天津育才中学数学代数式中考真题汇编[解析版]
【中考12年】天津市2001-2012年中考数学试题分类解析 专题2 代数式和因式分解
2001-2012年某某市中考数学试题分类解析汇编(12专题) 专题2:代数式和因式分解 一、选择题 1.(2001某某市3分)某商品原价为100元,现有下列四种调价方案,其中0<n <m <100,则调价后该商品价格最低的方案是【 】A .先涨价m%,再降价n%B .先涨价n%,再降价m%C .行涨价m n %2+ ,再降价m n %2+ D .先涨价mn % ,再降价mn % 【答案】B 。
【考点】整式的混合运算。
【分析】求出各方案调价后的价格比较即可:经过计算可知:A 、100(1+m%)(1-n%);B 、100(1+n%)(1-m%);C 、m n m n 1001%1%22+++-()(); D 、1001mn%1mn%+-()()。
∵0<n <m <100,∴100(1+n%)(1-m%)最小。
故选B 。
2.(某某市2003年3分)若=21x +,则1x x+的值为【 】 (A )-2 (B )0 (C )2 (D )22【答案】D 。
【考点】二次根式的化简求值。
【分析】把x 的值代入后,先分母有理化,再合并同类根式:()()121=21=21=2121=22212121x x -+++++++-++-。
故选D 。
3.(某某市2003年3分)若()()2153x mx x x n +-=++,则m 的值为【 】(A )-5 (B )5 (C )-2 (D )2【答案】C 。
【考点】多项式相等的意义 【分析】把等式的右边展开得,然后根据对应项系数相等列式求解即可: ∵()()2153x mx x x n +-=++,∴()221533x mx x n x n +-=+++。
∴3=3=23=15=5m n m n n +-⎧⎧⇒⎨⎨--⎩⎩。
故选C 。
4.(某某市2004年3分)若x <2,则22x x -- 的值为 【 】 (A )-1 (B) 0 (C) 1 (D) 2【答案】A 。
(专题精选)初中数学代数式分类汇编及答案解析
(专题精选)初中数学代数式分类汇编及答案解析一、选择题1.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.2.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.3.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.4.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.5.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.6.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.7.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.8.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a ) ∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18 B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q ,又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .13.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则AB 一定是分式B .()2442a a a ÷=C .若将分式xyx y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确.D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.14.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.15.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.16.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C【解析】分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.17.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】 此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.18.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断. 【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.19.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
天津育才中学小升初数学期末试卷真题汇编[解析版]
天津育才中学小升初数学期末试卷真题汇编[解析版]一、选择题1.一个正方体木块,6个面都涂上红色,然后把它分割为大小相等的27个小正方体,其中三个面都涂色的小正方体有()个.A.4 B.12 C.6 D.82.今年植树500棵,比去年多植了50棵,今年比去年多植百分之几,正确的算式是()。
A.50÷500 B.(500-50)÷500 C.50÷(500-50)3.一个三角形三个内角的度数比是1∶2∶3,这个三角形是()三角形。
A.直角B.锐角C.钝角D.无法确定4.把一根木头截成两段,第一段长米,第二段占全长的,那么这两段木头长度的比较结果是()A.第一段长B.第二段长C.无法确定5.有一个立体图形,从上面看到的形状是,从右面看到的形状是,搭这样的一个立体图形,最少需要()个小立方体。
A.4 B.5 C.6 D.76.松树有78棵,杨树是松树的13,梧桐树是杨树的12,梧桐树有多少棵?下面列式错误的是()。
A.117832⨯⨯B.117832⎛⎫⨯⨯⎪⎝⎭C.117832⎛⎫⨯+⎪⎝⎭7.一个圆柱和一个圆锥,底面积的比是4∶9,它们的体积比是5∶6,圆柱和圆锥的高的最简整数比是()。
A.8∶5 B.12∶5 C.5∶8 D.5∶128.一件商品提价10%以后又降价10%,现在这件商品的价格是原来价格的百分之几?正确的解答是()A.110%B.90%C.100%D.99%9.长方形ABCD的长是21厘米,宽7厘米,将长方形(如图)沿EF对折,阴影部分的周长是()厘米。
A.28 B.56 C.42 D.14B二、填空题10.1.25小时=(____)分 6升80毫升=(____)升11.8∶10=()5=40÷()=()。
(填小数)12.a、b是两个不为0的自然数,如果a+1=b,那么a和b的最大公因数是(______),如果a÷b=6,那么a和b的最小公倍数是(______)。
2025年天津市中考数学一轮复习:代数式(附答案解析)
2025年天津市中考数学一轮复习:代数式一.选择题(共10小题)1.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.52013−44D.52013−142.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2B.m=﹣1,n=2C.m=﹣2,n=2D.m=2,n=﹣1 3.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3 4.某商店举办促销活动,促销的方法是将原价x元的衣服以(45x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元5.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1D.1 6.当x=1时,代数式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣77.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B.2个C.3个D.4个8.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=19.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2第1页(共14页)。
中考数学代数式综合测试卷(1)及答案
中考代数式综合测试卷(一)及答案一、选择题(本题共10 小题,每小题3 分,满分30分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得3分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.一个代数式减去22x y -等于222x y +,则这个代数式是( )。
A.23y -B.222x y + C.2232y x -D.23y2.下列各组代数式中,属于同类项的是( )。
A .b a 221 与221ab B .b a 2 与c a 2 C .22与43 D . p 与q 3.下列计算正确的是( )。
A.2233x x -=B.22321a a -= C.235358x x x +=D.22232a a a -=4.a = 255, b = 344, c = 433, 则 a 、b 、c 的大小关系是( )。
A . a>c>b B . b>a>c C . b>c>a D . c>b>a 解:a = 255=(25)11=3211b = 344=(34)11=8111c = 433=(23)11=8115.一个两位数,十位数字是x ,个位数字是y ,如果把它们的位置颠倒一下,得到的数是( )。
A.y x +B.yxC.10y x +D.10x y +6.若26(3)(2)x kx x x +-=+-,则k 的值为( )。
A . 2B . -2 C. 1 D. –1 7.若x 2+mx +25 是一个完全平方式,则m 的值是( )。
A .20B .10 C. ± 20 D.±108.若代数式2231y y +=,那么代数式2469y y +-的值是( )。
A.2B.17C.7- D.79.如果(2-x)2+(x -3)2=(x -2)+(3-x ),那么x 的取值范围是( )。
2.1.1 代数式(一)(解析版)
2.1.1代数式(一)代数式的概念题型一:代数式的概念【例题1】(2020·全国八年级课时练习)在式子3,12a ,34x =,3ab -,()4x y +中,代数式的个数为()A .5B .4C .3D .2【答案】B【分析】根据代数式的定义:用运算符号连接而成的式子逐一判断即可.【详解】解:3,12a ,3ab -,()4x y +是代数式,34x =是方程,不是代数式,所以是代数式的式子共4个.故选B .【点睛】本题考查的是代数式的定义,属于基础概念题型,熟知定义是解题关键.变式训练【变式1-1】(2018·河北沧州市·七年级期末)下列说法正确的是( )A .2a 是代数式,1不是代数式B .代数式2a b -表示2﹣a 除bC .当x =4时,代数式413x -的值为0D .零是最小的整数【答案】C【分析】根据代数式的定义、代数式表示的意义、代数式求值等知识点判断各项【详解】2a 是代数式,单独的数字也是代数式,故A 不正确;代数式2a b -表示2-a 除以b ,故B 不正确;当x=4时,代数式413x -的值为0,故C 正确;零是绝对值最小的整数,故D 不正确.故选C .【点睛】此题主要考查代数式的定义、代数式表示的意义、代数式求值等知识点.用数值代替代数式里的字母解题的关键【变式1-2】(2019·上海市西延安中学七年级月考)下列各式中,代数式有()个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x +;(5) s = πr 2;(6) -6k A .2B .3C .4D .5【答案】C【分析】根据代数式的定义即可求解.【详解】(1)a+b=b+a 为等式,故错误;(2)1为代数式,正确;(3)2x-1为代数式,正确;(4)23x x +为代数式,正确;(5) s = πr 2为等式,故错误;(6) -6k 为代数式,正确故选C.【点睛】此题主要考查代数式的识别,解题的关键是熟知代数式的定义.【变式1-3】(2020·正安县思源实验学校七年级期中)下列式子①23´②210x -=③y ④s vt =⑤ 3.14π>⑥1a ⑦()()x y x y +-⑧452x x +,其中代数式有( )A .3个B .4个C .5个D .6个【答案】C【分析】代数式是运算符号把数和表示数的字母连接而成的式子,据此确定解答即可.【详解】解:代数式是运算符号把数和表示数的字母连接而成的式子,所以以上八个式子中,是代数式的有①③⑥⑦⑧五个.故选:C【点睛】本题考查了代数式的定义,准确理解代数式的定义是解题关键.题型二:用字母表示数【例题2】三个连续整数中,中间一个是m ,则最大的一个是()A .m+1B .m+2C .m+3D .m+4【答案】A【分析】根据三个连续的自然数两两之间相差1,可知中间一个是m ,那么最大的一个数就是m+1.【详解】解:三个连续的自然数两两之间相差1,中间一个是m ,最大的一个数就是m+1.故选A .【点睛】明确相邻的两个自然数之间相差1是解决此题关键.变式训练【变式2-1】下列说法正确的是( )A .-a 一定是负数B .a 的倒数是1aC .2a 一定是分数D .a 2一定是非负数【答案】D【解析】【分析】本题考查的是负数、倒数、分数、非负数的定义,根据负数、倒数、分数、非负数的定义依次判断各项即可.A 、当a 是负数时,-a 是正数,故本选项错误;B 、当a 是0时,a 没有倒数,故本选项错误;C 、当a=4时,a 2=2,是整数,故本选项错误; D 、2a 一定是非负数,本选项正确,故选D.【点睛】本题考查了用字母表示数,解题的关键是掌握好负数、倒数、分数、非负数的定义.【变式2-2】a +1的相反数是()A .-a +1B .-(a +1)C .a -1D .11a +【答案】B【详解】1a +的相反数是:(1)a -+.点睛:表示一个式子的相反数只需把这个式子用括号括起来,再在括号前面添上一个“-”即可.【变式2-3】(2019·山东)甲数比乙数的3倍大2,若甲数为x ,则乙数为( )A .3x -2B .3x+2C .23x +D .23-x 【答案】D【分析】本题主要考查列代数式,根据甲数比乙数的3倍大2,可知甲数减去2是乙数的3倍,再除以3即可得到结果.【详解】根据题意,得乙数为23x -.选D.【点睛】本题考查了列代数式,解题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.题型三:找规律型列代数式【例题3】(2020·江西省于都中学七年级期中)观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -4【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.变式训练【变式3-1】(2020·广州市育才中学七年级期中)用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子( )A.(4n﹣4)枚B.4n枚C.(4n+4)枚D.n2枚【答案】B【分析】观察图形可知,构成每个“口”字的棋子数量,等于构成边长为(n+1)的正方形所需要的棋子数量减去构成边长为(n+1-2)的正方形所需要的棋子数量.【详解】解:由图可知第n个“口”字需要用棋子的数量为(n+1)2-(n+1-2)2=4n,故选择B.【点睛】本题考查了规律的探索.【变式3-2】(2020·广东七年级期末)下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n个图形中白色正方形的个数为( )A .4n +1B .4n ﹣1C .3n ﹣2D .3n +2【答案】D 【分析】第一个图形中有5个白色正方形;第2个图形中有531+´个白色正方形;第3个图形中有532+´个白色正方形;…由此得出第n 个图形中有53(1)32nn +´+﹣=个白色正方形.【详解】解:第一个图形中有5个白色正方形;第2个图形中有531+´个白色正方形;第3个图形中有532+´个白色正方形;…第n 个图形中有53(1)32nn +´+﹣=个白色正方形.故选:D 。
天津数学代数式单元测试卷(含答案解析)
一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
2024年天津市中考 数学试题及答案
2024年天津市初中学业水平考试试卷数学第I 卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()33--的结果等于( ) A .—6B .0C .3D .62.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .3的值在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( ) A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61-o 的值等于( )A .0B .1C .12- D 17.计算3311x x x ---的结果等于( ) A .3B .xC .1x x - D .231x - 8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则312,,x x x 的大小关系是( ) A .123x x x << B .132x x x <<C .321x x x <<D .213x x x <<9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( ) A . 4.50.51y x x y -=⎧⎨-=⎩ B . 4.50.51y x x y -=⎧⎨+=⎩ C . 4.51x y x y +=⎧⎨-=⎩ D . 4.51x y y x +=⎧⎨-=⎩10.如图,Rt ABC △中,90,40C B ∠∠==oo,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60oB .65oC .70oD .75o11.如图,ABC △中,30B ∠=o ,将ABC △绕点C 顺时针旋转60o 得到DEC △,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠∠=B .AC DE ∥C .AB EF =D .BF CE ⊥12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t tt =-≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0B .1C .2D .3第II 卷二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为______. 14.计算86x x ÷的结果为______.15.计算)11的结果为______.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第三、第一象限,则k 的值可以是______(写出一个..即可).17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(I )线段AE 的长为______;(II )若F 为DE 的中点,则线段AF 的长为______.18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(I )线段AG 的长为______;(II )点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC 上.请用无刻度...的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明)______.三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19.(本小题8分) 解不等式组213, 317. x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答. (I )解不等式①,得______; (II )解不等式②,得______;(III )把不等式①和②的解集在数轴上表示出来:(IV )原不等式组的解集为______.20.