酵母表达系统与方法页PPT文档
合集下载
酿酒酵母表面展示表达系统及应用PPT课件
.
5
凝集素展示表达系统
.
6
凝集素展示表达系统
.
7
凝集素展示表达系统
.
8
絮凝素展示表达系统
絮凝素Flo1p 是一种新兴的展示系统,它是酿酒酵母细 胞表面类似凝集素的细胞壁蛋白。 • 目前,已经形成了两种类型的絮凝素展示系统 : • 一是GPI 系统 ;根据目的蛋白的特性和实验目的确定截去 Flo1p 肽段的长度,然后,目的蛋白的C 端融合到锚定序列 上。 • 二是利用Flo1p 的絮凝结构域的黏附能力创建一个表面展 示系统。
酿酒酵母表面展示表达系统及应 用
报告人:刘顺
2010.11.10
.
1
主要内容 1 概念
2
两种系统
3
应用
4
优缺点
.
2
一、概念
酿酒酵母表面展示表达系统: 一种固定化表达异源蛋白质的真核展示系统,
即把异源靶蛋白基因序列与特定的载体基因序列融 合后导入酵母细胞,利用酿酒酵母细胞内蛋白转运 到膜表面的机制(糖基磷脂酰肌醇,GPI锚定), 使靶蛋白表达并定位于酵母细胞表面,之后用葡聚 糖酶抽提细胞壁目的蛋白。
.
9
GPI 系统
.
10
絮凝结构域系统
Байду номын сангаас
.
11
应用
近几年来,酿酒酵母细胞表面展示表达系统迅速发 展并在多个领域获得应用,展现出广阔的发展前景。 1、作为生物催化剂展示表达各种酶蛋白:
淀粉分解酶、纤维素分解酶、脂酶 2、环境治理中展示表达金属蛋白 3、蛋白质分子的相互作用及组合蛋白库的构建 4、可作为生物传感器的荧光蛋白的展示表达 5、免疫学中的应用
.
13
酵母表达系统
信号肽:MFα 标记:Kan
4、甲醇酵母系统高效表达影响因素与对策
载体稳定性 基因剂量 整合位点 甲醇利用表型 mRNA5’端 AT含量分泌信号 表达产物稳定性
1)载体稳定性
同拷贝数时,整合型的比自主复制型的表达水平高 YRp型载体的稳定化:
选择—非选择培养交替数十代可得稳定的整合子 ,但费时,整合位点不确定。 采用YIp型载体: 更易实现整合、整合位点清楚
2)基因剂量
外源基因表达存在基因剂量效应 筛选多拷贝整合子
载体引入G418/Zeocin抗性标记,整合子拷贝数 与抗性成正相关,采用高G418/Zeocin抗性转化子。 体外串联多个表达盒,直接获多拷贝整合子 采用YRp型载体稳定化技术获高拷贝整合子 构建高拷贝整合型表达载体
3)整合位点
外源基因表达盒整合于AOX/MOX或标记基因处,均 可高效表达 毕赤酵母中个别情况整合于His4位点的比AOX1位点 的低
2)分泌表达产物过糖基化
(二) 甲醇酵母表达系统
甲醇酵母与甲醇氧化酶启动子 甲醇酵母表达系统的优缺点 甲醇酵母表达系统操作原理 甲醇酵母系统高效表达影响因素与对策 甲醇酵母表达系统的应用
1、甲醇酵母与甲醇氧化酶启动子
甲醇酵母(methylotrophic yeast) 指可利用甲醇作单一碳源的一类酵母。 毕赤酵母(Pichia pastoris) 汉森酵母(Hansenula ploymorpha) 假丝酵母(Candia boidinii)
组成的、复杂分支结构的现象。增加了免疫原性、对活 性与药代稳定性均有影响。 *糖链组成
O型糖链仅由甘露糖组成、而哺乳细胞的还含唾液酸 基团
4、酿酒酵母表达系统的缺陷
1)表达水平普遍不高 A、表达载体传代不稳定(YEp、YRp) B、所采用的强启动子调控不严谨 C、不能利用简单的无机培养基进行高密度发酵
4、甲醇酵母系统高效表达影响因素与对策
载体稳定性 基因剂量 整合位点 甲醇利用表型 mRNA5’端 AT含量分泌信号 表达产物稳定性
1)载体稳定性
同拷贝数时,整合型的比自主复制型的表达水平高 YRp型载体的稳定化:
选择—非选择培养交替数十代可得稳定的整合子 ,但费时,整合位点不确定。 采用YIp型载体: 更易实现整合、整合位点清楚
2)基因剂量
外源基因表达存在基因剂量效应 筛选多拷贝整合子
载体引入G418/Zeocin抗性标记,整合子拷贝数 与抗性成正相关,采用高G418/Zeocin抗性转化子。 体外串联多个表达盒,直接获多拷贝整合子 采用YRp型载体稳定化技术获高拷贝整合子 构建高拷贝整合型表达载体
3)整合位点
外源基因表达盒整合于AOX/MOX或标记基因处,均 可高效表达 毕赤酵母中个别情况整合于His4位点的比AOX1位点 的低
2)分泌表达产物过糖基化
(二) 甲醇酵母表达系统
甲醇酵母与甲醇氧化酶启动子 甲醇酵母表达系统的优缺点 甲醇酵母表达系统操作原理 甲醇酵母系统高效表达影响因素与对策 甲醇酵母表达系统的应用
1、甲醇酵母与甲醇氧化酶启动子
甲醇酵母(methylotrophic yeast) 指可利用甲醇作单一碳源的一类酵母。 毕赤酵母(Pichia pastoris) 汉森酵母(Hansenula ploymorpha) 假丝酵母(Candia boidinii)
组成的、复杂分支结构的现象。增加了免疫原性、对活 性与药代稳定性均有影响。 *糖链组成
O型糖链仅由甘露糖组成、而哺乳细胞的还含唾液酸 基团
4、酿酒酵母表达系统的缺陷
1)表达水平普遍不高 A、表达载体传代不稳定(YEp、YRp) B、所采用的强启动子调控不严谨 C、不能利用简单的无机培养基进行高密度发酵
酵母表达系统
C、野生型GAL4表达水平低,产物活性可被GLAL80产物完全抑制,半乳糖诱导效果差
2)半乳糖激酶启动子(GAL1)
半乳糖诱导、葡萄糖抑制
GAL10 Promoter
GAL80
GAL4
UAS
GAL1
GAL7
GAL10
A、 将GAL4的启动子换成GAL10的诱导型强启动子 B、半乳糖诱导GAL4高表达,不受GAL80产物抑制,激活GAL1等高效转录
性结合因子:MF-α
酸性磷酸酯酶:PHO5
蔗糖酶:SUC2 杀手毒素因子:KIL
酿酒酵母信号肽特点
*保守性低,大多异源宿主系统的信号肽不能互用
*信号肽结构:
Met 信号肽剪切位点
正电荷区 疏水区
极性区
