立体信息检测苹果表面缺陷(平行的结构光)

合集下载

高光谱成像技术无损检测水果缺陷的研究进展

高光谱成像技术无损检测水果缺陷的研究进展

高光谱成像技术无损检测水果缺陷的研究进展田有文;牟鑫;程怡【摘要】水果缺陷无损检测是水果分级的重要依据。

随着图像技术与光谱信息的发展、高光谱成像系统硬件成本的下降和性能的提升,高光谱成像技术在水果缺陷无损检测方面获得了越来越多的应用。

为了能充分利用最新研究成果,从高光谱成像技术在水果的缺陷无损检测方面,综述了水果损伤、病害、虫害等缺陷无损检测的研究进展,并对其发展方向进行了展望。

%Nondestructive detection of fruits defects is an important basis of the classification of fruits .With the develop-ment of image technology and spectral information , decline of the hyperspectral imaging system hardware cost and im-provements of performance , hyperspectral imaging technology in nondestructive detection of fruits defects gains more and more applications .In order to take full advantage of the latest research results , this paper reviews the advancement of nondestructive detection of the fruits defects of disease , pest by hyperspectral imaging technology .And the development direction is prospected .【期刊名称】《农机化研究》【年(卷),期】2014(000)006【总页数】5页(P1-5)【关键词】高光谱成像;水果;缺陷;无损检测【作者】田有文;牟鑫;程怡【作者单位】沈阳农业大学信息与电气工程学院,沈阳 110866;沈阳农业大学信息与电气工程学院,沈阳 110866;沈阳农业大学信息与电气工程学院,沈阳110866【正文语种】中文【中图分类】TP391.410 引言水果缺陷是水果自动分级系统中的重要依据之一,种类主要有碰伤、压伤、擦伤、刺伤、磨伤、裂伤、雹伤、腐烂、虫咬、果锈、日灼和病害等。

基于机器视觉的水果缺陷检测方法研究

基于机器视觉的水果缺陷检测方法研究

基于机器视觉的水果缺陷检测方法研究作者:孙懿李爱平胡永刘源来源:《软件导刊》2014年第05期摘要:水果分级的目的是使水果达到标准化和商品化,因而水果缺陷检测尤为重要。

为增强水果市场的竞争力,国内外对水果缺陷检测方法进行了大量研究。

简要介绍了国内外研究状况,对已存在的4种水果缺陷检测技术进行了研究分析,提出了每种检测方法的适用范围,为水果的无损缺陷检测提供了一定的理论依据。

关键词关键词:水果缺陷检测;RGB成像技术;结构光成像技术;近红外光谱成像技术;高光谱成像技术中图分类号:TP319文献标识码:A文章编号文章编号:16727800(2014)005016502 基金项目基金项目:西藏民族学院青年项目(10myQ23)作者简介作者简介:孙懿(1982-),女,硕士,西藏民族学院信息工程学院讲师,研究方向为图形图像处理;李爱平(1982-),女,硕士,西藏民族学院信息工程学院讲师,研究方向为通信与信息处理;胡永(1980-),男,硕士,西藏民族学院信息工程学院讲师,研究方向为图形图像处理;刘源(1990-),女,西安理工大学自动化与信息工程学院硕士研究生,研究方向为系统工程。

0引言水果缺陷是水果分级的重要指标,目前国外水果缺陷检测技术已相当成熟,国内水果品质检测研究起步较晚,但也取得了一定的成效。

Kavdir[1]等使用神经网络算法对柑橘进行分级,把缺陷和物理特征作为神经网络分类器的输入参数,对柚子和橙子的分级准确率达到98.5%,对橘子的分级准确率达到98.3%。

李庆中[2]等在实数域分形盒维数计算方法的基础上,提出了双金字塔数据形式的盒维数快速计算方法。

对于待识别水果图像的刻意缺陷区,提出用5个分形维数作为描述该区域粗糙度和纹理方向性的特征参数,用所提出的快速计算方法进行计算,并利用人工神经网络作为模式识别器来区分水果表面的缺陷区和梗萼凹陷区,识别准确率达到93%,一个可疑区的判别时间为4~7ms。

基于类球形亮度变换的水果表面缺陷提取

基于类球形亮度变换的水果表面缺陷提取

基于类球形亮度变换的水果表面缺陷提取随着现代科技的发展与进步,大量的水果被广泛应用到了人们的生活和工业领域中。

无论是运输、采摘、还是销售,甚至是果汁等食品加工行业,水果都扮演着非常重要的角色。

然而,随着人们越来越对食品质量的重视,水果表面的质量成了与存活还是被淘汰的关键因素之一。

因此,如何快速、准确地检测出水果表面存在的缺陷,提高产品的质量,已经成为水果加工行业研究的热点问题。

本文将介绍一种基于类球形亮度变换的水果表面缺陷提取方法。

1. 引言水果表面缺陷检测是充满挑战性的任务,它包括异物、裂缝、病斑、划痕等众多种类。

水果表面的光照、颜色、纹理等多种因素,都为缺陷检测带来了一定的难度。

其中,光照变化是水果检测中最主要的挑战之一,特别是在光线不充足的环境下。

因此,本文提出一种基于类球形亮度变换的水果表面缺陷提取方法。

这种方法通过提取光度信息,实现了光照的纠正,从而避免了光照变化对检测结果的影响,使得检测结果更加准确。

2. 相关工作传统的缺陷检测方法主要是基于图像的统计分析、形态学变换、机器学习等技术。

然而,这些方法存在一定的局限性:对光照的敏感度比较大,处理速度比较慢,还需要手工调参等。

近些年来,深度学习等技术的发展为缺陷检测提供了一条新的思路。

基于深度学习的方法可以通过对大量样本的学习获取具有泛化能力的模型,对于光照、纹理等复杂场景的处理也更加适应。

因此,现有的水果表面缺陷检测方法大多使用了这些方法。

但是,这些方法存在以下一些问题:1. 数据采集难度大,标注数据成本高。

2. 需要更加大容量的运算设备。

3. 模型无法确保泛化性能。

基于此,我们提出了基于类球形亮度变换的水果表面缺陷提取方法。

这种方法不仅提高了检测精度,还避免了深度学习方法在数据搜集和模型训练上存在的问题。

3. 方法3.1 方法概述本文提出的缺陷检测方法主要包括以下五个步骤:1. 图像预处理:将原始图像进行预处理,包括亮度增强、去噪等操作。

基于图像处理的苹果表面缺陷检测系统的设计

基于图像处理的苹果表面缺陷检测系统的设计

信息化工业科技创新导报 Science and Technology Innovation Herald1苹果的表面缺陷是其品质最直接的反映,且在一定程度上还会影响内部品质。

