幂的运算与平方差

合集下载

查补重难点01 整式相关运算与探索表达规律(原卷版)

查补重难点01 整式相关运算与探索表达规律(原卷版)

查补重难点01.整式相关运算与探索表达规律考点一:幂运算与乘法公式1.幂运算公式:⎪⎩⎪⎨⎧∙===∙∙+底数分别乘方的积)(积的乘法,等于各个,指数相乘)(幂的乘方,底数不变数不变,指数相加)(同底数幂的乘法,底n n n n m n m n m n m b a ab a a a a a )()(2.乘法公式:(1)平方差公式:();22)(b a b a b a -=-+(2)完全平方公式:()2222222)(2b ab a b a b ab a b a +-=-++=+;题型1.幂运算与乘法公式基本运算1)符号处理不当:在幂的运算中,很多同学计算时符号容易出错。

计算时,可以先确定计算符号,负数进行运算时,看次方,负数的奇次幂结果为负,偶次幂结果为正。

2)忽视指数为“1”的幂:在幂的运算中,有些同学会忽视指数为“1”的幂,从而导致计算的错误。

指数为“1”时通常省略不写,但是计算时不能漏加。

3)忽视0指数幂、负指数幂成立的条件:在计算零指数幂或负指数幂时,要注意,底数不能等于0.4)运用完全平方公式时,①丢掉系数的平分;②丢掉中间乘积项或漏了系数的“2倍”;③不能正确区分中间项符号特征。

5)运用平方差公式时,没找准“a ”与“b ”。

例1.(2023·江苏镇江·中考真题)下列运算中,结果正确的是()A .22423m m m +=B .243·m m m =C .422m m m ÷=D .246()m m =变式1.(2023年江苏省镇江市中考数学真题)如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个,先从甲袋中取出2x 个球放入乙袋,再从乙袋中取出(22)x y +个球放入丙袋,最后从丙袋中取出2y 个球放入甲袋,此时三只袋中球的个数相同,则+2x y 的值等于()A .128B .64C .32D .16变式2.(2023·四川成都·统考中考真题)下列计算正确的是()A .22(3)9x x -=-B .27512x x x +=C .22(3)69x x x -=-+D .22(2)(2)4x y x y x y -+=+题型2.完全平方公式变形求值(知二求二)乘法公式求值类的题目,关键在于恒等变形,反复利用平方差公式和完全平方公式,结合公式中各项的情况,做出相应的变形。