目的蛋白
MF-α信号肽
*分泌效率高
*在酵母统具有通用性
*88个残基组成
Met KEX2 DAP DAP
AOX1与AOX2 *毕赤酵母和假丝酵母基因组存在二个AOX基因 AOX1、AOX2 *AOX1与AOX2基因97%同源 *AOX1 占主导地位,负责AOX 99%以上活性
1、甲醇酵母与甲醇氧化酶启动子
甲醇氧化酶启动子 A、目前已发现的、最强的真核启动子 B、严谨调控型启动子 AOX1:葡萄糖和甘油脱阻遏、甲醇诱导 MOX:葡萄糖阻遏、甘油脱阻遏、甲醇诱导
8)表达产物稳定性
分泌表达时,胞外蛋白酶是要影响因素
降低培养基pH值:蛋白酶在酸性条件下活性较低
培养基中添加蛋白水解产物:竞争性抑制
采用蛋白酶缺陷宿主株:如P.pastoris SMD1168
3、甲醇酵母表达系统操作原理
宿主株与标记基因 甲醇酵母系统的整合事件 胞内表达与分泌表达
酵母表面展示技术.pptx
第3页/共12页
• 载体蛋白
酵母细胞表面包被着一层坚硬的细胞壁,由内 层的葡聚糖骨架和外层的甘露糖蛋白构成。甘 露糖蛋白主要包括两类蛋白质:一种以非共价 方式松散地结合于细胞壁,可以用SDS 抽提; 另一类蛋白必需以 β-1,3 或β-1,6 葡聚糖酶消 化细胞壁后才能抽提,这类蛋白常含有 GPI 锚 定区域。α-凝集素和絮凝素以及细胞壁蛋白如 Cwp1p,Cwp2p,Tip1p 等都属于 GPI 家族 蛋白,外源蛋白与它们融合后可被共价锚定于 细胞表面,这些蛋白是常用的酵母表面展示载 体蛋白。
第6页与外源蛋白融合,并将融合蛋白展露表达 在细胞表面,此系统又包括两个子系统: GPI锚定系统和絮凝结构域锚定系统。 GPI锚定系统是利用絮凝素Flo1p的C末端含有的GPI信号锚定外源蛋白,此系 统与凝集素展示相似; 絮凝结构域锚定系统是利用Flo1p的中间絮凝功能结构 域与外源蛋白融合,通过絮凝功能结构域识别酵母细胞壁中的甘露聚糖链并以 非共价作用诱导细胞粘附、聚集成可逆性絮状物
第10页/共12页
• 酵母表面展示与酶技术 • 酶的固定化是指借助物理或者化学方法将酶固定于特殊
的相,使得酶与整体流体分开,但是仍然能够进行底物 和效应物分子交换并发挥其催化效能的一种技术。与游 离酶相比,固定化酶提高了酶的稳定性,并使酶能够反 复回收利用。但是,传统的固定化方法也会产生一些不 利因素,例如由于增加固定化操作,导致酶固定化过程 中的活性收率损失;另外由于固定化操作需用载体,因 而增加了载体成本费和固定化操作费用。利用表面展示 技术将具有催化活性的酶展示于酵母等微生物细胞表面 就形成了全细胞催化剂,与传统的细胞内酶和外分泌酶 不同,表面展示的酶以共价或非共价方式固定于细胞外 表面,这种独特的空间定位使其相对自由酶而言有许多 优良的特性,如温度、有机溶剂稳定性、可多次重复使 用等,这些特点与传统的固定化酶技术相似,但无需额 外的蛋白纯化和固定的操作,有着良好的应用前景。
• 载体蛋白
酵母细胞表面包被着一层坚硬的细胞壁,由内 层的葡聚糖骨架和外层的甘露糖蛋白构成。甘 露糖蛋白主要包括两类蛋白质:一种以非共价 方式松散地结合于细胞壁,可以用SDS 抽提; 另一类蛋白必需以 β-1,3 或β-1,6 葡聚糖酶消 化细胞壁后才能抽提,这类蛋白常含有 GPI 锚 定区域。α-凝集素和絮凝素以及细胞壁蛋白如 Cwp1p,Cwp2p,Tip1p 等都属于 GPI 家族 蛋白,外源蛋白与它们融合后可被共价锚定于 细胞表面,这些蛋白是常用的酵母表面展示载 体蛋白。
第6页与外源蛋白融合,并将融合蛋白展露表达 在细胞表面,此系统又包括两个子系统: GPI锚定系统和絮凝结构域锚定系统。 GPI锚定系统是利用絮凝素Flo1p的C末端含有的GPI信号锚定外源蛋白,此系 统与凝集素展示相似; 絮凝结构域锚定系统是利用Flo1p的中间絮凝功能结构 域与外源蛋白融合,通过絮凝功能结构域识别酵母细胞壁中的甘露聚糖链并以 非共价作用诱导细胞粘附、聚集成可逆性絮状物
第10页/共12页
• 酵母表面展示与酶技术 • 酶的固定化是指借助物理或者化学方法将酶固定于特殊
的相,使得酶与整体流体分开,但是仍然能够进行底物 和效应物分子交换并发挥其催化效能的一种技术。与游 离酶相比,固定化酶提高了酶的稳定性,并使酶能够反 复回收利用。但是,传统的固定化方法也会产生一些不 利因素,例如由于增加固定化操作,导致酶固定化过程 中的活性收率损失;另外由于固定化操作需用载体,因 而增加了载体成本费和固定化操作费用。利用表面展示 技术将具有催化活性的酶展示于酵母等微生物细胞表面 就形成了全细胞催化剂,与传统的细胞内酶和外分泌酶 不同,表面展示的酶以共价或非共价方式固定于细胞外 表面,这种独特的空间定位使其相对自由酶而言有许多 优良的特性,如温度、有机溶剂稳定性、可多次重复使 用等,这些特点与传统的固定化酶技术相似,但无需额 外的蛋白纯化和固定的操作,有着良好的应用前景。
酿酒酵母表面展示表达系统及应用PPT课件
•12
•2
二、两种系统
•
酿酒酵母细胞壁主要由外层的甘露糖ቤተ መጻሕፍቲ ባይዱ白和内层的葡
聚糖骨架组成,两者通过共价健相连。外层甘露糖蛋白有
两种类型:
• 一种是通过非共价健与酵母细胞壁松散相连并能被SDS 提取出来的低分子量蛋白;
• 一种是必须被葡聚糖酶酶解细胞壁的β-1,3-和β-1,6葡聚糖层后才能被SDS抽提的高分子量蛋白,包括凝集 素、絮凝素、Sed1p、Cwp1p、 Cwp 2p和Tip1p、Tir1p 、Srp1p等。后者的结构中大多都含有GPI锚定区域
•11
问题和展望
优点 1、可克隆较大外源蛋白 2、对表达的外源蛋白质进行有效的折叠、糖基化和形成二硫键,并与葡
聚糖共价结合,耐SDS 抽提 3、酵母生产快,容易培养,展示蛋白能稳定地在子代细胞中表达 4、表达的蛋白可用荧光激活细胞分选仪(FACS) 进行灵敏而方便地检测
和筛选 缺点: 1、天然活性不够,表达的蛋白可能不完整 2、表达量也不够,而且酒精往往会抑制生长 3、多拷贝载体不稳定,整合载体则拷贝数低,表达的蛋白量少
