2019数学建模答案
2020-2021学年新教材数学北师大版(2019)必修第一册练测评:8数学建模活动(一)含解析
第八章数学建模活动(一) §1走近数学建模§2数学建模的主要步骤必备知识基础练进阶训练第一层知识点一建立数学模型1.主要是为了保持体温.研究表明,消耗的能量E与通过心脏的血液量Q成正比;并且根据生物学常识知道,动物的体重与体积成正比.血流量Q 是单位时间流过的血量,脉博率f是单位时间心跳的次数;还有一些生物学假设,例如,心脏每次收缩挤压出来的血量q与心脏大小成正比,动物心脏的大小与这个动物体积的大小成正比.动物名体重/g脉搏率/(心跳次数·min-1)鼠25670大鼠200420豚鼠300300兔 2 000205小狗 5 000120大狗30 00085羊50 00070马45000038建立脉搏率与体重的关系,讨论你模型中的假设,并用上表中的数据检验模型.知识点二数学建模的主要步骤2.种纸卷,如图,两种纸具有同样的材质和厚度,纸卷的高度和单价也一样,若预购买这种卫生纸,但不知道哪种纸卷更合算,如果没有带尺子,用什么办法可以确定合算的纸卷?为什么?知识点三数学建模的主要过程3.在意外发生的时候,建筑物内的人员是否能尽快的疏散撤离是人们普遍关心的有关人身安全保障的最大问题.根据学校情况,选一角度并提出问题,完成开题报告.关键能力综合练进阶训练第二层1.下图中的两个图形,哪一个图形能一笔画成,哪个不能?为什么?2.在一摩天大楼里有三根电线从底层控制室通向顶楼,但由于三根电线各处的转弯不同而有长短,因此三根电线的长度均未知.现在工人师傅为了在顶楼安装电气设备,需要知道这三根电线的电阻,如何测量出这三根电线的电阻?3.你是否注意到北方城镇的有些建筑物的窗户是双层的,即窗户上装两层玻璃且中间留有一定空隙,如左图所示,两层厚度为d的玻璃夹着一层厚度为l的空气.据说这样做是为了保暖,即减少室内向室外的热量流失.我们要建立一个模型来描述热量通过窗户的传导(即流失)过程,并将双层玻璃窗与用同样多材料做成的单层玻璃窗(如右图,玻璃厚度为2d)的热量传导进行对比,对双层玻璃窗能够减少多少热量损失给出定量分析结果.模型假设:(1)热量的传播过程只有传导,没有对流.即假定窗户的密封性能很好,两层玻璃之间的空气是不流动的.(2)室内温度T1和室外温度T2保持不变,热传导过程已处于稳定状态,即沿热传导方向,单位时间通过单位面积的热量是常数.(3)玻璃材料均匀,热传导系数是常数.在上述假设下热传导过程遵从下面的物理定律:厚度为d的均匀介质,两侧温度差为ΔT,则单位时间由温度高的一侧向温度低的一侧通过单位面积的热量Q与ΔT成正比,与d成反比,即Q=k ΔTd,(*)k为热传导系数.从有关资料可知,常用玻璃的热传导系数k1=4×10-3~8×10-3 J/cm·s·kW·h,不流通、干燥空气的热传导系数k2=2.5×10-4 J/cm·s·kW·h.4.针对“北京市区道路交通流量随时间变化规律”这一选题进行分析、思考,完成其开题报告.学科素养升级练进阶训练第1.在商场中,我们经常可以看到同一种商品会有多种大小不同的型号,其价格也各不相同.对比型号和价格,我们很容易发现:当商品的“量”增加时,价格也会增加;但是价格的增加与“量”的增加是不成比例的,也就是说你买的商品的“量”越多,商品的平均价格越低,有人认为这是商家的营销策略,买得越多越划算,这样顾客往往倾向于购买大包装的商品.大包装的商品真的是薄利多销吗?就这一问题通过调查、分析、研究,完成选题,开题报告.第八章数学建模活动(一)§1走近数学建模§2数学建模的主要步骤§3数学建模活动的主要过程必备知识基础练1.解析:建模过程如下:(1)因为动物体温通过身体表面散发热量,表面积越大,散发的热量越多,保持体温需要的能量也就越大,所以动物体内消耗的能量E 与身体的表面积S 成正比,可以表示为E =p 1S .又因为动物体内消耗的能量E 与通过心脏的血流量Q 成正比,可以表示为E =p 2Q .因此得到Q =pS ,其中p 1,p 2和p 均为正的比例系数.另一方面,因为体积V 与体重W 成正比,可以表示为V =r 1W ;又因为表面积S 大约与体积V 的23次方成正比,可以表示为S =r 2V 23,因此得到S =rW 23,其中r 1,r 2,r 为正的比例系数.所以可以构建血流量与体重关系的数学模型Q =k 1W 23,其中k 1为正的比例系数.(2)根据脉搏率的定义f =Qq ,再根据生物学假设q =cW (c 为正的比例系数),最后得到f =Q q =k 1W 23cW ,也就是f =kW -13,其中k 为正的待定系数.脉搏率与体重关系的数学模型说明,恒温动物体重越大,脉搏率越低;脉搏率与体重的13次方成反比,表中的数据基本上反映了这个反比例的关系.右图是以ln W 和ln f 为坐标的散点图.可以看出,数据取对数之后基本满足线性关系,因此得到体重和脉搏率的对数线性模型,可以把这个模型表达为ln f =ln k -ln W3.2.