平方差的计算公式

平方差的计算公式

平方差的计算公式平方差,顾名思义,是指两个数的平方之差。

在数学中,我们常常会遇到计算平方差的问题,因此了解它的计算公式对我们的学习和解题是非常重要的。

平方差的计算公式可以表示为:(a + b)(a - b)。

其中,a和b是任意实数。

具体来说,当我们要计算两个数的平方差时,首先需要求得这两个数的和,然后再求得它们的差。

将这两个结果相乘,就得到了平方差。

例如,我们要计算5和3的平方差,首先求得它们的和5 + 3 = 8,然后求得它们的差5 - 3 = 2。

最后将这两个结果相乘,得到平方差8 × 2 = 16。

这个计算公式的原理其实很简单,可以通过展开(a + b)(a - b)的乘法式来进行理解。

展开后得a^2 - ab + ab - b^2,由于中间两项相加减为0,因此平方差可以简化为a^2 - b^2。

这就是平方差的另一种表示形式。

平方差在数学中具有广泛的应用。

它可以帮助我们解决一些复杂的算术问题,如因式分解、方程求解等。

通过利用平方差的计算公式,我们可以将复杂的计算转化为简单的运算步骤,提高我们的计算效率和解题能力。

除了在数学中的应用,平方差在物理学和工程学等领域也有其独特的意义。

例如,在物理学中,我们经常需要计算力的平方差来求解问题,这可以帮助我们分析力的大小和方向。

在工程学中,平方差的概念被广泛应用于电路分析和信号处理等领域,有助于解决实际问题。

总之,平方差的计算公式是(a + b)(a - b),它可以帮助我们计算两个数的平方之差。

了解这个公式的原理和应用,将对我们的数学学习和解题能力有很大帮助。

同时,在物理学和工程学等领域,平方差的概念也发挥着重要的作用。

希望通过本文的介绍,能够让大家对平方差有更深入的理解。

2023年中考数学一轮复习满分突破专题04 整式的乘除-【题型方法解密】

2023年中考数学一轮复习满分突破专题04 整式的乘除-【题型方法解密】

专题04 整式的乘除【热考题型】【知识要点】 知识点一 幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

n m n m a a a +=·(其中m 、n 为正整数) 【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

例:a ·a 2=a1+2=a 33)乘数a 可能是有理数、单项式或多项式。

4)如果底数互为相反数时可先变成同底后再运算。

5)逆用公式:n m n m a a a ·=+(m,n 都是正整数) 【扩展】三个或三个以上同底数幂相乘时,也具有这一性质, 即p n m p n m a a a a ++=··(m ,n ,p 都是正整数) 考查题型一 同底数幂的乘法典例1.(2022·浙江嘉兴·中考真题)计算a 2·a ( ) A .aB .3aC .2a 2D .a 3变式1-1.(2022·河南·中考真题)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于( ) A .810B .1210C .1610D .2410变式1-2.(2022·内蒙古包头·中考真题)若42222m ⨯=,则m 的值为( )A .8B .6C .5D .2变式1-3.(2022·湖南邵阳·中考真题)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是( ) A .0.11 B .1.1 C .11 D .11000易错点总结:幂的乘方法则:幂的乘方,底数不变,指数相乘.mnn m a a =)((其中m ,n 都是正整数).【注意事项】1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

幂的运算方法归纳总结

幂的运算方法归纳总结

幂的运算方法归纳总结幂运算是数学中常见的运算方法之一,通过将一个数称为底数,另一个数称为指数,进行计算得到结果。

在实际问题中,幂运算具有广泛的应用。

本文将归纳总结幂的运算方法,帮助读者更好地理解和应用幂运算。

1. 幂数的概念幂数是指幂运算中的底数,可以是任何实数或复数。

幂数对于幂运算结果的大小起着重要作用。

当幂数为正数时,指数增大幂的结果也会增大;当幂数为负数时,指数增大幂的结果会逐渐趋近于零或者变号;当幂数为零时,任何指数的幂都等于1。

2. 指数的概念指数是幂运算中表征幂数重复使用次数的数,可以是正整数、负整数、零或分数。

指数为正时,幂数的幂结果大于幂数本身;指数为负时,幂数的倒数的幂结果大于幂数本身;指数为零时,任何幂数的幂结果都等于1;指数为分数时,幂数的幂运算可以通过开方等方式进行计算。