(本小题8分)为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(I )填空:a 的值为______,图①中m 的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(II )求统计的这组学生每周参加科学教育的时间数据的平均数;(III )根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h 的人数约为多少?21.(本小题10分)已知AOB △中,30,ABO AB ∠=o为O e 的弦,直线MN 与O e 相切于点C .(I )如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小;(II )如图②,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.22.(本小题10分)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45o ,测得桥塔底部A 的俯角(CDA ∠)为6o ,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31o .(I )求线段CD 的长(结果取整数); (II )求桥塔AB 的高度(结果取整数). 参考数据:tan310.6,tan60.1≈≈oo.23.(本小题10分)已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题: (I )①填表:②填空:张华从文化广场返回家的速度为______;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(II )当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)24.(本小题10分)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==o.(I )填空:如图①,点C 的坐标为______,点B 的坐标为______;(II )若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC Y 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).25.(本小题10分)已知抛物线()2,,,0y ax bx c a b c a =++>为常数的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1,m O >为坐标原点. (I )当1,1a c ==-时,求该抛物线顶点P 的坐标;(II )当2OM OP ==时,求a 的值; (III )若N 是抛物线上的点,且点N 在第四象限,90,MDN DM DN ∠==o,点E 在线段MN 上,点F在线段DN 上,NE NF +=,当DE MF +a 的值.2024年天津市初中学业水平考试数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.D 2.B 3.C 4.C 5.C 6.A 7.A8.B9.A10.B11.D12.C二、填空题(本大题共6小题,每小题3分,共18分)13.31014.2x 15.1016.1(答案不唯一,满足0k >即可)17.(I )2;(II18.(I (II )如图,根据题意,切点为M ;连接ME 并延长,与网格线相交于点1M ;取圆与网格线的交点D 和格点H ,连接DH 并延长,与网格线相交于点2M ;连接12M M ,分别与,AB AC 相交于点,N P ,则点,,M N P 即为所求.三、解答题(本大题共7小题,共66分)19.(本小题8分) 解:(I )1x ≤; (II )3x ≥-;(III )(IV )31x -≤≤. 20.(本小题8分) 解:(I )50,34,8,8. (II )观察条形统计图,63778179151088.36,3717158x ⨯+⨯+⨯+⨯+⨯==++++Q∴这组数据的平均数是8.36.(III )Q 在所抽取的样本中,每周参加科学教育的时间是9h 的学生占30%, ∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9h 的学生占30%,有50030%150⨯=.∴估计该校八年级学生每周参加科学教育的时间是9h 的人数约为150.21.(本小题10分)解:(I )AB Q 为O e 的弦,OA OB ∴=.得A ABO ∠∠=.AOB Q △中,180A ABO AOB ∠∠∠++=o ,又30ABO ∠=o ,1802120AOB ABO ∠∠∴=-=o o .Q 直线MN 与O e 相切于点,C CE 为O e 的直径,CE MN ∴⊥.即90ECM ∠=o .又AB MN ∥,90CDB ECM ∠∠∴==o .在Rt ODB △中,9060BOE ABO ∠∠=-=o o .12BCE BOE ∠∠=Q ,30BCE ∠∴=o .(II )如图,连接OC .同(I ),得90COB ∠=o .CG AB ⊥Q ,得90FGB ∠=o .∴在Rt FGB △中,由30ABO ∠=o ,得9060BFG ABO ∠∠=-=o o .60CFO BFG ∠∠∴==o .在Rt COF △中,tan ,3OC CFO OC OA OF∠===, 3tan tan60OC OF CFO ∠∴===o. 22.(本小题10分)解:(I )设CD x =,由36DE =,得36CE CD DE x =+=+.EC AB ⊥Q ,垂足为C ,90BCE ACD ∠∠∴==o .在Rt BCD △中,tan ,45BC CDB CDB CD∠∠==o , tan tan45BC CD CDB x x ∠∴=⋅=⋅=o .在Rt BCE △中,tan ,31BC CEB CEB CE∠∠==o , ()tan 36tan31BC CE CEB x ∠∴=⋅=+⋅o .()36tan31x x ∴=+⋅o .得36tan31360.6541tan3110.6x ⨯⨯=≈=--o o . 答:线段CD 的长约为54m .(II )在Rt ACD △中,tan ,6AC CDA CDA CD∠∠==o , tan 54tan6540.1 5.4AC CD CDA ∠∴=⋅≈⨯≈⨯=o .5.45459AB AC BC ∴=+≈+≈.答:桥塔AB 的高度约为59m .23.(本小题10分)解:(I )①0.15,0.6,1.5;②0.075;③当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-.(II )1.05km .24.(本小题10分)解:(I )((,.(II )①由折叠知,60,OO C AOC O P OP t ∠∠==='''=o ,则2OO t '=. Q 点()3,0A ,得3OA =.23AO OO OA t ∴'=='--.Q 四边形OABC 为平行四边形,2,AB OC AB OC ∴==∥.得60O AB AOC ∠∠=='o .AO E ∴'△为等边三角形.有23AE AO t '==-.BE AB AE =-Q ,即()22352BE t t =--=-,25BE t ∴=-+,其中t 的取值范围是3522t <<.S ≤≤ 25.(本小题10分)解:(I )20,1a b a +==Q ,得22b a =-=-.又1c =-,∴该抛物线的解析式为221y x x =--.()222112y x x x =--=--Q , ∴该抛物线顶点P 的坐标为()1,2-.(II )过点(),1M m 作MH x ⊥轴,垂足为,1H m >,则90,1,MHO HM OH m ∠===o.在Rt MOH △中,由222,HM OH OM OM +==, 221m ∴+=⎝⎭.解得1233,22m m ==-(舍). ∴点M 的坐标为3,12⎛⎫ ⎪⎝⎭. 20a b +=Q ,即12b a-=. ∴抛物线22y ax ax c =-+的对称轴为1x =.Q 对称轴与x 轴相交于点D ,则1,90OD ODP ∠==o .在Rt OPD △中,由222,OD PD OP OP +== 221PD ∴+=⎝⎭.解得32PD =. 由0a >,得该抛物线顶点P 的坐标为31,2⎛⎫- ⎪⎝⎭. ∴该抛物线的解析式为()2312y a x =--. Q 点3,12M ⎛⎫ ⎪⎝⎭在该抛物线上,有2331122a ⎛⎫=-- ⎪⎝⎭. 10a ∴=.(III )过点(),1M m 作MH x ⊥轴,垂足为,1H m >,则90,1,MHO HM OH m ∠===o . 1DH OH OD m ∴=-=-.∴在Rt DMH △中,()222211DM DH HM m =+=-+.过点N 作NK x ⊥轴,垂足为K ,则90DKN ∠=o .90,MDN DM DN ∠==o Q ,又90DNK NDK MDH ∠∠∠=-=o , NDK DMH ∴≌△△.得点N 的坐标为()2,1m -.在Rt DMN △中,45DMN DNM ∠∠==o ,22222MN DM DN DM =+=,即MN =.根据题意,NE NF +=,得ME NF =.在DMN △的外部,作45DNG ∠=o ,且NG DM =,连接GF ,得90MNG DNM DNG ∠∠∠=+=o .GNF DME ∴≌△△.有GF DE =.DE MF GF MF GM ∴+=+≥.当满足条件的点F 落在线段GM 上时,DE MF +取得最小值,即GM = 在Rt GMN △中,22223GM NG MN DM =+=,223DM ∴=.得25DM =.()2115m ∴-+=.解得123,1m m ==-(舍). ∴点M 的坐标为()3,1,点N 的坐标为()2,2-.Q 点()()3,1,2,2M N -都在抛物线22y ax ax c =-+上,得196,244a a c a a c =-+-=-+.1a ∴=.。
天津市河东区育才中学2019-2020学年七年级(上)期中数学试卷 含解析
2019-2020学年七年级(上)期中数学试卷一.选择题(共12小题)1.2的相反数是()A.﹣2 B.±2 C.|﹣2| D.2.下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2﹣3 D.x2+y2+x﹣y3.据2019年3月21日《天津日报》报道,“伟大的变革﹣﹣庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.0.423×107B.4.23×106C.42.3×105D.423×1044.若长方形的长为2a+3b,宽为a+b,则其周长是()A.6a+8b B.12a+16b C.3a+4b D.6a+4b5.﹣3a2m b4与2a6b n可以合并成一项,则m、n的值分别是()A.6、4 B.3、3 C.3、4 D.4、46.下列各对数中,数值相等的是()A.﹣3×23与﹣32×2 B.﹣32与(﹣3)2C.﹣25与(﹣2)5D.﹣(﹣3)2与﹣(﹣2)37.下列说法正确的是()A.0.720精确到百分位B.5.078×104精确到千分位C.36万精确到个位D.2.90×105精确到千位8.若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.119.比2a2﹣3a﹣7少3﹣2a2的多项式是()A.﹣3a﹣4 B.﹣4a2﹣3a+10 C.4a2﹣3a﹣10 D.﹣3a﹣10 10.若﹣1<x<0,则x,x2,x3的大小关系是()A.x<x3<x2B.x<x2<x3C.x3<x<x2D.x2<x3<x 11.已知x2﹣4x+1的值是3,则代数式3x2﹣12x﹣1的值为()A.2 B.5 C.8 D.1112.如果=﹣1,那么的值为()A.﹣2 B.﹣1 C.0 D.不确定二.填空题(共6小题)13.化简:﹣[+(﹣6)]=.14.计算:(﹣1)÷(﹣9)×=.15.长方形的长为2a+3b,周长为6a+4b,则该长方形的宽为.16.如图,矩形内有两个相邻的正方形,面积分别为4和a2,那么阴影部分的面积为.17.现定义新运算:“△”,对任意有理数a、b,规定a△b=ab+a﹣b,例如1△2=1×2+1﹣2,则3△(﹣5)=.18.一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格,…,按这样的规律跳2019次,跳蚤所在的点为.三.解答题(共7小题)19.计算题(1)12+(﹣18)﹣(17)﹣(+10)(2)(3)(4)20.先化简,再求值:,其中x=﹣3,y=﹣2.21.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25 (1)本周三生产了多少辆摩托车?(2)产量最多的一天和产量最少的一天各是哪一天?各生产了多少辆?(3)本周实际生产多少辆?22.已知有理数a、b、c在数轴上对应的点的位置如图所示,化简:|a+b|﹣|b|﹣|c﹣a|+3|a﹣b|.23.用A4纸复印文件,在甲复印店不管一次印多少页,每页收费0.1元.在乙复印店复印相同的文件,一次复印页数不超过20时,每页收费0.12元;超过的部分每页收费0.09元.在甲、乙两家复印店一次复印文件x(x>20,且x为整数)页的费用各是多少?两家相差多少?24.已知A=2x2+3ax﹣2x﹣1,B=﹣3x2+3ax﹣1,且C=3A﹣2B.(1)求多项式C;(2)若C中不含x项,求a的值.25.观察下列有规律的一列数:根据规律可得(1)是第个数;(2)计算:;(3)计算:.参考答案与试题解析一.选择题(共12小题)1.2的相反数是()A.﹣2 B.±2 C.|﹣2| D.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:2的相反数是﹣2.故选:A.2.下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2﹣3 D.x2+y2+x﹣y【分析】找到单项式的最高次数是2的,整个式子由3个单项式组成的多项式即可.【解答】解:A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选:A.3.据2019年3月21日《天津日报》报道,“伟大的变革﹣﹣庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.0.423×107B.4.23×106C.42.3×105D.423×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于4230000有7位,所以可以确定n=7﹣1=6.【解答】解:4230000=4.23×106.故选:B.4.若长方形的长为2a+3b,宽为a+b,则其周长是()A.6a+8b B.12a+16b C.3a+4b D.6a+4b【分析】根据周长=2×(长+宽),据此列代数式.【解答】解:周长为:2×(2a+3b+a+b)=6a+8b.故选:A.5.﹣3a2m b4与2a6b n可以合并成一项,则m、n的值分别是()A.6、4 B.3、3 C.3、4 D.4、4【分析】直接利用合并同类项法则得出m,n的值.【解答】解:∵﹣3a2m b4与2a6b n可以合并成一项,∴2m=6,n=4,解得:m=3,故选:C.6.下列各对数中,数值相等的是()A.﹣3×23与﹣32×2 B.﹣32与(﹣3)2C.﹣25与(﹣2)5D.﹣(﹣3)2与﹣(﹣2)3【分析】分别求出选项中的每一项,﹣3×23=﹣24,﹣32×2=﹣18,﹣32=﹣9,(﹣3)2=9,﹣25=﹣32,(﹣2)5=﹣32,﹣(﹣3)2=﹣9,(﹣2)3=﹣8即可求解.【解答】解:﹣3×23=﹣24,﹣32×2=﹣18,∴A不正确;﹣32=﹣9,(﹣3)2=9,∴B不正确;﹣25=﹣32,(﹣2)5=﹣32,∴C正确;﹣(﹣3)2=﹣9,(﹣2)3=﹣8,∴D不正确;故选:C.7.下列说法正确的是()A.0.720精确到百分位B.5.078×104精确到千分位C.36万精确到个位D.2.90×105精确到千位【分析】根据近似数的定义分别进行解答即可.【解答】解:A、0.720精确到千分位,故本选项错误;B、5.078×104精确到个位,故本选项错误;C、36万精确到万位,故本选项错误;D、2.90×105精确到千位,故本选项正确;故选:D.8.若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11【分析】根据所给a,b绝对值,可知a=±5,b=±6;又知a>b,那么应分类讨论两种情况:a为5,b为﹣6;a为﹣5,b为﹣6,求得a+b的值.【解答】解:已知|a|=5,|b|=6,则a=±5,b=±6∵a>b,∴当a=5,b=﹣6时,a+b=5﹣6=﹣1;当a=﹣5,b=﹣6时,a+b=﹣5﹣6=﹣11.故选:C.9.比2a2﹣3a﹣7少3﹣2a2的多项式是()A.﹣3a﹣4 B.﹣4a2﹣3a+10 C.4a2﹣3a﹣10 D.﹣3a﹣10【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:比2a2﹣3a﹣7少3﹣2a2的多项式是:2a2﹣3a﹣7﹣(3﹣2a2)=4a2﹣3a ﹣10.故选:C.10.若﹣1<x<0,则x,x2,x3的大小关系是()A.x<x3<x2B.x<x2<x3C.x3<x<x2D.x2<x3<x【分析】根据﹣1<x<0,可得x<0,x2>0,x3<0,据此判断出x,x2,x3的大小关系即可.【解答】解:∵﹣1<x<0,∴x<0,x2>0,x3<0,∴x<x3<x2.故选:A.11.已知x2﹣4x+1的值是3,则代数式3x2﹣12x﹣1的值为()A.2 B.5 C.8 D.11【分析】直接利用已知得出x2﹣4x=2,再代入原式得出答案.【解答】解:∵x2﹣4x+1=3,∴x2﹣4x=2,则代数式3x2﹣12x﹣1=3(x2﹣4x)﹣1=3×2﹣1=5.故选:B.12.如果=﹣1,那么的值为()A.﹣2 B.﹣1 C.0 D.不确定【分析】根据题目已知,先判断a、b、c的正负,再判断ab、ac、bc、abc的正负,最后计算得结论.【解答】因为=﹣1,所以a、b、c两负一正,令a>0,则b<0,c<0,∴ab<0,ac<0,bc>0,abc>0所以═﹣1+1﹣1+1=0.故选:C.二.填空题(共6小题)13.化简:﹣[+(﹣6)]= 6 .【分析】依据相反数的定义化简括号即可.【解答】解:﹣[+(﹣6)]=﹣(﹣6)=6.故答案为:6.14.计算:(﹣1)÷(﹣9)×=.【分析】先把除法转化为乘法,再根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣1)÷(﹣9)×,=(﹣1)×(﹣)×,=×,=.故答案为:.15.长方形的长为2a+3b,周长为6a+4b,则该长方形的宽为a﹣b.【分析】根据周长的一半减去长得到宽列出关系式,计算即可得到结果.【解答】解:∵长方形的长为2a+3b,周长为6a+4b,∴宽为(6a+4b)﹣(2a+3b)=3a+2b﹣2a﹣3b=a﹣b.故答案为:a﹣b16.如图,矩形内有两个相邻的正方形,面积分别为4和a2,那么阴影部分的面积为2a ﹣a2.【分析】根据正方形的面积公式求得两个正方形的边长分别是a,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.【解答】解:∵矩形内有两个相邻的正方形面积分别为4和a2,∴两个正方形的边长分别是a,2,∴阴影部分的面积=2(2+a)﹣4﹣a2=2a﹣a2.故答案为:2a﹣a2.17.现定义新运算:“△”,对任意有理数a、b,规定a△b=ab+a﹣b,例如1△2=1×2+1﹣2,则3△(﹣5)=﹣7 .【分析】原式利用题中的新定义化简,计算即可求出值.【解答】解:根据题中的新定义得:原式=﹣15+3+5=﹣7,故答案为:﹣718.一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格,…,按这样的规律跳2019次,跳蚤所在的点为1010 .【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:0+1﹣2+3﹣4+5﹣6+…+2017﹣2018+2019=1010.故答案为:1010.三.解答题(共7小题)19.计算题(1)12+(﹣18)﹣(17)﹣(+10)(2)(3)(4)【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式结合后,相加即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=12﹣18﹣17﹣10=﹣33;(2)原式=﹣33+28﹣10﹣6×(1.43﹣3.93)=﹣15﹣6×2.5=﹣15﹣15=﹣30;(3)原式=﹣+3﹣21﹣2=3﹣24=﹣21;(4)原式=﹣16×﹣×﹣=﹣﹣﹣=.20.