• 其中分别由AGα1、AGa1/AGa2和Flo1表达异源蛋白的 凝集素和絮凝素酵母细胞展示表达系统应用较多。
•3
凝集素展示表达系统
α凝集素和a凝集素是酵母细胞壁上的两种甘露糖 蛋白,它们在酿酒酵母的交配型α(MATα )和 交配型a(MATa)单倍体细胞之间介导细胞 与细胞的性粘附,使细胞融合形成双倍体 。
•8
GPI 系统
•9
絮凝结构域系统
•10
应用
近几年来,酿酒酵母细胞表面展示表达系统迅速发 展并在多个领域获得应用,展现出广阔的发展前景。 1、作为生物催化剂展示表达各种酶蛋白:
•2
二、两种系统
•
酿酒酵母细胞壁主要由外层的甘露糖ቤተ መጻሕፍቲ ባይዱ白和内层的葡
聚糖骨架组成,两者通过共价健相连。外层甘露糖蛋白有
两种类型:
• 一种是通过非共价健与酵母细胞壁松散相连并能被SDS 提取出来的低分子量蛋白;
• 一种是必须被葡聚糖酶酶解细胞壁的β-1,3-和β-1,6葡聚糖层后才能被SDS抽提的高分子量蛋白,包括凝集 素、絮凝素、Sed1p、Cwp1p、 Cwp 2p和Tip1p、Tir1p 、Srp1p等。后者的结构中大多都含有GPI锚定区域
•11
问题和展望
优点 1、可克隆较大外源蛋白 2、对表达的外源蛋白质进行有效的折叠、糖基化和形成二硫键,并与葡
聚糖共价结合,耐SDS 抽提 3、酵母生产快,容易培养,展示蛋白能稳定地在子代细胞中表达 4、表达的蛋白可用荧光激活细胞分选仪(FACS) 进行灵敏而方便地检测
和筛选 缺点: 1、天然活性不够,表达的蛋白可能不完整 2、表达量也不够,而且酒精往往会抑制生长 3、多拷贝载体不稳定,整合载体则拷贝数低,表达的蛋白量少
• 其中分别由AGα1、AGa1/AGa2和Flo1表达异源蛋白的 凝集素和絮凝素酵母细胞展示表达系统应用较多。
•3
凝集素展示表达系统
α凝集素和a凝集素是酵母细胞壁上的两种甘露糖 蛋白,它们在酿酒酵母的交配型α(MATα )和 交配型a(MATa)单倍体细胞之间介导细胞 与细胞的性粘附,使细胞融合形成双倍体 。
•8
GPI 系统
•9
絮凝结构域系统
•10
应用
近几年来,酿酒酵母细胞表面展示表达系统迅速发 展并在多个领域获得应用,展现出广阔的发展前景。 1、作为生物催化剂展示表达各种酶蛋白:
酵母表达系统
AOX1、AOX2 *AOX1与AOX2基因97%同源 *AOX1 占主导地位,负责AOX 99%以上活性
1、甲醇酵母与甲醇氧化酶启动子
甲醇氧化酶启动子 A、目前已发现的、最强的真核启动子 B、严谨调控型启动子
AOX1:葡萄糖和甘油脱阻遏、甲醇诱导 MOX:葡萄糖阻遏、甘油脱阻遏、甲醇诱导
2、甲醇酵母表达系统的优缺点
甲醇酵母系统的整合事件
YRp型载体:汉森系统 传代不稳定,传代过程同源或非同源重组,高选择
压力迫使高拷贝数整合,可达100拷贝。 YIp型载体: A、在靶序列处线性化载体DNA,诱导同源重组 B、有“插入”和“取代”二类整合模式 C、主要为单拷贝整合,1-10%为多拷贝整合
3、甲醇酵母表达系统操作原理
宿主株与标记基因 甲醇酵母系统的整合事件 胞内表达与分泌表达
甲醇酵母系统宿主
二大宿主系统主要特点
项目 最适温度 最适pH值 甘油阻遏 糖基化 高密度发酵
毕赤酵母 30℃ 4.5 是 部分过度 100g/L
汉森酵母 37℃ 4.5 否 较正常 100g/L
甲醇酵母系统宿主
A、表达水平高(最高水平的系统) B、产物可翻译后修饰:糖基化、磷酸化、酰脂化 C、过糖基化程度比酿酒酵母少(8-15个vs100-150
个甘露糖) D、产物可正确折叠和高效分泌(最高分泌表达系统) E、可利用简单无机盐培养基高密度发酵,生物量大。 F、实验室和工业操作简单 G、不能满足结构要求严格的糖基化
1、转录起始位点; 2、TATA盒:富含AT; 3、UAS:上游激活序列;
4、URS:上游阻遏序列 5、DAS:下游激活序列
酿酒酵母表达系统常用启动子
1)糖酵解途径中关键酶的强启动子,受葡萄糖诱导: 甘油醛-3-磷酸脱氢酶基因GAPDH 磷酸甘油激酶基因PKG 乙醇脱氢酶基因ADH
1、甲醇酵母与甲醇氧化酶启动子
甲醇氧化酶启动子 A、目前已发现的、最强的真核启动子 B、严谨调控型启动子
AOX1:葡萄糖和甘油脱阻遏、甲醇诱导 MOX:葡萄糖阻遏、甘油脱阻遏、甲醇诱导
2、甲醇酵母表达系统的优缺点
甲醇酵母系统的整合事件
YRp型载体:汉森系统 传代不稳定,传代过程同源或非同源重组,高选择
压力迫使高拷贝数整合,可达100拷贝。 YIp型载体: A、在靶序列处线性化载体DNA,诱导同源重组 B、有“插入”和“取代”二类整合模式 C、主要为单拷贝整合,1-10%为多拷贝整合
3、甲醇酵母表达系统操作原理
宿主株与标记基因 甲醇酵母系统的整合事件 胞内表达与分泌表达
甲醇酵母系统宿主
二大宿主系统主要特点
项目 最适温度 最适pH值 甘油阻遏 糖基化 高密度发酵
毕赤酵母 30℃ 4.5 是 部分过度 100g/L
汉森酵母 37℃ 4.5 否 较正常 100g/L
甲醇酵母系统宿主
A、表达水平高(最高水平的系统) B、产物可翻译后修饰:糖基化、磷酸化、酰脂化 C、过糖基化程度比酿酒酵母少(8-15个vs100-150
个甘露糖) D、产物可正确折叠和高效分泌(最高分泌表达系统) E、可利用简单无机盐培养基高密度发酵,生物量大。 F、实验室和工业操作简单 G、不能满足结构要求严格的糖基化
1、转录起始位点; 2、TATA盒:富含AT; 3、UAS:上游激活序列;
4、URS:上游阻遏序列 5、DAS:下游激活序列
酿酒酵母表达系统常用启动子
1)糖酵解途径中关键酶的强启动子,受葡萄糖诱导: 甘油醛-3-磷酸脱氢酶基因GAPDH 磷酸甘油激酶基因PKG 乙醇脱氢酶基因ADH
酿酒酵母表面展示表达系统及应用
4 能够展示表达 1 0 个凝集素蛋白, 更利于高效表达具有
。G P I 锚定区域与细胞蛋白的 C 端共价相 ?