在交易或存储前,对苹果外观品质进行分选可实现优质优价,可有效防止缺陷苹果感染其他优质水果[1]。

传统的外观品质检测主要是利用分级机械,根据水果的大小、质量等指标进行分级,而无法对水果的颜色、纹理和表面缺陷等做出评价[2]。

运用机器视觉技术和图像处理技术检测水果的外观缺陷一直是研究的难点和热点[3-5]。

该文设计基于图像处理的苹果表面缺陷检测系统,通过图像采集装置获取苹果图像,用缺陷检测算法对图像信息进行分析,实现对苹果表面缺陷的快速检测。

1 试验材料与方法1.1 试验样本试验的研究对象为红富士苹果,共采购100个。

这些果实果型匀称,半径为68.5~88 m m,质量为128~211 g,50个为有表面缺陷的苹果,50个为正常苹果,所有样本均用于算法的验证。

1.2 图像采集装置搭建图像采集装置如图1所示。

整个装置由计算机、像素为1 200万的摄像头、光源(USB接口的L E D 灯炮)和自制光照箱组成。

①基金项目:广东省自然科学基金(项目编号:2015A030310398)。

作者简介:代秋芳(1979,7—),女,湖南汉寿人,博士,讲师,研究方向:喷雾技术及电子信息技术。

DOI:10.16660/ k i.1674-098X.2016.09.001基于图像处理的苹果表面缺陷检测系统的设计①代秋芳1,2 吴伟斌2 陈建泽2 李浚时1(1.华南农业大学电子工程学院;2.广东省山地果园机械创新工程技术研究中心 广东广州 510642)摘 要:表面缺陷是衡量苹果品质的重要指标。

为了能够在分选中正确的检测出表面存在缺陷的苹果,提高苹果的分级水平,设计了一个基于图像处理的苹果表面缺陷检测系统,可完成苹果图像的采集和苹果表面缺陷的判断。

实验结果表明:直方图算法判断准确率为81%,感知哈希算法为86%,综合算法为91%。

基于高光谱成像技术的苹果表面缺陷快速无损识别方法[发明专利]

基于高光谱成像技术的苹果表面缺陷快速无损识别方法[发明专利]

专利名称:基于高光谱成像技术的苹果表面缺陷快速无损识别方法
专利类型:发明专利
发明人:孟庆龙,张艳,尚静
申请号:CN201811021636.9
申请日:20180903
公开号:CN109001218A
公开日:
20181214
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于高光谱成像技术的苹果表面缺陷快速无损识别方法,该方法包括以下步骤:收集完好无损和表面有缺陷苹果样本随机分配,建立校正样本集和检验样本集;利用高光谱图像采集系统采集校正和检验样本集苹果样本的高光谱图像;对高光谱图像进行黑白校正,并通过掩膜处理以消除背景,使图像中仅含苹果。

然后,分别提取苹果正常区域以及表面有缺陷区域的平均光谱,并采用多元散射校正(MSC)对原始光谱进行预处理,得到校正和检验样本集光谱数据。

最后,利用偏最小二乘判别分析方法结合化学计量学,建立苹果表面缺陷的识别模型。

本发明通过高光谱成像技术可快速、无损地识别出表面有缺陷的苹果。

申请人:贵阳学院
地址:550005 贵州省贵阳市南明区见龙洞路103号
国籍:CN
代理机构:贵阳春秋知识产权代理事务所(普通合伙)
代理人:杨云
更多信息请下载全文后查看。

一种区域亮度自适应校正的水果表面缺陷快速检测方法[发明专利]

一种区域亮度自适应校正的水果表面缺陷快速检测方法[发明专利]

专利名称:一种区域亮度自适应校正的水果表面缺陷快速检测方法
专利类型:发明专利
发明人:吕强,张明,李鹏,王腾,邓烈,郑永强,易时来
申请号:CN201910081814.5
申请日:20190128
公开号:CN109613023A
公开日:
20190412
专利内容由知识产权出版社提供
摘要:本发明涉及一种区域亮度自适应校正的水果表面缺陷快速检测方法,首先以黑色为背景,获取水果RGB彩色图像,然后去除背景并提取R‑B差值灰度图像形成目标图像P(x,y),再以图像中每个像素点邻域内最大的几个灰度值均值作为当前像素的亮度,计算提取目标图像P(x,y)的表面亮度图像I(x,y),将P(x,y)和I(x,y)点除得到亮度校正图像F(x,y),对F(x,y)采用全局单阈值法提取目标区域获得目标二值化图像B(x,y),对B(x,y)进行面积阈值滤波处理获得水果表面缺陷区域图像D(x,y)。

本发明算法简单,在普通计算机上即可实现几十毫秒就完成对一幅图像的检测,准确率为94.6%,可以大大缩短水果在线检测的图像处理时间。

本发明适应性高,成本低,操作简单,对不同类型缺陷的样品检测鲁棒性好。

申请人:西南大学
地址:400712 重庆市北碚区歇马镇柑桔村15号柑桔研究所
国籍:CN
代理机构:北京华仲龙腾专利代理事务所(普通合伙)
代理人:李静
更多信息请下载全文后查看。

