七年级数学上册《有理数及其运算》知识点归纳北师大版
七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版
2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷
12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.
幂
底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)
北师大版七年级上册数学第二章有理数及其运算讲义(学生、家长、教师必备)
第二章有理数及其运算■通关口诀:学好有理并不难;基本概念要通关。
整分统称有理数;小数有理也无理。
数轴加上反绝倒。
还有负数非负数。
六个概念先学好;五种运算无漏洞。
科学记数表大数;寻找规律有方法。
■正奇数学学堂第一讲:有理数与数轴【知识点一】正数、负数和0。
1.相反意义的量:由具有相反意义的词表示的两个量叫做具有相反意义的量。
2.具有相反意义的两个量:规定其中一个量用正数表示;另一个量就用负数表示。
3.正负数:正数:大于0的数;负数:小于0的数。
其中正数的正号可省略不写。
负数的负号必须写出。
4.0:不仅表示“没有”,它还是正数与负数的分界。
同时也是具有相反意义的量的基准量。
既不是正数又不是负数。
5.正数与负数的分界:数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
6.重新认识两个符号——⑴“+”:运算符号表示加;性质符号表正数。
⑵“-”:运算符号表示减;性质符号表负数。
★正奇点睛:1.其实上述两个符号还有“自己”和“相反”的意思。
学了相反数自会明白。
2.注意“负负得正”与“双重否定变肯定”的关系。
〖母题示例〗1.任意写出5个正数:________________;任意写出5个负数:_______________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m表示的意义是()A.向东行进50m C.向北行进50mB.向南行进50m D.向西行进50m5.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有()A.2个B.3个C.4个D.5个7.如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?8.10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。
北师大版七年级数学上册-第二章 有理数及其运算串讲
4.
【例3】.如果点A、B、C、D所对应的数为 a、b、 c、d,则a、b、c、d 的大小关系为( )
A. a<c<d<b C. b<d<c<a
B. b<d<a<c; D. d<b<c<a
【例4】.校、家、书店依次坐落在一条南 北走向的大街上,学校在家的南边20米, 书店在家北边100米,张明同学从家里 出发,向北走了50米,接着又向北走了 -70米,此时张敏的位置在( B ) A. 在家 B. 在学校 C. 在书店 D. 不在上述地方
【例 2】 把下列各数分别填在相应的括号内. 1 22 1 - ,13,-2,+6, ,0,0.8,3 ,-4.2. 2 7 4 正数:{ 负数:{ 正整数:{ 正分数:{ 负整数:{ 负分数:{ ,„}; ,„}; ,„}; ,„}; ,„}; ,„}.
课堂小结
1、正数与负数都来自于实际生活;用正、 负数可以表示实际问题中具有相反意义的量, 例如… 2、小学里学过的数除0外都是正数;正数前 面添上“-”号的数是负数;0既不是正数, 也不是负数,它表示正、负数的界限。 3、有理数的分类方法不是唯一的,可以按 整数和分数分成两大类,也可以按正数、零、 负数分成三大类。
第二章 有理数及其运算
七年级(上册)
第一单元:有理数
一. 正数、负数和0
1. 2. 3. 4. 相反意义的量:由具有相反意义的词表示的两个 量叫做具有相反意义的量。 具有相反意义的两个量,规定其中一个量用正数 表示;另一个量就用负数表示。 正数:带正号“+”的数;负数:带负号“-”的 数 。其中正数的正号可省略不写。 0不仅表示“没有”,它还是正数与负数的分界。 同时也是具有相反意义的量的基准量。既不是正 数又不是负数。 重新认识两个符号——
北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)知识点整理及重点题型梳理]
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《有理数及其运算》全章复习与巩固(提高)【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;作用 举例表示数的性质 0是自然数、是有理数表示没有 3个苹果用+3表示,没有苹果用0表示表示某种状态 00C 表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法把一个大于10的数表示成10na ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】 (1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a =1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【变式1】选择题(1)已知四种说法:①|a|=a时,a>0; |a|=-a时, a<0.②|a|就是a与-a中较大的数.③|a|就是数轴上a到原点的距离.④对于任意有理数,-|a|≤a≤|a|.