连, 为蛋白与细胞膜提供稳定的连接。G P I 锚定蛋白的 C 端包含疏水多肽, 当细胞蛋白被合成, 前体蛋白通过 ? 羧基末端的疏水序列锚定在内质网膜上, 其余蛋白则 位于内质网的内腔中。在极短的时间内, 疏水序列在 P I 锚置换, 转酰氨基酶作用下 ω位点裂开并同时被 G 然后蛋白被运输到高尔基体再通过分泌途径分泌至细 胞膜外。在蛋白水解酶作用下, 分泌信号序列被切除, I P L C从细胞膜上释放以 G P I 锚定形式与 细胞蛋白被 P ?
2 ] 葡聚糖共价相连并被转运至细胞壁外 [ 。可在许多真 [ 3 ] 核生物的质膜蛋白中发现 G P I , 其结构高度保守。酵
生物活性的复杂蛋白。
1 酵母细胞表面展示表达系统构成
1 . 1 载 体 一个成功的表达载体应满足 4个条件: ( 1 ) 具有信 号肽序列, 使已经表达的融合蛋白能够被分泌至细胞 外; ( 2 ) 具有较强的定位结构使融合蛋白固定于细胞表 3 ) 与外源蛋白融合后, 载体蛋白的定 面而不能脱落; ( 位特性和外源蛋白的生物活性不会改变; ( 4 ) 在宿主菌 株中能稳定存在, 不会被细胞壁膜之间和培养基中的
中国生物工程杂志 C h i n aB i o t e c h n o l o g y , 2 0 0 8 , 2 8 ( 1 2 ) : 1 1 6~ 1 2 2
酿酒酵母表面展示表达系统及应用
郭 钦1 张 伟2 阮 晖1 何国庆1 ( 1浙江大学生物系统工程与食品科学学院 杭州 3 1 0 0 2 9 2温州医学院 温州 3 2 5 0 3 5 )
3 酿酒酵母细胞表面展示表达系统的应用
。G P I 锚定区域与细胞蛋白的 C 端共价相 ?
连, 为蛋白与细胞膜提供稳定的连接。G P I 锚定蛋白的 C 端包含疏水多肽, 当细胞蛋白被合成, 前体蛋白通过 ? 羧基末端的疏水序列锚定在内质网膜上, 其余蛋白则 位于内质网的内腔中。在极短的时间内, 疏水序列在 P I 锚置换, 转酰氨基酶作用下 ω位点裂开并同时被 G 然后蛋白被运输到高尔基体再通过分泌途径分泌至细 胞膜外。在蛋白水解酶作用下, 分泌信号序列被切除, I P L C从细胞膜上释放以 G P I 锚定形式与 细胞蛋白被 P ?
2 ] 葡聚糖共价相连并被转运至细胞壁外 [ 。可在许多真 [ 3 ] 核生物的质膜蛋白中发现 G P I , 其结构高度保守。酵
生物活性的复杂蛋白。
1 酵母细胞表面展示表达系统构成
1 . 1 载 体 一个成功的表达载体应满足 4个条件: ( 1 ) 具有信 号肽序列, 使已经表达的融合蛋白能够被分泌至细胞 外; ( 2 ) 具有较强的定位结构使融合蛋白固定于细胞表 3 ) 与外源蛋白融合后, 载体蛋白的定 面而不能脱落; ( 位特性和外源蛋白的生物活性不会改变; ( 4 ) 在宿主菌 株中能稳定存在, 不会被细胞壁膜之间和培养基中的
中国生物工程杂志 C h i n aB i o t e c h n o l o g y , 2 0 0 8 , 2 8 ( 1 2 ) : 1 1 6~ 1 2 2
酿酒酵母表面展示表达系统及应用
郭 钦1 张 伟2 阮 晖1 何国庆1 ( 1浙江大学生物系统工程与食品科学学院 杭州 3 1 0 0 2 9 2温州医学院 温州 3 2 5 0 3 5 )
3 酿酒酵母细胞表面展示表达系统的应用
酵母表达系统
Buffer A: 1.0 M Sorbitol (山梨醇), 10 mM Bicine(N二羟乙基甘氨酸 ), pH 8.35 (Sigma), 3% (v/v) ethylene glycol (乙二醇 )
Buffer B: 40% (w/v) Polyethylene glycol 1000 (Sigma), 0.2 M Bicine, pH 8.35
19
pAO815和pPIC9K 在
5 AOX1
Bgl II双切:
Bgl II
在5AOX1位点和
3AOX1双交换,替
换掉了宿主的AOX1
基因,
gene
转化后GS115产生
AOX1
His +/Muts
His4
3AOX1 His4
20
21
技术路线
选择合适的内切酶位点 将基因插入载体
注:pAO815 和pIC9K是穿梭载体, 可在 大肠杆菌中操作
grow at 30°C to an OD600 of 0.5 to 0.8. 4. 3000 x g 收集细胞, 用50 ml of Buffer A洗细胞,
室温. 5. 细胞悬浮在 4 ml of Buffer A 中,分装成0.2 ml于灭
菌的管中, 每管加 11 μl DMSO(-70度) ,混匀, 液氮快速冷冻, -70°C保存。
Alcohol oxidase ,醇氧化酶, 将甲醇氧化成甲醛 • 通过高表达来补偿酶活性不足,因此有强启动子
AOX1 是主要的酶 受甲醇严格控制 启动子用来驱动外源基因表达
AOX2 利用甲醇的能力低
生长慢
7
histidinol dehydrogenase gene (his4)
Buffer B: 40% (w/v) Polyethylene glycol 1000 (Sigma), 0.2 M Bicine, pH 8.35
19
pAO815和pPIC9K 在
5 AOX1
Bgl II双切:
Bgl II
在5AOX1位点和
3AOX1双交换,替
换掉了宿主的AOX1
基因,
gene
转化后GS115产生
AOX1
His +/Muts
His4
3AOX1 His4
20
21
技术路线
选择合适的内切酶位点 将基因插入载体
注:pAO815 和pIC9K是穿梭载体, 可在 大肠杆菌中操作
grow at 30°C to an OD600 of 0.5 to 0.8. 4. 3000 x g 收集细胞, 用50 ml of Buffer A洗细胞,
室温. 5. 细胞悬浮在 4 ml of Buffer A 中,分装成0.2 ml于灭
菌的管中, 每管加 11 μl DMSO(-70度) ,混匀, 液氮快速冷冻, -70°C保存。
Alcohol oxidase ,醇氧化酶, 将甲醇氧化成甲醛 • 通过高表达来补偿酶活性不足,因此有强启动子
AOX1 是主要的酶 受甲醇严格控制 启动子用来驱动外源基因表达
AOX2 利用甲醇的能力低
生长慢
7
histidinol dehydrogenase gene (his4)
酵母表达系统-PPT课件
2)基因剂量
外源基因表达存在基因剂量效应 筛选多拷贝整合子
载体引入G418/Zeocin抗性标记,整合子拷贝数 与抗性成正相关,采用高G418/Zeocin抗性转化子。
体外串联多个表达盒,直接获多拷贝整合子 采用YRp型载体稳定化技术获高拷贝整合子 构建高拷贝整合型表达载体
