2.5,
•x2+2x+18
•v-2.5
•3x+5y+2 z
•单项式的和
•单项式•+ •单项式
•4.如果-5xym-1 -6为4次二项式,则m=____.
•5.若-ax2yb+1+5是关于x、y的五次二项式, 且系数为-1,则 •a= , b=
•整式
•系数:单项式中的数字因数。 •次数:所有字母的指数的和。
•项:式中的每个单项式叫多项式的项
•(其中不含字母的项叫做常数项) •次数:多项式中次数最高的项的次数。
•单项式和多。项式统称为整式
例题:请分别写出下列多项式的项、项数、 常数项、次数、 多项式是几次几项式。
•3x3-xy -4;
•注意:
•几次几项式的 数字要大写.
•填空.
•练一练
多项式

最高次项 次数
几次几项式
•5
•6
•五次二项式 •六次二项式
•5 •五次四项式
•练一练
•1.请说出下列多项式是几次几项式

•六 • 次 •三 项式
•四 •次 •三 项式
•三 •次 •二 项式
•注意:几次几项式的数字要大写.
填空
• 1. 单项式m2n2的系数是_______, •次数是______, m2n2是____次单项式.
• 2. 多项式x+y-z是单项式 , ,___的和,它是 ___次___项式. • 3. 多项式3m3-2m-5+m2的常数项是____, •一次项是_____, 二次项的系数是_____.
•知识要点
•三、多项式里不含字母的项常数 项。
• 说出下列多项式是几项式,及其
各项分别是什么?
•知识要点
•多项式的次数 .
• 多项式里次数最高项的次数,就是这个多 项式的次数。
•如a2 -3a -2的项分别有

•常数项是____,最高次数项是_____。
•次数:
•∴a2- 3a -2为二次三项式
相关文档
最新文档