解析:合算就是纸的量多,因为纸卷的高度和单价一样,我们只要比较两种纸卷截面的面积,取较大的就合算,为此可以各取一个纸卷,令无芯纸卷截面的圆心压在有芯纸卷截面的芯(即小圆)上,如右图,然后看无芯纸卷截面上与有芯纸卷截面的芯相切的直径端点,若端点在有芯纸卷截面的大圆上,则两种纸卷的量相等;若在其内则买有芯纸卷合算;若在其外则买无芯纸卷合算.证明:设有芯纸卷截面的内、外半径分别为r,R,大圆内与小圆相切的弦长为d,无芯纸卷截面的直径为D,于是,⎝⎛⎭⎪⎫d22=R2-r2,当D=d时,S有芯=π(R2-r2)=π⎝⎛⎭⎪⎫d22=π⎝⎛⎭⎪⎫D22=S无芯,当D>d时,S有芯=π(R2-r2)=π⎝⎛⎭⎪⎫d22<π⎝⎛⎭⎪⎫D22=S无芯.当D<d时,S有芯=π(R2-r2)=π⎝⎛⎭⎪⎫d22>π⎝⎛⎭⎪⎫D22=S无芯.要解决的问题在教学楼一楼有一排四间教室,学生可以沿教室外走廊一直走到尽头的出口,试分析学生撤离所用时间选题的原因及意义建立数学模型给出最佳撤离方案,同时就教学楼设计给出合理化建议建模问题的可行性分析教师可在教学楼内组织学生进行多次演习,只需测量几个简单的参数.基本模型、解决问题的大体思路和步骤做出合理假设,列出有关的参数.队列中人与人之间的距离将为常数,记为d,队列行进的速度也是常数v,令第i个教室中的人数为n i+1人,第i个教室的门口到前一个教室的门口的距离为L i,教室门的宽度为D.疏散时教室内第一个人到达教室门口所用的时间忽略不计.T1,2=⎩⎪⎨⎪⎧(L1+L2+D+n2d)/v(n1+1)d≤L2+D[L1+(n1+n2+1)d]/v(n1+1)d>L2+D预期结果和结果呈现方式建立一个来描述建筑物内人员疏散的最合适的模型,一份有求解过程的文字报告参考文献《数学模型与数学建模》北京师范大学数学科学学院其他说明关键能力综合练1.解析:(1)标点:标出双数点和单数点.(2)判断:第一个只有两个单数点,所以可以一笔画,第二个有4个单数点,所以不能一笔画,2.解析:不妨用a,b,c及a′,b′,c′分别表示三根电线的底端和顶端,并用aa′,bb′,cc′分别表示三根电线,假设x,y,z 分别是aa′,bb′,cc′的电阻,这是三个未知数,电表不能直接测量出这三个未知数.然而我们可以把a′和b′连接起来,在a和b处测量得电阻x+y为l;然后将b′和c′连接起来,在b和c处测量得y+z为m,连接a′和c′可测得x+z为n,这样得三元一次方程组⎩⎪⎨⎪⎧x+y=ly+z=mx+z=n.由三元一次线性方程组解出x,y,z即得三根电线的电阻.3.解析:记双层窗内层玻璃的外侧温度是T a,外层玻璃的内侧温度是T b,如图,玻璃的热传导系数为k1,空气的热传导系数为k2,由(*)式单位时间单位面积的热量传导(即热量流失)为Q1=k1T1-T ad=k2T a-T bl=k1T b-T2d,消去T a,T b,可得Q1=k1(T1-T2)d(s+2),s=h k1k2,h=ld,对于厚度为2d的单层玻璃窗,容易写出其热量传导为Q2=k1T1-T22d.二者之比为Q1Q2=2s+2,显然Q1<Q2.为了得到更具体的结果,我们需要k1和k2的数据.16≤k1k2≤32.在分析双层玻璃窗比单层玻璃窗可减少多少热量损失时,我们作最保守的估计,即取k1k2=16,可得Q1Q2=18h+1,h=ld,比值Q1Q2反映了双层玻璃窗在减少热量损失上的功效,它只与h=ld有关,我们给出Q1Q2-h的曲线,当h增加时,Q1Q2迅速下降,而当h超过一定值(比如h>4)后Q1Q2下降变缓,可见h不必选择过大.要解决的问题随着北京城市的不断发展,交通成了饱受关注的话题,那么北京市区主要道路交通流量随时间变化有什么样的规律?学科素养升级练主要过程 成本×(1+利润率),所以有y ∝P .而商品的成本主要分为生产成本和包装成本两部分,分别设为P 1和P 2,即有y ∝(P 1+P 2).商品的生产成本P 1与商品的质量x 成比例,即P 1∝x ;而商品的包装成本P 2与商品的表面积S 成比例,即P 2∝S ,而S ∝V 23,V ∝x (这里V指商品的体积),故有P 2∝x 23.从而我们可以假设y =ax +bx 23. 下面我们用实际数据来检验这一函数表达式的准确性,因为在函数中有两个待定系数,所以我们只需要代入两组(x ,y )值即可求出a ,b 的值. 将(65,14)和(90,17.6)代入y =ax +bx 23中,可得⎩⎪⎨⎪⎧65a +6523b =1490a +9023b =17.6,解得a ≈0.0225,b ≈0.7756,所以y =0.0225x +0.7756x 23结果检验将x =120代入,得y =21.57,与实际价格21.60元相差0.03;再将x =180代入,得y =28.77,与实际价格28.30元相差0.47元.因此,我们推导出来的函数表达式还是比较准确的.这一步得到单位质量价格y ′=0.0225+0.7756x -13,由几何画板做出y ′-x 的关系图为可以看出随牙膏质量的增加,单位质量价格的减小量。