先化简,再求值:,其中x=﹣3,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2+2x﹣2y2=x﹣y2,当x=﹣3,y=﹣2时,原式=﹣3﹣=﹣.21.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25 (1)本周三生产了多少辆摩托车?(2)产量最多的一天和产量最少的一天各是哪一天?各生产了多少辆?(3)本周实际生产多少辆?【分析】(1)根据正负数的意义,用300减去3计算即可得解;(2)观察图表可知星期五产量最大,星期七产量最少,然后列式计算即可得解;(3)把增减情况相加,再根据正负数的意义解答【解答】解:(1)300﹣3=297(辆),答:本周三生产了297辆摩托车;(2)产量最多的是星期五:300+10=310(辆),产量最少的是星期七:300﹣25=275(辆);答:产量最多的是星期五,生产了310辆,产量最少的是星期七,生产了275辆;(3)300×7+(﹣5+7﹣3+4+10﹣9﹣25),=300×7+(﹣5﹣3﹣9﹣25+7+4+10),=300×7+(﹣42+21),=2079(辆),答:本周总生产量2079辆22.已知有理数a、b、c在数轴上对应的点的位置如图所示,化简:|a+b|﹣|b|﹣|c﹣a|+3|a﹣b|.【分析】首先判断出a+b<0,b>0,c﹣a>0,a﹣b<0,然后根据绝对值的定义化简和合并即可求解.【解答】解:由题意得a+b<0,b>0,c﹣a>0,a﹣b<0,则|a+b|﹣|b|﹣|c﹣a|+3|a﹣b|=﹣(a+b)﹣b﹣(c﹣a)﹣3(a﹣b)=﹣a﹣b﹣b﹣c+a﹣3a+3b=﹣3a+b﹣c.23.用A4纸复印文件,在甲复印店不管一次印多少页,每页收费0.1元.在乙复印店复印相同的文件,一次复印页数不超过20时,每页收费0.12元;超过的部分每页收费0.09元.在甲、乙两家复印店一次复印文件x(x>20,且x为整数)页的费用各是多少?两家相差多少?【分析】设复印页数为x页时,根据收费方式不同列出关系式.【解答】解:设复印页数为x页时,根据题意,在甲复印店的费用是:0.1x;在乙复印店的费用是:20×0.12+(x﹣20)•0.09=0.09x+0.6;故两家相差:0.1x﹣(0.09x+0.6)=0.01x﹣0.6.24.已知A=2x2+3ax﹣2x﹣1,B=﹣3x2+3ax﹣1,且C=3A﹣2B.(1)求多项式C;(2)若C中不含x项,求a的值.【分析】(1)直接利用整式的加减运算法则计算得出答案;(2)直接利用C中不含x项,即x的系数为零,即可得出答案.【解答】解:(1)∵A=2x2+3ax﹣2x﹣1,B=﹣3x2+3ax﹣1,且C=3A﹣2B,∴C=3(2x2+3ax﹣2x﹣1)﹣2(﹣3x2+3ax﹣1)=6x2+9ax﹣6x﹣3+6x2﹣6ax+2=12x2+3ax﹣6x﹣1;(2)∵C中不含x项,∴3a﹣6=0,解得:a=2.25.观察下列有规律的一列数:根据规律可得(1)是第10 个数;(2)计算:;(3)计算:.【分析】(1)根据已知的一列数的规律即可求解;(2)根据(1)中发现的规律进行计算即可;(3)根据(1)中发现的规律,先变形原式进行计算即可.【解答】解:(1)观察下列有规律的一列数:根据规律可得:=,=,=,…所以=.所以是第10个数.故答案为10.(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=+(﹣+﹣+﹣+…+﹣)=+(﹣)=.。
2024年天津市中考数学试卷版,含答案
2024年天津市中考数学试卷版,含答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 下列哪个数是负数?A. 5B. 0C. 3D. 82. 下列哪个数是偶数?A. 11B. 14C. 17D. 203. 下列哪个数是质数?A. 12B. 17C. 20D. 274. 下列哪个数是合数?A. 11B. 13C. 17D. 195. 下列哪个数是平方数?A. 16B. 18C. 20D. 226. 下列哪个数是立方数?A. 8B. 27C. 64D. 1257. 下列哪个数是无理数?A. √2B. √3C. √4D. √58. 下列哪个数是有理数?A. πB. eC. √2D. √39. 下列哪个数是整数?A. 3.14B. 5.67C. 8.910. 下列哪个数是分数?A. 0.25B. 0.5C. 0.75D. 111. 下列哪个数是正数?A. 3B. 0C. 3D. 812. 下列哪个数是负数?A. 5B. 0C. 3D. 813. 下列哪个数是偶数?A. 11B. 14C. 17D. 2014. 下列哪个数是质数?A. 12B. 17D. 2715. 下列哪个数是合数?A. 11B. 13C. 17D. 19二、判断题(每题1分,共20分)1. 0是正数。
2. 1是质数。
3. 2是偶数。
4. 3是合数。
5. 4是平方数。
6. 5是立方数。
7. 6是无理数。
8. 7是有理数。
9. 8是整数。
10. 9是分数。
11. 10是正数。
12. 1是负数。
13. 2是偶数。
14. 3是质数。
15. 4是合数。
16. 5是平方数。
17. 6是立方数。
18. 7是无理数。
19. 8是有理数。
20. 9是整数。
三、填空题(每空1分,共10分)1. 3的相反数是______。
2. 4的绝对值是______。
3. 5的平方是______。
4. 6的立方是______。
5. √9的值是______。
2022年天津市中考数学试卷(解析版)
2022年天津市中考数学试卷(真题)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2022•天津)计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.﹣1 C.5 D.12.(3分)(2022•天津)tan45°的值等于()A.2 B.1 C.D.3.(3分)(2022•天津)将290000用科学记数法表示应为()A.0.29×106B.2.9×105C.29×104D.290×103 4.(3分)(2022•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)(2022•天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)(2022•天津)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.(3分)(2022•天津)计算+的结果是()A.1 B.C.a+2 D.8.(3分)(2022•天津)若点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3 9.(3分)(2022•天津)方程x2+4x+3=0的两个根为()A.x1=1,x2=3 B.x1=﹣1,x2=3C.x1=1,x2=﹣3 D.x1=﹣1,x2=﹣310.(3分)(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)11.(3分)(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC 12.(3分)(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2022•天津)计算m•m7的结果等于.14.(3分)(2022•天津)计算(+1)(﹣1)的结果等于.15.(3分)(2022•天津)不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.(3分)(2022•天津)若一次函数y=x+b(b是常数)的图象经过第一、二、三象限,则b的值可以是(写出一个即可).17.(3分)(2022•天津)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于.18.(3分)(2022•天津)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(Ⅰ)线段EF的长等于;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)(2022•天津)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)(2022•天津)在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为,图①中m的值为;(Ⅱ)求统计的这组项数数据的平均数、众数和中位数.21.(10分)(2022•天津)已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA,CB.(Ⅰ)如图①,若C为的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,求FD的长.22.(10分)(2022•天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:tan35°≈0.70,tan42°≈0.90.23.(10分)(2022•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学生公寓的时间/min 5 8 50 87 112离学生公寓的距离/km0.5 1.6 (Ⅱ)填空:①阅览室到超市的距离为km;②小琪从超市返回学生公寓的速度为km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.24.(10分)(2022•天津)将一个矩形纸片OABC放置在平面直角坐标系中,点O (0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(Ⅰ)如图①,当t=1时,求∠O′QA的大小和点O′的坐标;(Ⅱ)如图②,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(Ⅲ)若折叠后重合部分的面积为3,则t的值可以是(请直接写出两个不同的值即可).25.(10分)(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.2022年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2022•天津)计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.﹣1 C.5 D.1【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(3+2)=﹣5,故选:A.【点评】此题考查了有理数的加法,熟练掌握有理数加法法则是解本题的关键.2.(3分)(2022•天津)tan45°的值等于()A.2 B.1 C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.3.(3分)(2022•天津)将290000用科学记数法表示应为()A.0.29×106B.2.9×105C.29×104D.290×103【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:290000=2.9×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(3分)(2022•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项A、C、B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)(2022•天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据主视图是从物体的正面看得到的视图解答即可.【解答】解:从正面看底层是两个正方形,左边是三个正方形,则立体图形的主视图是A中的图形,故选:A.【点评】本题考查的是几何体的三视图,掌握主视图是从物体的正面看得到的视图是解题的关键.6.(3分)(2022•天津)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】估算确定出所求数的范围即可.【解答】解:∵25<29<36,∴5<<6,即5和6之间,故选:C.【点评】此题考查了估算无理数的大小,以及算术平方根,熟练掌握估算的方法是解本题的关键.7.(3分)(2022•天津)计算+的结果是()A.1 B.C.a+2 D.【分析】按同分母分式的加减法法则计算即可.【解答】解:原式===1.故选:A.【点评】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键.8.(3分)(2022•天津)若点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,∴x1==4,x2==﹣8,x3==2.∴x2<x3<x1,故选:B.【点评】本题考查反比例函数图象点的坐标特征,根据函数解析式求出三个点的横坐标是求解本题的关键.9.(3分)(2022•天津)方程x2+4x+3=0的两个根为()A.x1=1,x2=3 B.x1=﹣1,x2=3C.x1=1,x2=﹣3 D.x1=﹣1,x2=﹣3【分析】根据解一元二次方程﹣因式分解法,进行计算即可解答.【解答】解:x2+4x+3=0,(x+3)(x+1)=0,x+3=0或x+1=0,x=﹣3,x2=﹣1,1故选:D.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.10.(3分)(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解答】解:设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=AB=3,由勾股定理得:OC===4,∴点A的坐标为(4,3),故选:D.【点评】本题考查的是等腰三角形的性质、坐标与图形性质,掌握等腰三角形的三线合一是解题的关键.11.(3分)(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC【分析】根据旋转变换的性质、等边三角形的性质、平行线的性质判断即可.【解答】解:A、∵AB=AC,∴AB>AM,由旋转的性质可知,AN=AM,∴AB>AN,故本选项结论错误,不符合题意;B、当△ABC为等边三角形时,AB∥NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,∵AM=AN,AB=AC,∴∠ABC=∠AMN,∴∠AMN=∠ACN,本选项结论正确,符合题意;D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;故选:C.【点评】本题考查的是旋转变换、等腰三角形的性质、平行线的判定,掌握旋转变换的性质是解题的关键.12.(3分)(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】根据抛物线y=ax2+bx+c经过点(1,0)、结合题意判断①;根据抛物线的对称性判断②;根据一元二次方程根的判别式判断③.【解答】解:①∵抛物线y=ax2+bx+c经过点(1,0),∴a+b+c=0,∵a<c,∴a+b+a<0,即2a+b<0,本小题结论正确;②∵a+b+c=0,0<a<c,∴b<0,∴对称轴x=﹣>1,∴当1<x<﹣时,y随x的增大而减小,本小题结论错误;③∵a+b+c=0,∴b+c=﹣a,对于方程ax2+bx+(b+c)=0,Δ=b2﹣4×a×(b+c)=b2+4a2>0,∴方程ax2+bx+(b+c)=0有两个不相等的实数根,本小题结论正确;故选:C.【点评】本题考查的是二次函数图象与系数的关系、一元二次方程根的判别式、抛物线与x轴的交点,熟记二次函数的对称轴、增减性以及一元二次方程根的判别式是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2022•天津)计算m•m7的结果等于m8.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:m•m7=m8.故答案为:m8.【点评】此题主要考查了同底数幂的乘法,正确掌握相关运算法则是解题关键.14.(3分)(2022•天津)计算(+1)(﹣1)的结果等于18 .【分析】根据平方差公式即可求出答案.【解答】解:原式=()2﹣12=19﹣1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.15.(3分)(2022•天津)不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.【分析】用绿球的个数除以球的总数即可.【解答】解:∵不透明袋子中装有9个球,其中有7个绿球、2个白球,∴从袋子中随机取出1个球,则它是绿球的概率是,故答案为:.【点评】此题主要考查了概率公式,关键是掌握概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)(2022•天津)若一次函数y=x+b(b是常数)的图象经过第一、二、三象限,则b的值可以是 1 (写出一个即可).【分析】根据一次函数的图象可知b>0即可.【解答】解:∵一次函数y=x+b(b是常数)的图象经过第一、二、三象限,∴b>0,可取b=1,故答案为:1.【点评】本题考查了一次函数图象与系数的关系,熟练掌握一次函数的图象是解题的关键.17.(3分)(2022•天津)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于.【分析】如图,过点F作FH∥CD,交DE于H,过点C作CM⊥AB,交AB的延长线于M,连接FB,先证明FH是△CDE的中位线,得FH=1,再证明△AEG≌△FHG(AAS),得AG=FG,在Rt△CBM中计算BM和CM的长,再证明BF是中位线,可得BF和AN的长,由勾股定理可得AF的长,从而得结论.【解答】解:如图,过点F作FH∥CD,交DE于H,过点C作CM⊥AB,交AB 的延长线于M,连接FB,∵四边形ABCD是菱形,∴AB=CD=BC=2,AB∥CD,∴FH∥AB,∴∠FHG=∠AEG,∵F是CE的中点,FH∥CD,∴H是DE的中点,∴FH是△CDE的中位线,∴FH=CD=1,∵E是AB的中点,∴AE=BE=1,∴AE=FH,∵∠AGE=∠FGH,∴△AEG≌△FHG(AAS),∴AG=FG,∵AD∥BC,∴∠CBM=∠DAB=60°,Rt△CBM中,∠BCM=30°,∴BM=BC=1,CM==,∴BE=BM,∵F是CE的中点,∴FB是△CEM的中位线,∴BF=CM=,FB∥CM,∴∠EBF=∠M=90°,Rt△AFB中,由勾股定理得:AF===,∴GF=AF=.故答案为:.【点评】此题考查的是正方形的性质,三角形中位线定理,全等三角形的判定与性质,掌握其性质定理是解决此题的关键.18.(3分)(2022•天津)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(Ⅰ)线段EF的长等于;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O于点⊙,连接GO,延长GO交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求.【分析】(Ⅰ)利用勾股定理求解即可;(Ⅱ)连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM 交⊙O于点⊙,连接GO,延长GO交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求(证明△BQM≌△BFN,可得结论).【解答】解:(Ⅰ)EF==.故答案为:;(Ⅱ)如图,点M,N即为所求.步骤:连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM 交⊙O于点⊙,连接GO,延长GO交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求.故答案为:连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O于点⊙,连接GO,延长GO交⊙O于点H,连接BH,延长BH交PF 于点N,则点M,N即为所求【点评】本题考查作图﹣复杂作图,勾股定理,正方形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)(2022•天津)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≥﹣1 ;(Ⅱ)解不等式②,得x≤2 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤2 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤2,故答案为:x≥﹣1,x≤2,﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2022•天津)在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为40 ,图①中m的值为10 ;(Ⅱ)求统计的这组项数数据的平均数、众数和中位数.