其中说法正确的个数是()A.1 B.2 C.3 D.4(2)有四个说法:①有最小的有理数②有绝对值最小的有理数③有最小的正有理数④没有最大的负有理数上述说法正确的是()A.①② B.③④ C.②④ D.①②(3)已知(-ab)3>0,则()A.ab<0 B.ab>0 C.a>0且b<0 D.a<0且b<0(4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是()A.120 B.-15 C.0 D.-120(5)下列各对算式中,结果相等的是()A.-a6与(-a)6 B.-a3与|-a|3 C.[(-a)2]3与(-a3)2 D.(ab)3与ab3【答案】(1)C;(2)C;(3)A;(4)D;(5)C【变式2】(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×108【答案】C.2.(2016•江西校级模拟)如果m,n互为相反数,那么|m+n﹣2016|=________.【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n﹣2016|.【答案】 2016.【解析】解:∵m,n互为相反数,∴m+n=0,∴|m+n﹣2016|=|﹣2016|=2016;故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153 ()( 1.5)() 1244 -÷⨯-÷-()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123= (2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4.(2015•铜仁市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .【答案】0. 【解析】 解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.【总结升华】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 举一反三:【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(1)数形结合思想:已知有理数a 、b 在数轴上对应点的位置如图所示,且|a|>|b|,求|a|-|a+b|-|b-a|的值.A .2b+aB .2b-aC .aD .b(2)分类讨论思想:已知a 是任一有理数,试比较|a|与-2a 的大小. (3)转化思想:1(999)35⎛⎫-÷-⎪⎝⎭.【答案与解析】解:(1)从数轴上a、b两点的位置可以看出a<0,b>0,且|a|>|b|,所以|a|-|a+b|-|b-a|=-a+a+b-b+a=a.(2)a可能是正数,0或负数,这就需要分类讨论:当a>0时,|a|=a>0,-2a<0,所以|a|>-2a;当a=0时,|a|=0,-2a=0,所以|a|=-2a;当a<0时,|a|=-a>0,-2a>0,又-a<-2a,所以|a|<-2a.综上所述:当a≥0时, |a|≥-2a;当a<0时,|a|<-2a.(3)1(999)(10001)(35)35⎛⎫-÷-=-+⨯-⎪⎝⎭(1000)(35)1(35)34965=-⨯-+⨯-=.【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是()A .1 B .1 C .1 D .1 【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。
北师大版七年级上册数学《有理数的加法》有理数及其运算说课教学复习课件
知2-讲
例3 下列说法正确的是( B ) A.两个有理数相加,和的绝对值等于它们 的绝对值之和 B.两个负数相加,和的绝对值等于它们的 绝对值之和 C.一个正数和一个负数相加,和的绝对值 等于它们的绝对值之和 D.一个正数和一个负数相加等于0
知2-讲
导引:有理数加法法则包含三个方面的内容:“一 辨”同异号;“二定”和的符号;“三求” 和的绝对值(有加有减).
知1-导
(2)算出各算式的结果,比较左、右两边算式的结 果是否相同.
(3)请同学们说说自己的结果,你发现了什么?
知1-讲
加法的运算律 交换律:两个数相加,交换加数的位置,和不变, 用字母表示为a+b=b+a. 结合律:三个数相加,先把前两个数相加,或者先 把后两个数相加,和不变, 用字母表示为(a+b)+c=a+(b+c).
第二章 有理数及其运算
2.4 有理数的加法
第1课时
课件
1 课堂讲解 有理数的加法法则
有理数的加法法则的一般应用 有理数的加法的实际应用
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
某班举行知识竞赛,评分标准是:答对一题加1
分,答错一题扣1分,不 回答得0分.
答对一题, 答错一题, 得0分.
答错一题, 答对一题, 得0分.
1 冬天的某天早晨6点的气温是-1 ℃,到了中午气 温比早晨6点时上升了8 ℃,这时的气温是__7_℃___.
2 A为数轴上表示-1的点,将点A沿数轴向右移动2 个单位长度后到点B,则点B所表示的数为( C ) A.-3 B.3 C.1 D.1或-3
(来自《典中点》)
同号两数相加
有理数的 加法类型
-3 仿照上面的例子,计算2 +(-5)=
七年级数学上册有理数及其运算1有理数新版北师大版
例1 (1)如果节约10吨水记作+10吨,那么浪费2吨水记作什么? (2)如果-2 015元表示亏本2 015元,那么+1 009元表示什么? (3)如果+20%表示增加20%,那么-8%表示什么? 解析 (1)浪费2吨水记作-2吨. (2)+1 009元表示盈利1 009元. (3)-8%表示减少8%.