3. 幂运算的基本性质幂运算具有一些基本性质,便于进行计算和推导。

(1) 幂运算的指数相加,即a^m * a^n = a^(m+n)。

这个性质适用于同一个底数不同指数的乘积运算。

(2) 幂运算的指数相减,即a^m / a^n = a^(m-n)。

这个性质适用于同一个底数不同指数的除法运算。

(3) 幂运算的幂次相乘,即(a^m)^n = a^(m*n)。

这个性质适用于同一个底数取幂后再次取幂的运算。

(4) 幂运算的指数为负时,即a^(-n) = 1 / a^n。

这个性质适用于幂数的倒数的幂运算。

4. 幂运算的特殊情况幂运算的特殊情况包括幂数为0和指数为0的情况。

(1) 幂数为0时,0的任何正整数次幂均等于0,0^0的结果没有定义。

(2) 指数为0时,任何数的0次幂均等于1,即a^0 = 1,其中a≠0。

5. 幂运算的计算方法在实际计算中,幂运算可以通过不同的方法进行计算。

(1) 对于正整数指数,可以使用连乘法进行计算。

例如,3^4 = 3 * 3 * 3 * 3。

(2) 对于负整数指数,可以使用幂数的倒数再进行连乘法计算。

(完整版)幂的运算知识点总结

(完整版)幂的运算知识点总结

欢迎共阅第八章幂的运算知识点总结
知识点一:同底数幂相乘
同底数幂的乘法数
数,负数的偶次幂是正数;负数的奇次幂是负正数的任何次幂都是正逆运算:
是正整数相加。

即法则:底数不变,指数a a a a a a m n m n m m n n
n )
,m (知识点二:幂的乘方与积的乘方
1、幂的乘方)
()()
,(a a a a m n m m n
mn mn n 逆运算:是正整数即底数不变,指数相乘。

2、积的乘方(ab)
(ab)n n n n n n )
(,b a b a n 逆运算;是正整数再把所得的幂相乘。


把每一个因式分别乘方知识点三:同底数幂的除法
同底数幂的除法m
nm a n m n m a a a a a a n 10101095-5n -0n -m n m 1)
0010(02.50000502.0)
1-10(96.6696000)
,
0a (110)0a (1),,,0a (的个数数字前第一个非的负几次方原数字个数的几次方科学记数法是正整数定负整指数幂的意义:规的数的零次幂都等于。

