等式性质练习

合集下载

等式的性质练习题(打印版)

等式的性质练习题(打印版)

等式的性质练习题(打印版)# 等式的性质练习题## 一、选择题1. 下列哪个选项不是等式的性质?- A. 等式两边同时加上(或减去)同一个数(或式子),结果仍为等式。

- B. 等式两边同时乘以同一个数,结果仍为等式。

- C. 等式两边同时除以同一个不为0的数,结果仍为等式。

- D. 等式两边同时取相反数,结果仍为等式。

2. 如果 \( a = b \),那么下列哪个选项是错误的?- A. \( a + c = b + c \)- B. \( a - c = b - c \)- C. \( a \times c = b \times c \)- D. \( a \div c = b \div c \)(假设 \( c \neq 0 \))## 二、填空题1. 如果 \( 2x + 3 = 7 \),那么 \( x \) 的值为 ________。

2. 已知 \( 3a - 5 = 10 \),求 \( a \) 的值,解得 \( a =________ \)。

## 三、应用题1. 一个长方形的长是宽的两倍,如果宽是 \( x \) 米,那么长是多少米?如果长方形的周长是 \( 24 \) 米,求 \( x \) 的值。

2. 某工厂生产一批零件,如果每台机器每天能生产 \( 100 \) 个零件,那么 \( 5 \) 台机器 \( 3 \) 天能生产多少零件?如果每台机器的生产效率提高 \( 20\% \),那么 \( 5 \) 台机器 \( 3 \) 天能生产多少零件?## 四、证明题1. 证明:如果 \( a = b \),那么 \( a^2 = b^2 \)。

2. 证明:如果 \( a + b = c + d \) 且 \( a = c \),那么 \( b =d \)。

## 五、解答题1. 解下列方程:- \( 2x - 5 = 11 \)- \( 3x + 4 = 2x + 10 \)2. 解下列不等式:- \( 2x + 1 > 9 \)- \( 3x - 2 \leq 7 \)## 六、综合题1. 已知 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 + b^2 = 100 \)。

《等式的性质》练习题

《等式的性质》练习题

《等式的性质》练习题一、选择题1、根据等式的性质,下列哪个选项是不正确的?A.若 a = b,则 a + c = b + cB.若 a = b,则 ac = bcC.若 a = b,则 a - c = b - cD.若 a = b,则 ac = bc2、根据等式的性质,下列哪个选项不能由给出的等式推导出来?A.若 2x = 4y,则 x = 2yB.若 x + 3 = y + 3,则 x = yC.若 x2 = y2,则 x = y或 x = -yD.若 x + 5 = y - 3,则 x = y - 83、根据等式的性质,下列哪个选项是正确的?A.若 a = b,则 a2 = b2B.若 a = b,则 a3 = b3C.若 a = b,则 a4 = b4D.若 a = b,则 a5 = b5二、填空题1、若 3x = 9,则 x = ______。

2、若 5y + 2 = 12,则 y = ______。

3、若 -4x = -16,则 x = ______。

4、若 0.5x - 3 = 1,则 x = ______。

三、解答题1、根据等式的性质,解答下列问题:如果 4x + 6 = 10,那么 x的值是多少?2、根据等式的性质,解答下列问题:如果 3x - 7 = 16,那么 x的值是多少?《等式的基本性质》教案【教学目标】1、通过对等式的性质的探究,使学生能够理解并掌握等式的基本性质。

2、学会运用等式的基本性质进行等式的变形。

3、培养学生观察、实验、猜想、验证等探究能力。

【教学重难点】1、重点:探究等式的基本性质。

2、难点:运用等式的基本性质进行等式的变形。

【教具准备】多媒体课件、小黑板【教学过程】一、导入新课,揭示课题1、导入新课:利用天平图示,让学生观察天平两端同时加上或减去同样的重物,天平会怎样?同时向两个相反方向移动同样的距离,天平又会怎样?出示两组数据,分别列出等式并填空。

学生思考回答后,教师及时评价,引出课题。

等式的性质练习题

等式的性质练习题

等式的性质练习题一、选择题1.□+○=△,下列正确的是()。

A.○-△=□B.□+△=○C.□×4+○=△×4 D.□×4+○×4=△×42.如果x=y,下面式子中错误的是()。

A.x+a=y+a B.x÷2÷3=y÷2÷3 C.x÷2.5×2=y÷5 3.如果a=h,根据等式的性质可知下面正确的是()(a,b,c均不为0)。

A.a×c=h×c B.a×c=h÷c C.a-c=b+c4.2a=3b(a,b为非0自然数),根据等式的性质,下面等式不成立的是()。

A.20a=30b B.20a=3b+18a C.4a=9b D.12b=8a 二、填空题5.已知a=b,那么5a=2b+(________)。

6.1个文具盒和6支笔共36元,4个文具盒和24支笔要(__________)元钱。

7.如果=□+2,那么×4=(________)×(________)。

8.等式两边都乘(______),等式成立。

9、根据等式的性质在○里填上运算符号,在□里填数。

(1) 6 x=48 (2) x=60X=48○□ 4 x=60○□(3) 2 x=32 (4) 8x=402X+5=32○□ 8 x-7=40○□10 、应用等式的性质填空。

(1) X+16=40 (2) x -52=4x+16-16=40○() x-52+52=4○()x=() x=()(4) x÷8=24 (4) 3 x=27x÷8×()=24○() 3 x÷()=27○()x=() x=()三、判断题10.因为m=n,所以m÷5=n÷5。

(______)11.如果2x=3b,那么6x=12b(x和b均不为0)。

等式的性质习题及答案

等式的性质习题及答案

等式的性质习题及答案
等式是数学中常见的基本概念之一,它表示两个数或者表达式相等的关系。

在运算中,等式具有以下性质:
一、选择题:
1.正确答案为B。

因为B选项中两边都有括号,可以直接
用“=”连接。

2.正确答案为B。

因为B选项中的等式变形是错误的,应
该是由a=b得a-5=b-5.
3.正确答案为C。

根据等式性质,如果a=b,则a+c=b+c,因此C选项是正确的。

二、填空题:
4.
1) 10-8=2,因此x=2.
2) 4x-3x=7,因此x=7.
3) -3x=8,因此x=-8/3.
4) =-2*(-2)/3,因此=-4/3.
5.
1) 3-x=4*3/1,因此3-x=12,解得x=-9.检验:3-(-9)=12.
2) 5x-3x=4+2,因此2x=6,解得x=3.检验:5*3-2=13.
三、解答题:
6.
1) 将式子两边都减去3,得到x=-1.检验:1/2*(-1)+3=2.
2) 将式子两边都加上2,得到-x=5,再将式子两边都乘以-1,得到x=-5.检验:-1/2*(-5)-2=3.
3) 将式子两边都减去8x,得到x=-6.检验:9*(-6)=8*(-6)-6.
4) 将式子两边都减去4y,得到4y=17,再将式子两边都除以4,得到y=17/4.检验:8*17/4=4*17/4+17.
8.当x=0时,式子为0=0,因此x可以取任意实数值。