【分析】(Ⅰ)根据1项的人数和所占的百分比,求出调查的学生总人数,用4项的人数除以总人数,即可得出m的值;(Ⅱ)根据加权平均数的公式可以计算出平均数;根据众数的定义:一组数据中出现次数最多的数据叫做众数,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,即可求出众数与中位数.【解答】解:(Ⅰ)本次接受调查的学生人数为:13÷32.5%=40(人),m%=×100%=10%,即m=10;故答案为:40,10;(Ⅱ)这组项数数据的平均数是:×(1×13+2×18+3×5+4×4)=2(项);∵2出现了18次,出现的次数最多,∴众数是2项;把这些数从小到大排列,中位数是第25、26个数的平均数,则中位数是=2(项).【点评】本题考查的是条形统计图,平均数,众数,中位数,以及样本估计总体.读懂统计图,从统计图中得到必要的信息,掌握众数、中位数的定义是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.21.(10分)(2022•天津)已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA,CB.(Ⅰ)如图①,若C为的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,求FD的长.【分析】(Ⅰ)根据圆周角定理得到∠ACB=90°,∠CAB=∠CBA,进而求出∠CAB,根据余弦的定义求出AC;(Ⅱ)根据切线的性质得到OD⊥DF,证明四边形FCED为矩形,根据矩形的性质得到FD=EC,根据勾股定理求出BC,根据垂径定理解答即可.【解答】解:(Ⅰ)∵AB为⊙O的直径,∴∠ACB=90°,∵C为的中点,∴=,∴∠CAB=∠CBA=45°,∴AC=AB•cos∠CAB=3;(Ⅱ)∵DF是⊙O的切线,∴OD⊥DF,∵OD⊥BC,∠FCB=90°,∴四边形FCED为矩形,∴FD=EC,在Rt△ABC中,∠ACB=90°,AC=2,AB=6,则BC==4,∵OD⊥BC,∴EC=BC=2,∴FD=2.【点评】本题考查的切线的性质、垂径定理、矩形的判定和性质,掌握圆的切线垂直于过切点的半径是解题的关键.22.(10分)(2022•天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:tan35°≈0.70,tan42°≈0.90.【分析】设AP=x米,在Rt△APB中,利用锐角三角函数的定义求出AB的长,从而求出AC的长,然后在Rt△APC中,利用锐角三角函数的定义列出关于x 的方程,进行计算即可解答.【解答】解:设AP=x米,在Rt△APB中,∠APB=35°,∴AB=AP•tan35°≈0.7x(米),∵BC=32米,∴AB=AB+BC=(32+0.7x)米,在Rt△APC中,∠APC=42°,∴tan42°==≈0.9,∴x=160,经检验:x=160是原方程的根,∴AB=0.7x=112(米),∴这座山AB的高度约为112米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.(10分)(2022•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学生公寓的时间/min 5 8 50 87 112离学生公寓的距离/km0.5 0.8 1.2 1.6 2 (Ⅱ)填空:①阅览室到超市的距离为0.8 km;②小琪从超市返回学生公寓的速度为0.25 km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为10或116min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.【分析】(Ⅰ)观察函数图象即可得答案;(Ⅱ)①根据阅览室离学生公寓1.2km,超市离学生公寓2km可得答案;②用路程除以时间可得速度;③分两种情况,分别可得小琪离学生公寓的距离为1km时,他离开学生公寓的时间;(Ⅲ)分段求出函数关系式即可.【解答】解:(Ⅰ)根据题意得:小琪从学生公寓出发,匀速步行了12min到达离学生公寓1.2km的阅览室,∴离开学生公寓的时间为8min,离学生公寓的距离是×8=0.8(km),由图象可知:离开学生公寓的时间为50min,离学生公寓的距离是1.2km,离开学生公寓的时间为112min,离学生公寓的距离是2km,故答案为:0.8,1.2,2;(Ⅱ)①阅览室到超市的距离为2﹣1.2=0.8(km),故答案为:0.8;②小琪从超市返回学生公寓的速度为=0.25(km/min),故答案为:0.25;③当小琪从学生公寓出发,离学生公寓的距离为1km时,他离开学生公寓的时间为=10(min);当小琪从超市出发,离学生公寓的距离为1km时,他离开学生公寓的时间为112+=116(min),故答案为:10或116;(Ⅲ)当0≤x≤12时,y=0.1x;当12<x≤82时,y=1.2;当82<x≤92时,y=1.2+(x﹣82)=0.08x﹣5.36,∴y=.【点评】本题考查一次函数的应用,解题的关键是读懂题意,能正确识图.24.(10分)(2022•天津)将一个矩形纸片OABC放置在平面直角坐标系中,点O (0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(Ⅰ)如图①,当t=1时,求∠O′QA的大小和点O′的坐标;(Ⅱ)如图②,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(Ⅲ)若折叠后重合部分的面积为3,则t的值可以是3或(请直接写出两个不同的值即可).【分析】(Ⅰ)过点O′作O′H⊥OA于点H.解直角三角形求出QH,O′H即可;(Ⅱ)解直角三角形求出QE,可得结论;(Ⅲ)如图③中,当点Q与A重合时,重叠部分是△APF,过点P作PG⊥AB 于点G.判断出当3≤t<2时,重叠部分的面积是定值3,可得结论.【解答】解:(Ⅰ)如图①中,过点O′作O′H⊥OA于点H.在Rt△POQ中,∠OPQ=30°,∴∠PQO=60°,由翻折的性质可知QO=QO′=1,∠PQO=∠PQO′=60°,∴∠O′QH=180°﹣60°﹣60°=60°,∴QH=QO′•cos60°=,O′H=QH=,∴OH=OQ+QH=,∴O′(,);(Ⅱ)如图②中,∵A(3,0),∴OA=3,∵OQ=t,∴AQ=3﹣t.∵∠EQA=60°,∴QE=2QA=6﹣2t,∵OQ′=OQ=t,∴EO′=t﹣(6﹣2t)=3t﹣6(2<t<3);(Ⅲ)如图③中,当点Q与A重合时,重叠部分是△APF,过点P作PG⊥AB 于点G.在Rt△PGF中,PG=OA=3,∠PFG=60°,∴PF==2,∵∠OPA=∠APF=∠PAF=30°,∴FP=FA=2,∴S△APF=•AF•PG=××3=3,观察图象可知当3≤t<2时,重叠部分的面积是定值3,∴满足条件的t的值可以为3或(答案不唯一).故答案为:3或.【点评】本题属于四边形综合题,考查了矩形的性质,翻折变换,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(10分)(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.【分析】(Ⅰ)①利用待定系数法求出抛物线的解析式,即可得顶点P的坐标;②求出直线BP的解析式,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),表示出MG的长,可得关于m的二次函数,根据二次函数的最值即可求解;(Ⅱ)由3b=2c得b=﹣2a,c=﹣3a,抛物线的解析式为y=ax2﹣2a﹣3a.可得顶点P的坐标为(1,﹣4a),点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN 取得最小值,此时,PF+FE+EN=P'N'=5延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.由勾股定理可得P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).可得点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).利用待定系数法得直线P'N′的解析式为y=x﹣.即可得点E,F的坐标.【解答】解:(Ⅰ)①若b=﹣2,c=﹣3,则抛物线y=ax2+bx+c=ax2﹣2x﹣3,∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a+2﹣3=0,解得a=1,∴抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4);②当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),设直线BP的解析式为y=kx+n,∴,解得,∴直线BP的解析式为y=2x﹣6,∵直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),∴MG=2m﹣6﹣(m2﹣2m﹣3)=﹣m2+4m﹣3=﹣(m﹣2)2+1,∴当m=2时,MG取得最大值1,此时,点M(2,﹣3),则G(2,﹣2);(Ⅱ)∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a﹣b+c=0,又3b=2c,b=﹣2a,c=﹣3a(a>0),∴抛物线的解析式为y=ax2﹣2a﹣3a.∴y=ax2﹣2a﹣3a=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a),∵直线x=2与抛物线相交于点N,∴点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5.延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.∴P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).∴点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).∴直线P'N′的解析式为y=x﹣.∴点E(,0),点F(0,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,轴对称求最小值问题,勾股定理等,利用待定系数法求出直线解析式是解本题的关键.。
2024年天津数学中考试卷
中考数学试卷一、单项选择题(共12分)1.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.2.下列实数中,无理数是()A.-3B.0C.D.3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=35.如图,在三角形ABC中D,E分别是AB和AC上的点,且DE平行BC,AE 比EC=5/2,D E=10,则BC的长为()。
A.16B.14C.12D.116.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=3二、填空题(共24分)7.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是()米8.两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是。
9.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.10.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是___.(单位:分)三、解答题(共20分)11.如图,已知抛物线y=ax2+3x+4的对称轴是直线x=3,且与x轴相交于2A,B两点(B点在A点右侧)与y轴交于C点。
(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大?若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标。
天津育才中学初中数学七年级上期中测试题(含答案解析)
一、选择题1.计算:1252-50×125+252=( ) A .100 B .150 C .10000 D .225002.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM ,若∠AOM =35°,则∠CON 的度数为( )A .35°B .45°C .55°D .65°3.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为(单位:mm )( )A .4.3×10﹣5B .4.3×10﹣4C .4.3×10﹣6D .43×10﹣54.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯5.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD ,ON 平分∠COB ,则∠MON 的度数为( )A .60°B .45°C .65.5°D .52.5°6.如图,从左面看该几何体得到的形状是( )A .B .C .D .7.有理数a 、b 在数轴上对应的位置如图所示:则下列关系成立的是( )A .a-b>0B .a+b>0C .a-b=0D .a+b<08.下列说法:①﹣a 一定是负数;②|﹣a |一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个9.如图所示几何体的左视图是( )A .B .C .D .10.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣911.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .12.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 13.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 14.周长为68的长方形ABCD 被分成7个全等的长方形,如图所示,则长方形ABCD 的面积为( )A .98B .196C .280D .28415.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km二、填空题16.3-2的相反数是_____________,绝对值是________________17.一个角与它的补角之差是20°,则这个角的大小是____. 18.如图,半径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,若点A 对应的数是-1,则点B 对应的数是______.19.某商店一套夏装进价为200元,按标价8折出售可获利72元,则该套夏装标价为______________元.20.若有理数a 、b 、c 在数轴上的位置如图所示,则化简:| a |+| a -b |-| c +b |=________.21.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.22.整理一批数据,甲单独完成需要30小时,乙单独完成需要60小时,现在由甲乙两人合作5小时后,剩余的由乙单独做,还需要_______小时完成.23.正整数按如图的规律排列,请写出第10行,第10列的数字_____.24.点,A B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:①0b a -<;②0a b +>;③a b <;④0ab >.其中正确的是____________.(填序号)25.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =80°,则∠F AG =_____.三、解答题26.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值. 27.观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.①1=1 ②1+2=(12)22+⨯=3 ③1+2+3=(13)32+⨯=6 ④ … (2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.1=12②1+3=22③3+6=32④6+10=42⑤ …(3)通过猜想,写出(2)中与第n 个点阵相对应的等式 .28.化简,再求值.(2x+3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2,其中x=-329.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.30.一个角的余角比这个角的补角的13还小10°,求这个角.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题二、填空题16.2-2-【解析】【分析】一个数a的相反数是-a正数的绝对值就是这个数本身负数的绝对值是它的相反数据此即可求解【详解】解:-2的相反数是:-(-2)=2-;∵<2∴-2<0∴|-2|=-(-2)=2-17.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=18.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣119.340【解析】【分析】设该服装标签价格为x元根据售价-进价=利润即可得出关于x的一元一次方程解之即可得出结论【详解】解:设该服装标签价格为x元根据题意得:x-200=72解得:x=340答:该服装标20.2a+c【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a∴a-b>0c+b <0则原式=a+a-b+c+b=2a+c故答案为:2a+c【点睛】本题考查整式的加减;数轴;绝对值21.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想22.45【解析】【分析】由已知先得到甲乙的工作效率再根据合作的工作总量为1得到方程求解即可【详解】由题意得:甲一小时完成乙一小时完成设乙还需x小时完成解得x=45故答案为:45【点睛】此题考查一元一次方23.91【解析】【分析】观察如图的正整数排列可得到第一列的数分别是1491625…可得出一个规律:第一列每行的数都等于行数的2次方且每行的数个数与对应列的数的个数相等【详解】解:由第一列数149162524.①③【解析】【分析】根据有理数的加法法则判断两数的和差及积的符号用两个负数比较大小的方法判断【详解】①:由数轴有0<a<3b<﹣3∴b﹣a<0①正确②:∵0<a<3b<﹣3∴a+b<0②错误③:∵025.140°【解析】【分析】根据平行线的性质求出∠BAC求出∠BAF和∠BAG即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG平分三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.2-2-【解析】【分析】一个数a的相反数是-a正数的绝对值就是这个数本身负数的绝对值是它的相反数据此即可求解【详解】解:-2的相反数是:-(-2)=2-;∵<2∴-2<0∴|-2|=-(-2)=2-解析:【解析】【分析】一个数a的相反数是-a,正数的绝对值就是这个数本身,负数的绝对值是它的相反数,据此即可求解.【详解】的相反数是:;2,<0,∴故答案为:【点睛】本题考查了实数的性质:相反数和绝对值,熟记相反数的概念和绝对值的性质是解决此题的关键.17.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=解析:100°【解析】【分析】设这个角为α,根据互为补角的两个角的和等于180°表示出它的补角,然后列出方程求出α即可.【详解】设这个角为α,则它的补角180°-α,根据题意得,α-(180°-α)=20°,解得:α=100°,故答案为100°.【点睛】本题考查了余角和补角的概念,是基础题,设出这个角并表示出它的补角是解题的关键.18.