3)整合位点
外源基因表达盒整合于AOX/MOX或标记基因处,均 可高效表达
高拷贝整合元件: A、高度重复序列:rDNA 提供多个整合位点 B、缺陷型标记基因:Leu2d
提高选择压力
C、抗性标记;neo 提高选择压力
甲醇酵母系统胞内表达载体
需要带入ATG
表达载体类型
单位点
甲醇酵母系统胞内表达载体
需要带入ATG
多位点
表达载体类型
甲醇酵母系统分泌表达载体
信号肽:PHO1
甲醇酵母系统分泌表达载体
KM71:His+Muts
3’His4
3) 多基因插入事件(串联整合)
宿主株:GS115、KM71
可插入位点: 5’AOX1
3’AOX1
TT
转化子: GS115:His+Mut+ KM71:His+Muts
4) 基因取代(GS115,AOX1+)
转化子:His4+Muts
汉森酵母系统的高拷贝整合型表达载体
信号肽:MFα
甲醇酵母系统分泌表达载体
信号肽:MFα 标记:Kan
4、甲醇酵母系统高效表达影响因素与对策
载体稳定性 基因剂量
整合位点
甲醇利用表型 mRNA5’端 AT含量分泌信号 表达产物稳定性
1)载体稳定性
同拷贝数时,整合型的比自主复制型的表达水平高 YRp型载体的稳定化: 选择—非选择培养交替数十代可得稳定的整合子 ,但费时,整合位点不确定。 采用YIp型载体: 更易实现整合、整合位点清楚
酵母表达系统
•巴斯德毕赤酵母 它是一种甲醇营养菌,甲醇可诱导与甲醇代谢相关酶基 因的高效表达,如乙醇氧化酶基因(AOX1)的表达产物可 在细胞中高水平积累。 AOX1的启动子是一种可诱导的强启
动子。以AOX1为启动子,选择AOX1基因缺失的突变株作为
受体细胞,可高效表达外源基因。 在毕赤酵母中得到表达的重组异源蛋白有乙型肝炎表面 抗原、人肿瘤坏死因子、人表皮生长因子、链激酶等几十种。 毕赤酵母的分泌表达能力比酿酒酵母强,但对其遗传背景了 解还比较少,且发酵周期也比较长。
Selecting a Pichia Expression Vector
pPIC9载体的信号肽序列和多克隆位点
Selecting a Pichia Expression Vector
Pichia Cloning
表达载体与毕赤酵母基因 组发生重组的方式:
1. 载体的3‘ AOX1区与基因组的
expression and can even lead to cell death. Other important facts: • Doubling time of log phase Mut+ or MutS Pichia in YPD is ~2 hours • Mut+and MutS strains do not differ in growth rates unless grown on methanol • Doubling time of log phase Mut+Pichia in methanol medium (MM) is 4-6 hours
AOX1基因的末端发生同源重组
2. 载体的HIS4区与基因组的HIS4 基因的末端发生同源重组
Gene Replacement at AOX1 in GS115
酵母表达系统
通过适应性进化实验研究酵母在 不同环境下的适应机制,了解生 物进化的过程。
比较基因组学
通过比较不同物种之间的基因组 和转录组,分析生物进化的特征 和规律。
05 酵母表达系统的未来发展
提高表达产物的产量与质量
基因编辑技术
利用基因编辑技术,如CRISPR-Cas9,对酵母基因进行精确修饰, 以提高目标蛋白的表达量和纯度。
沉默子
沉默子是能够抑制基因表达的DNA序列,通过与转录因子结合来抑制基因的表达,在基因表达调控中具有重要作 用。
转录因子与基因表达调控
转录因子
转录因子是能够识别并结合DNA序列的蛋白质,通过与特定DNA序列的结合来调控基因的表达。
转录因子与基因表达调控
转录因子在基因表达调控中发挥关键作用,通过与启动子、增强子或沉默子等DNA序列的相互作用来 调节基因的表达。
蛋白质相互作用
通过酵母双杂交等技术研究蛋白质之间的相互作用,揭示基因调控 的分子机制。
基因突变分析
通过构建突变体分析基因突变对酵母生长、代谢等的影响,研究基因 的功能。
生物进化研究
物种进化
利用酵母表达系统研究物种之间 的进化关系,通过比较不同物种 之间基因表达的差异,揭示物种 进化的规律。
适应性进化
利用酵母表达系统生产食品添 加剂、酶制剂等,提高食品质 量和安全性。
农业领域
通过酵母表达系统改良农作物 ,提高抗逆性、产量和品质等
。
酵母表达系统的优缺点
优点
操作简便、周期短、成本低、可大规 模生产、安全性高。
缺点
表达水平相对较低、分泌蛋白的加工 和修饰能力有限、易受宿主菌遗传背 景的影响。
02 酵母表达系统的基本组成
对启动子、终止子等表达元件进行优化,提高其转 录和翻译效率,促进目标蛋白的表达。
比较基因组学
通过比较不同物种之间的基因组 和转录组,分析生物进化的特征 和规律。
05 酵母表达系统的未来发展
提高表达产物的产量与质量
基因编辑技术
利用基因编辑技术,如CRISPR-Cas9,对酵母基因进行精确修饰, 以提高目标蛋白的表达量和纯度。
沉默子
沉默子是能够抑制基因表达的DNA序列,通过与转录因子结合来抑制基因的表达,在基因表达调控中具有重要作 用。
转录因子与基因表达调控
转录因子
转录因子是能够识别并结合DNA序列的蛋白质,通过与特定DNA序列的结合来调控基因的表达。
转录因子与基因表达调控
转录因子在基因表达调控中发挥关键作用,通过与启动子、增强子或沉默子等DNA序列的相互作用来 调节基因的表达。
蛋白质相互作用
通过酵母双杂交等技术研究蛋白质之间的相互作用,揭示基因调控 的分子机制。
基因突变分析
通过构建突变体分析基因突变对酵母生长、代谢等的影响,研究基因 的功能。
生物进化研究
物种进化
利用酵母表达系统研究物种之间 的进化关系,通过比较不同物种 之间基因表达的差异,揭示物种 进化的规律。
适应性进化
利用酵母表达系统生产食品添 加剂、酶制剂等,提高食品质 量和安全性。
农业领域
通过酵母表达系统改良农作物 ,提高抗逆性、产量和品质等
。
酵母表达系统的优缺点
优点
操作简便、周期短、成本低、可大规 模生产、安全性高。
缺点
表达水平相对较低、分泌蛋白的加工 和修饰能力有限、易受宿主菌遗传背 景的影响。
02 酵母表达系统的基本组成
对启动子、终止子等表达元件进行优化,提高其转 录和翻译效率,促进目标蛋白的表达。
酵母及其应用ppt课件
外膜:含磷脂代谢的酶 内膜和嵴:呼吸链组分,ATP合成酶、 琥珀酸脱氢酶等
。 膜间腔:腺苷酸激酶、磷酸腺苷酸激酶 嵴间腔:TCA循环的酶等
.