2
100
错解 正数:{+2 016,+1,…};
? 负数:
? ? ?
?
3.2,
?
9,
?
1 100
,?
? ?
;
?
? 分数:
? ? ?
1 2
,
?
1 100
,?
? ?
;
?
整数:{+2 016,0,+1,…}.
? 正解
正数:
? ?
?2
016,
?
1 ,10.58, ?1,? 2
? ?
;
?
? 负数:
? ? ?
?
时针旋转5圈记作“-5圈”
重要提示
(1)具有相反意义的量是成对出现的,单独的一个量不能称为具有相反意义的量.(2)具有相反意义的量,只 要求意义相反,而不要求数量一定相等,所以与一个量具有相反意义的量不止一个,如盈利5 000元,与它具 有相反意义的量有很多,如亏损2 000元、亏损600元等.(3)用正、负数表示具有相反意义的量,并不是固定 的,如进口300箱可以记作“-300箱”,也可以记作“+300箱”,相应地,出口200箱则记作“+200箱”或 “-200箱”.(4)具有相反意义的两个量所表示的属性相同,是同一类对象
七年级数学上册《有理数及其运算》知识点归纳北师大版
七年级数学上册《有理数及其运算》知识点归纳北师大版1.有理数:有理数=整数+分数整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略).l0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,大凡规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3.相反数:(1)只有符号例外的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)大凡地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4.绝对值:(1)几何定义:大凡地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6.有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
(完整版)北师大版七年级上数学知识点汇总(精心整理)
七年级上册第一章丰富的图形世界第二章有理数及其运算第三章整式及其加减第四章基本平面图形第五章一元一次方程第六章数据的收集与整理第一章:丰富的图形世界一、生活中的立体图形分类1.棱柱的相关概念(初中只讨论直棱柱,即侧面是长方形)①棱:在棱柱中,相邻两个面的交线叫做棱②侧棱:在棱柱中,相邻两个侧面的交线叫做侧棱③根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱......④棱柱所有侧棱都相等,棱柱的上、下底面的形状相同,侧面的形状都是平行四边形①点:线和线相交的地方是点,它是几何中最基本的图形②线:面和面相交的地方是线,分为直线和曲线③面:包围着体的是面,分为平面和曲面④体:几何体也简称体⑤点动成线,线动成面,面动成体二、展开与折叠1.常见立体图形的展开图①圆柱:两个圆,一个长方形②圆锥:一个圆,一个扇形③三棱锥:四个三角形④三棱柱:两个三角形,三个长方形⑤正方体展开图:共有11种,141(6种),231(3种),33(1种),222(1种)⑥要展开一个正方体,需要切开7条棱⑦正方体平面展开图找对立面:相间、Z端三、截一个几何体1.常见立体图形的截面2.用一个平面去截一个正方体,可能得到三边形、四边形、五边形、六边形(3456)四、三视图(主视图、左视图、俯视图)1.三视图的6种题型:(1)已知实物图画三视图;(2)已知俯视图,画主视图和左视图;(3)已知主视图、左视图和俯视图,确定小立方体的个数;(4)已知主视图和俯视图,确定小立方体最多和最少个数;(5)已知左视图和俯视图,确定小立方体最多和最少个数;(6)已知主视图和左视图,确定小立方体最多和最少个数。
五、多边形的一些规律1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
2.从一个n边形的一边上的一点出发,分别连接这个点与其余各顶点,可以把这个n边形分割成(n-1)个三角形。
3.从一个n边形的内部的一个点出发,分别连接这顶点与其余各顶点,可以把这个n边形分割成n个三角形。
北师大版 七年级数学上册 知识点汇总
第十节 科学计数法 定义:一般地,一个大于10的数可以表示成a✖10∧n,其中1<a<10,n是正整 数,这种记数方法叫做科学记数法
第十一节 有理数的混合运算 运算顺序 先算乘方,再算乘除,最后算加减 如果有括号,先算括号里面的
第十二节 用计算器进行计算
第三章 整式及其加减
第一节 用字母表示数 字母可以表示任何数
第五章 一元一次方程
第一节 认识一元一次方程 一元一次方程:只含有1个未知数,且未知数的次数都是1的方程,叫做一元一 次方程 方程的解:使得方程左右两边的值相等的未知数的值,叫做方程的解 本质:一元一次方程的本质是带有未知数的等式 等式的基本性质 等式两边同时加上(或减去)同一个代数式,所得结果仍是等式 等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式