即任何不等于零指数幂的意义:规定是正整数变,指数相减。

即同底数幂相除,底数不。

数学幂的运算技巧男老师

数学幂的运算技巧男老师

数学幂的运算技巧男老师数学幂运算是数学中的基本运算之一。

在解决各种数学问题时,掌握数学幂的运算技巧非常重要。

以下是关于数学幂运算的一些常见技巧:1. 同底数相乘:两个相同底数的幂相乘时,底数不变,指数相加。

例如,a^m * a^n = a^(m+n)。

2. 同底数相除:两个相同底数的幂相除时,底数不变,指数相减。

例如,a^m / a^n = a^(m-n)。

3. 幂的乘法法则:当有一个幂的乘法时,可以将底数相乘,指数相加。

例如,(a^m)^n = a^(mn)。

4. 幂的除法法则:当有一个幂的除法时,可以将底数相除,指数相减。

例如,(a^m) / (a^n) = a^(m-n)。

5. 乘方运算:任何数的0次方都等于1。

例如,a^0 = 1,其中a ≠0。

6. 幂的负指数:一个数的负指数相当于其倒数的正指数。

例如,a^(-n) = 1 / (a^n),其中a ≠0。

7. 积的幂:一个积的幂可以分别对每个因子进行幂运算,然后将结果相乘。

例如,(ab)^n = a^n * b^n。

8. 商的幂:一个商的幂可以分别对分子和分母进行幂运算,然后将结果相除。

例如,(a/b)^n = a^n / b^n,其中b ≠0。

9. 幂的幂:一个幂的幂可以将指数相乘。

例如,(a^m)^n = a^(mn)。

10. 幂的分配律:两个幂的和的幂等于这两个幂的幂的积。

例如,(a^m +b^m)^n = a^(mn) + b^(mn)。

11. 零的幂:任何非零数的0次方都等于1。

例如,0^0 = 1。

12. 幂的乘法的连乘法则:当有多个幂相乘时,可以将它们的底数相乘,指数相加。

例如,a^m * b^m * c^m = (abc)^m。

以上是一些常见的数学幂运算技巧,可以帮助人们更加灵活地处理幂运算问题。

通过合理运用这些技巧,可以简化计算过程,提高计算效率。

在实际应用中,数学幂运算经常与其他运算一起出现,因此熟练掌握这些技巧对解决各类数学问题都非常有帮助。

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。

整 式 多项式: 。

同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。

对顶角的性质:垂线的性质:性质1:过一点有 。

性质2:连接直线外一点 。

平行线的性质:1、平行公里:过 性质2:平行于 平行。

整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。

三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。

任意三角形都有三条角平分线,并且它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。

这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。

初一初二必背数学公式

初一初二必背数学公式

初中数学公式一、幂的运算:①同底数幂相乘:m a ·n a =nm a +; ②同底数幂相除:m a ÷n a =nm a −;③幂的乘方:n m a )(=mna;④积的乘方:nab )(=na nb ;⑤分式乘方:n nn ba b a =)((注意:凡是公式都可以倒用)二.完全平方公式:2222)(b ab a b a +±=±平方差公式 22b a −=(a+b )(a-b ) (注意:凡是公式都可以倒用) 三.算术根的性质:2a =a ;)0()(2≥=a a a ;b a ab ⋅=(a ≥0,b ≥0);ba ba=(a ≥0,b >0)四.一元二次方程一般形式:)0(02≠=++a c bx ax1、求根公式:)04(24222,1≥−−±−=ac b aac b b x2.根的判别式:ac b 42−=∆当ac b 42−=∆>0时,一元二次方程)0(02≠=++a c bx ax 有两个不相等实数根.反之亦然. 当ac b 42−=∆=0时,一元二次方程)0(02≠=++a c bx ax 有两个相等的实数根. 反之亦然. 当ac b 42−=∆<0时,一元二次方程)0(02≠=++a c bx ax 没有的实数根. 反之亦然. 3.根与系数的关系:ac x x a b x x =⋅−=+2121, 逆定理:若n x x m x x =⋅=+2121,,则以21,x x 为根的一元二次方程是:02=+−n mx x 。

4.常用等式:2122122212)(x x x x x x −+=+ 212212214)()(x x x x x x −+=−5.不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x −+=+②21212111x x x x x x +=+ ③212212214)()(x x x x x x −+=− ④21221214)(||x x x x x x −+=−⑤||22)(|)||(|2121221221x x x x x x x x +−+=+ ⑥)(3)(21213213231x x x x x x x x +−+=+ ⑦其他能用21x x +或21x x 表达的代数式。

八年级 第14章 整式的乘法与因式分解

八年级 第14章 整式的乘法与因式分解

八年级 第14章 整式的乘法与因式分解知识点集结1、 幂的运算同底数幂的乘法幂的乘方积的乘方2、 整式的乘法单项式乘以单项式单项式乘以多项式多项式乘以多项式3、 整式的除法:同底数幂的除法、单项式除以单项式 、多项式除以单项式4、 乘法公式: 平方差公式、完全平方公式5、 因式分解:提公因式法公因式法(十字相乘法)二、考点的引发、思维的拓展考点一:幂的运算在幂的运算中含有同底数幂的乘法、幂的乘方和积的乘方三种运算,要注意选准运算性质是关键。

(一) 同底数幂的乘法法则:a m ·a n =a m+n (m ,n 都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

例1:计算(1)84)21()21( (2)(-3)2×(-3)7变式1:计算(1)106·105·10 (2)x 3·x m(3)(a+b)4·(a+b) (4)x 2·(-x)5例2:2×24-22×23 变式1:m 7·m+m 3·m 2·m 3例3:(1)若26=24·2x 则 x=_______(2)2m =3 , 2n =4, 求2m+n 的值。

变式1、若6422=-a ,则a= ;变式2、若8)3(327-=⨯n ,则n= .变式3、计算()[]()[]m n x y y x 2322--变式4、若32=n a ,则n a 6= .(二)幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==例4:变式1、例5、若 ,2a m = 则=m 3a _____.;)y ()4(;)a )(3(;)b )(2(;)10)(1(234m23327-2342)a (a a )5(+∙3242(6)()()x x ⋅42])y x )[(7(+变式1、若 3m ,2m y x == 则 =+y x m ____, =+y 2x 3m =______.变式2、若(-2)² ·24= (a ³)²,则a =______(三)积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