水果表面缺陷检测python算法

水果表面缺陷检测python算法

水果表面缺陷检测python算法首先,我们需要准备一个包含水果图像的数据集。

可以使用已标注的数据集,其中每张图片都有标注的缺陷区域,或者可以利用无缺陷的水果图像和有缺陷的水果图像自行标注。

接下来,我们将使用Python中的OpenCV库来实现图像处理的功能。

首先,我们需要读取一张水果图像,可以使用OpenCV的`cv2.imread(`函数来完成。

然后,我们将对图像进行预处理,以提取有用的特征。

常用的预处理方法包括灰度化、去噪和边缘检测。

首先,我们对图像进行灰度化处理,将彩色图像转换为灰度图像。

可以使用OpenCV的`cv2.cvtColor(`函数来完成,该函数接受两个参数,第一个参数是要转换的图像,第二个参数是转换的颜色空间。

在我们的情况下,将颜色空间设置为`cv2.COLOR_BGR2GRAY`即可。

接下来,我们需要去除图像中的噪声。

可以使用OpenCV的`cv2.GaussianBlur(`函数来进行高斯模糊处理。

该函数接受三个参数,第一个参数是要模糊的图像,第二个参数是高斯核的尺寸(必须为奇数),第三个参数是高斯核的标准差。

在我们的情况下,可以选择一个适当的尺寸和标准差。

然后,我们可以使用边缘检测算法来提取图像的边缘特征。

常用的边缘检测算法包括Canny边缘检测和Sobel边缘检测。

我们可以使用OpenCV的`cv2.Canny(`和`cv2.Sobel(`函数来实现。

这些函数接受几个参数,包括要检测的图像、边缘检测的阈值等。

在提取了有用的图像特征之后,我们可以使用机器学习算法来训练一个模型,以判断水果是否有缺陷。

常用的机器学习算法包括支持向量机(SVM)、决策树和随机森林等。

可以使用Python中的scikit-learn库来实现这些机器学习算法。

训练完成后,我们可以使用测试集来评估模型的性能。

可以使用一些评估指标,如准确率、精确率和召回率等。

可以使用scikit-learn中的`accuracy_score(`、`precision_score(`和`recall_score(`函数来计算这些指标。

水果表面缺陷检测python算法

水果表面缺陷检测python算法

水果表面缺陷检测python算法水果是人们日常生活中必不可少的食物之一,而水果的质量对人们的健康也有很大的影响。

因此,水果的质量检验十分重要,而水果表面缺陷检测就是其中的一个重要方面。

现在,我们有了越来越先进的技术和算法,比如基于Python的水果表面缺陷检测算法,能够更加精准快速地检测水果的表面缺陷。

本文将介绍如何使用Python开发一个水果表面缺陷检测算法。

首先,我们需要定义什么是水果表面缺陷。

水果表面缺陷是指水果表面出现的瑕疵或病害,包括裂纹、破洞、凹坑、黑点、斑点、腐烂等。

这些缺陷会导致水果摆放在超市或市场上不够美观,同时也可能会对水果的口感和品质产生影响。

接下来,我们需要确定使用哪些工具和库来开发这个算法。

Python是一个十分流行的计算机编程语言,它具有简单易学、灵活高效、强大的数据处理和科学计算能力等优点,因此我们将使用Python进行水果表面缺陷检测算法的开发。

除此之外,还需要使用一些常用的图像处理库,比如OpenCV、PIL、numpy等。

接下来,我们将详细介绍利用Python开发一个水果表面缺陷检测算法的具体过程:1、读取水果图像:首先,需要读取水果的图像,将其在程序中进行处理。

读取图像的Python库有很多,不同的库用法也会有所不同。

这里我们使用OpenCV库来读取水果图像。

```python import cv2img = cv2.imread("fruit.jpg") ``` 2、图像预处理:对读取的水果图像进行一定的处理,便于我们进行后续的分析和处理。

在这里,我们可以对图像进行灰度化处理、平滑化处理、边缘检测等操作,使得后续的操作更顺利。

```python gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) blur =cv2.GaussianBlur(gray, (5, 5), 0) edges =cv2.Canny(blur, 50, 150) ``` 3、目标区域检测:利用图像识别技术,确定需要进行缺陷检测的区域。

苹果采摘机器人监测系统和表面缺陷检测方法研究

苹果采摘机器人监测系统和表面缺陷检测方法研究

'*(利用 <V射线成像技术检测苹果缺陷&检测类 别 多样 化& 但识别率低 % '*( 文献 ''(提出了 一 种 基 于 图 像 处 理 的 苹 果
表面缺陷的方法&采用支持向量机完成分类&分类准确率
达到了(,`$g&分类 速 度 "G+个%但 该 方 法 缺 陷 提 取 过 程 复杂&检测 效 率 低 % ''( 近 些 年& 基 于 人 工 智 能 的 计 算 机 视
@! 引 言
近年来&我 国 园 林 水 果 产 量 巨 大& 且 增 长 迅 速% 而 我 国水果生产机械 化 率 不 足 "#g&采 收 环 节 机 械 化 率 低&基 本依靠人工采收%因此&为提高机械化采收生产效率*作 业质量*降 低 人 工 成 本&发 展 机 械 化 采 收 技 术&研 究 开 发 智能采收机器人系统已成为我国水果采收方式发展的重要 方 向 % '%(
但均无法兼顾检测精度*效率和模型大小%且现有的方法
大多停留在实验阶段&缺少实际应用&无法部署在移动端 检测设备上%而对于智能和自动化的采收设备&需要一种
图%! 监 测 系 统 软 硬 件 组 成 及 通 讯 方 式
检测精度高且 轻 量化的 检测方法来达到智能高效的 检测 目的%
针对上述问题&本文 提 出 了 一 种 苹 果 采 摘 机 器 人 的 全
ACB! 监 测 系 统 功 能 %`"`%! 种 植 园 环 境 监 测 模 块
种植园环境监测模块主要实现两个功能&即构建种植

【CN109827983A】一种电子束图像的水果表面缺陷检测方法【专利】

【CN109827983A】一种电子束图像的水果表面缺陷检测方法【专利】

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910206077.7(22)申请日 2019.03.19(71)申请人 湖州灵粮生态农业有限公司地址 314500 浙江省湖州市湖州南太湖高新技术产业园区大钱村张家浒自然村(72)发明人 梁志杰 江志安 毛浩 (74)专利代理机构 北京君恒知识产权代理事务所(普通合伙) 11466代理人 张强(51)Int.Cl.G01N 23/2251(2018.01)(54)发明名称一种电子束图像的水果表面缺陷检测方法(57)摘要本发明涉及农产品无损检测领域,尤其是一种电子束图像的水果表面缺陷检测方法。

首先建立水果表面缺陷等级模型,依次采集表面不同缺陷等级的水果的电子束辐照图像,将图像转化为特征参数导入系统内作为对比样本;对实测水果进行检测:首先用电子束辐照待测水果表面,用信号检测系统接收到待测水果在电子束作用下产生的物理信号,再经过视频放大系统显像,获得样品至少6个面的特征参数;将实测水果的特征参数与对比样本比较,预测实测水果的表面缺陷等级。