第四节 整式的加减 同类项:所含字母相同,并且相同字母的指数也相同的项 合并同类项:指把同类型合并成一项(即进行计算) 规则:合并同类项时,把同类项的系数相加,字母和字母的指数不变 去括号法则
法则1:括号前是”+”号,把括号和它前面的“+”去掉,原括号里各项的符号都 不改变 法则2:括号前是“-”号,把括号和它前面的“-”去掉,原括号里各项的符号都 要改变
第二节 代数式 定义:用运算符号把数和字母连接而成的式子,叫做代数式 注意:单独的一个数或一个字母也是代数式
第三节 整式 含义:单项式和多项式统称为整式 单项式:表示数字与字母乘积的代数式 单独的一个数或者一个字母也是单项式 单项式的系数:单项式中的数字因数 单项式的次数:单项式中所有字母的指数和 注意:指数为1时,一般不写出来 多项式:几个单项式的和叫做多项式 【注意】“和”包括了减法,因为减去一个数等于加上这个数的相反数。减法 运算都可转化为加法运算 多项式的项:每个单项式叫做多项式的项 多项式的次数:次数最高的项的次数
新北师大版七年级上册数学第二章 有理数及其运算
基础认识篇
1、中国人最早使用负数,可追溯到两千年前的秦汉时期.﹣5 的相反数是( )
A.±5
B.5
C.
D.﹣
2、一个数的相反数是它本身,则这个数是( )
A.0
B.正数
C.负数
D.非负数
3、若 a+b=0,则 a 和 b 的关系为(
A.相等
B.互为倒数
) C.互为相反数
2、“0”的认识:0 既不是正数,也不是负数。 (易错提示:0 除了表示“一个也没有”外,还表示特定的意义。0 是最小的自然数)
基础认识篇
1、已知下列各数:﹣23,﹣101.1, ,﹣ ,﹣0.1,2.8,38,0,+1,
其中正数有:
,负数有:
.
2、在一次军事训练中,一架直升机“停”在离海面 80m 的低空,一艘潜水
A.
B.3
C.﹣
D.﹣3
3、下列说法正确的是( )
①﹣2 是相反数;②2 是相反数; ③﹣2 与 2 互为相反数;④a 的相反数是﹣
a; ⑤0 没有相反数.
A.1 个
B.2 个
C.3 个
D.4 个
4、若 n 与 m 互为相反数,则 n+m=
.
5、下列各对数中互为相反数的是( A.﹣(+8)和+(﹣8) C.﹣(+8)和﹣8
2、﹣|﹣2019|的值是( )
A.
B.
C.﹣2019
基础认识篇
1、把下列各数填在相应的集合里 ﹣23,0.21,﹣ ,﹣3.4,15,0,7,1.6,0.86,﹣7.3
分数集合:{ 整数集合:{
…} 非负整数集合:{ …} 自然数集合:{
新北师大版七年级上册数学知识点总结
新北师大版七年级上册数学知识点总结一、丰富的图形世界1、生活中的立体图形我们生活在一个充满立体图形的世界中。
常见的立体图形有:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体。
圆柱:上下底面是两个完全相同且平行的圆,侧面是一个曲面。
棱柱:上下底面是两个完全相同且平行的多边形,侧面是多个长方形。
圆锥:底面是一个圆,侧面是一个曲面。
棱锥:底面是一个多边形,侧面是多个三角形。
2、展开与折叠很多立体图形都可以通过展开变成平面图形,同样,一些平面图形也可以折叠成立体图形。
例如,正方体有 11 种展开图,需要记住一些常见的展开图形式,以便能够快速判断一个平面图形能否折叠成正方体。
3、截一个几何体用一个平面去截一个几何体,截面的形状可能多种多样。
例如,用一个平面去截正方体,截面可能是三角形、四边形(包括正方形、长方形、梯形)、五边形、六边形。
二、有理数及其运算1、有理数的概念有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
能化成分数形式的小数也是有理数。
2、数轴数轴是一条规定了原点、正方向和单位长度的直线。
任何一个有理数都可以在数轴上找到对应的点,数轴上的点与有理数是一一对应的关系。
3、相反数绝对值相等,符号相反的两个数互为相反数。
例如,5 的相反数是-5,0 的相反数是 0。
4、绝对值数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。
5、有理数的比较大小正数大于 0,0 大于负数,正数大于负数。
两个负数比较大小,绝对值大的反而小。
6、有理数的加法同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同 0 相加,仍得这个数。
7、有理数的减法减去一个数,等于加上这个数的相反数。
8、有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
七年级数学上册 第二章 有理数及其运算 5 有理数的减法知识点解读素材 北师大版(2021年整理)
七年级数学上册第二章有理数及其运算5 有理数的减法知识点解读素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第二章有理数及其运算5 有理数的减法知识点解读素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第二章有理数及其运算5 有理数的减法知识点解读素材(新版)北师大版的全部内容。