幂的运算

幂的运算

(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质1、计算:(1);(2) .【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:.类型二、幂的乘方法则2、计算:(1); (2);(3); (4).3、(2015春•南长区期中)已知2x =8y+2,9y =3x ﹣9,求x+2y 的值.举一反三:35(2)(2)(2)b b b +⋅+⋅+23(2)(2)x y y x -⋅-()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数()()()()()n n n b a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数23[()]a b --32235()()2y y y y +-22412()()m m xx -+⋅3234()()x x ⋅【变式】已知,则= .类型三、积的乘方法则4、计算:(1) (2)举一反三:【变式1】下列等式正确的个数是( ).① ② ③ ④ ⑤A. 1个B. 2个C. 3个D. 4个【变式2】(2015春•泗阳县校级月考)计算:(1)a 4•(3a 3)2+(﹣4a 5)2(2)(2)20•()21.5、(2016秋•济源校级期中)已知x 2m =2,求(2x 3m )2﹣(3x m )2的值.【要点梳理】【高清课堂 乘法公式 知识要点】要点一、平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如利用加法交换律可以转化为公式的标准型 322,3m m ab ==()()()36322mm m m a b a b b +-⋅24(2)xy -24333[()]a a b -⋅-()3236926x y x y -=-()326m m a a -=()36933a a =()()57355107103510⨯⨯⨯=⨯()()1001001010.520.522-⨯=-⨯⨯22()()a b a b a b +-=-b a ,()()a b b a +-+(2)系数变化:如(3)指数变化:如(4)符号变化:如(5)增项变化:如(6)增因式变化:如要点二、完全平方公式完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:要点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 要点四、补充公式;; ;.【典型例题】类型一、平方差公式的应用1、计算(2+1)()( )()()()+1.举一反三:【变式1】计算:(1)(2)(+)( -)( )( ) (35)(35)x y x y +-3232()()m n m n +-()()a b a b ---()()m n p m n p ++-+2244()()()()a b a b a b a b -+++()2222a b a ab b +=++2222)(b ab a b a +-=-()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+2()()()x p x q x p q x pq ++=+++2233()()a b a ab b a b ±+=±33223()33a b a a b ab b ±=±+±2222()222a b c a b c ab ac bc ++=+++++221+421+821+1621+3221+2(3)(9)(3)x x x -++a b a b 22a b +44a b +【变式2】(2015•内江)(1)填空:(a ﹣b )(a+b )= ;(a ﹣b )(a 2+ab+b 2)= ;(a ﹣b )(a 3+a 2b+ab 2+b 3)= .(2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.2、先化简,再求值.已知|m ﹣1|+(n +)2=0,求(﹣m 2n +1)(﹣1﹣m 2n )的值.举一反三:【变式】解不等式组:类型二、完全平方公式的应用3、运用乘法公式计算:(1);(2).举一反三:【变式】运用乘法公式计算:(1); (2);(3); (4).4、已知△ABC 的三边长、、满足,试判断△ABC 的形状.举一反三:(3)(3)(2)1,(25)(25)4(1).x x x x x x x x +--->⎧⎨---<-⎩2(23)a b +-(23)(23)a b c a b c +--+()()a b c a b c -++-()()2112x y y x -+-+()2x y z -+()()231123a b a b +---a b c 2220a b c ab bc ac ++---=。

幂的运算概念

幂的运算概念

幂的运算概念幂运算是数学中的一种运算方法,用于表示一个数的某个自然数次幂的值。

在幂运算中,底数表示被乘的数,指数表示乘的次数,结果称为幂。

幂运算的表达式通常形式为a^n,其中a为底数,n为指数。

要求指数必须是自然数或者0,而底数可以是任意实数。

幂运算具有以下几个重要的特点:1. 同底数幂相乘,指数相加:a^m * a^n = a^(m+n)这意味着,如果有多个同底数的幂相乘,可以将它们合并为一个幂,指数是所有指数的和。