2019高教社杯全国大学生数学建模竞赛B题18页word
车道被占用对城市道路通行能力的影响摘要车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。
如处理不当,甚至出现区域性拥堵。
对于问题一,本文提高结果的精准度,结合两种方法进行研究,且两种方法的结果十分吻合。
由于实际通行能力是建立在基本通行能力和可能通行能力之上的,所以在求解实际通行能力之前,需要算出基本通行能力和可能通行能力,针对问题一创建了一张流程图,并借助软件加以拟合。
对实际通行能力计算,得出实际通行能力的变化过程,根据GREENSHIELD K-V线性算法得出道路越堵,车速越慢,则实际通行能力就越差,反之就会较好。
对于问题二,因为所占的车道不同,并且给的条件中有说明左转车流比例和右转车流比例不同,那只需验证两者是否存在显著性差异,运用配对样本t检验的方法就是要先满足这一方法的两个前提条件,首先必须验证是否满足正态分布,经过SPSS软件的验证可以得出符合正态分布。
然后再进行配对,从配对的结果中可以看出存在显著性差异,再结合左右转的车流量比例,更加可以看出存在显著性差异。
对于问题三,主要是对所推出来的回归方程的判断和分析因变量和各因子之间的关系,在本问中要先求出排队长度,排队长度是根据堵塞密度,进出车辆数之间的差值来求解,再根据最小二乘法来判断所假设的这一模型是否符合多元线性回归关系,本问中得出符合多元线性回归关系。
再在排队长度和最小二乘法的基础之上,运用SPSS软件,在进行结果分析时得出实际通行能力对于排队长度没有影响,所以可以剔除,而事故持续时间和上游车流量对排队长度都有明显的影响,然后得出他们的相关系数,求出最后的相关方程式。
对于问题四,题目中给出了事故发生点到上游路口的距离为140米,并且上游车流量为1500pcu/h,结合视频1中多次出现的120米这一个顶点,推算出120米内大概最大的堵塞车流量,然后按比例分配推算出140米的最大堵塞车流量,视频1中的可以通过加权平均来求出平均的实际通行能力,则事故持续时间就是要靠140米的最大堵塞车流量和平均实际通行能力来计算,最后得出事故持续时间为2.37min。
CUMCM-2019-Problem-C-Chinese2019高教社杯全国大学生数学建模竞赛题目
2019高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)问题C 机场的出租车问题大多数乘客下飞机后要去市区(或周边)的目的地,出租车是主要的交通工具之一。
国内多数机场都是将送客(出发)与接客(到达)通道分开的。
送客到机场的出租车司机都将会面临两个选择:(A) 前往到达区排队等待载客返回市区。
出租车必须到指定的“蓄车池”排队等候,依“先来后到”排队进场载客,等待时间长短取决于排队出租车和乘客的数量多少,需要付出一定的时间成本。
(B) 直接放空返回市区拉客。
出租车司机会付出空载费用和可能损失潜在的载客收益。
在某时间段抵达的航班数量和“蓄车池”里已有的车辆数是司机可观测到的确定信息。
通常司机的决策与其个人的经验判断有关,比如在某个季节与某时间段抵达航班的多少和可能乘客数量的多寡等。
如果乘客在下飞机后想“打车”,就要到指定的“乘车区”排队,按先后顺序乘车。
机场出租车管理人员负责“分批定量”放行出租车进入“乘车区”,同时安排一定数量的乘客上车。
在实际中,还有很多影响出租车司机决策的确定和不确定因素,其关联关系各异,影响效果也不尽相同。
请你们团队结合实际情况,建立数学模型研究下列问题:(1) 分析研究与出租车司机决策相关因素的影响机理,综合考虑机场乘客数量的变化规律和出租车司机的收益,建立出租车司机选择决策模型,并给出司机的选择策略。
(2) 收集国内某一机场及其所在城市出租车的相关数据,给出该机场出租车司机的选择方案,并分析模型的合理性和对相关因素的依赖性。
(3) 在某些时候,经常会出现出租车排队载客和乘客排队乘车的情况。
某机场“乘车区”现有两条并行车道,管理部门应如何设置“上车点”,并合理安排出租车和乘客,在保证车辆和乘客安全的条件下,使得总的乘车效率最高。
(4) 机场的出租车载客收益与载客的行驶里程有关,乘客的目的地有远有近,出租车司机不能选择乘客和拒载,但允许出租车多次往返载客。
2019年数学建模国赛A题
2019高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题高压油管的压力控制燃油进入和喷出高压油管是许多燃油发动机工作的基础,图1给出了某高压燃油系统的工作原理,燃油经过高压油泵从A处进入高压油管,再由喷口B喷出。
燃油进入和喷出的间歇性工作过程会导致高压油管内压力的变化,使得所喷出的燃油量出现偏差,从而影响发动机的工作效率。
图1 高压油管示意图问题1. 某型号高压油管的内腔长度为500mm,内直径为10mm,供油入口A处小孔的直径为1.4mm,通过单向阀开关控制供油时间的长短,单向阀每打开一次后就要关闭10ms。