内质网
内质网 : 是存在于细胞质中的、由膜构成的、 呈游离或广泛互相连续的囊泡状的结构 。
种类: 粗糙型内质网 (rough ER) 光滑型内质网(smooth ER)
.
线粒体
1.一种半自主的细胞器,呈球形或棒状, 0.31×0.5—3um,分散在细胞质中。 双层单 位膜包围的 细胞器;其中含脂类、蛋白质、 少量RNA和环状DNA。
2.其DNA可自主复制,不受核DNA控制。决定 线粒体的某些遗传性状。
3.生物氧化中心、能量转换的基地
.
线粒体的功能
▪ 构造
外膜、内膜、嵴、膜间腔、嵴间腔
调节渗透压
.
海藻糖
海藻糖由两分子的吡喃葡萄糖单体以α-1,1糖苷键连接 而成 主要应用: 1:食品方面:改善食品风味、抗氧化、保鲜、延长保 藏期等。 2:生物工程方面:酶保护剂、医药药品的保存等。 3:农业领域:抗旱、抗寒植物、 4:其他方面:化妆品(保湿)等
.
其他结构
质粒 2 um质粒是一个环状、周长2 um的6kb双链DNA分子。可用于研究基因 调控、染色体复制的理想系统,也可作为酵母菌转化的有效载体,并组 建基因工程菌。
生理功能: 起物质传递的作用,另外还有合成脂类和
脂蛋白,与出芽起始有关。
.
核糖体
位于游离的细胞质中或附着在内质网上。 化学组成:与细菌类似 结构:核糖体的沉降系数为80s,它由60s和40s的两个亚基组成
。功能是按照mRNA的指令将氨基酸合成蛋白质多肽链。
.
高尔基体 (高尔基复合体)
。 膜间腔:腺苷酸激酶、磷酸腺苷酸激酶 嵴间腔:TCA循环的酶等
.
内质网
内质网 : 是存在于细胞质中的、由膜构成的、 呈游离或广泛互相连续的囊泡状的结构 。
种类: 粗糙型内质网 (rough ER) 光滑型内质网(smooth ER)
.
线粒体
1.一种半自主的细胞器,呈球形或棒状, 0.31×0.5—3um,分散在细胞质中。 双层单 位膜包围的 细胞器;其中含脂类、蛋白质、 少量RNA和环状DNA。
2.其DNA可自主复制,不受核DNA控制。决定 线粒体的某些遗传性状。
3.生物氧化中心、能量转换的基地
.
线粒体的功能
▪ 构造
外膜、内膜、嵴、膜间腔、嵴间腔
调节渗透压
.
海藻糖
海藻糖由两分子的吡喃葡萄糖单体以α-1,1糖苷键连接 而成 主要应用: 1:食品方面:改善食品风味、抗氧化、保鲜、延长保 藏期等。 2:生物工程方面:酶保护剂、医药药品的保存等。 3:农业领域:抗旱、抗寒植物、 4:其他方面:化妆品(保湿)等
.
其他结构
质粒 2 um质粒是一个环状、周长2 um的6kb双链DNA分子。可用于研究基因 调控、染色体复制的理想系统,也可作为酵母菌转化的有效载体,并组 建基因工程菌。
生理功能: 起物质传递的作用,另外还有合成脂类和
脂蛋白,与出芽起始有关。
.
核糖体
位于游离的细胞质中或附着在内质网上。 化学组成:与细菌类似 结构:核糖体的沉降系数为80s,它由60s和40s的两个亚基组成
。功能是按照mRNA的指令将氨基酸合成蛋白质多肽链。
.