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣1解析:-1+2π【解析】试题解析:由圆的周长计算公式得:AB 的长度为:C=2πd=2π,点B对应的数是2π﹣1. 19.340【解析】【分析】设该服装标签价格为x元根据售价-进价=利润即可得出关于x的一元一次方程解之即可得出结论【详解】解:设该服装标签价格为x元根据题意得:x-200=72解得:x=340答:该服装标解析:340【解析】【分析】设该服装标签价格为x元,根据售价-进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该服装标签价格为x元,根据题意得:810x-200=72,解得:x=340.答:该服装标签价格为340元.故答案为:340.【点睛】本题考查了一元一次方程的应用,根据售价-进价=利润,列出关于x的一元一次方程是解题的关键.20.2a+c【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a∴a-b>0c+b<0则原式=a+a-b+c+b=2a+c故答案为:2a+c【点睛】本题考查整式的加减;数轴;绝对值解析:2a+c.【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a,∴a-b>0,c+b<0,则原式=a+a-b+c+b=2a+c故答案为:2a+c.【点睛】本题考查整式的加减;数轴;绝对值.21.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想解析:2或﹣6【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为2或﹣6.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.22.45【解析】【分析】由已知先得到甲乙的工作效率再根据合作的工作总量为1得到方程求解即可【详解】由题意得:甲一小时完成乙一小时完成设乙还需x 小时完成解得x=45故答案为:45【点睛】此题考查一元一次方 解析:45【解析】【分析】由已知先得到甲、乙的工作效率,再根据合作的工作总量为1得到方程求解即可.【详解】 由题意得:甲一小时完成130,乙一小时完成160, 设乙还需x 小时完成, 115()1306060x ⨯++=, 解得x=45,故答案为:45.【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.23.91【解析】【分析】观察如图的正整数排列可得到第一列的数分别是1491625…可得出一个规律:第一列每行的数都等于行数的2次方且每行的数个数与对应列的数的个数相等【详解】解:由第一列数1491625解析:91【解析】【分析】观察如图的正整数排列可得到,第一列的数分别是1,4,9,16,25,…可得出一个规律:第一列每行的数都等于行数的2次方.且每行的数个数与对应列的数的个数相等.【详解】解:由第一列数1,4,9,16,25,…得到:1=124=229=3216=4225=52…所以第10行第1列的数为:102=100.又每行的数个数与对应列的数的个数相等.所以第10行第9列的数为100﹣9=91.故答案为:91.【点睛】此题考查规律型:数字的变化类的知识,解题关键是找出两个规律,即第一列每行的数都等于行数的2次方和每行的数个数与对应列的数的个数相等.24.①③【解析】【分析】根据有理数的加法法则判断两数的和差及积的符号用两个负数比较大小的方法判断【详解】①:由数轴有0<a <3b <﹣3∴b﹣a<0①正确②:∵0<a<3b<﹣3∴a+b<0②错误③:∵0解析:①③【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【详解】①:由数轴有,0<a<3,b<﹣3,∴b﹣a<0,①正确,②:∵0<a<3,b<﹣3,∴a+b<0②错误,③:∵0<a<3,b<﹣3,∴|a|<|b|,③正确,④:∵0<a<3,b<﹣3,∴ab<0,④错误.故答案为:①③【点睛】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.25.140°【解析】【分析】根据平行线的性质求出∠BAC求出∠BAF和∠BAG 即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG平分解析:140°.【解析】【分析】根据平行线的性质求出∠BAC,求出∠BAF和∠BAG,即可得出答案.【详解】∵AB∥ED,∠ECF=80°,∴∠BAC=∠FCE=80°,∴∠BAF=180°﹣80°=100°,∵AG平分∠BAC,∴∠BAG=12∠BAC=40°,∴∠F AG=∠BAF+∠BAG=100°+40°=140°,故答案为140°.【点睛】本题考查了平行线的性质和角平分线定义,能正确根据平行线的性质求出∠BAC 是解此题的关键,注意:两直线平行,内错角相等.三、解答题26.(1)225x 9xy 9y +-(2)63或-13【解析】【分析】(1)把A 与B 代入2B-A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与y 的值,代入原式计算即可得到结果.【详解】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-; ()2∵x 22a b --与y 1ab 3的同类项, ∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.27.(1)10;(2)见解析;(3)2(1)(1)22n n n n n -++= 【解析】试题分析:(1)根据①②③观察会发现第四个式子的等号的左边是1+2+3+4,右边分子上是(1+4)×4,从而得到规律; (2)通过观察发现左边是10+15,右边是25即5的平方;(3)过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.试题解析:(1)根据题中所给出的规律可知:1+2+3+4=()1442+⨯=10; (2)由图示可知点的总数是5×5=25,所以10+15=52. (3)由(1)(2)可知()21(1)22n n n n n +-+= 点睛:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.28.x2﹣5,4【解析】【分析】根据整式的运算法则,根据平方差公式和完全平方差公式以及单项式乘多项式的运算法则进行化简,然后将字母的值代入计算即可.【详解】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.当x=﹣3时,原式=(﹣3)2﹣5=4.【点睛】本题考查了整式化简求值,解决本题的关键是熟练掌握平方差公式和完全平方差公式. 29.∠2=65°,∠3=50°.【解析】【分析】首先根据平角以及∠FOC和∠1的度数求出∠3的度数,然后根据∠3的度数求出∠AOD 的度数,根据角平分线的性质求出∠2的度数.【详解】∵AB为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=40°,∴∠3=180°-90°-40°=50°.∵∠3与∠AOD互补,∴∠AOD=180°-∠3=130°.∵OE平分∠AOD,∴∠2=∠AOD=65°.【点睛】考点:角平分线的性质、角度的计算.30.60°【解析】【分析】设这个角是x度,根据题意列方程求解.【详解】解:设这个角为xº,列方程:90-x=13(180-x)-10,解得x=60,故这个角是60度.【点睛】本题考查余角补角性质;解一元一次方程,根据题目数量关系正确列方程计算是解题关键.。
天津育才中学数学高二下期中测试题(含答案解析)
一、选择题1.(0分)[ID :13607]若4sin 65πα⎛⎫-= ⎪⎝⎭,则cos 3πα⎛⎫+ ⎪⎝⎭等于( )A .45B .45-C .35D .352.(0分)[ID :13577]设命题:p 函数sin 2y x =的最小正周期为2π;命题:q 函数cos y x=的图象关于直线2x π=对称.则下列判断正确的是( ) A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真3.(0分)[ID :13550]函数()()sin f x A x ωϕ=+,(其中0A >, 0>ω, 2πϕ<)的一部分图象如图所示,将函数上的每一个点的纵坐标不变,横坐标伸长为原来的2倍,得到的图象表示的函数可以为( )A .()sin 3f x x π⎛⎫=+ ⎪⎝⎭B .()sin 43f x x π⎛⎫=+ ⎪⎝⎭ C .()sin 6f x x π⎛⎫=+⎪⎝⎭D .()sin 46f x x π⎛⎫=+⎪⎝⎭4.(0分)[ID :13614]已知函数()()2cos 23042x f x x πωωω⎛⎫=-->⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,则ω的最大值为( ). A .1B .65C .43D .325.(0分)[ID :13596]已知函数()sin()3f x x π=-,要得到()cos g x x =的图象,只需将函数()y f x =的图象( ) A .向左平移56π个单位 B .向右平移3π个单位 C .向左平移3π个单位 D .向右平移56π个单位 6.(0分)[ID :13593]O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足:,[0,)AB AC OP OA AB AC λλ⎛⎫⎪=++∈+∞ ⎪⎝⎭,则P 的轨迹一定通过ABC ∆的( ) A .内心B .垂心C .重心D .外心7.(0分)[ID :13588]在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos22A b cc+=,则ABC ∆的形状为A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形8.(0分)[ID :13586]若1tan 3θ= ,则cos2θ=( ) A .45-B .15-C .15D .459.(0分)[ID :13570]已知1cos 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭( ) A .89-B .89 C .79D .79-10.(0分)[ID :13568]函数()()f x Asin ωx φ=+(其中A 0>,ω0>,πφ2<)的图象如图所示,为了得到()πg x sin ωx 6⎛⎫=+ ⎪⎝⎭的图象,只需将()f x 的图象上所有点()A .向右平移π12个单位长度 B .向左平移π12个单位长度 C .向右平移π6个单位长度 D .向左平移π6个单位长度 11.(0分)[ID :13547]若函数sin()(0,||)y x ωϕωϕπ=-><在区间,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,则,ωϕ的值( )A .2,3πωϕ==B .22,3πωϕ== C .1,23πωϕ== D .12,23πωϕ==- 12.(0分)[ID :13545]下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=13.(0分)[ID :13544]若函数3的部分图像如右图所示,则()y f x =的解析式可能是( )A .2sin(2)6y x π=+B .2sin(2)6y x π=-+C .2sin(2)6y x π=--D .2sin(2)6y x π=-14.(0分)[ID :13541]已知a ,b 均为非零向量,()2a b a -⊥,()2b a b -⊥,则a ,b 的夹角为( )A .3π B .2π C .23πD .56π 15.(0分)[ID :13535]已知函数()42)24f παα=-+,在锐角三角形ABC 中,()6f A =,且cos2cos2B C =,则tan B 的值为( )A .1B .21-C .22D .21+二、填空题16.(0分)[ID :13719]设 a b c ,,是平面内互不平行的三个向量,x ∈R ,有下列命题:①方程20ax bx c ++=不可能有两个不同的实数解;②方程20ax bx c ++=有实数解的充要条件是240b a c -⋅≥;③方程22220a x a bx b +⋅+=有唯一的实数解bx a=-;④方程22220a x a bx b +⋅+=没有实数解,其中真命题有_______________.(写出所有真命题的序号)17.(0分)[ID :13708]f (x )=2sin ωx (0<ω<1),在区间0,3π⎡⎤⎢⎥⎣⎦上的最大值是2,则ω=________.18.(0分)[ID :13701]已知P 是ABC 内部一点230PA PB PC ++=,记PBC 、PAC 、PAB △的面积分别为1S 、2S 、3S ,则::123S S S =________.19.(0分)[ID :13698]若1e ,2e 是两个不共线的向量,已知12AB 2e ke =+,12CB e 3e =+,12CD 2e e =-,若A ,B ,D 三点共线,则k =________.20.(0分)[ID :13679]已知平面向量,a b 满足()3b a b ⋅+=,且1a =,||2b =,则a b +=________.21.(0分)[ID :13676]已知向量a 在向量b 方向上的投影为2-,且3b =,则a b ⋅=_______.(结果用数值表示)22.(0分)[ID :13671]已知ABC ∆的外接圆的圆心为O ,半径为2,若2AO AB AC =+,且AO AB =,则向量BA 在向量CB 上的投影为_____23.(0分)[ID :13645]如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,当AE BE ⋅取到最小值时,DE 的长为______.24.(0分)[ID :13641]若向量(,1),(2,1),a x b x x x R ==-+∈,且//a b ,则x =______.25.(0分)[ID :13631]若cos 2cos()3ααπ=+,则tan()6πα+=______________.三、解答题26.(0分)[ID :13795]平面内给定三个向量()1,3a =,()1,2b =-,()4,3c =-,回答下列问题:(1)求满足a mb nc =+的实数m ,n(2)若a kc +与2b c +的夹角为锐角,求出实数k 的取值范围27.(0分)[ID :13765]已知(2,3),(6,4),(5,5)A B C ,点P 满足,()AP AB k AC k R =+∈ (1)若2AP =,求k 的值;(2)当k 为何值时,点P 在直线1y x =+上?28.(0分)[ID :13752]边长为1的正三角形ABC ,E 、F 分别是边AB 、AC 上的点,若AE mAB =,AF nAC =,其中,(0,1)m n ∈,设EF 的中点为M ,BC 中点为N .(1)若A 、M 、N 三点共线,求证:m n =; (2)若1m n +=,求||MN 的最小值.29.(0分)[ID :13746]已知O 为坐标原点,()3,4OA =-,()6,3OB =-,()5,3OC m m =---.(1)若,,A B C 三点共线,求m 的值;(2)若ABC ∆是以角A 为直角顶点的直角三角形,求m 的值以及此时三角形的面积. 30.(0分)[ID :13801]设两个向量1e 、2e ,满足12e =,21e =,1e 、2e 的夹角为60︒,若向量2t 127e e +与向量1e +t 2e 的夹角为钝角,求实数t 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A2.C3.A4.C5.A6.A7.A8.D9.C10.A11.A12.D13.A14.A15.D二、填空题16.①④【解析】【分析】利用共面向量定理以及共线向量的性质一一判断即可得出答案【详解】因为是平面内互不平行的三个向量则由共面向量定理可得:共面时有且仅有一对有序实数对使得成立;则由①可化简为且共面可得有17.【解析】【分析】【详解】函数f(x)的周期T=因此f(x)=2sinωx在上是增函数∵0<ω<1∴是的子集∴f(x)在上是增函数∴=即2sin=∴ω=∴ω=故答案为18.【解析】【分析】延长到使得;延长到使得构造出根据线段关系及三角形面积公式即可求得面积比【详解】延长到使得;延长到使得如下图所示:则可化为所以为的重心设则所以故答案为:【点睛】本题考查了向量加法法则的19.-8【解析】【分析】计算得到根据共线得到代入计算得到答案【详解】则;ABD三点共线故即解得故答案为:【点睛】本题考查了根据向量共线计算参数意在考查学生的计算能力20.【解析】【分析】利用化简求得然后利用计算出【详解】∵∴又∵∴故填:【点睛】本小题主要考查平面向量数量积运算考查平面向量模的求解策略属于基础题21.【解析】由题向量在向量方向上的投影为即即答案为-622.-1【解析】【分析】因为可知为直角三角形又可知为等边三角形故所求投影为=【详解】因为所以为的中点即为直角三角形又可知为边长为2的等边三角形故向量在向量上的投影为=故答案为:-1【点睛】本题主要考查向23.【解析】【分析】设由已知结合余弦定理可求而展开结合向量的数量积的运算及二次函数的性质即可求出结果【详解】设中由余弦定理可得中此时故答案为:【点睛】本题以向量的基本运算为载体主要考查了向量的数量积的定24.0或-3【解析】【分析】根据得到即可求解的值得到答案【详解】由题意向量因为所以整理得解得或故答案为0或【点睛】本题主要考查了向量的坐标运算以及向量的共线的条件的应用着重考查了推理与运算能力属于基础题25.【解析】【分析】由化为再利用两角和与差的余弦公式再同时除以即可【详解】因为所以所以故答案为【点睛】本题考查三角函数的条件求值主要题型有:条件直接代入所求式;所求式适当变形以利代入;由条件变形得到所求三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A 【解析】 【分析】πcos 3α⎛⎫+= ⎪⎝⎭sin (ππ23α--)结合诱导公式求解即可【详解】π4sin 65α⎛⎫-= ⎪⎝⎭,则πcos 3α⎛⎫+= ⎪⎝⎭sin (ππ23α--)π4sin 65α⎛⎫=-= ⎪⎝⎭,故选A . 【点睛】本题考查诱导公式及角的变换,是基础题2.C解析:C 【解析】试题分析:函数sin 2y x =的最小正周期为π,所以命题p 为假命题,由余弦函数的性质可知命题q 为假命题,所以p q ∧为假命题,故选C. 考点:1.三角函数的图象与性质;2.逻辑联结词与命题.3.A解析:A 【解析】由图象可知A=1,周期T π=,所以2ω=,又过点(,0)6π-,所以3πϕ=,即()sin(2)3f x x π=+,每一个点的纵坐标不变,横坐标伸长为原来的2倍,得到()sin()3f x x π=+,故选A.4.C解析:C 【解析】 【分析】首先化简函数()2cos 3f x x πω⎛⎫=+ ⎪⎝⎭,需满足22T π≥,根据函数在区间0,2π⎡⎤⎢⎥⎣⎦单调递减,所以求3x πω+的范围,且是[]0,π的子集,最后求ω的范围.【详解】()cos 1cos 2f x x x πωω⎫⎛⎫=+- ⎪⎪⎝⎭⎭cos x x ωω=2cos 3x πω⎛⎫=+- ⎪⎝⎭()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,22T π∴≥ ,即2ππω≥ 02ω∴<≤ ,当[0,]2x π∈时,[,]3323x ππωπωπ+∈+, ∴ [,][0,]323πωπππ+⊆ ∴23ωπππ+≤,403ω∴<≤, 综上可知403ω<≤. 故选C 【点睛】本题考查三角函数的恒等变形,以及根据区间的单调性求参数的取值范围,属于中档题型,利用三角函数的奇偶性,周期性,对称性求解参数的值或范围是一个重点题型,首先将三角函数写成形如()sin y A x b ωϕ=++,或()cos y A x b ωϕ=++,()tan y A x b ωϕ=++的形式,然后利用三角函数的性质,借助公式,区间范围关系等将参数表示出来,得到函数参数的等式或不等式,求解.5.A解析:A 【解析】函数5()cos sin()sin ()236g x x x x πππ⎡⎤==+=-+⎢⎥⎣⎦,所以将函数()f x 的图象向左平移56π个单位时,可得到()cos g x x =的图象,选A. 6.A解析:A 【解析】 【分析】先根据||AB AB 、||AC AC 分别表示向量AB 、AC 方向上的单位向量,确定||||AB ACAB AC +的方向与BAC ∠的角平分线一致,可得到()||||AB ACOP OA AP AB AC λ-==+,可得答案. 