该方法通过电子束辐照水果表面,激发出各种物理信息,通过对这些信息的接收、放大和显示成像,获得水果表面形貌的观察。

本发明能够实现无损检测,且无需人工判断,易于操作,适用范围广。

权利要求书1页 说明书4页CN 109827983 A 2019.05.31C N 109827983A权 利 要 求 书1/1页CN 109827983 A1.一种电子束图像的水果表面缺陷检测方法,其特征在于,包括如下步骤:录入样品特征值:选取一组成熟度为已知的水果为样品,用电子束辐照每个样品,获取样品至少6个面的特征参数,依次将样品划分水果表面缺陷等级数,将特征参数录入系统内作为对比数据;对实测水果进行检测:首先用电子束辐照待测水果表面,调整电子束能量与辐照角度,使得低能电子束能够大部分射入水果内部,用信号检测系统接收到待测水果在电子束作用下产生的物理信号,再经过视频放大系统显像,获得样品至少6个面的特征参数;将实测水果的特征参数与对比数据相比,预测出实测水果的水果表面缺陷等级;其中,待测水果测试之前在水果周围贴上导电胶;其中,电子束辐照环境为真空条件下。

基于类球形亮度变换的水果表面缺陷提取

基于类球形亮度变换的水果表面缺陷提取

基于类球形亮度变换的水果表面缺陷提取黄文倩;李江波;张驰;李斌;陈立平;张百海【摘要】针对基于机器视觉技术的水果表面缺陷因受到亮度不均影响而提取困难的问题,以阿克苏苹果为研究对象,采用可见-近红外双CCD成像系统,设计了一种无需预先建模的类球形亮度变换方法,对R分量图像进行亮度变换,变换后的图像使整个水果表面正常区域灰度趋于一致,而缺陷区域依然保留为低灰度区,增强了缺陷和正常果皮的对比度,提高了缺陷检测精度.使用共计100个样本评估算法的可行性,其中45个缺陷果的检测精度为93.3%,55个正常果的检测正确率为100%,整体检测精度达到97%.研究结果表明,利用基于类球形亮度变换结合单阈值分割方法提取水果表面缺陷是可行的.%The non-uniform intensity distribution on the fruit's images is the main reason resulting in the difficulty and low accuracy of surface defects detection by using a machine vision system. A detection system based on Vis-NIR double CCDs was built for detecting surface defects on 'Akesu' apples. A spherical intensity transformation method ( SITM) was proposed to transform the R channel image of an apple, which enhanced the intensity uniformity of the normal regions and kept the low intensity of the defected regions in an apple. The intensity contrast between the defect regions and those of normal tissue was also improved, which increased the defect detection accuracy. A defect detection algorithm was developed based on the SITM and 100 apples consisting of 45 defected apples and 55 intact apples were used to evaluate the performance of the algorithm. Results showed that 93. 3% of defected apples were correctly classified and 100% of the intact apples werecorrectly recognized. The overall detection accuracy was 97% . It is feasible to extract the surface defects on apples using the proposed SITM combining with a single threshold segmentation method.【期刊名称】《农业机械学报》【年(卷),期】2012(043)012【总页数】5页(P187-191)【关键词】苹果;机器视觉;图像处理;类球形亮度变换;表面缺陷【作者】黄文倩;李江波;张驰;李斌;陈立平;张百海【作者单位】北京理工大学自动化学院,北京100081;国家农业智能装备工程技术研究中心,北京100097;国家农业智能装备工程技术研究中心,北京100097;国家农业智能装备工程技术研究中心,北京100097;国家农业智能装备工程技术研究中心,北京100097;国家农业智能装备工程技术研究中心,北京100097;北京理工大学自动化学院,北京100081【正文语种】中文【中图分类】TP391.41;TP274+.52引言根据水果的外部品质进行检测和分级,是水果销售、加工和贮存前的重要环节。

