八年级数学9月月考试题 (新人教版 第40套)
人教版八年级上学期9月月考数学试卷
60 km/h. 用 v(km/h) 表示汽车的
速度,则 v 与 60 之间的关系是 ________.
16 . 如图,直线
相交于点
.重足为
,则
的度数为 __________
度
三、解答题
17 . 解 不 等 式 组 :
,并把它的解集在下面的数轴上表示出
第 3页 共 8页
来. 18 . △ABC在平面直角坐标系内如图 1 摆放, A、C 两点的横坐标都是 5,BC∥x轴.已知 B 点坐标为 ( - 3,m),
C.
D.
5 . 若点 P 在 x 轴上方, y 轴的左侧,到每条坐标轴的距离都是 6,则点 P 的坐标为(
)
A. (6 , 6)
B.( ﹣ 6, 6)
C. ( ﹣6,﹣ 6)
D. (6 ,﹣ 6)
6 . 如图,下列推理正确的有 ( )
①∵∠ 1=∠4,∴ BC/ /AD; ② ∵∠ 2=∠3,∴ AB//CD ;
)
A. a﹣ 3> b﹣ 3
B.3a> 3b
C.
二、填空题
的值为(
) D. -2019
D.﹣ 3a>﹣ 3b
11 . 计算:( 1)
= _____.( 2)
= _____ .
12 . 某同学看了下面的统计图说:“这幅图显示,从
2015 年到 2016 年 A 市常住人口大幅增加.”你认为这
位 同 学 的 说 法 是 否 合 理 ? 答 : _______ ( 填 “ 合 理 ” 或 “ 不 合 理 ” ), 你 的 理 由 是
一、单选题
人教版八年级上学期 9 月月考数学试卷
姓名 :________
班级 :________
最新人教版八年级数学上册9月月考试题.doc
八年级上学期月考试题一、选择题(每小题3分,共30分)1、下面各组中的三条线段能组成三角形的是()A、3cm,4cm,8cmB、8cm,7cm,15cmC、13cm,12cm,20cmD、5cm,5cm,11cm2、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )A、7cmB、3cmC、9cmD、5cm3、一个三角形的两边长分别为3和7,且第三边的边长为整数,这样的三角形的周长的最小值是( )A、14B、15C、16D、174、一个多边形内角和是1080°,则这个多边形的边数为( )A、6 B 、7 C、8 D、95、如图(1)所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为().A.30°B.36°C.45°D.72°6、如图,已知那么添加下列一个条件后,仍无法判定的是()A.B.C.D.7. 如图所示, 将两根钢条AA’、BB’的中点O连在一起, 使AA’、BB’可以绕着点O自由旋转, 就做成了一个测量工件, 则A’B’的长等于内槽宽AB, 那么判定△OAB≌△OA’B’的理由是()A. 边角边B. 角边角C. 边边边D. 角角边8、如图,△ABC中,∠C=90º,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且CD=6cm,则DE的长为()A、4cm B、6cm C、8cm D、10cm 9.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③10、如图,中,,平分,过点作于,测得,,则的周长是()A.B.C.D.二、填空题(每空3分,共30分)11、如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点有_____•条对角线.12、等腰三角形的周长为20cm,一边长为6cm,则底边长为___________13、等腰三角形的一个内角是100°,则另外两个角的度数分别是________14、如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为度.15、如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=_______16、如图,已知AC=BD,,那么△ABC≌,其判定根据是_______。
人教版八年级数学上9月份月考试卷
八年级数学9月份月考试卷 满分150分,时间120分钟) 一、选择(每小题3分,共45分)。
1.若ABC ∆是直角三角形,且有222a b c =-则直角是( ) A A ∠ B B ∠ C C ∠ D D ∠ 2.若ABC ∆的边长为,,,c b a 满足0))((222=-+-c b a b a ,则ABC ∆是( ) A 等腰三角形 B 直角三角形 C 等腰直角三角形 D 等腰三角形或直角三角形 3.三角形三边的长分别为5,12,13,则最短边上的高为( ) A 5 B 13 C 10 D 12 4.在ABC ∆中=∠∠∠C B A ::2:1:1,c b a ,,是C B A ∠∠∠,,的对边,则下列各式中成立的是( ) A 222b a = B 222b c a =+ C 222c b = D 222a c = 5.如图所示,四边形ABCD 的面积为( ) A 36米2 B 24米2 C 72米2 D 48米2 6.下列各数中是无理数的是( ) A 0.565656…… B π C 722 D 732.1 7.一个自然数的算术平方根是a ,那么比这个数大2的自然数的算术平方根( ) A 22+a B 2+a C 2+a D 22+a 8.若055=-+-x x ,则( ) A 5≥x B 5=x C 5≤x D 以上都不对 9.2442-=+-x x x ,则( ) A 2->x B 2>x C 2-<x D 2-≥x 10. b a -1化简为( ) A b a - B b a + C b a b a -- D b a b a -+ 11.实数b a ,在数轴上的位置如图所示,那么化简2a b a --的结果是( )A 2+aB 22+a 0 a b DC B A 12 13 4 3 ------------------------------密-----------------------封---------------------线-----------------------内----------------不----------------------要------------------答--------------------题------------------------。
八年级数学九月份月考试题(含答案)