【详解】||AB AB 、||ACAC 分别表示向量AB 、AC 方向上的单位向量 ∴||||AB ACAB AC +的方向与BAC ∠的角平分线一致 又()||||AB ACOP OA AB AC λ=++, ∴()||||AB ACOP OA AP AB AC λ-==+ ∴向量AP 的方向与BAC ∠的角平分线一致 ∴一定通过ABC ∆的内心故选:A . 【点睛】本题主要考查向量的线性运算和几何意义.属中档题.7.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b c c+=,所以1cosA 22b cc ++=,()ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.8.D解析:D 【解析】222222cos cos2cos cos sin sin sin θθθθθθθ-=-=+. 分子分母同时除以2cos θ,即得:2211149cos211519tan tan θθθ--===++. 故选D.9.C解析:C 【解析】 【分析】根据二倍角公式求得cos 23πα⎛⎫+ ⎪⎝⎭,再利用诱导公式求得结果. 【详解】1cos 63πα⎛⎫+= ⎪⎝⎭ 227cos 22cos 113699ππαα⎛⎫⎛⎫⇒+=+-=-=- ⎪ ⎪⎝⎭⎝⎭7cos 2cos 2sin 236269ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴+=-+=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦7sin 269πα⎛⎫∴-= ⎪⎝⎭本题正确选项:C 【点睛】本题考查二倍角公式、诱导公式的应用,关键是能够利用诱导公式将所求角与已知角联系起来.10.A解析:A 【解析】 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得()f x 得解析式,再利用函数()y Asin ωx φ=+的图象变换规律,得出结论. 【详解】解:根据函数()()f x Asin ωx φ=+ (其中A 0>,ω0>,πφ2<)的图象, 可得A 1=,12π7ππ4ω123⋅=-,ω2∴=. 再利用五点法作图可得π2φπ3⋅+=,求得πφ3=,()πf x sin 2x .3⎛⎫∴=+ ⎪⎝⎭为了得到()ππg x sin ωx sin 2x 66⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭的图象, 只需将()f x 的图象上所有点向右平移π12个单位长度,即可, 故选A . 【点睛】本题主要考查由函数()y Asin ωx φ=+的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,函数()y Asin ωx φ=+的图象变换规律,属于基础题.11.A解析:A 【解析】 【分析】根据周期求ω,根据最值点坐标求ϕ 【详解】 因为2=(),2263T T Tππππω--∴===, 因为63212x πππ-==-时1y =-,所以22()2()1223k k Z k k Z πππϕπϕπ-⨯-=-+∈∴=-∈因为||ϕπ<,所以3πϕ=,选A.【点睛】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性13.A解析:A 【解析】 【分析】代入特殊值法,分别代入304x x π==或,排除各个选项,即可. 【详解】由()01f =可排除B 、D ,由34f π⎛⎫= ⎪⎝⎭C ,故选A. 【点睛】本道题考查了三角函数的解析式的计算,难度中等.14.A解析:A 【解析】由题意得,因为()()2,2a b a b a b -⊥-⊥所以()()22220,220a b a a a b b a b b a b -⋅=-⋅=-⋅=-⋅=, 即22222,2a a a b b ba b ==⋅==⋅,所以向量a 和b 的夹角为1cos ,2a b a b a b⋅〈〉==⋅,又,[0,]a b π〈〉∈,所以,3a b π〈〉=,故选A.考点:向量的夹角公式及向量的数量积的运算.15.D解析:D 【解析】 【分析】根据()6f A =得到4A π∠=,根据cos2cos2B C =得到38B C π∠=∠=,利用二倍角公式计算得到答案. 【详解】())264f A A π=-+=,即sin(2)42A π-=. 锐角三角形ABC ,故32,444A πππ⎛⎫-∈- ⎪⎝⎭,故244A ππ-=,4A π∠=. ()2,20,BC π∈,cos2cos2B C =,故38B C π∠=∠=.22tan 3tan 2tan 11tan 4B B B π===--,故tan 1B =或tan 1B =(舍去). 故选:D . 【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.二、填空题16.①④【解析】【分析】利用共面向量定理以及共线向量的性质一一判断即可得出答案【详解】因为是平面内互不平行的三个向量则由共面向量定理可得:共面时有且仅有一对有序实数对使得成立;则由①可化简为且共面可得有 解析:①④ 【解析】 【分析】利用共面向量定理以及共线向量的性质一一判断即可得出答案. 【详解】因为a b c ,,是平面内互不平行的三个向量,x ∈R ,则由共面向量定理可得:a b c ,,共面时,有且仅有一对有序实数对(),m n 使得c ma nb =+成立;则由①可化简为()()2c xa xb =-+-,且a bc ,,共面可得有序实数对()2,x x --有唯一解,即方程20ax bx c ++=有唯一实数解,则①方程20ax bx c ++=不可能有两个不同的实数解正确;由①的分析可得方程20ax bx c ++=有唯一实数解,则②的说法方程20ax bx c ++=有实数解的充要条件是240b a c -⋅≥不正确;化简22220a x a bx b +⋅+=可得()20ax b+=,则()20ax b+=即得b xa =-,因为向量a b ,不共线,所以b xa =-无实数解,即方程22220a x a bx b +⋅+=无实数解,所以③不正确,④正确. 综上可得:①④正确. 故答案为:①④. 【点睛】本题考查了共面向量定理和共线向量的性质的应用,属于一般难度的题.17.【解析】【分析】【详解】函数f(x)的周期T =因此f(x)=2sinωx 在上是增函数∵0<ω<1∴是的子集∴f(x)在上是增函数∴=即2sin =∴ω=∴ω=故答案为解析:34【解析】 【分析】 【详解】 函数f (x )的周期T =2πω,因此f (x )=2sin ωx 在0,πω⎡⎤⎢⎥⎣⎦上是增函数,∵0<ω<1,∴0,3π⎡⎤⎢⎥⎣⎦是0,πω⎡⎤⎢⎥⎣⎦的子集, ∴f (x )在0,3π⎡⎤⎢⎥⎣⎦上是增函数, ∴3f π⎛⎫ ⎪⎝⎭=2,即2sin 3πω⎛⎫⎪⎝⎭=2, ∴3πω=4π, ∴ω=34,故答案为34. 18.【解析】【分析】延长到使得;延长到使得构造出根据线段关系及三角形面积公式即可求得面积比【详解】延长到使得;延长到使得如下图所示:则可化为所以为的重心设则所以故答案为:【点睛】本题考查了向量加法法则的 解析:1:2:3【解析】 【分析】延长PB 到'B ,使得'2PB PB =;延长PC 到'C,使得'3PC PC =,构造出''AB C∆,根据线段关系及三角形面积公式即可求得面积比.【详解】延长PB 到'B ,使得'2PB PB =;延长PC 到'C,使得'3PC PC =,如下图所示:则230PA PB PC ++=可化为''0PA PB PC ++=所以P 为''AB C ∆的重心设''''PAB PAC PB C S S S k ∆∆∆=== 则3'1122PAB PAB S S S k ∆∆===3'1122PAB PAB S S S k ∆∆=== 2'1133PAC PAC S S S k ∆∆=== ''11111sin sin 2223PBC S S PB PC BPC PB PC BPC ∆⎛⎫⎛⎫==⨯⨯∠=⨯⨯∠ ⎪ ⎪⎝⎭⎝⎭''''1111sin 6266PB C PB PC BPC S k ∆⎛⎫=⨯⨯⨯∠== ⎪⎝⎭ 所以123111::::1:2:3632S S S k k k ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为: 1:2:3 【点睛】本题考查了向量加法法则的应用,三角形面积的表示方法,需要构造三角形解决问题,属于中档题.19.-8【解析】【分析】计算得到根据共线得到代入计算得到答案【详解】则;ABD 三点共线故即解得故答案为:【点睛】本题考查了根据向量共线计算参数意在考查学生的计算能力解析:-8 【解析】 【分析】计算得到12e 4e BD CD CB =-=-,根据共线得到AB BD λ=,代入计算得到答案. 【详解】123CB e e =+,122CD e e =-,则12e 4e BD CD CB =-=-;A ,B ,D 三点共线,故AB BD λ=,即()121224e ke e e λ+=-解得2,8k λ==- 故答案为:8- 【点睛】本题考查了根据向量共线计算参数,意在考查学生的计算能力.20.【解析】【分析】利用化简求得然后利用计算出【详解】∵∴又∵∴故填:【点睛】本小题主要考查平面向量数量积运算考查平面向量模的求解策略属于基础题【解析】 【分析】利用()3b a b ⋅+=化简求得1a b ⋅=-,然后利用22||2a b a a b b +=+⋅+计算出||a b +.【详解】∵()3b a b ⋅+=,∴23b a b ⋅+=,又∵||1a =,||2b =, ∴1a b ⋅=-,22||21243a b a a b b +=+⋅+=-+=.故填:3. 【点睛】本小题主要考查平面向量数量积运算,考查平面向量模的求解策略,属于基础题.21.【解析】由题向量在向量方向上的投影为即即答案为-6 解析:6-【解析】由题向量a 在向量b 方向上的投影为2-,即cos ,2,3, 6.a b a ba ab ab a b a b b⋅⋅===-=∴⋅=-⋅即答案为-6.22.-1【解析】【分析】因为可知为直角三角形又可知为等边三角形故所求投影为=【详解】因为所以为的中点即为直角三角形又可知为边长为2的等边三角形故向量在向量上的投影为=故答案为:-1【点睛】本题主要考查向解析:-1 【解析】 【分析】因为2AO AB AC =+可知,ABC ∆为直角三角形,又AO AB =可知,ABO ∆为等边三角形,故所求投影为cos120BA =1-. 【详解】因为2AO AB AC =+,所以O 为BC 的中点,即ABC ∆为直角三角形,又AO AB =可知,ABO ∆为边长为2的等边三角形,故向量BA 在向量CB 上的投影为cos120BA =1-.故答案为:-1. 【点睛】本题主要考查向量中点公式的应用以及向量投影的求法.23.【解析】【分析】设由已知结合余弦定理可求而展开结合向量的数量积的运算及二次函数的性质即可求出结果【详解】设中由余弦定理可得中此时故答案为:【点睛】本题以向量的基本运算为载体主要考查了向量的数量积的定【解析】 【分析】设DE x =,由已知结合余弦定理可求30ABD BDA ∠=∠=︒,而()()AE BE AD DE BA AD DE ⋅=+⋅++,展开结合向量的数量积的运算及二次函数的性质,即可求出结果. 【详解】 设DE x =,1201BAD AB AD ∠=︒==,,ABD △中,由余弦定理可得,2221BD AB AD 2AB AD cos1201121132︒⎛⎫=+-⋅=+-⨯⨯⨯-= ⎪⎝⎭,BD ∴=ABD ∆中,30ABD BDA ∠=∠=︒,AB BC AD CD ⊥⊥,()()AE BE AD DE BA AD DE ∴⋅=+⋅++22AD BA AD AD DE DE BA DE AD DE =⋅++⋅+⋅+⋅+22311cos 60101cos15002x x x ︒︒=⨯⨯++++⨯⨯++232x x =+ 2212141616x ⎛=-+≥ ⎝⎭,此时DE x ==【点睛】本题以向量的基本运算为载体,主要考查了向量的数量积的定义的应用及二次函数的最值的求解,属于知识的简单综合.24.0或-3【解析】【分析】根据得到即可求解的值得到答案【详解】由题意向量因为所以整理得解得或故答案为0或【点睛】本题主要考查了向量的坐标运算以及向量的共线的条件的应用着重考查了推理与运算能力属于基础题解析:0或-3 【解析】【分析】根据//a b ,得到120x x x ++=(),即可求解x 的值,得到答案. 【详解】由题意,向量(,1),(2,1),a x b x x x R ==-+∈,因为//a b ,所以120x x x ++=(),整理得230x x +=,解得0x =或3-. 故答案为0或3-. 【点睛】本题主要考查了向量的坐标运算,以及向量的共线的条件的应用,着重考查了推理与运算能力,属于基础题.25.【解析】【分析】由化为再利用两角和与差的余弦公式再同时除以即可【详解】因为所以所以故答案为【点睛】本题考查三角函数的条件求值主要题型有:条件直接代入所求式;所求式适当变形以利代入;由条件变形得到所求解析:3. 【解析】【分析】由cos 2cos()3ααπ=+化为cos 2cos()6666ααππππ⎛⎫+-=++ ⎪⎝⎭,再利用两角和与差的余弦公式,再同时除以cos 6πα⎛⎫+ ⎪⎝⎭即可. 【详解】因为cos 2cos()3ααπ=+,所以cos()2cos()6666ππππαα+-=++,cos()cos3sin()sin6666ππππαα+=+,所以tan()63πα+=.故答案为【点睛】本题考查三角函数的条件求值,主要题型有:条件直接代入所求式;所求式适当变形以利代入;由条件变形得到所求式;条件与所求都要变形,找到联系.恰当利用角的变换有时可简化运算.考查运算能力,属于中档题.三、解答题 26.(1)1m =,3n =;(2)1k >-且12k ≠ 【解析】 【分析】(1)根据向量的坐标运算求解即可.(2)利用()()20b c a kc +⋅>+且a kc +与2b c +不同向即可. 【详解】(1)因为a mb nc =+,故()()()()1,21,34,34,23m n m m n n -=-++-=-.故4132331m n m m n n -+==⎧⎧⇒⎨⎨-==⎩⎩. (2)由题()()20b c a kc +⋅>+且a kc +与2b c +不同向,则()()14,3324,430k k +-⋅-+->. 即283301k k k ++->⇒>-.当a kc +与2b c +同向,即()14,33k k +-与()2,1同向时, 此时()14233k k +=-,解得12k =.代入可得此时a kc +与2b c +同向. 故若a kc +与2b c +的夹角为锐角,则1k >-且12k ≠ 【点睛】本题主要考查了平面向量的坐标运算以及夹角的表示方法等,需要根据题意列出对应的表达式,注意向量数量积大于0包括同向的情况.属于中等题型.27.(1)1513k =-或1k =-;(2)3k =- 【解析】 【分析】(1)先求出()4,1AB =,()3,2AC =,可得()43,12AP AB k AC k k =+=++,则(4AP ===求解即可;(2)由(1)解得()63,42OP OA AP k k =+=++,将坐标代入1y x =+中即可求得k 的值 【详解】(1)由题,()()62,434,1AB =--=,()()52,533,2AC =--=, 因为()43,12AP AB k AC k k =+=++,所以(4AP ===即21328150k k ++=,解得1513k =-或1k =- (2)由(1)可知()43,12k k AP +=+因为()2,3OA =,所以()()243,31263,42OP OA AP k k k k =+=++++=++ 因为点P 在直线1y x =+上,则()42631k k +=++,即3k =-【点睛】本题考查向量的坐标表示,考查向量的线性运算,考查向量的模的应用,考查运算能力 28.(1)证明见解析;(2)最小值为34. 【解析】【分析】(1)利用共线向量基本定理得AM AN λ=,根据三角形的中线对应的向量等于相邻两边对应的向量的和的一半,将已知条件代入得到要证的结论;(2)利用向量的运算法则:三角形减法法则的逆运算将MN 用三角形的边对应的向量表示,利用向量模的平方等于向量的平方,将2||MN 表示为m 的二次函数,求出二次函数的最小值.【详解】(1)由,,A M N 三点共线,得/,AM AN 共线,根据共线向量定理可得,存在R λ∈使得AM AN λ=,即11()()22AE AF AB AC λ+=+, 所以mAB nAC AB AC λλ+=+,根据平面向量基本定理可得m n λ==,所以m n =.(2)因为MN AN AM =-11()()22AB AC AE AF =+-+11(1)(1)22m AB n AC =-+-, 又1m n +=,所以11(1)22MN m AB mAC =-+, 因为三角形ABC 是边长为1的正三角形,所以||||1AB AC ==,1||||cos32AB AC AB AC π⋅==, 所以2||MN = 22222111(1)(1)442MN m AB m AC m mAB AC =-++-⋅ 22111(1)11(1)||||cos 4423m m m m AB AC π=-⨯+⨯+- 22111(1)(1)444m m m m =-++-2113()4216m =-+,所以12m =时,MN 【点睛】本题考查了共线向量定理,平面向量基本定理,平面向量的数量积,平面向量三角形的减法法则的逆运算,二次函数求最小值,属于中档题.29.(1)12;(2)74m =,54. 【解析】【分析】 (1)根据条件即可求出()()3121AB AC m m ==--,,,,根据A ,B ,C 三点共线即可得出向量AB AC ,共线,从而得出3(1﹣m )﹣(2﹣m )=0,解出m 即可;(2)据题意可知,AB AC ⊥,从而得到0AB AC ⋅=,进行数量积的坐标运算即可求出74m =,从而可求出AC AB ,的值,从而可求出△ABC 的面积. 【详解】 由已知得,()()()6,33,43,1AB OB OA =-=---=,()()()5,33,42,1AC OC OA m m m m =-=-----=--,A B C 、、三点共线,AB ∴∥AC . 3(1)2,21m m m -=-= 12m ∴=. (2)ABC ∆是以角为直角顶点的直角三角形=0AB AC ∴⋅,()()()312,1321740m m m m m ⋅--=-+-=-=,, 即74m = ,1AB =+=144AC ⎛===115224Rt BAC S AB AC ∆∴==⨯=. 【点睛】本题考查向量减法的几何意义,向量坐标的减法和数量积运算,平行向量的坐标关系,向量垂直的充要条件.30.141(7,(,)22--- 【解析】【分析】 【详解】试题分析:夹角为钝角可通过数量积为负来解决,但它们之间并不等价,简洁地说,数量积为负排除反向,即可保证夹角为钝角;数量积为正排除同向,即可保证夹角为锐角.不作排除,就要犯错.试题解析:由已知得214e =,221e =,12e e ⋅21cos601=⨯⨯︒=.∴(2t 127e e +)⋅(1e +t 2e )2t =21e 2(27)t ++12e e 7t +22e 22157t t =++ 6分 欲使夹角为钝角,需221570t t ++<.得172t -<<-. 8分 设2t 127e e +λ=(1e +t 2e )(0λ<)2{7t t λλ=∴=227t ∴=10分∴t =,此时λ=. 11分即t =时,向量1227te e +与12e te +的夹角为π.∴ 夹角为钝角时,t 的取值范围是141(7,(,)22---. 13分 考点:向量数量积的应用之一:求夹角.。
天津市第七中学、育才中学2021-2022学年九年级上学期期末数学试题(含答案解析)
【点睛】本题考查抛物线的对称轴以及抛物线与系数之间的关系,解题的关键是根据图象可以判断 、 、 的符号,灵活变化,能够找出所求各结论需要的条件.
二、填空
13.若m是方程 的一个根,则 的值为______.
【答案】-16
【解析】
【分析】把x=m代入 ,可得 ,然后代入 计算即可;
【详解】解:把x=m代入 ,得
∴一次函数y=x﹣2的图象必过第一、三象限
∵一次函数y=x﹣2中b=-2
∴一次函数y=x﹣2的图象还过第四象限
即一次函数y=x﹣2的图象过第一、三、四象限
所以满足题意的是选项C
故选:C
【点睛】本题考查了反比例函数与一次函数的图象与性质,在给定了反比例函数与一次函数的解析式后,根据它们的比例系数即可确定函数图象经过的象限,根据一次函数的b的符合可最后确定一次函数所经过的象限.
【详解】解:① 由函数图象开口向上,
∴ ,
∵对称轴在 轴左侧,
∴
∴ ,
∵函数图象与 轴交于负半轴,
∴ ,
,故①错误;
②由图象可知:当 时, ,
对称轴为直线 ,
∴抛物线上 与 对应 点的纵坐标相等,
∴当 时, ,故②正确;
③ ,
,
,
,故③错误;
④把 代入 得 ,故④正确,
综上所述:正确的有②④,共2个,
2.下列图案中既是轴对称图形又是中心对称图形的是()