基于光度立体视觉的芯片外观缺陷检测系统的设计与实现

基于光度立体视觉的芯片外观缺陷检测系统的设计与实现

基于光度立体视觉的芯片外观缺陷检测系统的设计与实现摘要:本文旨在介绍一种基于光度立体视觉技术的芯片外观缺陷检测系统的设计与实现方案。

该系统采用光度立体视觉技术和数字信号处理技术相结合,对芯片的外观进行全方位检测,检测缺陷类型包括但不限于凸起、凹陷、划痕、裂缝等。

本文首先介绍了芯片缺陷检测的背景和意义,并详细阐述了系统的硬件、软件及算法实现流程。

在系统设计实现后,本文对系统进行了实验验证,结果表明系统具有较高的准确性、可靠性和鲁棒性,能够有效地检测芯片外观缺陷。

本文的研究成果对于提高芯片生产质量、降低生产成本具有一定的参考价值。

关键词:光度立体视觉;芯片外观缺陷;数字信号处理;算法;实验验证一、引言随着芯片生产的不断发展和普及,芯片的外观质量越来越受到关注。

芯片的外观质量不仅关系到芯片本身的质量,也关系到芯片在市场上的竞争能力。

传统的芯片外观检测方法主要是人工进行检测,但这种方法存在效率低、准确率不高的问题。

因此,如何实现芯片外观缺陷的自动检测成为了当前亟待解决的问题之一。

二、光度立体视觉技术光度立体视觉技术是一种基于计算机视觉的三维立体测量技术,它通过对物体表面颜色和亮度的变化进行调查和分析,实现物体的三维测量。

在对芯片进行外观缺陷检测时,光度立体视觉技术能够实现高精度、高效率、非接触的检测效果。

该技术不受环境光影响,可以在多种不同环境下进行检测,因此被广泛应用于机器人视觉、自动导航、工业质量检验等领域。

三、芯片外观缺陷检测系统的设计与实现(一)硬件部分本系统采用工业相机对芯片进行拍摄,相机通过多角度拍摄,获取芯片的三维立体图像,保证检测结果的精度和可靠性。

此外,系统还配备了高精度的运动控制平台,保证芯片的拍摄位置和角度的准确控制。

(二)软件部分系统的软件采用MATLAB和C++两个编程语言进行开发,通过对芯片的实时图像处理和算法处理,实现缺陷检测目的。

图像处理部分主要是对芯片的颜色、亮度等特征进行分析、判断和处理,使得芯片表面能够得到清晰的展示。

基于机器视觉的苹果外观缺陷在线检测

基于机器视觉的苹果外观缺陷在线检测

基于机器视觉的苹果外观缺陷在线检测
赵娟;彭彦昆;Sagar Dhakal;张雷蕾
【期刊名称】《农业机械学报》
【年(卷),期】2013(044)0z1
【摘要】为了能够在分选中正确地检测出表面存在缺陷的水果,提高苹果的分级水平,设计了一套基于机器视觉技术检测水果外观缺陷的系统.该系统主要包括单通道在线传送装置、图像采集装置及分选装置,其中图像采集装置的硬件主要包括一个加有635 nm滤光片的CCD相机和两面平面镜.基于VS2010平台开发了在线控制软件.苹果在传送装置上旋转前行过程中,相机在3个位置上采集包含平面镜中镜像在内的单个样品的9个不同角度的图像信息.利用数字处理方法分析苹果表面的缺陷,提出利用面积比来判断水果缺陷大小.实验结果表明苹果表面缺陷的总检测正确率为92.5%.
【总页数】4页(P260-263)
【作者】赵娟;彭彦昆;Sagar Dhakal;张雷蕾
【作者单位】中国农业大学工学院,北京100083;中国农业大学工学院,北京100083;中国农业大学工学院,北京100083;中国农业大学工学院,北京100083【正文语种】中文
【中图分类】S123;TP391.41
【相关文献】
1.基于机器视觉的圆锥滚子外观缺陷检测系统研究 [J], 文生平;刘云明
2.基于机器视觉的金手指外观缺陷检测 [J], 刘华珠;林洪军;谢豪聚;吴荣海
3.基于机器视觉的瓶盖外观缺陷检查系统设计 [J], 浦玉香
4.基于机器视觉的瓶盖外观缺陷检查系统设计 [J], 浦玉香
5.基于机器视觉的塑料制品外观缺陷检测 [J], 王宇杰
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q .Y A N G230 T he proposed system has been tested with samplea pples and the test results are presented .2.S egmentation of dark patchesD ark patches in apple images represent boths tems / c alyxes and patch-like blemishes , such asb ruises , wounds and many rots . They appear asc onnected regions of relatively small size and havev ariable shape and contrast . An example image iss hown in F ig .1 . When viewing the intensity image asa topographic relief , the patches appear as concavea reas in the grey-level surface .Therefore , they can bet reated as catchment basins in grey-level landscapes .B ased on this , a region-based segmentationa lgorithm , 5 called a flooding algorithm , has beend eveloped to segment the patches .Here , we explaint he underlying concepts of the algorithm in terms ofd igital elevation models ; the implementation detailsa re described in reference 5 .T he flooding algorithm is based on the concept ofw ater catchment basins . A catchment basin is a regiona ssociated with a minimum . To define the spatiale xtent of the region around the minimum , we considert he properties of water flowing over a topographicr elief . Water will always flow downhill until a localm inimum is reached . As more water is added ,ita ccumulates at the lowest points and gradually coverst he region surrounding the minimum , until it reaches ac ertain level at which the basin can no longer hold anym ore water and the surplus water spills over thel owest points of the basins’ rim .Thus , the basinb ecomes a lake .The corresponding elevation level ofF ig . 1 . A n example apple image with a blemish and a stema rea t he lake’s surface is called the spillover level .The s pillover level is used to delimit the spatial extent of a c atchment basin .Therefore , a catchment basin con- s ists of those points , which are connected to a m inimum and have a grey-level lower than the spillo-v er level . To detect all the dark patches ,we gradually flood the relief with water , all the catchment basins w ill be filled up and become lakes of various sizes and d epths . The lakes , which are equivalent to catchmentb asins , are the output of the flooding algorithm and r epresent the patches being detected . T he concept of a lake is extremely useful in that it h olds most of the characteristics desired in the follow-i ng classification . For instance , the surface area of a l ake is a clear indicator of the size of the detected p atch ;the average depth , i . e . the ratio of the water v olume to the lake surface area , is a measure mostly o f contrast , but contains gradient information as well . A nother obvious advantage of this presentation is that t he surface of each individual lake is always con-n ected . The segmentation result of the example image i n F ig .1 is shown in F ig .2 . The detected patches are h ighlighted with bright borders . T he algorithm has no tuning parameters , and the s egmentation output depends purely on image data . T here is little need for thresholding . It has no strong a ssumption about the contrast and shape of patches . T he sole working assumption used is that the patches a re not adjacent to the boundary of the fruit in i mages . Apart from the segmentation output ,some d escriptive parameters such as the minimum height ,c urrent volume and depth of the basins can also be c omputed as the flooding proceeds , and they are a vailable as outputs of the procedure .Once the F ig . 2 . R esults of patch segmentation for the image in Fig . 1 . D etected patches are highlighted by bright bordersA P P L E S T E M A N D C A L Y X I D E N T I F I C A T I O N W I T H M A C H I N E V I S I O N231p atches are segmented out,measurements of the c orresponding lakes can be made to extract other g eometric parameters.These parameters quantify the c haracteristics of each patch under consideration and a re ready to be used as inputs to the following c lassification step.3.T hree-dimensional shape information froms tructured lightT he surface of an apple can be divided roughly, a ccording to shape,into two basic parts,convex parts a nd concave parts.Most of the surface is convex and s ometimes nearly spherical.The concave parts are u sually in the areas around the stem and calyx.The s tem itself stands out from the middle of the concave a rea.On the other hand,blemishes,such as bruises a nd abrasions often occur on the convex surface of a f ruit.Therefore,the three-dimensional information a bout the dif f erence in surface shape can assist iden-t ification of the stem and calyx.A technique called l ight striping6i s used,in which the projected light p lanes and a camera make up an active stereo system s o that three-dimensional geometric information ab-o ut an object surface may be derived from optical t riangulation.F or fast processing,a set of evenly spaced parallel l ight stripes are projected onto the apple surfaces s imultaneously.An image with the stripes is grabbed f or each view of a fruit.This stripe image is obtained w ith the same camera as for the normal apple image w ithout the structured light.In stripe images,the s tripes on dif f erent parts of the surface have dif f erentF ig .3.A n example image with light stripes on the same apple a s shown in Fig .1. Stripes on dif f erent parts of the surfaceh a␷e dif f erent shapes s hapes.The stripes on convex surfaces are continuous a nd parabolic,and their curvature directions are m aintained.Stripes on nearly flat surfaces