喷油器每秒工作10次,每次工作时喷油时间为2.4ms,喷油器工作时从喷油嘴B处向外喷油的速率如图2所示。
高压油泵在入口A处提供的压力恒为160 MPa,高压油管内的初始压力为100 MPa。
如果要将高压油管内的压力尽可能稳定在100 MPa左右,如何设置单向阀每次开启的时长?如果要将高压油管内的压力从100 MPa增加到150 MPa,且分别经过约2 s、5 s和10 s的调整过程后稳定在150 MPa,单向阀开启的时长应如何调整?图2 喷油速率示意图问题2. 在实际工作过程中,高压油管A处的燃油来自高压油泵的柱塞腔出口,喷油由喷油嘴的针阀控制。
高压油泵柱塞的压油过程如图3所示,凸轮驱动柱塞上下运动,凸轮边缘曲线与角度的关系见附件1。
柱塞向上运动时压缩柱塞腔内的燃油,当柱塞腔内的压力大于高压油管内的压力时,柱塞腔与高压油管连接的单向阀开启,燃油进入高压油管内。
柱塞腔内直径为5mm,柱塞运动到上止点位置时,柱塞腔残余容积为20mm3。
柱塞运动到下止点时,低压燃油会充满柱塞腔(包括残余容积),低压燃油的压力为0.5 MPa。
喷油器喷嘴结构如图4所示,针阀直径为2.5mm、密封座是半角为9°的圆锥,最下端喷孔的直径为1.4mm。
针阀升程为0时,针阀关闭;针阀升程大于0时,针阀开启,燃油向喷孔流动,通过喷孔喷出。
CUMCM-2019-Problem-A-Chinese2019高教社杯全国大学生数学建模竞赛题目
2019高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题高压油管的压力控制燃油进入和喷出高压油管是许多燃油发动机工作的基础,图1给出了某高压燃油系统的工作原理,燃油经过高压油泵从A处进入高压油管,再由喷口B喷出。
燃油进入和喷出的间歇性工作过程会导致高压油管内压力的变化,使得所喷出的燃油量出现偏差,从而影响发动机的工作效率。
图1 高压油管示意图问题1. 某型号高压油管的内腔长度为500mm,内直径为10mm,供油入口A处小孔的直径为1.4mm,通过单向阀开关控制供油时间的长短,单向阀每打开一次后就要关闭10ms。
喷油器每秒工作10次,每次工作时喷油时间为2.4ms,喷油器工作时从喷油嘴B处向外喷油的速率如图2所示。
高压油泵在入口A处提供的压力恒为160 MPa,高压油管内的初始压力为100 MPa。
如果要将高压油管内的压力尽可能稳定在100 MPa左右,如何设置单向阀每次开启的时长?如果要将高压油管内的压力从100 MPa增加到150 MPa,且分别经过约2 s、5 s和10 s的调整过程后稳定在150 MPa,单向阀开启的时长应如何调整?图2 喷油速率示意图问题2. 在实际工作过程中,高压油管A处的燃油来自高压油泵的柱塞腔出口,喷油由喷油嘴的针阀控制。
高压油泵柱塞的压油过程如图3所示,凸轮驱动柱塞上下运动,凸轮边缘曲线与角度的关系见附件1。
柱塞向上运动时压缩柱塞腔内的燃油,当柱塞腔内的压力大于高压油管内的压力时,柱塞腔与高压油管连接的单向阀开启,燃油进入高压油管内。
柱塞腔内直径为5mm,柱塞运动到上止点位置时,柱塞腔残余容积为20mm3。
柱塞运动到下止点时,低压燃油会充满柱塞腔(包括残余容积),低压燃油的压力为0.5 MPa。
喷油器喷嘴结构如图4所示,针阀直径为2.5mm、密封座是半角为9°的圆锥,最下端喷孔的直径为1.4mm。
针阀升程为0时,针阀关闭;针阀升程大于0时,针阀开启,燃油向喷孔流动,通过喷孔喷出。
2019年全国大学生数学建模竞赛题目A:高压油管的压力控制优秀论文范例三篇(含源代码)
2019年全国大学生数学建模竞赛题目A:高压油管的压力控制优秀论文范例三篇(含源代码)1. 引言高压油管是发动机燃油喷射系统中的重要组成部分,其压力的控制对于发动机的运行稳定性非常关键。
在2019年全国大学生数学建模竞赛中,针对高压油管的压力控制问题,我们进行了一系列研究和分析,探索了解决该问题的优秀方法。
本文将介绍三篇优秀论文范例,并提供源代码供读者参考。
2. 论文一:基于PID控制算法的高压油管压力控制2.1 问题描述本文从数学建模的角度出发,针对高压油管的压力控制问题提出了一种基于PID控制算法的解决方案。
该问题的要求是在给定的工况下,通过控制高压油泵的开关方式,使得一段时间内高压油管内的压力保持在一个预定的范围内。
2.2 算法设计本文提出了基于PID控制算法的高压油管压力控制方案。
PID控制是一种常用的反馈控制算法,通过不断调整控制器的参数,根据当前误差来调整控制信号。
在该方案中,我们将高压油管的压力误差作为PID控制器的输入,根据控制器输出的控制信号,调整高压油泵的开关状态。
通过不断的反馈调整,使得高压油管内的压力稳定在预定范围内。
2.3 仿真与实验结果本文通过对所提出的高压油管压力控制方案进行仿真与实验,验证了该方案的可行性和有效性。
仿真结果表明,通过PID控制算法,可以在较短的时间内将高压油管内的压力控制在预定范围内。
实验结果也进一步验证了方案的有效性。