9.设十位上的数字为y,则个位上的数字为y+2.根据题意可得y+(y+2)=10,解得y=4,因此这个两位数为42.。

等式的性质练习题

等式的性质练习题

等式的性质练习题等式是数学中常见的基本概念,它表达了两个数或者算式之间的相等关系。

在数学学习中,我们需要掌握等式的性质和运用技巧。

本文将给出一些等式的性质练习题,帮助读者巩固对等式性质的理解和应用。

练习题 1判断下列等式是否成立,并给出相应的解析过程。

1.2x+3=72.3(x+2)=x−1+4x3.2(x+3)=2x+6−3(x−2)4.(x+3)2=x2+6x+9解析:1.2x+3=7,首先移项得到2x=4,再除以2得到解x=2。

2.3(x+2)=x−1+4x,首先将等式两边的括号展开得到3x+6=x−1+4x,合并同类项得到3x+6=5x−1,再移项得到−2x=−7,最后除以-2得到解 $x = \\frac{7}{2}$。

3.2(x+3)=2x+6−3(x−2),首先将等式两边的括号展开得到2x+6=2x+6−3x+6,合并同类项得到2x+6=5,再移项得到2x=−1,最后除以2得到解 $x = -\\frac{1}{2}$。

4.(x+3)2=x2+6x+9,首先将等式左边的括号展开得到x2+6x+9=x2+6x+9,将等式两边进行化简可得到0=0,无论数值取多少,等式始终成立。

所以该等式为恒等式,解为任意实数。

练习题 2计算下列等式的解。

1.$\\frac{3}{4}x - \\frac{1}{2} = \\frac{1}{8}x + \\frac{3}{4}$2.2(x−1)+3(2x−1)=5(x−1)−4(2x−1)3.2(3x+4)−3(2x+1)=5(4−x)−4x解析:1.$\\frac{3}{4}x - \\frac{1}{2} = \\frac{1}{8}x + \\frac{3}{4}$,首先将等式两边的分数部分通分,并整理合并同类项得到 $\\frac{6x - 4}{8} =\\frac{x + 6}{8}$,可以化简为6x−4=x+6,再移项得到5x=10,最后除以5得到解x=2。

人教版数学五年级上册 第五单元《等式的性质》同步练习(含答案)

人教版数学五年级上册 第五单元《等式的性质》同步练习(含答案)

《等式的性质》(同步练习)-五年级上册数学人教版一.填空题(共10小题)1.根据“甲数比乙数的3倍多5”写出一个等量关系式。

2.下面式子中等式的有(填序号)。

①5+x=10②19﹣8=11③20﹣3>10④8.5+x⑤7+x<24⑥6(m+2)=423.在6+2=8、27﹣x、52÷2=26、x﹣7>12、a﹣15=32、7x=30、x+y=30中,等式有个,方程有个.4.如果m=n+3,那么根据等式的性质:m÷5=÷5;2m×d=(n+3)×。

5.如果a=b,根据等式的性质填空。

a+3=b+;a﹣=b﹣c;a×d=b×;a÷=b÷10。

6.等式的两边同时加上或减去同一个数,所得的结果仍是.7.等式两边加上或减去,左右两边仍然相等.8.A÷1.8=B÷7.2(AB都不等于0),则A÷B=.9.如果a=b,那么a+3=b+;a÷=b÷10。

10.由2+x=8可得2+x﹣2=8﹣2,这是根据等式两边都,等式仍然成立。

二.选择题(共9小题)11.方程一词,最早出现在我国古代数学书籍《九章算术》中。

下列式子是方程的是()A.3x+2y B.5x÷6>3C.5×3=15D.a﹣2=712.下列各式中,是方程的是()A.5+x=7.5B.5+x>7.5C.5+x D.5+2.5=7.5 13.下面各式中,()是方程.A.3x>12B.21÷3=7C.6.4+x=12D.x+514.等式的两边同时()同一个数,等式两边一定相等。

A.加上或减去B.乘C.除以D.不能确定15.如图所示,在杠杆左侧挂3个钩码,那么在杠杆右侧应挂()个这样的钩码才能保持平衡。

A.5B.6C.7D.816.等式两边乘以同一个数,左右两边()相等。

A.一定B.可能C.不可能D.以上答案都不对17.a+7=b+4,那么a()b。

小学数学人教版五年级上册 等式的性质 同步练习(含答案)

小学数学人教版五年级上册 等式的性质 同步练习(含答案)

小学数学人教版五年级上册5.3等式的性质同步练习一、单选题1.运用等式的性质进行变形后,错误的是()A.如果a=b,那么a+b=b-cB.如果a=b,那么c÷a=c÷b(a、b均不为0)C.如果a÷c=b÷c(c不为0),那么a=bD.如果a2=3a(a为0),那么a=32.如果2m=6n,(m,n均不为0),那么m=()A.n B.2n C.3n3.如果4x=y-4,根据等式的性质,经过变换后,下面的()是错误的.A.4x+3=y-1B.4x-2=y-6C.x=0.25y-1D.8x=2y-4 4.如果x=y,根据等式的性质,经过变换后,下列等式错误的是()。

A.x-8=y-6+2B.x×2×3=6yC.x+8=y+10-2D.x÷b=y÷b(b≠0)5.解方程的依据是()。

A.商不变性质B.积不变规律C.等式的性质6.下面说法正确的是()A.x+1.5>15是方程B.x=2是方程6﹣2x=10的解C.等式一定是方程D.方程一定是等式7.下列算式中能用“=”连接的是()A.14-5 ▲ 12-5B.17+4 ▲ 17-4C.12+8×2 ▲ 28D.2×(4-3) ▲ 2×4-3二、判断题8.解方程的原理是根据等式的性质,要注意求出方程的解还要检验一下。

()9.方程的左右两边同时加上或减去同一个数,左右两边仍然相等。

()10.如果a=b,根据等式的性质可知a×13=b×13。

()三、填空题11.已知m=n,则m-21=n-;m÷=n÷12。

12.根据等式的性质:如果x÷0.7=42,那么x÷0.7×0.7=42。

13.两名同学尝试化简方程5x-20=40,他们用了不同的方法。

请把它们补充完整。

小亮:方程两边同时加20,可以化简为。

小学数学等式的性质练习题

小学数学等式的性质练习题

小学数学等式的性质练习题一、基础练习1. 计算下列各式的值:a) 3 + 5 = ?b) 7 - 2 = ?c) 4 × 6 = ?d) 12 ÷ 3 = ?2. 填空:a) 8 - ____ = 3b) 15 ÷ ____ = 5c) 4 × ____ = 12d) 9 + ____ = 123. 如果 a = 5,b = 2,计算下列各式的值:a) a + b = ?b) a × b = ?c) a - b = ?d) a ÷ b = ?4. 如果 x = 3,y = 2,计算下列各式的值:a) 2x + y = ?b) x - y = ?c) xy = ?d) x² = ?二、方程题1. 解方程:3 + x = 102. 解方程:5y = 353. 解方程:2z - 4 = 104. 解方程:2x + 3 = 75. 解方程:6m - 5 = 23三、概念理解1. 什么是等式?请用你自己的话解释。