2. 幂的乘幂,指数相乘:(a^m)^n = a^(m*n)这表示幂的乘幂可以进行合并,将指数相乘即可。

3. 幂的倒数,指数取相反数:a^(-n) = 1 / a^n这表示一个数的负指数的幂相当于该数的倒数的正指数幂。

4. 幂的乘法,底数不变,指数相加:a^m * b^m = (a * b)^m这表示拥有相同指数的两个幂相乘,可以将它们的底数相乘,指数保持不变。

5. 幂的除法,底数不变,指数相减:a^m / a^n = a^(m-n)这表示拥有相同底数的两个幂相除,可以将它们的指数相减,底数保持不变。

通过这些特性,可以更加方便地进行幂运算,并简化表达式。

幂运算在数学的各个领域中都有重要的应用,包括代数、几何、概率等。

在代数中,幂运算用于解决方程、求解多项式和指数函数等问题。

通过幂运算,可以简化复杂的代数表达式,化简方程和简化计算。

在几何中,幂运算用于计算圆的面积、体积和表面积等问题。

例如,圆的面积公式A=πr^2,其中r为半径,r^2表示半径的平方。

在概率中,幂运算用于计算概率的乘法规则和加法规则。

例如,如果事件A和事件B相互独立,则事件A和事件B同时发生的概率为P(A交B) = P(A) * P(B)。

幂运算还广泛应用于物理学、工程学和计算机科学等领域。

在物理学中,幂运算用于计算能量、功率和电阻等物理量。

在工程学中,幂运算用于计算电路中的电流、电压和功率。

在计算机科学中,幂运算用于计算复杂度、数据压缩和密码学等问题。

幂的运算符

幂的运算符

幂的运算符
幂运算是一种关于幂的数学运算。

同底数幂相乘,底数不变,指数相加。

同底数幂相除,底数不变,指数相减。

幂的乘方,底数不变,指数相乘。

幂运算的六个基本公式:
一、同底同指数幂的加减法公式,字母和指数均不变,系数相加减;
二、同底数幂乘法公式,底数不变,指数相加;
三、同底数幂除法公式:底数不变,指数相减;
四、不同底同指数幂的乘法公式,底数相乘,指数不变;
五、不同底同指数幂除法公式,底数相除,指数不变。

六、幂的乘方公式,底数不变,指数相乘。

幂的运算的技巧

幂的运算的技巧

幂的运算的技巧
幂的运算有以下几个常用的技巧:
1. 幂的相加:如果有两个幂相加,即a^m + a^n,其中m和n是整数,且m > n,则可以将a^m + a^n转换为a^n * (a^(m-n) + 1)。

这个技巧可以用来简化幂的加法运算。

2. 幂的乘法:如果有两个幂相乘,即a^m * a^n,其中m和n是整数,则可以将a^m * a^n转换为a^(m+n)。

这个技巧可以用来简化幂的乘法运算。

3. 幂的乘方:如果有一个幂的乘方,即(a^m)^n,其中m和n是整数,则可以将(a^m)^n转换为a^(m*n)。

这个技巧可以用来简化幂的乘方运算。

4. 幂的分数指数:如果有一个幂的指数是分数,即a^(m/n),其中m和n是整数且n不等于0,则可以将a^(m/n)转换为(a^m)^(1/n) 或者(a^(1/n))^m。

这个技巧可以用来计算幂的分数指数。

5. 负幂的倒数:如果有一个负幂,即a^(-m),其中m是正整数,则可以将a^(-m)转换为1/(a^m)。

这个技巧可以用来计算负幂的倒数。

这些技巧可以帮助简化幂的运算,使得计算更加高效和简便。

苏教版幂的运算知识归纳总结(K12教育文档)

苏教版幂的运算知识归纳总结(K12教育文档)

苏教版幂的运算知识归纳总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏教版幂的运算知识归纳总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏教版幂的运算知识归纳总结(word版可编辑修改)的全部内容。

幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加。

公式表示为:()m n m n a a a m n +⋅=、为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 ()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数。