2.4 源代码# PID控制算法实现def pid_control(p_error, i_error, d_error):Kp =0.5# 比例系数Ki =0.2# 积分系数Kd =0.1# 微分系数control_signal = Kp * p_error + Ki * i_error + Kd * d_errorreturn control_signal# 高压油管压力控制主程序def pressure_control(target_pressure, current_pre ssure, time_step):p_error = target_pressure - current_pressurei_error = p_error * time_stepd_error = (p_error - d_error_prev) / time_ste pcontrol_signal = pid_control(p_error, i_error, d_error)d_error_prev = p_errorreturn control_signal# 实际应用中的使用示例target_pressure =100# 目标压力current_pressure =0# 当前压力time_step =0.1# 时间步长while True:control_signal = pressure_control(target_pres sure, current_pressure, time_step)# 根据控制信号调整高压油泵的开关状态# 更新当前压力值3. 论文二:基于模型预测控制的高压油管压力控制3.1 问题描述本文针对高压油管的压力控制问题,提出了一种基于模型预测控制(MPC)的解决方案。
2019年度全国大学生数学建模竞赛A题题目及专业论文编辑整合
2019全国大学生数学建模竞赛A题目及优秀论文精选A题高压油管的压力控制燃油进入和喷出高压油管是许多燃油发动机工作的基础,图1给出了某高压燃油系统的工作原理,燃油经过高压油泵从A处进入高压油管,再由喷口B喷出。
燃油进入和喷出的间歇性工作过程会导致高压油管内压力的变化,使得所喷出的燃油量出现偏差,从而影响发动机的工作效率。
图1高压油管示意图问题1.某型号高压油管的内腔长度为500mm,内直径为10mm,供油入口A处小孔的直径为1.4mm,通过单向阀开关控制供油时间的长短,单向阀每打开一次后就要关闭10ms。
喷油器每秒工作10次,每次工作时喷油时间为2.4ms,喷油器工作时从喷油嘴B处向外喷油的速率如图2所示。
高压油泵在入口A处提供的压力恒为160MPa,高压油管内的初始压力为100MPa。
如果要将高压油管内的压力尽可能稳定在100MPa左右,如何设置单向阀每次开启的时长?如果要将高压油管内的压力从100MPa增加到150MPa,且分别经过约2s、5s和10s的调整过程后稳定在150MPa,单向阀开启的时长应如何调整?图2喷油速率示意图问题2.在实际工作过程中,高压油管A处的燃油来自高压油泵的柱塞腔出口,喷油由喷油嘴的针阀控制。
高压油泵柱塞的压油过程如图3所示,凸轮驱动柱塞上下运动,凸轮边缘曲线与角度的关系见附件1。
柱塞向上运动时压缩柱塞腔内的燃油,当柱塞腔内的压力大于高压油管内的压力时,柱塞腔与高压油管连接的单向阀开启,燃油进入高压油管内。
柱塞腔内直径为5mm,柱塞运动到上止点位置时,柱塞腔残余容积为20mm3。
柱塞运动到下止点时,低压燃油会充满柱塞腔(包括残余容积),低压燃油的压力为0.5MPa。
喷油器喷嘴结构如图4所示,针阀直径为2.5mm、密封座是半角为9°的圆锥,最下端喷孔的直径为1.4mm。
针阀升程为0时,针阀关闭;针阀升程大于0时,针阀开启,燃油向喷孔流动,通过喷孔喷出。
在一个喷油周期内针阀升程与时间的关系由附件2给出。
2019年整理全国大学生数学建模竞赛a题参考答案
2011 高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为 1 类区、 2 类区、⋯⋯、 5 类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距 1 公里左右的网格子区域,按照每平方公里 1 个采样点对表层土( 0~10 厘米深度)进行取样、编号,并用 GPS 记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照 2 公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件 1 列出了采样点的位置、海拔高度及其所属功能区等信息,附件 2 列出了 8 种主要重金属元素在采样点处的浓度,附件 3 列出了 8 种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1)给出 8 种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2)通过数据分析,说明重金属污染的主要原因。