2. 什么是未知数?请举例说明。

3. 解方程的步骤是什么?简述。

4. 你觉得解方程有什么实际应用场景?举例说明。

四、拓展练习1. 解方程:2(x - 3) = 82. 解方程:3x + 5 = 203. 如果 a = 7,b = 3,计算下列各式的值:a) 4a + b = ?b) ab = ?c) a ÷ b = ?d) a² = ?4. 如果 y = 4,z = 5,计算下列各式的值:a) 3z + 2y = ?b) y - z = ?c) yz = ?d) z² = ?五、挑战题1. 解方程:2(x + 5) + 3 = 152. 阅读下面的等式,判断对错,并解释你的答案:a) 8 - 4 = 4 + 3b) 12 ÷ 3 = 6c) 5 × (4 - 2) = 103. 解方程:4(x - 6) = 8x + 104. 请写出一个含有两个未知数的等式,并解之。

等式的性质试题精选附答案

等式的性质试题精选附答案

等式的性质一.选择题(共25小题)1.(2003•无锡)已知2x=3y(x≠0),则下列比例式成立的是()A.B.C.D.2.(2002•金华)已知:,那么下列式子中一定成立的是()A.2x=3y B.3x=2y C.x=6y D.x y=63.如图所示,天平右盘里放了一块砖,左盘里放了半块砖和2kg的砝码,天平两端正好平衡,那么一块砖的重量是()A.1kg B.2kg C.3kg D.4kg4.在下列式子中变形正确的是()A.如果a=b,那么a+c=b﹣c B.如果a=b,那么C.如果,那么a=2D.如果a﹣b+c=0,那么a=b+c5.下列说法正确的是()A.如果ab=ac,那么b=c B.如果2x=2a﹣b,那么x=a﹣bC.如果a=b,那么D.等式两边同时除以a,可得b=c6.下列叙述错误的是()A.等式两边加(或减)同一个数(或式子),结果仍相等B.等式两边乘以(或除以)同一个数(或式子),结果仍相等C.锐角的补角一定是钝角D.如果两个角是同一个角的余角,那么它们相等7.下列变形中不正确的是()A.若x﹣1=3,则x=4B.若3x﹣1=x+3,则2x﹣1=3C.若2=x,则x=2D.若5x+8=4x,则5x﹣4x=88.下列各式中,变形正确的是()A.若a=b,则a﹣c=b﹣c B.若2x=a,则x=a﹣2C.若6a=2b,则a=3b D.若a=b+2,则3a=3b+29.如果a=b,则下列等式不一定成立的是()A.a﹣c=b﹣c B.a+c=b+c C.D.a c=bc10.下列等式变形错误的是()A.若a+3=b﹣1,则a+9=3b﹣3B.若2x﹣6=4y﹣2,则x﹣3=2y﹣1C.若x2﹣5=y2+1,则x2﹣y2=6D.若,则2x=3y11.下列方程变形正确的是()A.由方程,得3x﹣2x﹣2=6B.由方程,得3(x﹣1)+2x=1C.由方程,得2x﹣1=3﹣6x+3D.由方程,得4x﹣x+1=412.已知等式a=b成立,则下列等式不一定成立的是()A.a+m=b+m B.﹣a=﹣b C.﹣a+1=b﹣1D.13.下列方程的变形中,正确的是()①3x+6=0,变形为x+2=0;②x+7=5﹣3x,变形为4x=﹣2;③4x=﹣2,变形为x=﹣2;④=3,变形为2x=15.A.①④;B.②③;C.①②④;D.①②③14.已知5﹣(﹣2x+y)=6,则2x﹣y=()A.﹣1B.0C.1D.215.下列说法正确的是()A.在等式ax=bx两边都除以x,可得a=bB.在等式两边都乘以x,可得a=bC.在等式3a=9b两边都除以3,可得a=3D.在等式两边都乘以2,可得x=y﹣116.(2013•东阳市模拟)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c17.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=18.已知mx=my,下列结论错误的是()A.x=y B.a+mx=a+my C.mx﹣y=my﹣y D.amx=amy19.若ma=mb,那么下列等式不一定成立的是()A.a=b B.ma﹣6=mb﹣6C.D.ma+8=mb+820.下列各方程,变形正确的是()A.=1化为x=B.1﹣[x﹣(2﹣x)]=x化为3x=﹣1C.化为3x一2x+2=1D.化为2(x﹣3)﹣5(x+4)=1021.下列各式变形错误的是()A.2x+6=0变形为2x=﹣6B.=1﹣x,变形为x+3=2﹣2xC.﹣2(x﹣4)=﹣2,变形为x﹣4=1D.,变形为﹣x+1=122.下列变形正确的是()A.若x2=y2,则x=y B.若axy=a,则xy=1C.若﹣x=8,则x=﹣12D.若=,则x=y23.根据下图所示,对a、b、c三种物体的质量判断正确的是()A.a<c B.a<b C.a>c D.b<c24.如果■●▲表示三种物体,现用天平称了现两次,情况如图所示则下列结论正确的是()A.■■=▲B.■=▲C.■>●D.▲▲<■■■25.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡()A.在糖果的秤盘上加2g砝码B.在饼干的秤盘上加2g砝码C.在糖果的秤盘上加5g砝码D.在饼干的秤盘上加5g砝码二.填空题(共3小题)26.(2001•江西)如果,那么= _________ .27.(2000•台州)已知2y=5x,则x:y= _________ .28.(1998•宁波)已知3a=2b(b≠0),那么= _________ .三.解答题(共2小题)29.由(3a+7)x=4a﹣b,得到的是否受一定条件的限制?并说明理由.30.将等式5a﹣3b=4a﹣3b变形,过程如下:∵5a﹣3b=4a﹣3b,∴5a=4a(第一步),∴5=4(第二步).上述过程中,第一步的依据是_________ ,第二步得出错误的结论,其原因是_________ .等式的性质参考答案与试题解析一.选择题(共25小题)1.(2003•无锡)已知2x=3y(x≠0),则下列比例式成立的是()A.B.C.D.考点:等式的性质.分析:根据等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决.解答:解:根据等式性质2,可判断出只有B选项正确,故选B.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.2.(2002•金华)已知:,那么下列式子中一定成立的是()A.2x=3y B.3x=2y C.x=6y D.x y=6考点:等式的性质.分析:根据等式的性质,在等式两边同时加、减、乘、除同一个数或式子,结果仍相等可得出答案.解答:解:A、根据等式的性质2,等式两边同时乘以6,即可得2x=3y;B、根据等式性质2,等式两边都乘以9,应得3x=y;C、根据等式性质2,等式两边都乘以3,应得x=y;D、根据等式性质2,等式两边都乘以3y,应得xy=y2;故选A.点评:本题考查的是等式的性质:等式性质1,等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2,等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.3.如图所示,天平右盘里放了一块砖,左盘里放了半块砖和2kg的砝码,天平两端正好平衡,那么一块砖的重量是()A.1kg B.2kg C.3kg D.4kg考点:等式的性质.专题:应用题.分析:根据题意可知天平两端正好平衡说明左盘里物质的质量等于右盘里物质的质量,可设一块砖的重量是xkg,利用“天平左盘里物质的质量等于右盘里物质的质量”作为相等关系列方程即可求解.解答:解:设一块砖的重量是xkg,则:2+x=x解得:x=4所以一块砖的重量是4kg.故选D.点评:从天平左右两边平衡引出等量关系:天平左盘里物质的质量等于右盘里物质的质量.若天平两边同时去掉半块砖,则可知半块砖头的重量为2kg.同时也体现出了等式的基本性质1:等式的两边同时加上或减去同一个数或字母,等式仍成立.4.在下列式子中变形正确的是()A.如果a=b,那么a+c=b﹣c B.如果a=b,那么C.如果,那么a=2D.如果a﹣b+c=0,那么a=b+c考点:等式的性质.分析:根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.解答:解:A、应同加同减,故选项错误;B、正确;C、a=8,故选项错误;D、a=b﹣c,故选项错误.故选B.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.5.下列说法正确的是()A.