高尔基体 (高尔基复合体)
酵母表达系统与方法
筛选标记:HIS4 启动子:AOXI 作为分泌型表达时,外源基因需要接上一段信号肽序列
一种常用的巴氏毕赤酵母表达载体结构图
甲醇营养型的两种酵母表达系统比较
甲醇营养型酵母表达系统的主要优点:
1. 应用AOX启动子,转录效率高,易于诱发调控; 2. 表达质粒易于整合到基因组,不易丢失,适于高密度发
1981年Hizeman等人首次报道了人重组干扰素基 因在酿酒酵母中表达并获成功。
酵母表达系统的组成
◆宿主:酿酒酵母、裂殖酵母、乳酸克鲁维亚酵母、
巴氏毕赤酵母等。
◆质粒载体
1. 质粒类型: 自主复制型质粒(Yeast replicating plasmid, YRp) 着丝粒质粒(Yeast centromeric plasmid, YCp ) 附加体质粒(Yeast episomal plasmid,YEp) (自主复制,拷贝数高,不稳定, 易丢失) 整合型载体(Yeast integrating plasmid,YIp) (稳定性好,拷贝数低) YAC载体(Yeast artificial chromosome, )
1. 以分裂的方式繁殖 2. 裂殖酵母与哺乳动物有许多相似之处 3. 表达的产物具有天然的构象和活性 4. 高效表达载体: pTL2M (含有高效的hCMV启动子)
裂殖酵母表达系统的优点
尽管裂殖酵母作为外源基因表达系统的发展远远 落后于酿酒酵母和巴氏毕赤酵母,但随着载体的发展, 裂殖酵母不仅可以表达胞内蛋白,也能高效表达膜蛋 白和分泌蛋;特别是裂殖酵母表达系统可以使外源基 因的产物保持天然的特性。因此,裂殖酵母作为外源 基因表达系被认为是最有前途的。
◆裂殖酵母表达系统
Schizo saccharomyces pombe (粟酒裂殖糖酵母)
一种常用的巴氏毕赤酵母表达载体结构图
甲醇营养型的两种酵母表达系统比较
甲醇营养型酵母表达系统的主要优点:
1. 应用AOX启动子,转录效率高,易于诱发调控; 2. 表达质粒易于整合到基因组,不易丢失,适于高密度发
1981年Hizeman等人首次报道了人重组干扰素基 因在酿酒酵母中表达并获成功。
酵母表达系统的组成
◆宿主:酿酒酵母、裂殖酵母、乳酸克鲁维亚酵母、
巴氏毕赤酵母等。
◆质粒载体
1. 质粒类型: 自主复制型质粒(Yeast replicating plasmid, YRp) 着丝粒质粒(Yeast centromeric plasmid, YCp ) 附加体质粒(Yeast episomal plasmid,YEp) (自主复制,拷贝数高,不稳定, 易丢失) 整合型载体(Yeast integrating plasmid,YIp) (稳定性好,拷贝数低) YAC载体(Yeast artificial chromosome, )
1. 以分裂的方式繁殖 2. 裂殖酵母与哺乳动物有许多相似之处 3. 表达的产物具有天然的构象和活性 4. 高效表达载体: pTL2M (含有高效的hCMV启动子)
裂殖酵母表达系统的优点
尽管裂殖酵母作为外源基因表达系统的发展远远 落后于酿酒酵母和巴氏毕赤酵母,但随着载体的发展, 裂殖酵母不仅可以表达胞内蛋白,也能高效表达膜蛋 白和分泌蛋;特别是裂殖酵母表达系统可以使外源基 因的产物保持天然的特性。因此,裂殖酵母作为外源 基因表达系被认为是最有前途的。
◆裂殖酵母表达系统
Schizo saccharomyces pombe (粟酒裂殖糖酵母)
第十二章 酵母基因工程-PPT精选文档
• 幻灯片 24
凝集素展示表达系统
酿酒酵母细胞表面展示表达系统的应用 可应用于生物催化剂体库构建、免疫检 测及亲和纯化、癌症诊断等领域。
一、酵母菌作为外源基因表达受体菌的特征 酵母菌 (Yeast) 是一群以芽殖或裂殖方式 进行无性繁殖的单细胞真核生物。
二、酵母菌表达外源基因的优 势: 全基因组测序,基因表达调控机理清楚, 遗传操作简便。 具有真核生物蛋白翻译后加工修饰系统。 能将外源基因表达产物分泌至培养基中。 大规模发酵工艺简单、成本低廉。 不含特异性病毒、不产毒素,被美国 FDA 认定为安全的基因工程受体系统。
B
REP2
同源重组
• 表达载体可以有自主复制型和整合型两种。 自主复制型质粒含有ARS,不稳定,拷贝 数高。 整合型质粒不含ARS,必需整合,拷贝数低 • 糖蛋白的核心寡聚糖链含有末端仅 1,3甘露 糖,所以,酿酒酵母常常用来制备亚单位 疫苗(如HBV疫苗、口蹄疫疫苗等)。
二、甲醇营养型酵母表达系统 表达载体中都含有甲醇酵母醇氧化酶基 因一(A0x1),甲醇为诱导物 不宜于食品等蛋白生产 巴斯德毕赤酵母 生产医药用重组蛋白质
aph
cat
dhfr
cup1
suc2
ilv2
六、利用酵母菌表达外源基因的步骤 克隆重组→ →酶切线性→ →转化→ →筛选 转化子→ →小规模诱导鉴定表达量→ →大 规模培养以及制备
七、酵母表面展示系统 即把外源靶蛋白基因序列与特定的载体基因 序列融合后导入酵母细胞,利用酿酒酵母 细胞内蛋白转运到膜表面的机制(GPI锚定) 使靶蛋白定位于酵母细胞表面并进行表达。
第十二章
酵母基因工程
1974 1978
Clarck-Walker和Miklos发现在多数酿酒酵 Hinnen将来自一株酿酒酵母的leu2基因导
凝集素展示表达系统
酿酒酵母细胞表面展示表达系统的应用 可应用于生物催化剂体库构建、免疫检 测及亲和纯化、癌症诊断等领域。
一、酵母菌作为外源基因表达受体菌的特征 酵母菌 (Yeast) 是一群以芽殖或裂殖方式 进行无性繁殖的单细胞真核生物。
二、酵母菌表达外源基因的优 势: 全基因组测序,基因表达调控机理清楚, 遗传操作简便。 具有真核生物蛋白翻译后加工修饰系统。 能将外源基因表达产物分泌至培养基中。 大规模发酵工艺简单、成本低廉。 不含特异性病毒、不产毒素,被美国 FDA 认定为安全的基因工程受体系统。
B
REP2
同源重组
• 表达载体可以有自主复制型和整合型两种。 自主复制型质粒含有ARS,不稳定,拷贝 数高。 整合型质粒不含ARS,必需整合,拷贝数低 • 糖蛋白的核心寡聚糖链含有末端仅 1,3甘露 糖,所以,酿酒酵母常常用来制备亚单位 疫苗(如HBV疫苗、口蹄疫疫苗等)。
二、甲醇营养型酵母表达系统 表达载体中都含有甲醇酵母醇氧化酶基 因一(A0x1),甲醇为诱导物 不宜于食品等蛋白生产 巴斯德毕赤酵母 生产医药用重组蛋白质
aph
cat
dhfr
cup1
suc2
ilv2
六、利用酵母菌表达外源基因的步骤 克隆重组→ →酶切线性→ →转化→ →筛选 转化子→ →小规模诱导鉴定表达量→ →大 规模培养以及制备