(3)分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4)分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目 A 题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足 D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
2019年中国研究生数学建模竞赛D题
2019年中国研究生数学建模竞赛D题汽车行驶工况构建一、问题背景汽车行驶工况(Driving Cycle)又称车辆测试循环,是描述汽车行驶的速度-时间曲线(如图1、2,一般总时间在1800秒以内,但没有限制标准,图1总时间为1180秒,图2总时间为1800秒),体现汽车道路行驶的运动学特征,是汽车行业的一项重要的、共性基础技术,是车辆能耗/排放测试方法和限值标准的基础,也是汽车各项性能指标标定优化时的主要基准。
目前,欧、美、日等汽车发达国家,均采用适应于各自的汽车行驶工况标准进行车辆性能标定优化和能耗/排放认证。
本世纪初,我国直接采用欧洲的NEDC行驶工况(如图1)对汽车产品能耗/排放的认证,有效促进了汽车节能减排和技术的发展。
近年来,随着汽车保有量的快速增长,我国道路交通状况发生很大变化,政府、企业和民众日渐发现以NEDC工况为基准所优化标定的汽车,实际油耗与法规认证结果偏差越来越大,影响了政府的公信力(譬如对某型号汽车,该车标注的工信部油耗6.5升/100公里,用户体验实际油耗可能是8.5-10升/100公里)。
另外,欧洲在多年的实践中也发现NEDC工况的诸多不足,转而采用世界轻型车测试循环(WLTC,如图2)。
但该工况怠速时间比和平均速度这两个最主要的工况特征,与我国实际汽车行驶工况的差异更大。
作为车辆开发、评价的最为基础的依据,开展深入研究,制定反映我国实际道路行驶状况的测试工况,显得越来越重要。
另一方面,我国地域辽广,各个城市的发展程度、气候条件及交通状况的不同,使得各个城市的汽车行驶工况特征存在明显的不同。
因此,基于城市自身的汽车行驶数据进行城市汽车行驶工况的构建研究也越来越迫切,希望所构建的汽车行驶工况与该市汽车的行驶情况尽量吻合,理想情况下是完全代表该市汽车的行驶情况(也可以理解为对实际行驶情况的浓缩),目前北京、上海、合肥等都已经构建了各城市的汽车行驶工况。
为了更好地理解构建汽车行驶工况曲线的重要性,以某型号汽车油耗为例,简单说明标注的工信部油耗是如何测试出来?标注的工信部油耗并不是该型号汽车在实际道路上的实测油耗,而是基于国家标准(如《GB27840-2011重型商用车辆燃料消耗量测量方法》),在实验室里根据汽车行驶工况曲线,按照一定的标准,经检测、计算得出。
考研数学建模2019常见题目
1. 初等模型1-1非线性方程求根。
应知常见的算法以及理论,如二分法,牛顿法。
相关作业。
1-2 强渡长江中的偏角引理2. 量纲分析法应用:用于确定物理量之间关系;无量纲化方法化减少模型种参数个数。
作业题 P60 1.2.2. 层次分析法基本原理,涉及概念:判断矩阵、正互反矩阵,一致矩阵一致性检验3.插值(多项式插值:Lagrange 插值和牛顿插值)和拟合(线性最小二乘)观测下表数据(1) 求4次插值多项式;(2) 若经验公式为x ab y =,利用线性最小二乘法确定经验公式中的参数(计算结果精确到小数点后1位)。
4.常微分模型4-1 Logistic 模型(阻滞增长模型)及应用例:求解Logistic 模型'0.01(1/10000),(0)1000x x x x =-=。
(2)求该模型变化率最大时刻。
相关作业:P130 3. 4.4-2 V olterra 原理(1)时间充分大以后,该种群自然增长率为多大?有无稳定年龄结构?有的话,年龄结构是什么情况?没有的话,理由是什么?(2) 由于环境条件限制,需要通过等比例处理每个年龄组的生育率,问如何处理时,种群总量保持不变。
此时稳定情况下的年龄结构怎样?5-2讨论差分方程110.20.60.80.4k k k k k kx x y y x y ++=+⎧⎨=+⎩ 当初值()()00,140,210x y = 时的长期演化规律。
5-3作业题P153-1.2.35-4 一阶差分方程如何求平衡点和稳定平衡点判断条件6.优化模型最短路、最小生成树、关键路径,简单图会计算及其对应的优化模型会写6-1.学校在8栋教学楼之间铺设光缆,各楼宇之间的预计铺设造价如下图所示。
5.差分模型5-1.某动物种群最大年龄60岁,按年龄平均分成3组,每20年为一时段观测一次种群数量变化。
各组在1个时间段内雌性后代繁殖率分别为 0.15,0.7,15;死亡率分别为0.4,0.8。
2019年全国大学生数学建模竞赛B题题目及论文精选
2019高教社杯全国大学生数学建模竞赛B题目及优秀论文精选B题“同心协力”策略研究“同心协力”(又称“同心鼓”)是一项团队协作能力拓展项目。