are almost p arallel.For concave surfaces around stem and calyx a reas,the appearance of stripes is complex.Stripes are n ot always parallel,can touch adjacent stripes due to s harp changes in depth,and can appear broken due to o cclusion.In the case of the continuous stripes,their c urvatures change sign when the surface changes from c onvex to concave.The stripes across stems are b roken owing to the depth discontinuity.F ig .3shows a n example image with light stripes on the same apple a s in F ig .1.T he correspondence between the shape of the s tripes and the shape of surface parts,provides the n ecessary three-dimensional information and this can b e obtained from the analysis of the dif f erent shape p atterns of curved stripes.Since stems and calyxes a ppear as patches in images,the analysis is directed to t he local area around each patch,which is first s egmented out with the flooding algorithm.Each s egmented patch in the apple image has a correspond-i ng area at the same location in the stripe image. T herefore,a rectangular window is placed around this a rea in the stripe image.The derivation of the t hree-dimensional information is thus reduced to the e xtraction of stripe patterns within each window.Note t hat in this way,the time- consuming reconstruction of t he actual three-dimensional geometric surface and t he associated calibration,as in the usual application o f light striping,are avoided.A principal parameter for describing the shape of t he stripes is curvature.On a convex surface,the s tripes are continuous and therefore have smoothly c hanging curvatures which may keep the same sign.If t he curvature of the stripes within a window varies d ramatically and changes sign,then the surface inside t he window should normally be a stem or calyx area (see discussion section for other cases).Before the c urvature is calculated,the stripe image is binarized b y a local thresholding process and then the stripes a re thinned to one pixel wide skeleton curves by a s hape preserving thinning method.7T he stripes are t hen represented by their skeleton curves,from which t heir curvatures are computed.The thinning result of F ig .3is shown in F ig .4.T he normal curvature calculation for planar digital c urves is notoriously inaccurate.Here we use a c urvature estimator for the skeleton curves.Let xϭx[s(t)]a nd yϭy[s(t)] be a skeleton curve in its p arametric form,where s is the arc length of the curve a nd is represented as a linear function of parameter t,sϭs(t).Let ␺(s) represent the tangent angle of the c urve at s.The point curvature k o f the curve isQ.Y A N G 232F ig .4.T he thinning result of Fig .3d efined as the instantaneous rate of change of ␺w ith r espect to arc length sk(s)ϭd␺(s)/d s(1) w here␺[s(t)]ϭt anϪ1y᝽(t)x᝽(t)(2)T o reduce the noise caused by taking the second-order d erivatives in the usual calculation of curvature,we u se the following practical method to approximate the c urvature.Let the increment ds be a small constant, t hen the dif f erenced␺(t)Ϸ␺(tϩ1)Ϫ␺(t)(3) c ontains curvature information.We,therefore,define t he dif f erence as an estimator of the point curvaturek␺ϭ␺(tϩ1)Ϫ␺(t)(4) T o reliably calculate ␺i n Eqn (4),we smooth the c urve,xϭx(t)and yϭy(t),with a Gaussian kernel g(t,␴)o f standard deviation ␴.The smoothed curve, X(t,␴)a nd Y(t␴),is expressed asX(t,␴)ϭx(t)ءg(t,␴)ϭ͵3␴Ϫ3␴x(u)1␴42πeϪ(tϪu)2/2␴2d u(5) Y(t,␴)ϭy(t)ءg(t,␴)ϭ͵3␴Ϫ3␴y(u)1␴42πeϪ(tϪu)2/2␴2d u(6)w here u i s a dummy integral variable and ءi s the s tandard symbol for convolution.Their first deriva-t ives are expressed asX᝽(t,␴)ϭx(t)ءѨg(t,␴)Ѩtϭ͵3␴Ϫ3␴x(u)Ϫt␴342πeϪ(tϪu)2/2␴2d u(7) Y᝽(t,␴)ϭy(t)ءѨg(t,␴)Ѩtϭ͵3␴Ϫ3␴y(u)Ϫt␴342πeϪ(tϪu)2/2␴2d u(8) S o ␺(t) in Eqn (4) is computed as␺(t)ϭt anϪ1Y᝽(t)X᝽(t)(9)N ote that whilst the angle function ␺(t) in Eqn (9) is m ultiple-valued,under practical constraints on con-t inuity of the derivative,it is uniquely defined.4.F eature selectionI n this study,the features are intuitively determined t o provide reasonable coverage of the feature space. O nce a small patch is segmented out from an apple i mage,some features of the patch are already avail-a ble,which include the lowest grey-level I l,the highest g rey-level I h,the area A,the boundary length C p a nd t he water volume V o f the lake representing the patch. O ther features,including curvature,are extracted f rom both the apple image and the stripe image.F or the curves within a focusing window,some s tatistics of curvature are computed.These are ave-r age positive and negative curvatures,K p a nd K n,the a verage absolute curvature ͉K͉,and the frequencies of p oints with positive,negative and zero curvature,F p, F n a nd F z,respectively.These statistics describe the c oarse distribution of the curvature.A n important descriptor for the shape patterns of s tripes is the similarity between the shapes of curves. T he stripes crossing a convex surface have greater s imilarity (i.e.are more parallel),than those crossing s tem and calyx areas.The similarity can be measured b y the correlation of curvature between curves.Ther-e fore the average correlation coef ficient R c i s selected. T he length of the analysed curves within a window is a g ood indicator of their continuity,which is strongly r elated to blemishes on convex surfaces.Hence,the a verage curve length L m i s included as a feature.On t he other hand,the relative number of short curveA P P L E S T E M A N D C A L Y X I D E N T I F I C A T I O N W I T H M A C H I N E V I S I O N233s egments within a window is a clue to the irregularity o f the stripes.The short curve segments refer to the s mall curves that are not long enough for computing t heir smoothed curvature.They usually occur on thec oncave stem and calyx areas where stripes ared iscontinuous owing to sudden change in depth.So, t he relative number of short curve segments S s i s c omputed.I n apple images,when a standing stem appears as a p rotrusion or the small spikes of a calyx appear on theb oundary of a patch,the boundary is likely to be morec omplex than that of a blemish.Hence,the compact-n ess P o f the patch is selected,which is defined as the r atio of the squared perimeter C p2to the area A,i.e. PϭC p2/A.The perimeter C p i s simply the count of p ixels on the patch boundary.Two shape measure-m ents of the water volume of the lake are also s elected.These are the average depth h a o f the v olume,defined as V/A,and the ‘‘conical’’ angle ␣o f t he volume,which is defined as the average radius d o f t he boundary to the lake’s centre divided by the m aximum depth of the water,i.e.d/(I hϪI l).To c ompute this latter measure,the geometric centroid of t he lake surface is found by the first moment method. T o complete,the primary intensity properties,mean I m a nd variance I␷o f the grey-level in a patch,are i ncluded.A ltogether,eighteen features are extracted for each p atch and are summarized as follows.F rom the stripe image :K p a verage positive curva-t ure,K n a verage negative curvature,͉K͉a verage a bsolute curvature,F p f requency of points with posi-t ive curvature,F n f requency of points with negative c urvature,F