A. B. C. D.
【答案】B
【解析】
【详解】A. 轴对称图形,不是中心对称图形,故不符合题意;
B.既是轴对称图形,又是中心对称图形,故符合题意;
C.是轴对称图形,不是中心对称图形,故不符合题意;
D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
2021-2022学年天津七中、育才中学九年级(上)期末数学试卷(解析版)
2021-2022学年天津七中、育才中学九年级第一学期期末数学试卷一、选择题(每题3分,共36分)1.2cos30°的值等于()A.1B.C.D.22.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.对于二次函数y=﹣2(x+3)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x=﹣3C.当x>﹣4时,y随x的增大而减小D.顶点坐标为(﹣2,﹣3)4.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x﹣2)2+3B.y=5(x+2)2﹣3C.y=5(x+2)2+3D.y=5(x﹣2)2﹣35.如图,AB为⊙O的直径,C、D为⊙O上两点,∠CDB=30°,BC=3,则AB的长度为()A.6B.3C.9D.126.下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.某种彩票中奖的概率是,那么买10000张这种彩票一定会中奖C.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.通过大量重复试验,可以用频率估计概率7.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A.B.2C.3D.28.如图中的几何体的左视图是()A.B.C.D.9.如图,△ABC的三个顶点都在方格纸的格点上,其中A点的坐标是(﹣1,0),现将△ABC绕A点按逆时针方向旋转90°,则旋转后点C的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,2)D.(﹣3,2)10.若点A(﹣3,y1),B(2,y2),C(5,y3)都在反比例函数y=(a为常数)的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y1 11.反比例函数y=﹣与一次函数y=x﹣2在同一坐标系中的大致图象可能是()A.B.C.D.12.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=﹣1,该抛物线与x轴的一个交点为(x1,0),且0<x1<1,有下列结论:①abc>0;②9a﹣3b+c>0;③b<a;④3a+c >0.其中正确结论的个数是()A.1B.2C.3D.4二、填空(每空3分,共18分)13.若m是方程2x2﹣3x﹣1=0的一个根,则﹣6m2+9m﹣13的值为.14.一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率.15.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.16.抛物线y=﹣3x2+2x﹣1的图象与x轴交点的个数是.17.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程ax2﹣2(a﹣1)x+(a﹣3)=0有两个不相等的实数根,且使反比例函数y=的图象分布在一、三象限的概率是.18.如图,已知△ABC中,∠BAC=120°,AB=AC=2.D为BC边一点,且BD:DC=1:2.以D为一个点作等边△DEF,且DE=DC连接AE,将等边△DEF绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AF的长为.三、解答题(共66分)19.解方程:(1)x2﹣6x+5=0;(2)3x(x﹣1)=2x﹣2.20.如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C(﹣2,m).(1)求直线AB和反比例函数的解析式;(2)求△BOC的面积.21.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,直接写出AC的长.22.在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D 处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)23.某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?参考答案一、选择题(每题3分,共36分)1.2cos30°的值等于()A.1B.C.D.2【分析】根据特殊角的三角函数值直接解答即可.解:2cos30°=2×=.故选:C.2.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.根据定义,结合图形即可求解.解:A.是轴对称图形,不符合题意;B.既是轴对称图形又是中心对称图形,符合题意;C.是轴的对称图形,不符合题意;D.既不是中心对称图形也不是轴对称图形,不符合题意;故选:B.3.对于二次函数y=﹣2(x+3)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x=﹣3C.当x>﹣4时,y随x的增大而减小D.顶点坐标为(﹣2,﹣3)【分析】根据抛物线的性质由a=﹣2得到图象开口向下,根据顶点式得到顶点坐标为(﹣3,0),对称轴为直线x=﹣3,当x>﹣3时,y随的增大而减小.解:由y=﹣2(x+3)2得抛物线开口向下,对称轴为直线x=﹣3,顶点坐标为(﹣3,0),x≤﹣3时y随x增大而增大,x>﹣3时y随x增大而减小.故选:B.4.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x﹣2)2+3B.y=5(x+2)2﹣3C.y=5(x+2)2+3D.y=5(x﹣2)2﹣3【分析】按照“左加右减,上加下减”的规律进行解题.解:将抛物线y=5x2向左平移2个单位,再向上平移3个单位得到函数解析式是:y=5(x+2)2+3.故选:C.5.如图,AB为⊙O的直径,C、D为⊙O上两点,∠CDB=30°,BC=3,则AB的长度为()A.6B.3C.9D.12【分析】连接AC,利用直角三角形30°的性质求解即可.解:如图,连接AC.∵AB是直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,∴AB=2BC=6,故选:A.6.下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.某种彩票中奖的概率是,那么买10000张这种彩票一定会中奖C.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.通过大量重复试验,可以用频率估计概率【分析】根据概率的意义以及随机事件和必然事件的定义对各选项分析判断即可得解.解:A.掷一枚质地均匀的骰子,掷得的点数为3的概率是,此选项错误,不符合题意;B.某种彩票中奖的概率是,那么买10000张这种彩票不一定会中奖,原命题说法是错误的,此选项不符合题意;C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D.通过大量重复试验,可以用频率估计概率,此选项符合题意;故选:D.7.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A.B.2C.3D.2【分析】由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.解:连接CC1.Rt△ABE中,∠BAE=30°,AB=,易得BE=AB×tan30°=1,AE=2.∠AEB1=∠AEB=60°,由AD∥BC,那么∠C1AE=∠AEB=60°,所以△AEC1为等边三角形,那么△CC1E也为等边三角形,那么EC=EC1=AE=2,∴BC=BE+EC=3,故选:C.8.如图中的几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:A.9.如图,△ABC的三个顶点都在方格纸的格点上,其中A点的坐标是(﹣1,0),现将△ABC绕A点按逆时针方向旋转90°,则旋转后点C的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,2)D.(﹣3,2)【分析】利用旋转变换的性质分别作出B,C的对应点B′,C′可得结论.解:观察图象,可知C′(﹣2,3),故选:B.10.若点A(﹣3,y1),B(2,y2),C(5,y3)都在反比例函数y=(a为常数)的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y1【分析】根据反比例函数的性质得出反比例函数的图象在第一、三象限,且在每个象限内,y随x的增大而减小,再根据点的坐标特点得出即可.解:∵反比例函数的解析式为y=(a为常数),∴反比例函数的图象在第一、三象限,且在每个象限内,y随x的增大而减小,∵点A(﹣3,y1),B(2,y2),C(5,y3)都在反比例函数y=(a为常数)的图象上,∴A在第三象限内,B、C在第一象限内,∴y1<0,0<y3<y2,∴y1<y3<y2,故选:B.11.反比例函数y=﹣与一次函数y=x﹣2在同一坐标系中的大致图象可能是()A.B.C.D.【分析】根据反比例函数的性质、一次函数的性质即可判断反比例函数的图象和一次函数的图象所处的象限,据此即可选C.解:由反比例函数y=﹣与一次函数y=x﹣2可知,反比例函数的图象在二、四象限,一次函数的图象通过一、三、四象限,故选:C.12.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=﹣1,该抛物线与x轴的一个交点为(x1,0),且0<x1<1,有下列结论:①abc>0;②9a﹣3b+c>0;③b<a;④3a+c>0.其中正确结论的个数是()A.1B.2C.3D.4【分析】①根据函数图象可得a、b、c的符号从而可以判断①是否正确;②由对称轴为直线x=﹣1,可知点(1,a+b+c),(﹣3,9a﹣3b+c)是抛物线是两个对称点,根据0<x1<1,a>0,判断点(1,a+b+c),所在的象限,可知点(﹣3,9a﹣3b+c)所在的象限,从而判断9a﹣3b+c的符号;③由对称轴公式可知,﹣=﹣1,即b=2a>0,而0<x1<1,抛物线开口向上,可知抛物线与y轴交于负半轴,c<0,可判断b、c的大小关系;④由②③可知,把b=2a代入a+b+c>0得3a+c>0.解:①∵由函数图象开口向上可得a>0;顶点在y轴左侧可得a、b符号相同,故b>0;函数图象与y轴交于负半轴,可知c<0.∴abc<0,故①错误;②∵0<x1<1,∴点(1,a+b+c)在第一象限,又∵对称轴为直线x=﹣1,∴(﹣3,9a﹣3b+c)在第二象限,故9a﹣3b+c>0,故②正确;③∵﹣=﹣1,∴b=2a,∴b﹣a=2a﹣a=a>0,∴b>a>c,故③错误;④把b=2a代入a+b+c>0得3a+c>0,故④正确;故选:B.二、填空(每空3分,共18分)13.若m是方程2x2﹣3x﹣1=0的一个根,则﹣6m2+9m﹣13的值为﹣16.【分析】将m代入2x2﹣3x﹣1=0可得2m2﹣3m=1,再将所求代数式变形为﹣3(2m2﹣3m)﹣13即可求解.解:∵m是方程2x2﹣3x﹣1=0的一个根,∴2m2﹣3m﹣1=0,∴2m2﹣3m=1,∵﹣6m2+9m﹣13=﹣3(2m2﹣3m)﹣13=﹣3﹣13=﹣16,故答案为:﹣16.14.一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率.【分析】利用概率公式直接求解即可.解:∵袋中有形状材料均相同的白球2个红球4个,共6个球,∴任意摸一个球是红球的概率=.故答案为:.15.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为π.【分析】根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.解:连接OB,OD,∵五边形ABCDE是正五边形,∴∠E=∠A=180°﹣=108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,∴劣弧BD的长为=π,16.抛物线y=﹣3x2+2x﹣1的图象与x轴交点的个数是0.【分析】先计算判别式的值,然后根据判别式的意义进行判断.解:∵Δ=22﹣4×(﹣3)×(﹣1)=﹣10<0,∴抛物线与x轴没有交点.故答案为:0.17.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程ax2﹣2(a﹣1)x+(a﹣3)=0有两个不相等的实数根,且使反比例函数y=的图象分布在一、三象限的概率是.【分析】令根的判别式Δ>0可求出使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根的a的值,利用反比例函数的性质得出a<3,求得符合题意的数字为0,1,2,再利用随机事件的概率=事件可能出现的结果数÷所有可能出现的结果数即可求出结论.解:令Δ=[﹣2(a﹣1)]2﹣4a(a﹣3)=4a+4>0且a≠0,解得:a>﹣1且a≠0,∴使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根的数有1,2,3.∵反比例函数y=的图象分布在一、三象限,∴3﹣a>0,∴a<3,∴符合题意的数字为1,2,∴该事件的概率为.18.如图,已知△ABC中,∠BAC=120°,AB=AC=2.D为BC边一点,且BD:DC =1:2.以D为一个点作等边△DEF,且DE=DC连接AE,将等边△DEF绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AF的长为2.【分析】点E,F在以D为圆心,DC为半径的圆上,当A,D,E在同一直线上时AE 取最大值,过点A作AH⊥BC交BC于H,通过解直角三角形求出DH,BH,CH的长度,∠ADH的度数,证明四边形DEFC是菱形,△ACF为直角三角形,通过勾股定理可求出AF的长度.解:如图,点E,F在以D为圆心,DC为半径的圆上,当A,D,E在同一直线上时AE 取最大值,过点A作AH⊥BC交BC于H,∵∠BAC=120°,AB=AC=2,∴∠B=∠ACB=30°,BH=CH,∴在Rt△ABH中,AH=AB=,BH=AH=3,∴BC=2BH=6,∵BD:DC=1:2,∴BD=2,CD=4,∴DH=BH﹣BD=1,在Rt△ADH中,AH=,DH=1,∴tan∠DAH==,∴∠DAH=30°,∠ADH=60°,∵△DEF是等边三角形,∴∠E=60°,DE=EF=DC,∵∠ADC=∠E=60°,∴DC∥EF,∵DC=EF,∴四边形DEFC为平行四边形,又∵DE=DC,∴平行四边形DEFC为菱形,∴FC=DC=4,∠DCF=∠E=60°,∴∠ACF=∠ACB+∠DCF=90°,在Rt△ACF中,AF===2,故答案为:2.三、解答题(共66分)19.解方程:(1)x2﹣6x+5=0;(2)3x(x﹣1)=2x﹣2.【分析】利用因式分解法求解即可.解:(1)x2﹣6x+5=0,(x﹣1)(x﹣5)=0,则x﹣1=0或x﹣5=0,解得x1=1,x2=5;(2)∵3x(x﹣1)=2x﹣2,∴3x(x﹣1)﹣2(x﹣1)=0,∴(x﹣1)(3x﹣2)=0,则x﹣1=0或3x﹣2=0,解得x1=1,x2=.20.如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C(﹣2,m).(1)求直线AB和反比例函数的解析式;(2)求△BOC的面积.【分析】(1)根据待定系数法求得即可;(2)解析式联立,解方程组求得C的坐标,然后根据S△BOC=S△AOB+S△AOC即可求得.解:(1)设反比例函数解析式为y=,直线AB解析式为y=ax+b,∵反比例函数的图象过点B(4,1),∴k=4×1=4,把点A(0,﹣1),B(4,1)代入y=ax+b得,解得,∴直线AB解析式为y=﹣1,反比例函数的解析式为y=;(2)得或,∴C(﹣2,﹣2),∴S△BOC=S△AOB+S△AOC=+=3.21.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,直接写出AC的长.【分析】(1)连接OA,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质先求出半径,然后利用含30度角的直角三角形的性质解答即可.解:(1)如图,连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;(2)∵AB=AC,∴∠B=∠C,∵∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=(r+2)解得:r=2,∴OA=r=2,∴AC=OA=2.22.在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D 处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)【分析】由题意可知AB=24米,∠BDA=53°,因为tan∠BDA=,可求出AD,又由tan30°=,可求出CD,即得到答案.解:由题意可知AB=24米,∠BDA=53°,∴tan∠BDA==≈1.33,∴AD=≈18.05(米).∵tan∠CAD=tan30°===,∴CD=18.05×≈10.4(米).故办公楼的高度约为10.4米.23.某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?【分析】(1)先设出一次函数关系式,分40≤x≤60和60<x≤70两种情况用待定系数法分别求出函数解析式即可;(2)设获得的利润为w元,分①当40≤x≤60时和②当60<x≤70时两种情况分别求出函数解析式,然后根据自变量的取值范围和函数的性质求函数的最大值.解:(1)设线段AB的表达式为:y=kx+b(40≤x≤60),将点(40,300)、(60,100)代入上式得:,解得:,∴函数的表达式为:y=﹣10x+700(40≤x≤60),设线段BC的表达式为:y=mx+n(60<x≤70),将点(60,100)、(70,150)代入上式得:,解得:,∴函数的表达式为:y=5x﹣200(60<x≤70),∴y与x的函数关系式为:y=;(2)设获得的利润为w元,①当40≤x≤60时,w=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∵﹣10<0,∴当x=50时,w有最大值,最大值为4000元;②当60<x≤70时,w=(x﹣30)(5x﹣200)﹣150(x﹣60)=5(x﹣50)2+2500,∵5>0,∴当60<x≤70时,w随x的增大而增大,∴当x=70时,w有最大值,最大值为:5(70﹣50)2+2500=4500(元),综上,当售价为70元/件时,该商家获得的利润最大,最大利润为4500元.。
2024年天津市中考数学试题
2024年天津市中考 数学试题一、单选题1.计算()33--的结果是( ) A .6B .3C .0D .-62.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .3.估算 ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( ) A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61-o 的值等于( )A .0B .1C 1D 17.计算3311x x x ---的结果等于( ) A .3B .xC .1x x - D .231x - 8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x << B .132x x x << C .321x x x <<D .213x x x <<9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( )A . 4.50.51y x x y -=⎧⎨-=⎩B . 4.50.51y x x y -=⎧⎨+=⎩C . 4.51x y x y +=⎧⎨-=⎩D . 4.51x y y x +=⎧⎨-=⎩10.如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60oB .65oC .70oD .75o11.如图,ABC V 中,30B ∠=o ,将ABC V 绕点C 顺时针旋转60o 得到DEC V ,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠=∠ B .AC DE ∥ C .AB EF =D .BF CE ⊥12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( )A .0B .1C .2D .3二、填空题13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为. 14.计算86x x ÷的结果为.15.计算)11的结果为.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、第三象限,则k 的值可以是(写出一个即可).17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为;(2)若F 为DE 的中点,则线段AF 的长为.三、解答题18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(1)线段AG 的长为;(2)点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC上.请用无刻度...的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明).19.解不等式组213317x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.20.为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a 的值为______,图①中m 的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h 的人数约为多少?21.已知AOB V 中,30,ABO AB ∠=︒为O e 的弦,直线MN 与O e 相切于点C .(1)如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小; (2)如图②,若,OB M NC G A B ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题: (1)①填表:②填空:张华从文化广场返回家的速度为______km /min ;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(2)当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)24.将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C在第一象限,且2,60OC AOC ∠==o .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC Y 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 25.已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当OM OP ==a 的值; (3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN上,点F 在线段DN 上,NE NF +=,当DE MF +a 的值.。
中考数学代数历年真题精炼2024年集
中考数学代数历年真题精炼2024年集2024年即将到来,对于即将参加中考的学生们来说,备考是至关重要的。
其中,数学是很多学生头疼的科目之一,尤其是代数部分。
代数是数学的一个重要分支,也是解决数学问题的常用方法之一。
为了帮助同学们更好地备战中考数学代数部分,本文将精选历年中考数学代数真题,进行精炼和解析,以期对同学们的备考能起到积极的辅助作用。
一、方程与方程组1. 解方程先来看一道解方程的题目:【例题】已知p,q是第四象限角,满足sinp=cosq,且2p+q=180°,求角p的度数。
解析:根据已知条件sinp=cosq,我们可以得到:sinp = cosq => sinp = sinq由于p,q是第四象限角,因此有:sinq = sin(180° - q) = sinq因此,q = 180° - q + 360°k,其中k是整数。
又已知2p+q=180°,我们可以将其代入上述等式,得到:2p + (180° - 2p + 360°k) = 180°化简可得:2p - 2p + 360°k = 0解方程得k = 0,即q = 180°,代入2p+q=180°,可得p = 0°。
所以,角p的度数为0°。
通过这道题目,我们可以看出解方程需要灵活运用等式性质以及代数运算法则,从而得出正确的答案。
2. 解方程组接下来,我们来看一道解方程组的题目:【例题】已知方程组{2x + y - z = 3{2x - 3y + 4z = 7{x - 2y + 3z = 5解方程组,求x,y,z的值。