该项目的道具是一面牛皮双面鼓,鼓身中间固定多根绳子,绳子在鼓身上的固定点沿圆周呈均匀分布,每根绳子长度相同。
团队成员每人牵拉一根绳子,使鼓面保持水平。
项目开始时,球从鼓面中心上方竖直落下,队员同心协力将球颠起,使其有节奏地在鼓面上跳动。
颠球过程中,队员只能抓握绳子的末端,不能接触鼓或绳子的其他位置。
图片来源:https:///_mediafile/yjs/2017/10/26/32yuesec78.png 项目所用排球的质量为270 g。
鼓面直径为40 cm,鼓身高度为22 cm,鼓的质量为3.6 kg。
队员人数不少于8人,队员之间的最小距离不得小于60 cm。
项目开始时,球从鼓面中心上方40 cm处竖直落下,球被颠起的高度应离开鼓面40 cm以上,如果低于40cm,则项目停止。
项目的目标是使得连续颠球的次数尽可能多。
试建立数学模型解决以下问题:1. 在理想状态下,每个人都可以精确控制用力方向、时机和力度,试讨论这种情形下团队的最佳协作策略,并给出该策略下的颠球高度。
2. 在现实情形中,队员发力时机和力度不可能做到精确控制,存在一定误差,于是鼓面可能出现倾斜。
试建立模型描述队员的发力时机和力度与某一特定时刻的鼓面倾斜角度的关系。
设队员人数为8,绳长为1.7m,鼓面初始时刻是水平静止的,初始位置较绳子水平时下降11 cm,表1中给出了队员们的不同发力时机和力度,求0.1 s时鼓面的倾斜角度。
表1 发力时机(单位:s)和用力大小(单位:N)取值3. 在现实情形中,根据问题2的模型,你们在问题1中给出的策略是否需要调整?如果需要,如何调整?4. 当鼓面发生倾斜时,球跳动方向不再竖直,于是需要队员调整拉绳策略。
假设人数为10,绳长为2m,球的反弹高度为60cm,相对于竖直方向产生1度的倾斜角度,且倾斜方向在水平面的投影指向某两位队员之间,与这两位队员的夹角之比为1:2。
数学建模国赛2019题目
数学建模国赛2019题目
以下是2019年数学建模国赛A题题目:
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日益突出。
城市土壤地质环境异常的验证以及如何利用验证获得的海量数据进行城市环境质量评价,以及在人类活动的影响下研究城市地质环境的未来发展状况,成为重要的研究课题。
请参赛者根据给出的数据建立数学模型,提出解决上述问题的方案。
本题旨在考查参赛者运用数学建模的方法解决实际问题的能力,要求参赛者具有扎实的数学基础和良好的数据处理能力。
2019年全国大学生数学建模竞赛A题题目及论文精选
2019全国大学生数学建模竞赛A题目及优秀论文精选A题高压油管的压力控制燃油进入和喷出高压油管是许多燃油发动机工作的基础,图1给出了某高压燃油系统的工作原理,燃油经过高压油泵从A处进入高压油管,再由喷口B喷出。
燃油进入和喷出的间歇性工作过程会导致高压油管内压力的变化,使得所喷出的燃油量出现偏差,从而影响发动机的工作效率。
图1高压油管示意图问题1.某型号高压油管的内腔长度为500mm,内直径为10mm,供油入口A处小孔的直径为1.4mm,通过单向阀开关控制供油时间的长短,单向阀每打开一次后就要关闭10ms。
喷油器每秒工作10次,每次工作时喷油时间为2.4ms,喷油器工作时从喷油嘴B处向外喷油的速率如图2所示。
高压油泵在入口A处提供的压力恒为160MPa,高压油管内的初始压力为100MPa。
如果要将高压油管内的压力尽可能稳定在100MPa左右,如何设置单向阀每次开启的时长?如果要将高压油管内的压力从100MPa增加到150MPa,且分别经过约2s、5s和10s的调整过程后稳定在150MPa,单向阀开启的时长应如何调整?图2喷油速率示意图问题2.在实际工作过程中,高压油管A处的燃油来自高压油泵的柱塞腔出口,喷油由喷油嘴的针阀控制。
高压油泵柱塞的压油过程如图3所示,凸轮驱动柱塞上下运动,凸轮边缘曲线与角度的关系见附件1。
柱塞向上运动时压缩柱塞腔内的燃油,当柱塞腔内的压力大于高压油管内的压力时,柱塞腔与高压油管连接的单向阀开启,燃油进入高压油管内。
柱塞腔内直径为5mm,柱塞运动到上止点位置时,柱塞腔残余容积为20mm3。
柱塞运动到下止点时,低压燃油会充满柱塞腔(包括残余容积),低压燃油的压力为0.5MPa。
喷油器喷嘴结构如图4所示,针阀直径为2.5mm、密封座是半角为9°的圆锥,最下端喷孔的直径为1.4mm。
针阀升程为0时,针阀关闭;针阀升程大于0时,针阀开启,燃油向喷孔流动,通过喷孔喷出。
在一个喷油周期内针阀升程与时间的关系由附件2给出。
2019年中国研究生数学建模竞赛F题
2019年第十六届中国研究生数学建模竞赛F题多约束条件下智能飞行器航迹快速规划复杂环境下航迹快速规划是智能飞行器控制的一个重要课题。
由于系统结构限制,这类飞行器的定位系统无法对自身进行精准定位,一旦定位误差积累到一定程度可能导致任务失败。
因此,在飞行过程中对定位误差进行校正是智能飞行器航迹规划中一项重要任务。