z f requency of points with zero curvature, R c a verage correlation coef ficient of curvature bet-w een curves,L m a verage curve length,S s p ercentage o f short curve segments,F rom the apple image :I m a verage grey level inten-s ity,I␷v ariance of grey level intensity,I l l owest grey l evel of the patch,I h h ighest grey level of the patch,A a rea of the patch,P c ompactness of the area,V w ater v olume of the lake,␣c onical angle of the volume,h a a verage depth of the volume.A s can be seen,these features are not independent.B ut in this study,we do not address the issue of s alient feature selection.Since the dependencies are n ot easily modelled and the features are not dif ficult t o compute,we retain all the features for the following c lassification.5.C lassification of patches with neural networksO nce the feature vector is extracted for each patch, s tems and calyxes can be identified by feeding the f eatures into a classifier and classifying the patch as e ither blemish or stem/c alyx,which are two possible o utput classes.The input feature data to the classifier p ossess some nonlinear relations to their correspond-i ng surface types.F ig .5a s hows a set of average p ositive and negative curvature data for two types of p atches.F ig .5b s hows mean intensity and variance. T he data are from the first group of samples (Training1).It can be seen from these figures that the twoc lusters representing the two classes are not linearly s eparable for these variables.A non-linear classifier is r equired.I n this work, a multi-layer feedforward neural n etwork was constructed for the classification.Three d if f erent network configurations,(18 :10:2),(18:27:2) a nd (18:10:6:2) were tested.No attempt was made to find an optimal network configuration and it might be p ossible to reduce the complexity of the net.The n etwork was fully connected.The number of nodes in t he input layer was the same as the number of input–0·1–0·2–0·3–0·4Averagenegativecurvature0·000·050·100·150·200·25Average positive curvature(a)(b)0·70·60·50·40·30·20·10·00·00·20·40·60·81·0Average grey-levelVarianceofgrey-levelintensityF ig .5.D istribution of two classes in feature sub -s pace .(a) S cattergram of a␷e rage positi␷e cur␷a ture ␷e rsus a␷e rage n egati␷e cur␷a ture for blemish and stem/c alyx ;(b) s cattergram of mean grey -l e␷e l intensity ␷e rsus ␷a riance of g rey -l e␷e l intensity for the two types of patches .ᮀ,blemishes ;ϫ,stalks/c alyxesQ.Y A N G 234f eatures (18).The output layer of the neural network w as composed of two nodes to correspond to the two o utput classes.The hidden layer contained ten nodes i n the first configuration,27 in the second.The third c onfiguration had two hidden layers with ten and six n odes respectively.The nodes in the output layer and h idden layer(s) had a non-linear transfer function of s igmoidal shape.The network was trained with a m odified back-propagation learning algorithm.8T he a lgorithm accelerated the learning by changing the t wo coef ficients used in the conventional back-p ropagation algorithm,learning rate and momentum f actor.D uring the training,the weights of the network w ere updated after each pass through all the training s amples.The desired outputs for each nodes in the o utput layer were arranged in an on –o f f manner,i.e. (1,0) represented blemish and (0,1) represents s tem/c alyx.The convergence of the learning was j udged by two conditions :whether the mean squared e rror for all training samples was smaller than a c riterion and whether the output errors for each t raining sample were all smaller than another c riterion.6.E xperimental resultsT he proposed techniques were tested with Golden D elicious and Granny Smith apples obtained from two p ackhouses in southern France.The apples were g raded in terms of surface defects by skilful inspec-t ors.Table 1 lists the number of sample fruits from e ach variety and grade.T he experimental arrangement for image acquisi-t ion comprised a CCD monochromatic camera (Pana-s onic,model WV-CD20),a projector for structured l ighting,and a light chamber for dif f use lighting.The a ngle between the optical axes of the camera and the p rojector was 20Њ.The light stripes were formed by p rojecting light through an optical grid of thin tran-s parent lines.The camera was mounted above the topT able 1S ample applesG radeA pple ␷a riety E xtra I I I I II T otalG oldenD elicious1214462698G ranny Smith810382480o f the lighting chamber.Apples were placed in the m iddle of the field of view.The orientation of the s ample fruits was chosen in a random manner.For t he blemish-free fruits from the Extra grade,the s tems/c alyxes were made visible to the camera.The b ackground of the viewing field was black.The video s ignal of the camera was sent to a transputer-based f rame grabber,where it was digitized into video m emory with 512ϫ512 spatial resolution and 8 bit g rey-level resolution.All images were stored and s hown in this paper in the size of 256ϫ256 pixels.T wo images were acquired for each view of an a pple.One was under dif f use illumination,another w as under structured light.A few apples had more t han one blemish on dif f erent sides of the fruit,hence m ultiple pairs of images were recorded for each of t hese apples.The flooding algorithm was applied to s egment out dark patches from apple images.For each s egmented patch,the selected 18 features as described i n the previous section were extracted from both i mages.The type of the patch,i.e.blemish or s tem/c alyx,was recorded together with the features, t o form a labelled sample.As shown in Table 2,a t otal of 274 samples were collected and arranged in f our sets.Two of them were training samples,the o ther two were used to test the performance of the t rained neural network classifiers.There were no t raining samples included in the test sample sets.The b lemish category included bruise,russet,scab,wound, i nsect bite,sun-burn and rot.T he extracted features had very dif f erent ranges of v alues,so to input them to the neural networks,the f eature values were normalized to the range of [0,1и0].The neural networks were implemented on a t ransputer system.In all the trainings the initial l earning rate and momentum factor were fixed at 0и1 a nd 0и5 but the training algorithm employed was not v ery sensitive to these initial values.The weights of t he networks were all initialized with random numbers i n the range of [0,1и0].The convergence criteria of the n eural network during learning were set to be less t han 0и001 for mean squared error and 0и01 for a bsolute output error of each training sample.These v alues are relatively small and were chosen to allow a ccurate learning with little loss of the generalizationc apability of the networks.All trainings with somed if f erent sets of initial weights converged rapidly, w ithin about 100 to 800 iterations.I n the performance evaluation for the trained neu-r al networks,a range of 0и3 was set in the interpreta-t ion of classification outputs,instead of the crisp o n-of f outputs (1,0) and (0,1).That is,a node in the o utput layer was regarded to