(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.【例题1】计算列下列各题34a a ⋅ 23b b b ⋅⋅ ()()()24c c c -⋅-⋅-(x-y)6·(y-x)5 -a3·(—a)4·(—a)5幂的乘方与积的乘方 1、幂的乘方幂的乘方,底数不变,指数相乘.公式表示为:()()nm mn a a m n =、都是正整数.2、积的乘方积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘. 公式表示为:()()nn n ab a b n =为正整数。

注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开。

(3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果;(4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算与平方差,完全平方专练
1、计算所得的结果是( )
A.-2 B.2 C.- D.
2.当n 是正整数时,下列等式成立的有( )A.4个 B.3个 C.2个 D.1个
(1) (2) (3) (4)
3、对于非零实数,下列式子运算正确的是( )
A .
B .
C .
D .
4、计算:的结果,正确的是( )
A .
B .
C .
D .
5.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是( ) A .2 ; B .4; C .8;
D .6.
6、若,
,则
等于( )
A .
B .6
C .21
D .20
二.解答题
1.已知的值.
2.若的值.
99
10022)()(-+-99
299
222)(m m a a =m m a a )(22=22)(m m a a -=m m a a )(22-=y x y x x a a a a +==+求,25,5n m n n m x x x ++==求,2,162
3、已知
,求的值.
4.已知
, 求 (1); (2).
5.已知,求m 的值
6.已知:,求的值.
7.已知,求m 、n .
8.已知
,122,62,32===c b a 求a, b, c 之间的关系。

9.已知a=355,b=444,c=533,请把a ,b ,c 按大小排列.
10.比较下列一组数的大小.
11.用简便方法计算:(-0.125)12×(-12
3)7×(-8)13×(-35
)9.
平方差,完全平方专练
1.( )(5a +1)=1-25a 2, (2x-3) =4x 2-9, (-2a 2-5b)( )=4a 4-25b 2
2793
⨯⨯m m
163=4
72510225∙=∙∙n m 614131
92781,,
2.99×101=( )( )= .
3.(x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2.
4.下列各式能用平方差公式计算的是:( ) A .
B .
C .
D .
5.下列式子中,不成立的是:( ) A . B . C .
D .
6..(x+2)(x-2)(x 2+4)的计算结果是( )
A.x 4+16
B.-x 4-16
C.x 4-16
D.16-x 4
7.19922-1991×1993的计算结果是( )
A.1
B.-1
C.2
D.-2
8.多项式x 2+kx+25是另一个多项式的平方,则k= .
9.如果 - 3kx + 16是一个完全平方式,那么k = . 10.如果 + kxy + 49 是一个完全平方式,那么k = .
11.如果224925y kxy x +-是一个完全平方式,那么k 的值为= .
12.(a +b)2-(a -b)2=_____________________
13. (a +b)2=_________________, (a -b)2=_______________ (a +b)2=(a -b)2+ ,a 2+b 2=( ) [(a +b)2+(a -b)2]
a 2+
b 2=(a +b)2- ,a 2+b 2=(a -b)2+ . 2ab=(a +b)2-___________
14.已知x + y = 4,xy = 2,则 + + 3xy =_____________ 15.已知 a – b = 3, ab = 10,那么 + = _____________ 16.已知a + b = 1 , + = 2,则ab =_____________ 17.已知a +
= 3,则 +
= __________ 18.已知x -
= 3,则 +
= _________ 4
41
x x +
= _________
19.若 - 3x - 1 = 0,则 +
= _____
20、已知(a +b)2
=60,(a -b)2
=80,求a 2+b 2及a b 的值
21. 已知x + y = 7, xy = 2,计算:(1)
+ 2
的值 (2)
( )
的值.
22. 已知6,4a b a b +=-=求ab 与22a b +的值。

23、已知224,4a b a b +=+=求22a b 与2()a b -的值。

24.已知m 2
+n 2
-6m+10n+34=0,求m+n 的值
25.如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值
26、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?
27、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

28.计算: (1)
(2) – 94 ×27 +
(3)。

相关文档
最新文档