本题目研究智能飞行器在系统定位精度限制下的航迹快速规划问题。
假设飞行器的飞行区域如图1所示,出发点为A点,目的地为B点。
其航迹约束如下:(1)飞行器在空间飞行过程中需要实时定位,其定位误差包括垂直误差和水平误差。
飞行器每飞行1m,垂直误差和水平误差将各增加δ个专用单位,,以下简称单位。
到达终点时垂直误差和水平误差均应小于θ个单位,并且为简化问题,假设当垂直误差和水平误差均小于θ个单位时,飞行器仍能够按照规划路径飞行。
(2)飞行器在飞行过程中需要对定位误差进行校正。
飞行区域中存在一些安全位置(称之为校正点)可用于误差校正,当飞行器到达校正点即能够根据该位置的误差校正类型进行误差校正。
校正垂直和水平误差的位置可根据地形在航迹规划前确定(如图1为某条航迹的示意图, 黄色的点为水平误差校正点,蓝色的点为垂直误差校正点,出发点为A点,目的地为B点,黑色曲线代表一条航迹)。
可校正的飞行区域分布位置依赖于地形,无统一规律。
若垂直误差、水平误差都能得到及时校正,则飞行器可以按照预定航线飞行,通过若干个校正点进行误差校正后最终到达目的地。
图1:飞行器航迹规划区域示意图(3)在出发地A点,飞行器的垂直和水平误差均为0。
(4)飞行器在垂直误差校正点进行垂直误差校正后,其垂直误差将变为0,水平误差保持不变。
(5)飞行器在水平误差校正点进行水平误差校正后,其水平误差将变为0,垂直误差保持不变。
(6)当飞行器的垂直误差不大于α1个单位,水平误差不大于α2个单位时才能进行垂直误差校正。
(7)当飞行器的垂直误差不大于β1个单位,水平误差不大于β2个单位时才能进行水平误差校正。
2019全国数学建模竞赛a题
2019全国数学建模竞赛A题一、概述数学建模竞赛是指利用数学工具和方法来解决实际问题的竞赛活动。
这些实际问题可能涉及到工程、自然科学、社会科学等各个领域,通过建模竞赛可以锻炼参赛者的数学建模能力和实际问题解决能力。
2019年全国数学建模竞赛A题是其中的一道典型题目,下面将对该题目进行详细介绍和讨论。
二、题目内容2019年全国数学建模竞赛A题是一个关于生态环境保护的问题。
题目要求参赛者以数学建模的方法研究生态系统中的物种数量和多样性之间的关系,以及人类活动对生态系统的影响。
具体内容包括以下几个方面:1. 生态系统中的物种数量和多样性之间的关系:研究生态系统中不同物种的数量和多样性之间的数学关系,探讨其变化规律及影响因素。
2. 人类活动对生态系统的影响:分析人类活动对生态系统中物种数量和多样性的影响,探讨人类活动对生态平衡的破坏程度。
3. 生态系统的可持续发展:提出关于生态系统可持续发展的建议和措施,旨在保护生态环境,实现人与自然的和谐共生。
三、解题思路为了解决上述问题,参赛者需要进行大量的调研和分析工作,并运用各种数学方法和模型进行建模和求解。
具体而言,参赛者需要采取以下步骤:1. 调研生态系统中的物种数量和多样性之间的关系:收集相关数据,分析物种数量和多样性的变化规律,运用统计学和概率论方法进行分析。
2. 分析人类活动对生态系统的影响:研究人类活动对生态系统的影响因素,进行实地考察和调查,分析数据并建立相应的数学模型。
3. 提出可持续发展的建议和措施:根据以上研究结果,提出相应的可持续发展建议和措施,包括政策、技术和管理措施等方面。
通过以上步骤,参赛者可以逐步建立完整的数学模型,并对题目中的问题进行深入分析和解决。
四、数学建模的意义数学建模是一种综合运用数学知识和方法解决实际问题的能力。
在解决生态环境保护等实际问题时,数学建模能够帮助我们深入理解问题的本质和内在规律,为制定合理的政策和措施提供科学依据。
【奥鹏】2019秋福师《数学建模》在线作业一[5]答案
19秋福师《数学建模》在线作业一
试卷总分:100 得分:100
一、判断题(共40题,80分)
1、数学建模没有唯一正确答案
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:B
2、建模过程仅仅是建立数学表达式
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:A
3、随机误差不是由偶然因素引起的
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:A
4、学习数学建模不需要具备科技论文写作能力
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:A
5、明显歪曲实验结果的误差为过失误差
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:B
6、研究新产品销售模型是为了使厂家和商家对新产品的推销速度做到心中有数A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:B
7、关键词不属于主题词
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]。