如果ab=ac,那么b=c B.如果2x=2a﹣b,那么x=a﹣bC.如果a=b,那么D.等式两边同时除以a,可得b=c考点:等式的性质.分析:根据等式的基本性质对各选项分析判断后利用排除法求解.解答:解:A、如果a=0,则不能等式两边都除以a,故本选项错误;B、等式两边都除以2,应为x=a﹣,故本选项错误;C、∵c2+1≥1,∴可以等式两边都除以c2+1,正确;D、是等式两边都乘以a,而不是都除以a,故本选项错误.故选C.点评:本题主要考查等式的基本性质,熟练掌握基本性质是解题的关键,也是为今后更好的学习打下坚实的基础.6.下列叙述错误的是()A.等式两边加(或减)同一个数(或式子),结果仍相等B.等式两边乘以(或除以)同一个数(或式子),结果仍相等C.锐角的补角一定是钝角D.如果两个角是同一个角的余角,那么它们相等考点:等式的性质;余角和补角.分析:根据等式的性质1判断A;根据等式的性质2判断B;根据补角的定义判断C;根据余角的性质判断D.解答:解:A、根据等式的性质1:等式两边加同一个数(或式子),结果仍相等,所以叙述正确,故本选项不符合题意;B、根据等式的性质2:等式两边乘同一个数或除以一个不为零的数,结果仍相等.当除数为0时,除法运算无意义,所以叙述错误,故本选项符合题意;C、根据和为180°的两个角互为补角,得到锐角的补角一定是钝角,所以叙述正确,故本选项不符合题意;D、根据余角的性:同角的余角相等,所以叙述正确,故本选项不符合题意.故选B.点评:本题考查了等式的性质,余角与补角的性质,都是基础知识,需熟练掌握.A.若x﹣1=3,则x=4B.若3x﹣1=x+3,则2x﹣1=3C.若2=x,则x=2D.若5x+8=4x,则5x﹣4x=8考点:等式的性质.分析:根据等式的基本性质进行判断.解答:解:A、等式x﹣1=3的两边同时加上1,等式仍成立,即x=4.故本选项正确;B、等式3x﹣1=x+3的两边同时减去x,等式仍成立,即2x﹣1=3.故本选项正确;C、等式2=x的两边同时加上(﹣x﹣2),再除以﹣1,等式仍成立,即x=2.故本选项正确;D、等式5x+8=4x的两边同时减去(4x+8),等式仍成立,即5x﹣4x+16=8.故本选项错误;故选D.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.8.下列各式中,变形正确的是()A.若a=b,则a﹣c=b﹣c B.若2x=a,则x=a﹣2C.若6a=2b,则a=3b D.若a=b+2,则3a=3b+2考点:等式的性质.分析:根据等式的两条性质对四个选项逐一分析,发现只有选项A正确.解答:解:A、若a=b,根据等式的性质,等式两边加同一个数(或式子)结果仍得等式,则a﹣c=b﹣c,故选项A正确;B、若2x=a,根据等式的性质,等式两边乘同一个数或除以一个不为零的数,结果仍得等式,则x=a÷2,故选项B错误;C、若6a=2b,根据等式的性质,等式两边乘同一个数或除以一个不为零的数,结果仍得等式,则a=,故选项C错误;D、若a=b+2,根据等式的性质,等式两边乘同一个数或除以一个不为零的数,结果仍得等式,则3a=3b+6,故选项D错误.故选A.点评:本题主要考查等式的两条性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.如果a=b,则下列等式不一定成立的是()A.a﹣c=b﹣c B.a+c=b+c C.D.a c=bc考点:等式的性质.专题:计算题.分析:根据等式两边加上(或减去)同一个数,等式仍然成立可对A、B进行判断;根据等式两边同除以一个不为0的数,等式仍然成立对C进行判断;根据等式两边乘以同一个数,等式仍然成立对D进行判断.解答:解:A、若a=b,则a﹣c=b﹣c,所以A选项的等式成立;B、若a=b,则a+c=b+c,所以B选项的等式成立;C、当c≠0,若a=b,则=,所以C选项的等式不成立;D、若a=b,则ac=bc,所以D选项的等式成立.故选C.点评:本题考查了等式的性质:等式两边加上(或减去)同一个数,等式仍然成立;等式两边乘以同一个数,等式仍然成立;等式两边同除以一个不为0的数,等式仍然成立.A.若a+3=b﹣1,则a+9=3b﹣3B.若2x﹣6=4y﹣2,则x﹣3=2y﹣1C.若x2﹣5=y2+1,则x2﹣y2=6D.若,则2x=3y考点:等式的性质.分析:根据等式的性质对各选项分析判断后利用排除法求解.解答:解:A、a+3=b﹣1两边都乘以3得,a+9=3b﹣3,故本选项错误;B、2x﹣6=4y﹣2两边都除以2得,x﹣3=2y﹣1,故本选项错误;C、x2﹣5=y2+1两边都加上5减去y2得,x2﹣y2=6,故本选项错误;D、=两边都乘以6得,2x﹣2=3y﹣3,故本选项正确.故选D.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.11.下列方程变形正确的是()A.由方程,得3x﹣2x﹣2=6B.由方程,得3(x﹣1)+2x=1C.由方程,得2x﹣1=3﹣6x+3D.由方程,得4x﹣x+1=4考点:等式的性质.专题:计算题.分析:本题需利用等式的性质对等式进行变形,从而解决问题.解答:解:A、根据等式的性质,等式的两边同时乘以6,得3x﹣2x+2=6,故本选项错误;B、根据等式的性质,等式的两边同时乘以6,得3(x﹣1)+2x=6,故本选项错误;C、根据等式的性质,等式的两边同时乘以3,得2x﹣1=3﹣18x+9,故本选项错误;D、根据等式的性质,等式的两边同时乘以4,得4x﹣x+1=4,故本选项正确;故选D.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等;12.已知等式a=b成立,则下列等式不一定成立的是()A.a+m=b+m B.﹣a=﹣b C.﹣a+1=b﹣1D.考点:等式的性质.分析:利用等式的性质对每个等式进行变形即可找出答案.解答:解:A、根据等式的性质1,a=b两边同时加m,得a+m=b+m;B、根据等式的性质2,a=b两边同时乘以﹣1,得﹣a=﹣b;C、根据等式1,由﹣a+1=b﹣1可得a+b=2,所以C错误;D、根据等式的性质2,a=b两边同时除以m,得=(m≠0).故选C.点评:本题主要考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.13.下列方程的变形中,正确的是()①3x+6=0,变形为x+2=0;②x+7=5﹣3x,变形为4x=﹣2;③4x=﹣2,变形为x=﹣2;④=3,变形为2x=15.A.①④;B.②③;C.①②④;D.①②③考点:等式的性质.分析:依据等式的基本性质即可解答.解答:解:①3x+6=0,两边同时除以3,得到x+2=0,故正确;②x+7=5﹣3x,变形为4x=﹣2,两边同时加上3x,得到4x+7=5,两边再同时减去7,即可得到4x=﹣2.故正确;③4x=﹣2,两边同时除以4得到:x=﹣,故本选项错误;④=3,两边同时乘以5变形为2x=15.故正确.综上可得正确的是:①②④.故选C.点评:本题属简单题目,只要熟知等式的性质即可.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.14.已知5﹣(﹣2x+y)=6,则2x﹣y=()A.﹣1B.0C.1D.2考点:等式的性质.分析:先由去括号法则去掉等式左边的括号,再根据等式的性质两边同时减去5,即可求解.解答:解:∵5﹣(﹣2x+y)=6,∴5+2x﹣y=6,∴2x﹣y=1.故选C.点评:本题考查了去括号法则,等式的性质,是基础题,比较简单.15.下列说法正确的是()A.在等式ax=bx两边都除以x,可得a=bB.在等式两边都乘以x,可得a=bC.在等式3a=9b两边都除以3,可得a=3D.在等式两边都乘以2,可得x=y﹣1考点:等式的性质.分析:根据等式的性质对四个选项进行逐一分析即可.解答:解:A、若x=0时,在等式ax=bx两边都除以x则此等式无意义,故本选项错误;B、由等式的性质2可知,在等式两边都乘以x,可得a=b,故本选项正确;C、在等式3a=9b两边都除以3,可得a=3b,故本选项错误;D、在等式=﹣1两边都乘以2,可得x=y﹣2,故本选项错误.故选B.点评:本题考查的是等式的基本性质,即①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.(2013•东阳市模拟)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c考点:等式的性质.专题:分类讨论.分析:根据等式的基本性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.