《有理数的减法》知识点解读知识点有理数的减法运算(难点)★有理数减法法则:减去一个数等于加上这个数的相反数,即().a b a b-=+-★有理数减法运算的步骤:(1)减法运算变加法运算;(2)运用加法法则进行计算,掌握有理数减法的关键是正确地将减法转变为加法,再按有理数的加法法则运算。
注意:①在运用减法法则时,注意两个符号的变化,一是运算符号,减号变为加号,二是性质符号,减数变成它的相反数;②减法法则不能与加法法则的异号两数相加混淆;③有理数的减法中,被减数与减数不能互换,即减法没有交换律。
典例剖析【例1】计算下列各题:(1)-(17)-(+14);(2)(+32)-(-78);(3)(-114)-14;(4)0-(-5.2).解析:这是有理数的减法,根据有理数的减法法则,先将减法变为加法,再运用有理数加法法则进行计算.答案:(1)-(17)-(+14)=(-17)+(-14)=-31;(2)(+32)-(-78)=(+32)+(+78)=110;(3)(-114)-14=-114+(-14)=-112;(4)0-(-5.2)=0+5.2=5。
2.错因分析:减法转化加法时,减号与后面的减数的性质符号要同时改变,如0-(-5。
北师大七年级上册数学知识点总结
北师大七年级上册数学知识点总结北师大七年级上册数学知识点总结北师大版《数学》(七年级上册)知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、(按名称分)锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
七年级数学上册 第二章 有理数及其运算 4 有理数的加法知识点解读素材 (新版)北师大版
《有理数的加法》知识点解读知识点1 有理数的加法法则(重点)有理数的加法法则如下:(1)同号两数相加,取相同的符合,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符合,并用较大数的绝对值减去较小的绝对值.(3)一个数同0相加,仍得这个数.归纳:有理数的运算涉及两个方面:(1)符合的确定;(2)绝对值的计算.因此运用有理数加法法则进行计算时要按照“一观察,二确定,三求和”的步骤进行,即第一步观察两数的符合是同号还是异号;第二步确定用哪条法则;第三步求出结果.典例剖析【例1】计算下列各题:23(1)(30)(6);(2)()();341(3)( 3.6)( 1.9);(4)()0;3(5)( 2.5)( 3.1);(6)(5)(5).-+--++-++-+-++++- 解析:先观察两个加数的符号,并比较两个加数的绝对值的大小,再根据相应的法则计算. 答案:(1)(30)(6)=(30+6)=36;23321(2)()()();(3)( 3.6)( 1.9)(3.6 1.9) 1.7;11(4)()0;33(5)( 2.5)( 3.1)(3.1 2.5)0.6;(6)(5)(5)0.-+----++=+-=+-++=--=--+=--++=+-=+++-= 方法归纳:(1)有理数加法运算的一般步骤:①首先判断是同号两数相加还是异号两数相加;②再判断结果是正好还是负号;③最后判断是利用绝对值的和还是差进行计算.(2)有理数加法法则口诀:同号相加一边倒;异号相加“大”减“小”,符号跟着“大”的跑,绝对值相等“零”正好;数零相加变不了.其中“大”“小”指加数的绝对值的大小.【类题突破】下列各式,p ,q 互为相反数的是( )A.pq=1B.pq=-1C.P+q=0D.p-q=0答案:C知识点2 有理数加法的运算律(难点)有理数加法的运算律(1)加法的交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a(2)加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b )+c=a+(b+c )说明:式子中的字母a ,b ,c 表示任意有理数.交换律和结合律对两个以上的数也使用,使用运算律是为了简化运算,在使用时,一般先把具有以下特征的数相加:(1)互为相反数的两个数;(2)符号相同的数;(3)相加能得到整数的数;(4)分母相同的数;(5)易于通分的数.典例剖析【例2】计算下列各题:(1)15(19)18(12)(14);(2)(13.5)22.5(13.26)(8.5)19.4;521(3)(3)(15.5)(18)(5);77211(4)(18)(71).42+-++-+--++-+-+-+-+-+++-解析:几个有理数相加,可以先把正数和负数相加,这样能简化计算,几个带分数相加,可以先把每个带分数拆成整数部分与真分式部分相加的形式,再把整数部分与真分数部分分别结合在一起,再相加.答案:(1)15(19)18(12)(14);=15+18+[(-19)+(-12)+(-14)]=33+(-45)=12;(2)(13.5)22.5(13.26)(8.5)19.4;22.519.4[(13.5)(13.26)(8.5)]41.9(35.26)6.64;521(3)(3)(15.5)(18)(5)7725=[(3)7+-++-+---++-+-+=++-+-+-=+-=-+-+-+-+21(18)][(15.5)(5)]7222(10)32;11(4)(18)(71).4211[(18)()][(71)()]4211(18)()(71)()4211(18)(71)[()()]42153()4153.4-+-+=-+-=-++-=++++-+-=++++-+-=++-+++-=-+-=-方法提示:将带分数拆成整数部分与真分数相加的形式要注意:(1)分开的整数部分进而小数部分必须保持原带分数的符合;(2)运算符号和数的性质符号要同括号区分开,如2+(-3)这个符号不能连在一起写成“2+-3”.