七、酵母表面展示系统 即把外源靶蛋白基因序列与特定的载体基因 序列融合后导入酵母细胞,利用酿酒酵母 细胞内蛋白转运到膜表面的机制(GPI锚定) 使靶蛋白定位于酵母细胞表面并进行表达。
第十二章
酵母基因工程
1974 1978
Clarck-Walker和Miklos发现在多数酿酒酵 Hinnen将来自一株酿酒酵母的leu2基因导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成功表达的外源蛋白实例:
人血清蛋白和白细胞介素1β
乳酸克鲁维亚酵母表达系统的独特优点:
可以高密度发酵; 不需要甲醇防爆装置; 工业化生产时不降低生产率及酵母菌的再繁殖能力。
◆甲醇营养型酵母表达系统
甲醇作为唯一的能源和炭源表 Nhomakorabea载体:整合体型载体
(Invitrogene公司已开发出多种巴氏毕赤酵母表达载体 如:pPIC9, pHIL-D2, pHIL-S1,pPICZA, pPICZB, pPICZC系列和 pPICZaA, pPICZaB, pPICZa系列适 合于胞内和分泌的表达载体)
2. 选择标记: A.营养缺陷型选择标记(亮氨酸合成酶基因leu2,色 氨酸合成酶基因tri1,尿氨酸合成酶基因ura3,组氨 酶合成酶基因his3)
B.显性选择标记(氨基酸糖甙类抗生素G418,氯酶素, 潮酶素)
3. 外源基因表达的相关元件:启动子(pgk1,AOX, LAC4)、终止子
分泌信号序列
酵母表达系统与方法
酵母表达系统的产生
基因工程技术的发展为用微生物合成和生产外源蛋 白展示出广阔的前景。长期以来,人们用大肠杆菌作为 宿主表达了多种蛋白。这是因为大肠杆菌具有若干优点, 如:遗传背景和生化特性清楚、容易操作、生长迅速、 营养需求简单等。
但大肠杆菌表达系统存在若干缺陷:A:缺少真核 生物的蛋白翻译后修饰和加工,如剪切、糖基化、形成 二硫键等;B:表达的蛋白多以包含体形式存在,需要 经过复杂的复性才能恢复构象和活性;C:背景杂蛋白 很多、纯化起来麻烦;D:表达量一般不是很高。
主要酵母表达系统
◆酿酒酵母表达系统
Saccharomyces cerevisiae (酿酒酵母)
◆乳酸克鲁维亚酵母表达系统
Kluyveromyces lactis (乳酸克鲁维亚酵母)
◆甲醇营养型酵母表达系统
Candida bodinii Hansenula polymorph(多形汉逊酵母) Pschia methanolica Pichia pastoris(巴氏毕赤酵母)
1981年Hizeman等人首次报道了人重组干扰素基 因在酿酒酵母中表达并获成功。
酵母表达系统的组成
◆宿主:酿酒酵母、裂殖酵母、乳酸克鲁维亚酵母、
巴氏毕赤酵母等。
◆质粒载体
1. 质粒类型: 自主复制型质粒(Yeast replicating plasmid, YRp) 着丝粒质粒(Yeast centromeric plasmid, YCp ) 附加体质粒(Yeast episomal plasmid,YEp) (自主复制,拷贝数高,不稳定, 易丢失) 整合型载体(Yeast integrating plasmid,YIp) (稳定性好,拷贝数低) YAC载体(Yeast artificial chromosome, )
◆裂殖酵母表达系统
Schizo saccharomyces pombe (粟酒裂殖糖酵母)
不同酵母表达系统的特点
◆ 酿酒酵母表达系统
表达载体:自主复制型和整合型 筛选标记: LEU2、URA3 启动子: PGK1、 PHO5、CUP1
成功表达的外源蛋白实例:
人重组干扰素
酿酒酵母表达系统的主要不足:
产生量(g/L) 2.3 0.8 2.5 1.0 1.7 12.0 3.0 1.3 10.0 4.0
文献 [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
甲醇营养型酵母表达系统的主要不足:
1. 甲醇不适于食品工业生产; 2. 易发生火灾。
◆ 裂殖酵母表达系统的特点
1. 以分裂的方式繁殖 2. 裂殖酵母与哺乳动物有许多相似之处 3. 表达的产物具有天然的构象和活性 4. 高效表达载体: pTL2M (含有高效的hCMV启动子)
裂殖酵母表达系统的优点
尽管裂殖酵母作为外源基因表达系统的发展远远 落后于酿酒酵母和巴氏毕赤酵母,但随着载体的发展, 裂殖酵母不仅可以表达胞内蛋白,也能高效表达膜蛋 白和分泌蛋;特别是裂殖酵母表达系统可以使外源基 因的产物保持天然的特性。因此,裂殖酵母作为外源 基因表达系被认为是最有前途的。
主要酵母表达系统特性比较
外源蛋白在酵母菌中表达的一般步骤
酵,产量高(培养基中干物质含量高达130 mg/L); 3.表达产物分拣进入过氧化物酶体,利于工业生产和分
离纯化; 4. 对分泌蛋白的糖基化修饰和糖基化程度适中; 5. 高效表达 (~12 g/L)。
表1 外源蛋白质在甲醇酵母中的高效产生
外源蛋白质 转化酶 D-丙氨酸羧肽酶 α--淀粉酶 Kunitz 蛋白酶抑制剂(AbPP) 瞬时抗凝蛋白 (TAP) 破伤风毒素片段C 百日咳抗原PGP 人免疫缺陷病毒膜外糖蛋白 肿瘤坏死因子(TNF) 人转铁蛋白N端
自1979年,为了克服大肠杆菌表达系统的缺点, 发展了酵母表达系统。最先使用的是酿酒酵母,因为 酿酒酵母在酿酒业和面包业使用有数千年的历史,被 认为是安全生物;此外,酵母是单细胞低等真核生物, 它既具有原核生物的易于培养、繁殖快、便于基因工 程操作等特性,同时又具有真核生物的蛋白质翻译后 加工的功能,有适于真核生物基因产物正确折叠的细 胞内环境和糖链加工系统,还能分泌外源蛋白质到培 养液中,利于纯化,并可减轻宿主细胞的代谢负荷。 特别是由于酿酒酵母2μ质粒的发现和酵母转化技术的 突破,酿酒酵母基因工程表达系统因此而建立并应用。
筛选标记:HIS4 启动子:AOXI 作为分泌型表达时,外源基因需要接上一段信号肽序列
一种常用的巴氏毕赤酵母表达载体结构图
甲醇营养型的两种酵母表达系统比较
甲醇营养型酵母表达系统的主要优点:
1. 应用AOX启动子,转录效率高,易于诱发调控; 2. 表达质粒易于整合到基因组,不易丢失,适于高密度发
分泌能力低 不能使异源蛋白正确糖基化 所表达的蛋白质的C-末端被截短
◆乳酸克鲁维亚酵母表达系统
表达载体:整合体型载体。 附加体型载体:1.胞质线性双股DNA
杀伤质粒;2. 含有乳酸克鲁维亚酵母ARS序列;3. 稳定高拷贝数2 μ样pKD1和pKL1质粒。
启动子:LAC4。
乳糖作为唯一的能源和炭源。