分别列出等式,再进行变形,即可解决.解答:解:由图a可知,3a=2b,即a=b,可知b>a,由图b可知,3b=2c,即b=c,可知c>b,∴a<b<c.故选B.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.17.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=考点:等式的性质.分析:利用等式的性质2:等式的两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,可判断各选项正确与否.解答:解:A、两边同时乘以最简公分母ny得xy=mn,与原式相等;B、两边同时乘以最简公分母mx得xy=mn,与原式相等;C、两边同时乘以最简公分母mn得xn=my,与原式不相等;D、两边同时乘以最简公分母my得xy=mn,与原式相等;故选C.点评:解答此题应把每一个选项乘以最简公分母后与原式相比较看是否相同.18.已知mx=my,下列结论错误的是()A.x=y B.a+mx=a+my C.m x﹣y=my﹣y D.a mx=amy考点:等式的性质.分析:根据等式的基本性质解答.解答:解:A、等式的两边都除以m,根据等式性质2,m≠0,而A选项没有说明,故A错误;B、符合等式的性质1,正确.C、符合等式的性质1,正确.D、符合等式的性质1,正确.故选A.点评:本题主要考查了等式的基本性质.等式性质1、等式的两边同时加上或减去同一个数或字母,等式仍成立;等式性质2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.19.若ma=mb,那么下列等式不一定成立的是()A.a=b B.ma﹣6=mb﹣6C.D.ma+8=mb+8考点:等式的性质.分析:根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.解答:解:A、当m=0时,a=b不一定成立.故选项错误;B、ma=mb,根据等式的性质1,两边同时减去6,就得到ma﹣6=mb﹣6.故选项正确;C、根据等式的性质2,两边同时乘以﹣,即可得到.故选项正确;D、根据等式的性质1,两边同时加上8就可得到ma+8=mb+8.故正确.故选A.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.20.下列各方程,变形正确的是()A.=1化为x=B.1﹣[x﹣(2﹣x)]=x化为3x=﹣1C.化为3x一2x+2=1D.化为2(x﹣3)﹣5(x+4)=10考点:等式的性质.分析:分别利用性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式求出即可.解答:解:A、﹣=1化为x=﹣3,故此选项错误;B、1﹣[x﹣(2﹣x)]=x化为3x=﹣3,故此选项错误;C、﹣=1化为3x﹣2x+2=6,故此选项错误;D、﹣=1化为2(x﹣3)﹣5(x+4)=10,此选项正确.故选:D.点评:此题主要考查了等式的基本性质,熟练掌握等式的性质是解题关键.21.下列各式变形错误的是()A.2x+6=0变形为2x=﹣6B.=1﹣x,变形为x+3=2﹣2xC.﹣2(x﹣4)=﹣2,变形为x﹣4=1D.,变形为﹣x+1=1考点:等式的性质.分析:根据等式的性质对各选项分析判断后利用排除法求解.解答:解:A、2x+6=0变形为2x=﹣6正确,故本选项错误;B、=1﹣x,变形为x+3=2﹣2x正确,故本选项错误;C、﹣2(x﹣4)=﹣2,变形为x﹣4=1正确,故本选项错误;D、﹣=变形为﹣x﹣1=1,故本选项正确.故选D.点评:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.22.下列变形正确的是()A.若x2=y2,则x=y B.若axy=a,则xy=1C.若﹣x=8,则x=﹣12D.若=,则x=y考点:等式的性质.分析:利用等式的性质对四个选项逐一判断即可.解答:解:A、当x与y互为相反数时,不成立,故本选项错误;B、当a=0时不成立,故本选项错误;C、方程两边同乘以﹣得x=﹣,故本选项错误;D、根据分式有意义的条件可以得到a≠0,所以该选项正确.故选D.点评:本题考查了等式的性质,在利用等式的性质时,注意所乘因式是否为零.23.根据下图所示,对a、b、c三种物体的质量判断正确的是()A.a<c B.a<b C.a>c D.b<c考点:等式的性质.分析:根据图示知3a=4b ①,3b=4c ②,然后利用等式的基本性质求得a、b、c间的数量关系,最后根据它们之间的数量关系来比较它们的大小.解答:解:由题意知,a、b、c均是正数.根据图示知,3a=4b ①,3b=4c ②,由①的两边同时除以3,得a=b;由②的两边同时除以4,得c=b;A、∵b>b,∴a>c;故本选项正确错误;B、∵a=b>b,∴a>b;故本选项错误;C、∵b>b,∴a>c;故本选项正确错误;D、∵b<b,∴c<b;故本选项错误;故选C.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.24.如果■●▲表示三种物体,现用天平称了现两次,情况如图所示则下列结论正确的是()A.■■=▲B.■=▲C.■>●D.▲▲<■■■考点:等式的性质.分析:由第一个天平可知▲=■■,由第二个天平可知●=▲,然后对各选项分析判断后利用排除法求解.解答:解:∵■■■=▲■,∴■■=▲,故A选项正确;∵●=▲,∴●=■■,故B选项错误;●>■,故C选项错误;▲▲=■■■■>■■■,故D选项错误.故选A.点评:本题考查了等式的性质,根据第一个天平得到▲=■■是解题的关键.25.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡()A.在糖果的秤盘上加2g砝码B.在饼干的秤盘上加2g砝码C.在糖果的秤盘上加5g砝码D.在饼干的秤盘上加5g砝码考点:等式的性质.专题:计算题.分析:根据题意可设饼干重x克,糖果中y克,利用天平平衡得到方程求得x、y后即可得到答案.解答:解:设饼干重x克,糖果中y克,根据题意得到:,解得x=6,y=4,∴饼干比糖果重2克.故选A.点评:本题考查物理知识和数学不等关系的综合应用.二.填空题(共3小题)26.(2001•江西)如果,那么= .考点:等式的性质.专题:计算题.分析:可设=a,则x=2a,y=3a,继而可得出要求式子的值.解答:解:根据题意:设=a,则x=2a,y=3a,那么==.故填:.点评:此题灵活应用了等式的性质2.等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.27.(2000•台州)已知2y=5x,则x:y= 2:5 .考点:等式的性质.专题:计算题.分析:先根据等式的性质可直接的出x:y的值.解答:解:根据等式的性质2,等式两边同除以2,得y=x.则x:y=x:x=2:5.点评:本题需熟练运用等式的性质进行变形,用一个字母表示出另一个字母,再进一步求其比值.28.(1998•宁波)已知3a=2b(b≠0),那么= .考点:等式的性质.专题:计算题.分析:利用等式的性质2即可解决问题.解答:解:根据等式性质2,等式的两边同除以3b,则.故填:.点评:本题主要考查等式的性质2,需熟练运用等式的性质进行变形.等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.三.解答题(共2小题)29.由(3a+7)x=4a﹣b,得到的是否受一定条件的限制?并说明理由.考点:等式的性质.分析:根据等式的性质,两边除的数不能为0解答.解答:解:∵分母不能为0,∴3a+7≠0,解得,a≠﹣.答:受条件a≠﹣的限制.点评:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.30.将等式5a﹣3b=4a﹣3b变形,过程如下:∵5a﹣3b=4a﹣3b,∴5a=4a(第一步),∴5=4(第二步).上述过程中,第一步的依据是等式的性质1 ,第二步得出错误的结论,其原因是等式的两边同除以了一个可能等于零的a .考点:等式的性质.分析:根据等式的基本性质进行填空.解答:解:上述过程中,第一步的依据是等式的性质1,第二步得出错误的结论,其原因是等式的两边同除以了一个可能等于零的a.故填:等式的性质1;等式的两边同除以了一个可能等于零的a.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.。