be ‘‘on’’ if its output v alue was larger than 0и7,‘‘of f’’ if less than 0и3,A P P L E S T E M A N D C A L Y X I D E N T I F I C A T I O N W I T H M A C H I N E V I S I O N235T able 2D if f erent types of samplesA pple ␷a riety S amplesB lemish S tem/c alyx S ubtotal T otalG olden Delicious T raining 1473784T est 1442569274G ranny Smith T raining 2511566T est 2411455‘‘unknown’’ if between 0и3 and 0и7.The pattern p resented at the input layer was classified to belong to t he category that the ‘‘on’’ node represented.Thus,if t he outputs of the two nodes in the output layer were i n the range (1и0–0и7,0и3–0и0),the input patch was a ccordingly classified into the blemish category,and if t hey were in (0и0–0и3,0и7–1и0),the stem/c alyx c ategory.If both nodes were either ‘‘on’’ or ‘‘of f’’ and i f a node had ‘‘unknown’’ output,the input patch was c lassified into the unknown category.The selection of r ange 0и3 was conservative and imposed a strict r equirement for the networks.The range could be r elaxed to a slightly greater value.T he classification results are listed in Tables 3 and 4. T able 3 shows the classification accuracy in each test. T he accuracy was computed by dividing the number of c orrectly classified samples by the number of samples i n the test group.Table 4 shows the number of c lassification errors.Error I r efers to the misclassifica-t ion of stem/c alyx as blemish,Error I I i s vice versa,a nd Error I II r efers to the case in which either ab lemish or stem/c alyx input patch is classified into the u nknown category.It can be seen from Table 3 that t he classification accuracy of the three network con-figurations is about the same.As shown in Table 4, t he number of errors in the unknown category is s lightly reduced in the case of Test 1 with the network c onfiguration (18:10:6:2) and the case of Test 2 with t he network configuration (18:27:2).Since the first c onfiguration with 10 nodes in the hidden layer has m uch less complexity and its performance is accep-t able,it is to be preferred.The same number of errors i n Errors I a nd I I f or dif f erent configurations indicatesT able 3C lassification accuracy of the trained neural networksC lassification accuracy (%)N etworkc onfiguration T est 1T est 218:10:295и7 94и518:27:295и7 96и418:10:6:297и1 94и5T able 4C lassification errors of the trained neural networksN umber of errors S ampleg roup E rror type(18:10:2)(18:27:2)(18:10:6:2)T est 1I 0 0 0I I 1 1 1I II 2 2 1T est 2I 1 1 1I I 1 1 1I II 1 0 1t hat one or two specific pattern samples have feature v alues in the range of the ones for the other class.In t hese cases,persistent errors would occur.On the w hole,good classification accuracies have been a chieved.7.D iscussionT he technique developed in this paper is based on a n assumption that blemishes only occur on convex or flat surfaces of apples and therefore the light stripe p atterns on them reflects the type of the surface.It c an cope with the cases in which the blemished s urfaces are slightly indented.But,if the surface of a b lemish has a significantly concave shape as in cases of s evere mechanical damage,or a blemish occurs on the c oncave areas around stem or calyx,the shapes of the s tripes on the blemish will be similar to those on s tem/c alyx areas and the system will fail.Another l imitation is that if a dark patch occurs adjacent to the b oundary of a fruit in a view,the segmentation p rocess will not output it and no subsequent classifica-t ion will be made.However,in practical implementa-t ion,multiple views of a fruit are expected,so there is a good chance that the patch will not be adjacent to t he boundary of the fruit in one of the views.A n advantage of the technique is that,since onlyQ.Y A N G 236q ualitative features of stripe patterns are required, t here is no need for conventional three-dimensional s urface fitting and the calibration for the triangulation o f the structured lighting system is eliminated.This w as deliberately avoided because the complex and u npredictable stripe patterns,especially those caused b y out-standing stems,may present dif ficulties to those fitting techniques.T he technique has potential for high speed im-p lementation because of its simplicity.The necessary t hree-dimensional information is reduced to simple c onvexity or concavity,which is represented by the s hape pattern of the stripes.All segmented patches a nd all stripes on each patch can be analysed in p arallel.In the experimental arrangement,the two i mages are grabbed in sequence.If the wavelength of t he structured light is chosen in the appropriate s pectral range,the two images can be grabbed simul-t aneously by two sensors.9I t is also worth pointing out t hat the technique has the potential to be used for o ther fruits.8.ConclusionA n image analysis technique for the identification of a pple stems and calyxes has been developed.Struc-t ured light is used to provide the necessary three-d imensional shape information of apple geometric s urfaces.The analysis is focused on dark patches of f ruit surfaces,which are first segmented out by a flooding algorithm.For each patch,the qualitative f eatures of the stripe pattern are extracted from the s tripe image and the two-dimensional intensity pro-p erties are extracted from the apple image under n ormal dif f used light.When the three-dimensional a nd two-dimensional information is fused with a m ulti-layer feedforward neural network,the segmen-t ed patches are classified as stem/c alyx or blemish.T he proposed technique was tested with samplea pples and an average identification accuracy of 95%w as achieved.This result demonstrates that the system c an ef f ectively identify stems and calyxes which ares urrounded by concave surfaces,and distinguish them f rom discoloured blemishes which occur on convex or flat surfaces.A cknowledgementT his work was partly funded by the EC (CAMAR : 8001-CT91-0206).The author would like to thank P rof.A.K.Thompson at Cranfield University and Dr R.D.Tillett for valuable discussion.R eferences1W olfe R R ;Sandler W E A n algorithm for stem detection u sing digital image analysis.Transactions of the ASAE 1985,28 :641 –6442M iller B K ;Delwiche M J P each defect detection with m achine vision.ASAE Paper 89 –60193Y ang Q F inding stem and calyx of apples using structured l puters and Electronics in Agriculture 1993,8:31 –424Y ang Q C lassification of apple surface features using m achine vision and neural puters andE lectronics in Agriculture 1993,9:1–125Y ang Q A n approach to apple surface feature detectionb y machine puters and Electronics in Agri-c ulture 1994,11 :249 –2646B allard D H ;Brown C M C omputer vision,EnglewoodC lif f s,Prentice-Hall,1982,pp.52 –547G onzalez R C ;Woods R E D igital image processing,A ddison-Wesley Publishing Company,1992,pp.492 –4948C han L W ;Fallside F A n adaptive training algorithm forb ack propagation puter Speech and Lan-g uage 1987,2:205 –2189C rowe T ;Delwiche M R eal-time defect detection in fruit.I nternational Conference on Agricultural Engineering(AgEng’94),Milano,Italy,29 August –1st September 1994,Report No.94-G-027。

相关文档
最新文档