【类型突破】计算52315(9)17(3)6342-+-++-. 答案:原式=5231[(5)()][(9)()](17)[(3)()]63425231[(5)(9)17(3)][()()()]6342110(1)1.44-+-+-+-+++-+-=-+-++-+-+-++-=+-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册《有理数及其运算》知识点
归纳北师大版
有理数:
有理数=整数+分数
整数=正整数+0+负整数分数=正分数+负分数
有理数=正有理数+0+负有理数
正有理数=正整数+正分数负有理数=负整数+负分数
l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…
l负数的概念:数轴上0左边的数,形如-3,-0.2,-100….
l0既不是正数也不是负数,0是整数也是偶数.
①正负数的表示方法:
盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;
②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;
数轴:概念:规定了原点,正方向和单位长度的直线
数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;
画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方
向为负方向;最后选取适应的长度作为单位长度;
数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.
相反数:
只有符号不同的两个数叫做互为相反数,0的相反数是0;
a,b互为相反数a+b=0;
求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;
一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.
绝对值:
几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;
代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.
对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;
比较两个负数,绝对值大的反而小;
倒数:乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;
求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.
用1除以一个非0数,商就是这个数的倒数.
有理数的四则运算:
⑴加法法则:
①同号两数相加,符号不变,把绝对值相加;
②异号两数相加,绝对值相等时相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.
③一个数同0相加,仍得这个数;
有理数加法运算律:交换律和结合律.
⑵减法法则:
①减去一个数,等于加上这个数的相反数,依据加法法则
②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;
减法没有交换律.
⑶乘法法则:
①两数相乘,同号得正,异号得负,把绝对值相乘;
②任何数同0相乘,得0;
③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.
乘法的运算律:交换律、结合律、乘法对加法的分配律.
⑷除法法则:
①两数相除,同号得正,异号得负,把绝对值相除;
②0除以任何非0的数都得0.
③除以一个数,等于乘上这个数的倒数,即.
⑸乘方:
①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;
②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;
③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的正整数次幂都是0.
⑹混合运算:
①从左到右的顺序进行;
②先乘方,再乘除,后加减;如有括号,应先算括号里
面的;
科学记数法
把一个大于10的数表示成的形式,这种记数方法叫科学记数法;
准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;
精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;
有效数字:在近似数中,从左边个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。