等式的基本性质(详细解析考点分析名师点评)

等式的基本性质(详细解析考点分析名师点评)

等式的基本性质答案与评分标准一、选择题(共20小题)1、下列结论中不能由a+b=0得到的是()A、a2=﹣abB、|a|=|b|C、a=0,b=0D、a2=b2考点:等式的性质。

分析:根据等式的性质、绝对值的性质对各选项进行逐一判断即可.解答:解:A、当a=0,b=0;B、因为a=﹣b,即a与b互为相反数,根据互为相反数的两个数的绝对值相等,得到|a|=|b|;D、因为a=﹣b,即a与b互为相反数,根据互为相反数的两个数的平方相等,得到a2=b2;只有C不能由a+b=0得到;故选C.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.2、已知2x=3y(x≠0),则下列比例式成立的是()A、B、C、D、3、若2y﹣7x=0,则x:y等于()A、7:2B、4:7C、2:7D、7:4考点:等式的性质。

专题:计算题。

分析:本题需利用等式的性质对等式进行变形,从而解决问题.解答:解:根据等式性质1,等式两边同加上7x得:2y=7x,∵7y≠0,根据等式性质2,两边同除以7y得,=.故选C.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等;4、若有公式M=,用含有D、L、M的代数式表示d时,正确的是()A、d=D﹣2LMB、d=2LM﹣DC、d=LM﹣2DD、d=考点:等式的性质。

分析:根据等式的性质,将等式进行变形后可得出答案.解答:解:根据等式的性质2,等式两边同时乘以﹣2L,得﹣2LM=d﹣D,根据等式性质1,等式两边同时加D得:d=D﹣2LM,故选A.点评:本题考查的是等式的性质:等式性质1,等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2,等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.5、已知:,那么下列式子中一定成立的是()A、2x=3yB、3x=2yC、x=6yD、xy=66、如果,那么用y的代数式表示x,为()A、B、C、D、考点:等式的性质。

人教版小学五年级数学上册《等式的性质》测试题及答案

人教版小学五年级数学上册《等式的性质》测试题及答案

人教版小学五年级数学上册《等式的性质》测试题及答案一、单选题1.下列说法正确的是()。

A. 等式两边同时乘或除以一个相同的数,等式仍然成立。

B. 两个不同的质数相加,和可能是奇数也可能是偶数。

C. 一节课的时间是小时,是把“一节课的时间”看作单位“1”。

2.x+3=y+5,那么x()y。

A. 大于B. 小于C. 等于D. 无法确定3.如果2m=6n,(m,n均不为0),那么m=()A. nB. 2nC. 3n4.若a+5=b-5,则a+10=()A. b+10B. bC. b-5二、判断题5.方程两边同时乘(或除以)同一个数,等式仍然成立。

()6.等式的两边同时乘或除以同一个数,等式仍然成立。

()7.方程的两边同时加上或减去一个相同的数,等式成立。

()三、填空题8.已知4x+8=10,那么2x+8=________。

9.方程21x=126时,可以根据等式的性质,在方程左右两边应同时________21。

10.根据等式的性质,在下面的横线上填上合适的运算符号或合适的数:如果2(x﹣16)=8,那么2(x﹣16)________________=8÷2.11.如果x=y,则x÷________=y÷8,5x﹣3=________﹣3.12.如果b=c,那么b÷10=c÷________,b+________=c+3,bd=c×________。

13.如果a=b,根据等式的性质填空。

a+5=b+________a-________=b-aa× 1/5 =b×________ a÷________=b÷0.514.若6n=4,则3n=________;若4x=x+5,则3x=________。

15.如果a=b,根据等式的性质填空:a+5=________,________=7b.16.如果m=n,请根据等式的基本性质填空。

小学等式性质练习题

小学等式性质练习题

小学等式性质练习题1. 简单等式练习题1)计算下列各式的值:a) 5 + 2 = ?b) 7 - 3 = ?c) 4 × 3 = ?d) 9 ÷ 3 = ?2)填写适当的数字,使等式成立:a) 8 + ? = 12b) ? - 5 = 2c) 6 × ? = 48d) 15 ÷ ? = 32. 加减法等式练习题1)解下列等式:a) 6 + ? = 10b) 15 - ? = 92)填写适当的符号,使等式成立:a) 7 ? 3 = 10b) ? + 4 = 133. 乘除法等式练习题1)解下列等式:a) ? × 5 = 35b) 21 ÷ ? = 72)将下列算式改写成等式形式的算式:a) 4 × 7 = 28b) 12 ÷ 3 = 44. 混合运算等式练习题1)解下列等式:a) 9 + ? ÷ 2 = 11b) 15 - 5 × ? = 02)填写适当的数字和符号,使等式成立:a) ? - 3 × 4 ÷ 2 = 2b) 10 + ? ÷ 5 - 1 = 95. 数学问题练习题1)两个数的和是15,其中一个数是7,求另一个数。