解析:我们可以通过消元法或代入法来求解该方程组。
这里,我们选择代入法进行解答。
首先,将第一个方程表示为y和z的关系式:y = 3 - 2x + z (1)将第二个方程表示为y和z的关系式:y = (2x + 4z - 7) / 3 (2)将第三个方程表示为y和z的关系式:y = (x + 3z - 5) / 2 (3)将(2)和(3)代入(1)中,得到:(2x + 4z - 7) / 3 = 3 - 2x + z(2x + 4z - 7) = 9 - 6x + 3z8x - z + 7z = 9 + 7 - 4z8x + 3z = 16 (4)将(4)代入第二个方程:2x - 3( (2x + 4z - 7) / 3 ) + 4z = 76x - 2(2x + 4z - 7) + 12z = 212x + 4z - 7 - 4x - 8z + 14 + 12z = 21-2x + 8z = 14 (5)将(4)代入第三个方程:x - 2( (2x + 4z - 7) / 3 ) + 3z = 53x - 2(2x + 4z - 7) + 9z = 153x - 4x - 8z + 14 + 9z = 15-x + z = 1 (6)联立(5)和(6)解方程组,可得:解得:x = 2,y = 1,z = 3。
天津育才中学初中数学八年级下期中测试题(含答案解析)
一、选择题1.(0分)[ID:9906]在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 2.(0分)[ID:9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90B.85,87.5C.90,85D.95,903.(0分)[ID:9902]估计26的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.(0分)[ID:9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米5.(0分)[ID:9874]顺次连结对角线相等的四边形各边中点所得的四边形是()A.正方形B.菱形C.矩形D.梯形6.(0分)[ID:9870]函数y=11xx+-中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠17.(0分)[ID:9856]如图,四边形ABCD是轴对称图形,且直线AC是否对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④8.(0分)[ID:9924]如图,在正方形ABCD外侧,作等边三角形ADE,AC、BE相交于点F,则∠CFE为()A.150°B.145°C.135°D.120°9.(0分)[ID:9920]如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为()A.9.6cm B.10cm C.20cm D.12cm10.(0分)[ID:9919]甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个11.(0分)[ID:9839]为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD12.(0分)[ID:9838]小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④13.(0分)[ID:9837]如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°14.(0分)[ID:9836]下列各式不成立的是()A8718293=B22233+=C .8184952+=+=D .13232=-+ 15.(0分)[ID :9872]下列计算正确的是( ) A .a 2+a 3=a 5 B .3221-= C .(x 2)3=x 5D .m 5÷m 3=m 2 二、填空题16.(0分)[ID :10018]一次函数y =(m +2)x +3-m ,若y 随x 的增大而增大,函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是____.17.(0分)[ID :10004]计算2(2233)+的结果等于_____.18.(0分)[ID :9997]若实数,,x y z 满足()22130x y z -+++-=,则x y z ++的平方根是______.19.(0分)[ID :9996]如果482x ⨯是一个整数,那么x 可取的最小正整数为________.20.(0分)[ID :9986]若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.21.(0分)[ID :9984]如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.22.(0分)[ID :9983]△ABC 中,AB =13cm ,BC =10cm ,BC 边上的中线AD =12cm .则AC =______cm .23.(0分)[ID :9969]已知实数m 、n 满足221121n n m n -+-+=+,则m +n =__. 24.(0分)[ID :9944]设2a =,3b =,用含,a b 的代数式表示0.54,结果为________.25.(0分)[ID :9958]一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.三、解答题26.(0分)[ID :10132]如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E(1)证明:四边形ACDE 是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.27.(0分)[ID:10122]二次根式中也有这种相辅相成的“对子”.如:(23)(23)1+-=,(52)(52)+-=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:11333333⨯==⨯,23(23)(23)74323(23)(23)+++==+-+-.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)3-7的有理化因式是_________,325-的分母有理化得__________;(2)计算:①已知:3131x+=-,3131y-=+,求22x y+的值;②1111... 12233420192020 ++++++++.28.(0分)[ID:10107]如图,在矩形ABCD中,对角线AC,BD相交于点O,点O关于直线CD的对称点为E,连接DE,CE.(1)求证:四边形ODEC为菱形;(2)连接OE,若BC=2,求OE的长.29.(0分)[ID:10100]计算:(5615)1530.(0分)[ID:10086]如图,方格纸中的每个小正方形的边长都是1,请在方格纸中画出1一个边长为226的等腰三角形(各顶点必须与方格纸中小正方形的顶点重合).【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.D4.C5.B6.D7.B8.D9.B10.A11.B12.C13.B14.C15.D二、填空题16.-2<m<3【解析】【分析】【详解】解:由已知得:解得:-2<m<3故答案为:-2<m<317.35+12【解析】【分析】利用完全平方公式计算【详解】原式=8+12+27=35+12故答案为:35+12【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式然后进行二次根式的乘除18.【解析】【分析】根据二次根式平方绝对值的非负性即可得出xyz的值求和后再求平方根即可【详解】解:由题意可得:解得:∴∴4的平方根是故答案为:【点睛】本题考查的知识点求代数式的平方根解此题的关键是根据19.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确20.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为2421.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m故答案为24m【点睛】本题考查勾股定理掌握22.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122=132即BD223.2【解析】【分析】直接利用二次根式有意义的条件得出n的值进而求出m的值然后代入求解即可得【详解】∵∴解得将代入得:则故答案为:2【点睛】本题考查了二次根式有意义的条件利用二次根式有意义的条件求出参数24.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型25.12米【解析】【分析】【详解】解:如图所示AC=6米BC=45米由勾股定理得AB==75(米)故旗杆折断前高为:45+75=12(米)故答案为:12米三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.2.B解析:B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数3.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.4.C解析:C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.5.B解析:B【解析】【分析】根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,再根据四边形对角线相等即可判断.【详解】解:根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,而四边形对角线相等,则中点四边形的四条边均相等,即可为菱形,故选B.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.6.D解析:D【解析】根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选D.7.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【详解】解:如图,因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.8.D解析:D【解析】【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即可得出∠CFE.【详解】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°,∴∠CFE=180°-∠BFC=120°故选:D.【点睛】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°. 9.B解析:B【解析】【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【详解】作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=12AC=6cm,OB=12BD=8cm,∴AB=10(cm),故选:B.【点睛】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.10.A解析:A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键. 11.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.13.B解析:B【解析】试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B.14.C解析:C【解析】【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】==,A选项成立,不符合题意;33==B选项成立,不符合题意;==,C选项不成立,符合题意;==D选项成立,不符合题意;故选C.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.15.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.二、填空题16.-2<m <3【解析】【分析】【详解】解:由已知得:解得:-2<m <3故答案为:-2<m <3解析:-2<m <3【解析】【分析】【详解】解:由已知得:2030m m >>+⎧⎨-⎩, 解得:-2<m <3.故答案为:-2<m <3.17.35+12【解析】【分析】利用完全平方公式计算【详解】原式=8+12+27=35+12故答案为:35+12【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式然后进行二次根式的乘除解析:【解析】【分析】利用完全平方公式计算.【详解】原式=+27=.故答案为:.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.【解析】【分析】根据二次根式平方绝对值的非负性即可得出xyz 的值求和后再求平方根即可【详解】解:由题意可得:解得:∴∴4的平方根是故答案为:【点睛】本题考查的知识点求代数式的平方根解此题的关键是根据 解析:2±【解析】【分析】根据二次根式、平方、绝对值的非负性即可得出x 、y 、z 的值,求和后再求平方根即可.【详解】解:由题意可得:20,10,30x y z -=+=-=解得:2,1,3x y z ==-=∴4x y z ++=∴4的平方根是2±.故答案为:2±.【点睛】本题考查的知识点求代数式的平方根,解此题的关键是根据二次根式的非负性、绝对值的非负性、平方数的非负性,求出x、y、z的值.19.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确解析:6【解析】【分析】直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.【详解】==∴∴x可取的最小正整数的值为:6.故答案为:6.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.20.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.21.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m故答案为24m【点睛】本题考查勾股定理掌握解析:4【解析】【分析】在Rt ABC中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.解:Rt ABC 中,AC=4m ,BC=3m AB=225AC BC +=m ∵1122ABC S AC BC AB CD =⋅=⋅ ∴125AC BC CD AB ⋅==m=2.4m 故答案为2.4 m【点睛】 本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.22.13【解析】【分析】在△ABD 中根据勾股定理的逆定理即可判断AD⊥BC 然后根据线段的垂直平分线的性质即可得到AC=AB 从而求解【详解】∵AD 是中线AB=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD 中,根据勾股定理的逆定理即可判断AD ⊥BC ,然后根据线段的垂直平分线的性质,即可得到AC=AB ,从而求解.【详解】∵AD 是中线,AB=13,BC=10,∴152BD BC ==. ∵52+122=132,即BD 2+AD 2=AB 2,∴△ABD 是直角三角形,则AD ⊥BC ,又∵BD=CD ,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD ⊥BC .23.2【解析】【分析】直接利用二次根式有意义的条件得出n 的值进而求出m 的值然后代入求解即可得【详解】∵∴解得将代入得:则故答案为:2【点睛】本题考查了二次根式有意义的条件利用二次根式有意义的条件求出参数【解析】【分析】直接利用二次根式有意义的条件得出n 的值,进而求出m 的值,然后代入求解即可得.【详解】∵m =∴22101010n n n ⎧-≥⎪-≥⎨⎪+≠⎩解得1n =将1n =代入得:1121m ==+ 则112m n +=+=故答案为:2.【点睛】本题考查了二次根式有意义的条件,利用二次根式有意义的条件求出参数的值是常考知识点,需重点掌握.24.【解析】【分析】将化简后代入ab 即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型 解析:310ab 【解析】【分析】化简后,代入a ,b 即可.【详解】====a =b =,301=ab 故答案为:310ab . 【点睛】化简变形,本题属于中等题型.25.12米【解析】【分析】【详解】解:如图所示AC=6米BC=45米由勾股定理得AB==75(米)故旗杆折断前高为:45+75=12(米)故答案为:12米解析:12米【解析】【分析】【详解】解:如图所示,AC=6米,BC=4.5米,由勾股定理得,AB= 22+ =7.5(米).4.56故旗杆折断前高为:4.5+7.5=12(米).故答案为:12米.三、解答题26.(1)证明见解析;(2)18.【解析】【分析】【详解】解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.27.(1)7(或-37),-6-52)①14,②25051【解析】【分析】(1)找出各式的分母有理化因式即可;(2)①将x与y分母有理化后代入原式计算即可得到结果.②原式各项分母有理化,合并即可得到结果.【详解】(1)∵(3)(=9-7=2,(3)(-3)=7-9=-2∴3的有理化因式是(或-3)32+=故答案为:(或-3);(2)①当21422x+===+212y====x2+y2=(x+y)2−2xy=(2+2−2×(2=16−2×1=14....++1...-+1.=【点睛】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.28.(1)详见解析;(2)【解析】【分析】(1)利用矩形性质可得OD=OC,再借助对称性可得OD=DE=EC=CO,从而证明了四边形ODEC为菱形;(2)证明四边形OBCE为平行四边形,即可得到.【详解】(1)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OB=OD=12BD,∴OD=OC.∵点O关于直线CD的对称点为E,∴OD=ED,OC=EC.∴OD=DE=EC=CO.∴四边形ODEC为菱形;(2)连接OE.如图,由(1)知四边形ODEC为菱形,∴CE∥OD且CE=OD.又∵OB=OD,∴CE∥BO且CE=BO.∴四边形OBCE为平行四边形.∴22OE BC==【点睛】本题主要考查了矩形的性质,菱形的判定和性质、平行四边形的判定和性质,熟知特殊四边形的判定和性质是解题的关键.29.22【解析】【分析】直接利用无理数的混合运算法则计算得出答案.【详解】原式(30215)2215==【点睛】此题主要考查了实数运算,正确化简各数是解题关键.30.见解析【解析】【分析】利用三角形面积求法以及等腰三角形的性质画出即可.【详解】如图所示,即为所求:【点睛】此题主要考查了等腰三角形的性质以及作图,熟练掌握等腰三角形的性质是关键.。
天津育才中学小升初数学期末试卷真题汇编[解析版]
天津育才中学小升初数学期末试卷真题汇编[解析版]一、选择题1.把底面周长是18.84厘米、高是1分米的圆柱切成若干等份,拼成一个近似长方体的长方体。
这个长方体的表面积比圆柱的表面积增加了()平方厘米。
A.6 B.3 C.30 D.602.5千克油,用去15千克,还剩下多少千克?正确的算式是()。
A.155⨯B.151-5⎛⎫⨯ ⎪⎝⎭C.15-5D.115-3.有一个等腰三角形,其中两个角的度数之比是1∶2。
这个三角形按角分不可能是()。
A.锐角三角形B.直角三角形C.钝角三角形4.比较两个游泳池的拥挤程度,结果是()。
A.甲池更拥挤一些B.乙池更拥挤一些C.一样拥挤5.一个立体图形,从右面看到的形状是,从正面看到的形状是,这个立体图形最少可以由()个小正方体搭成,最多可以由()个小正方体搭成。
()①5;②6;③10A.①③B.③①C.②③6.便民水果店购进了8千克樱桃,卖掉45,下面的说法中,错误的是()。
A.还剩8千克的15B.剩下的与卖掉的比是1∶5 C.还剩1千克的85 D.卖掉6.4千克7.把圆柱的侧面展开后不可能得到一个()。
A.三角形B.平行四边形C.长方形D.正方形8.一种手机提价20%,后降价20%,结果与原价相比().A.不变B.提高了C.降价了D.无法比较9.如图,按一定的流量向放在水槽底部的圆柱体玻璃杯注水,注满玻璃杯后,继续注水,直至注满水槽,水槽中水面上升的高度与注水时间的关系图象大致是()A.B.C.D.二、填空题10.广东省是目前全国人口最多的省份,最新人口普查显示:广东人口约为126013000人,这个数读作(______),省略“万”后面的尾数约是(______)万人。
11.14÷( )=()7=305=( )%=( )∶( )=( )(填小数)。
12.春运期间,从甲地到乙地的长途汽车票价从120元提高到150元,提价(________)%;春运后,价格恢复原价,价格又降低了(________)%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。
3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
(2)①由题意知裁剪x张用方法一,则(19-x)张用方法二,再根据方法一二所得的侧面数与底面数列代数式。
②根据每个三棱柱的底面数目与侧面数目的比列方程,求解x,由此计算出侧面总个数,即可求得盒子的个数。
4.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.5.某公司派出甲车前往某地完成任务,此时,有一辆流动加油车与他同时出发,且在同一条公路上匀速行驶(速度保持不变).为了确定汽车的位置,我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为零,表示汽车位于零千米处.两车行程记录如表:时间(h)057x甲车位置(km)190﹣10流动加油车位置(km)170270(1)甲车开出7小时时的位置为________km,流动加油车出发位置为________km;(2)当两车同时开出x小时时,甲车位置为________km,流动加油车位置为________km (用x的代数式表示);(3)甲车出发前由于未加油,汽车启动后司机才发现油箱内汽油仅够行驶3小时,问:甲车连续行驶3小时后,能否立刻获得流动加油车的帮助?请说明理由.【答案】(1)-90;-80(2)190﹣40x;﹣80+50x(3)解:当x=3时,甲车开出的位置是:190﹣40x=70(km),流动加油车的位置是:﹣80+50x=70(km),则甲车能立刻获得流动加油车的帮助【解析】【解答】解:(1)根据题意得:甲车开出7小时时的位置为:190﹣7×(200÷5)=﹣90(km),流动加油车出发位置为:270﹣(270﹣170)÷2×7=﹣80(km);故答案为:﹣90,﹣80;⑵根据题意得:当两车同时开出x小时时,甲车位置为:190﹣40x,流动加油车位置为:﹣80+50x;【分析】(1)根据题意可知甲车开出5小时时的位置为-10,得到甲车的速度是(190+10)÷5,求出甲车开出7小时时的位置;根据流动加油车出发5小时的位置是170和出发7小时的位置是270,得到流动加油车的速度是(270-170)÷2;求出流动加油车出发的位置;(2)根据题意当两车同时开出x小时时,甲车位置是190﹣40x,流动加油车位置是﹣80+50x;(3)根据题意当x=3时,甲车开出的位置是70km,流动加油车的位置是70km,得到甲车能立刻获得流动加油车的帮助.6.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是________.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2(2)解:∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)解:∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【解析】【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.7.观察下列等式:(1) ________,(2)猜想规律 ________,(3)有以上情形,你能求出下面式子的结果吗?________,(4)已知,求的值.【答案】(1)(2)(3)(4)解:∵∴∴∴x=1∴【解析】【解答】解:(1),故答案为:( 2 )猜想故答案为:( 3 )由以上情形,求出下面式子的结果:故答案为:【分析】(1)利用多项式乘以多项式的法则:用一个多项式的每一项分别去乘以另一个多项式的每一项,再把所得的积相加,最后合并同类项化为最简形式即可;(2)通过观察(1)中两个等式的左右两边的特点即可得出通用公式:;(3)此题直接逆用(2)发现的通过公式即可直接得出答案;(4)由等式的性质,在两边同时乘以(x-1),然后根据(2)发现的通用公式即可得出,解方程即可求出x的值,再代入代数式,按有理数的乘方运算即可算出答案。