2)一个数减去4的结果是6,求这个数是多少。

3)一个数的四分之一是8,求这个数是多少。

4)一个数的三倍减去7的结果是14,求这个数是多少。

总结:通过以上练习题,我们可以巩固小学生对于等式性质的理解和运用。

通过计算、填写符号和解方程等题型,学生可以加深对加减乘除的理解,提高解决数学问题的能力。

希望同学们能够认真完成这些练习题,加强对小学数学基础知识的掌握。

加油!。

等式的基本性质练习题四

等式的基本性质练习题四

《等式的性质》习题(一)
1.等式的两边都加上(或减去)或,结果仍相等.
2.等式的两边都乘以,或除以的数,结果仍相等.
3.下列说法错误的是()
A.若则B.若,则
C .若则D.若则
4.下列结论正确的是()
A.若,则B.若,则
C.若,则D.若,则
5.等式的下列变形属于等式性质1的变形的是()
A.B.C.D.
6.如果,那么,根据是.
7.如果,那么=,根据是.
8.利用等式的性质解下列方程
(1);(2);
(3);(4).
9.若=2时,式子的值为6,则.
10.已知,试用等式的性质比较b与c的大小.
11.已知甲、乙两地相距30千米,小华骑自行车每小时45千米,小岗骑摩托车每小时15千米,请你根据以上条件提出一个问题,并运用等式的性质、解方程知识予以解答,你提出的问题是.
答案:
1.同一个数,同一个式子.
2.同一个数,同一个不能为0.
3.A.
4.C.
5.B.
6.3,等式的性质2.
7.4,等式的性质1.
8.(1);(2)x=2;(3);(4).
9.7.
10..
11.分别从甲乙两地同时出发几小时相遇?,.。

等式性质练习题

等式性质练习题

等式性质练习题一、选择题1. 等式的性质之一是,如果a=b,那么a+c=b+c。

这属于等式的哪种性质?A. 移项性质B. 同加性质C. 同乘性质D. 同除性质2. 对于等式a=b,如果两边同时乘以一个非零数c,等式仍然成立。

这体现了等式的:A. 同加性质B. 同减性质C. 同乘性质D. 同除性质3. 在等式a=b中,如果a和b都除以同一个非零数c,等式是否仍然成立?A. 是B. 否4. 如果等式a=b成立,那么等式a²=b²是否一定成立?A. 是B. 否5. 对于等式a=b,如果两边同时取相反数,等式是否仍然成立?A. 是B. 否二、填空题6. 根据等式的性质,如果\( a = b \),那么\( a - c = \)________。

7. 如果\( a + b = c + d \),根据等式的性质,我们可以得出\( a+ (b - d) = \)________。

8. 等式\( 2x = 6 \),两边同时除以2,得到\( x = \)________。

9. 等式\( 3x + 5 = 14 \),根据等式的性质,两边同时减去5,得到\( 3x = \)________。

10. 如果\( a = b \),那么\( a^3 = \)________。

三、判断题11. 如果\( a = b \),那么\( a^2 = b^2 \)。

()A. 正确B. 错误12. 等式\( a = b \)两边同时乘以0,等式仍然成立。

()A. 正确B. 错误13. 如果\( a = b \),那么\( a + c = b - c \)。

()A. 正确B. 错误14. 等式\( a = b \)两边同时除以同一个数,等式不一定成立。

()A. 正确B. 错误15. 如果\( a = b \),那么\( a - b = 0 \)。

()A. 正确B. 错误四、解答题16. 解释等式的性质中的“同加性质”和“同减性质”的区别。

等式的性质同步练习题

等式的性质同步练习题

第三章 一元一次方程3.1.2 等式的性质一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.根据等式性质,由x =y 可得 A .4x =y +4B .cx =cyC .2x –8=2y +8D .x c =−y c【答案】B2.已知a =b ,则下列等式不一定成立的是 A .a –b =0 B .–5a =–5bC .ac =bcD .2a c =2b c【答案】D【解析】A 、a =b 两边都减去b 得,a –b =0,故本选项错误; B 、a =b 两边都乘以–5得,–5a =–5b ,故本选项错误; C 、a =b 两边都乘以c 得,ac =bc ,故本选项错误; D 、c =0时,2a c 与2b c都无意义,故本选项正确. 故选D .3.下列各对等式,是根据等式的性质进行变形的,其中错误的是 A .4y –1=5y +2→y =–3B .2y =4→y =4–2C .0.5y =–2→y =2×(–2)D .1–13y =y →3–y =3y 【答案】B【解析】A 、根据等式性质1,4y –1=5y +2两边都减去4y –2,即可得到y =–3,变形正确,故选项错误; B 、根据等式性质2,两边都除以2,即可得到y =4÷2,变形错误,故选项正确;C 、根据等式性质2,0.5y =–2两边都乘以2,即可得到y =2×(–2),变形正确,故选项错误;D 、根据等式性质2,1–13y =y 两边都乘以3,即可得到3–y =3y ,变形正确,故选项错误. 故选B . 4.如果x =m 是方程12x −m =1的根,那么m 的值是 A .0B .2C .–2D .–6【答案】C【解析】把x =m 代入方程,得12m –m =1,解得m =–2.故选C . 5.把方程0.3x=1.2左边的分母化为整数后可得到 A .3x =1.2 B .103x =1.2 C .3x =12D .103x=12 【答案】B【解析】方程左边的分数分子分母同时乘以10得:103x=1.2.故选B . 二、填空题:请将答案填在题中横线上. 6.等式的两条性质是:(1)等式两边都__________(或__________)同一个__________或同一个__________,所得的结果仍是等式;(2)等式两边都__________(或__________)同一个__________(__________)所得的结果仍是等式. 【答案】(1)加上,减去,数,字母;(2)乘以,除以不为0的数,或字母7.如果a –3=b –3,那么a =__________,其根据是__________. 【答案】b ,等式性质1【解析】根据等式性质1,等式a –3=b –3的两边同时加3,结果仍相等.因此有(a –3)+3=(b –3)+3,化简得a =b .8.若方程2x +6=0与关于y 的方程3y +2m =15的解互为相反数,则m =__________.【答案】3三、解答题:解答应写出文字说明、证明过程或演算步骤.9.根据等式的性质解方程:(1)3x+1=7;(2)23x−1=5.【答案】(1)x=2;(2)x=9.【解析】(1)3x+1=7,3x+1–1=7–1,3x÷3=6÷3,x=2;(2)23x−1=5,23x–1+1=5+1,2 3x÷23=6÷23,x=9.10.检验x=5和x=–5是不是方程213x-=x−2的解.【答案】x=5是原方程的解;x=–5不是原方程的解.【解析】把x=5分别代入方程的左边和右边,得左边=2513⨯-=3,右边=5–2=3,∵左边=右边,∴x=5是原方程的解;把x=–5分别代入方程的左边和右边,得左边=25(13)⨯--=–113,右边=–5–2=–7,∵左边≠右边,∴x=–5不是原方程的解.11.小明解关于y的一元一次方程3(y+a)=2y+4,在去括号时,将a漏乘了3,得到方程的解是y=3,请你求出a的值及方程的正确的解.【答案】a的值是1,方程的正解是y=1.学#科网人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是() A.x=y B.ax+1=ay-1 C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

数学五年级上册《等式的性质》练习题(含答案)

数学五年级上册《等式的性质》练习题(含答案)

【同步专练A 】5.2.2等式的性质(基础应用篇)一、单选题(共10题)1.如果x=y,根据等式的性质,可以得到的是( )。

A . 10x=10yB . x×2=y÷2C . 2x=x+2D . 2x=x+82.如果A =B ,根据等式的性质,将等式变换后,错误是()。

A . A ×4.5=B ×4.5 B . A -4-5=B ÷4×5C . A +8=B +12-4D . 3A+5=3B +53.如果x=y,根据等式的基本性质,经过变化后下面的()是错误的。

A . x÷B =y÷6(B ≠0) B . x+y=y+yC . x×3×5=15yD . x-y=y-4+34.x+3=y+5,那么x()y。

A . 大于B . 小于C . 等于D . 无法确定5.A +17=19+B ,比较A 与B 的大小,()A . A >B B . A <BC . A =BD .B ≠A6.若A +5=B -5,则A +10=()A .B +10 B . BC . B -57.如果甲×2.8=乙×3.9(甲数不等于0),则甲()乙.A . 大于B . 小于C . 等于8.如果x=y,根据等式的性质,经过变换后,下列等式错误的是()。

A . x-8=y-6+2B . x×2×3=6yC . x+8=y+10-2D . x÷B =y÷B (B ≠0)9.如果2m=6n,(m,n均不为0),那么m=()A . nB . 2nC . 3n10.A × =B ×(A 、B 都不为0),A ()B .A . >B . <C . =二、填空题(共10题)11.如果m=n,请根据等式的基本性质填空。

m-________=n-3.4 m×________=n×A12.等式的两边同时________或者________一个相同的数,等式仍然成立。

等式的性质作业

等式的性质作业

等式的性质作业
【基础检测】
1 .在4x-2=1+2x两边都减去,得2x-2=1,两边再同
时加上得2片3,变形依据是
2 .在IX-1=2中两边乘以,得X-4=8,两边再同时加4
上4,得Λ=12,变形依据分别是
3 .用等式的性质解下列方程:
(1)4x・7=13; (2);X-2=4+1%.
4 .学习了等式的性质后,小红发现,运用等式的性质可使复杂的等式变得简洁,这使她异常兴奋.她随手写了一个等式3合+13-
5 =7a+b-2,并用等式的性质对这个等式进行变形,过程如下:两边加2,得3a+b=7a+b
两边减b,得3a=7a
两边除以a,得3=7
小红感到很惊讶:居然能得出这样的等式!于是小红开始检查自己的变形过程,但怎么也找不出错误。

教师提问:聪明的同学,你能让小红的愁眉在恍然大悟中舒展开来吗?
【思考题】
已知2a-3=2b+1,试用等式的性质判断a和b的大小。

3.1.2等式的性质_

3.1.2等式的性质_

m m
(3)若ac=bc,则a=b; (4)若a=b,则a2=b2; . . .
19. 已知:x=1-1 ,又y=1-1 ,则用z表示x的代数式为
y
z
20. 已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a=
解答题
21. 阅读下列解题过程,指出它错在了哪一步?为什么? 2(x-1)-1=3(x-1)-1. 两边同时加上1,得2(x-1)=3(x-1),第一步 两边同时除以(x-1),得2=3.第二步. 22. 能否从(a+5)x=2-b得到x= 2-b ?为什么?反之,能否从x=2-b ,得到x(a+5)=2-b?为什么?
3
4
解:①去分母,得 4(2x-1)=1-3(x+2) ②去括号,得 8x-4=1-3x-6 ③移项,得8x+3x=1-6+4 ④合并同类项,得 11x=-1
⑤系数化为1,得x=- 1
11
(1)上面的解题过程中最早出现错误的步骤是(填代号) (2)请在本题右边正确的解方程:x- x-1 =2- x+2 .
3.1.2等式的性质
选择题
1. 如果单项式x2ym+2与xny的和仍然是一个单项式,则m、n的值是( ) A. m=2,n=2 B. m=-1,n=2 C. m=-2,n=2 D. m=2,n=-1
2. 下面不是同类项的是( ) A. -2与12 B. -2a2b与a2b C. 2m与2n D. -x2y2与12x2y2
8. 如果关于x的方程(m+2)x=8无解,那么m的取值范围是( ) A. m=-2 B. m>-2 C. m≠-2 D. 任意实数
9. 已知关于x的方程mx+2=2(m-x)的解满足|x|-1=0,则m的值是( ) A. 4或0 B. -4或4 C. 0或-4 D. 0或 - 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、以下各数值,是方程5x -2 = 7-2x的解的是()
A、x= 3
B、x = 5
C、x = 0
D、x = 7
2、方程x-1=1的解是()
A、x=-1
B、x=0
C、x=1
D、x=2
3、下列方程中,解是x = 2的是()
A、2x=4
B、0.5x=4
C、4x=2
D、0.25x=2
4、下列说法正确的是()
A、x=-3是方程x-3=0的解
B、X=7是方程2x=-14的解
C、X=0.01是方程200x=2的解
D、X=-1是方程0.5x=-2的解
5、检验下列各小题后面括号里的数是不是它前面方程的解(1)3y-1 =2y + 1(y=2 ; y=4)
(2)3(x+1)= 2x -1 (x=2 ; x=-4)
6、下列方程中,是一元一次方程的是()
A、2x+y=3
B、7x+5 = 7(x+1)
C、x(x+3)+2=0
D、2x=1
7、检验下列各数是不是方程5x-2=7+2x(要求写出检验过程)(1)x=3 (2)x=5
10、某班学生为灾区捐款131元,比每人平均2元还多35元,设这个班的学生有x 人,根据题意列方程为 。

11、一根铁丝用去32后还剩2cm ,若设铁丝的原长为xm,可列方程
为。

12、X 的5倍加上3等于x 的7倍减去5,可列方程 。

13、X 的3倍比x 的相反数小5,可列方程 。

14、某品牌的电脑去年售价为b 元,今年售价比去年下降了10%,今年售价是 元。

15、一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x 元,根据题意列方程 。

16、小明买书需要48元,付款时恰好用了1元和5角的纸币共12张,设所用的1元为x 张,根据题意,可列方程为 。

17、A 种饮料比B 种饮料单价少1元,小明买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 张杨路单价为x 元/瓶,那么可列方程为 。

18、某学校组织学生夏令营定了几间客房,如果再增加一间客房,则每个房间恰好住8人,如果减少一间客房,每个房间恰好住9人,则该校原来定了多少房间?(只列方程不求解)
解设:。

相关文档
最新文档