超越辅导八年级数学九月份月考试题一、选择题(本大题共10 题,每小题3分,共 30 分,每小题只有一个正确选项,把正确选项的代号填在题后的括号里)1.下列三条线段,能组成三角形的是( )A .3,3,3B .3,3,6C .3 ,2 ,5D .3,2,62.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形B .钝角三角形C .直角三角形 D .都有可能3.如图所示,AD 是△ABC 的高,延长BC 至E ,使CE =BC ,△ABC 的面积为S 1, △ACE 的面积为S 2,那么( )A .S 1>S 2B .S 1=S 2C . S 1<S 2D .不能确定 4.下列图形中有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形5.如图,正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图形所示,C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数为( ) A .3个 B .4个 C .5个 D .6个6.已知△ABC 中,∠A 、∠B 、∠C 三个角的比例如下,其中能说明 △ABC 是直角三角形的是( )A .2:3:4B .1:2:3C .4:3:5D .1:2:2 7.点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中∠1、∠2、∠A 的大小关系是( ) A .∠A >∠2>∠1 B .∠A >∠2>∠1 C .∠2>∠1>∠A D .∠1>∠2>∠A 8.在△ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、 ∠ACB ,BD 、CE 相交于点O ,则∠BOC 等于( ) A .140° B .100° C .50° D .130°9、在△ABC 中,若∠A=54°,∠B=36°,则△ABC 是( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、等腰三角形ABE(第3题)AB A BCDP12第7题10.在△ABC 中, ∠ABC =90°,∠A =50°,BD ∥AC ,则∠CBD 等于( ) A .40° B .50° C .45° D .60°二、填空题(本大题共6小题,每小题4分,共24分)11.P 为△ABC 中BC 边的延长线上一点,∠A =50°,∠B =70°,则∠ACP =_____. 12.如果一个三角形两边为2cm .7cm ,且第三边为奇数,则三角形的周长是_____. 13.在△ABC 中,∠A =60°,∠C =2∠B ,则∠C =_____.14.一个多边形的每个内角都等于150°,则这个多边形是_____边形.15.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|=_____________. 16.黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案,(1)第4个图案中有白色纸片_____块.(2)第n 个图案中有白色纸片_____块.三、计算(本题共3题,每题5分,共15分)17.等腰三角形两边长为4cm 、6cm ,求等腰三角形的周长.18.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.19.如图所示,有一块三角形ABC 空地,要在这块空地上种植草皮来美化环境,已知这种草皮每平方米需花费230元,AC =12m,BD =15m ,问美化这块地需要多少元?DA15m12m第1个第2个第3个四、(本大题共4小题,每题7分,共28分)20.一块三角形的试验田,需将该试验田划分为面积相等的四小块,种植四个不同的优良品种,设计三种以上的不同划分方案,并给出说明.A A A AC21.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于E 、F ,EP ⊥EF ,∠EFD 的平分线与EP 相交于点P ,且∠BEP =40°,求∠P 的度数.22.如图,AD 是△ABC 的角平分线。
八年月考数学试9月份)(附答.docx
8. (3分)三角形的三边长分别为a 、b 、c,且满足等式:(a+b ) 2 - c 2=2ab,则此三角形是( ) A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9. (3分)要使二次根式有意义,字母x 必须满足的条件是( )A. x>lB. x> - 1C. x> - 1D. x>l10. (3分)(a - 3)2=a - 3 -则a 的取值范围是( ) A. a>3B. a>3C. a<3二、填空题:(每小题4分,共20分) _11. (4分)36的平方根是, 岳的立方根是, ~V2的绝对值是 12. (4分)如图,正方形A 的面积是.八年级(上)月考数学试卷(9月份)一、选择题:(每小题3分,共30分)(A 卷) 1. (3分)在0.458, 4.2,号,V0?4> -斗o. ooi ,*这几个数中无理数有( )个.A. 4B. 3C. 2 2. (3分)下列说法正确的是( ) A. - 81的平方根是±9 B. 任何数的平方是非负数,因而任何数的平方根也是非负 C. 任何一个非负数的平方根都不大于这个数D. 2是4的平方根 3. (3分)等腰三角形的腰长为10,底长为12, A. 134. (3分)下列各式中, A ,寸(-2)£=-2B. 8 正确的是( )B •(-而严=9 则其底边上的高为(C. 25 C. V9=±3D. D. D. 64 ±V9=±35・(3分)五根小木棒, 其长度分别为7, 15, 20, 24, 25,现将它们摆成两个直角三角形,如图,其中正确的C.6. A. (3分) 42△ABC 中, AB=15, B. AC=13,高 AD=12, 32则的周长为( C. 42 或 32)D. 37 或 337. A. (3分) 30cm 2斜边长为17cm, 一条直角边为15cm 的直角三角形的面积为(B. 60cm 2C. 90cm 2D. 120cm 2D. a<313.(4 分)在AABC 中,ZC=90°,若c=10, a: b=3: 4,则a=, b=14.(4分)已知lx - 61+ly - 81+ (z - 10)2=0,则由x, y, z为三边组成的三角形是.15.(4 分)如图,在梯形ABCD 中,DC〃AB, ZD=90°, AD=4cm, AC=5on, S 梯形ABCD=18cm2,另区AB=三、计算或化简:(每小恩24分,共24分)16.(24 分(1)(2+73)(2-必);(2)324- ( - 3)2+1 - ^lx ( - 6) +V49;6(3)已知(X+1)2-1=24,求x 的值;(4)已知(a+b-1)(a+b+1) =8,求a+b 的值.四、解答题:(共26分)17.(6分)小文房间的面积为10.80?,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖的边长是多少?18.(6分)有一块土地形状如图所示,ZB=ZD=90°, AB=20米,BC=15米,CD=7米,请计算这块地的面积.19.(7分)已知2a- 1的平方根是±3, 4是3a+b - 1的算术平方根,求a+2b的值.20.(7分)把长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,如图,已知AB=8, BC=10,求EC的长.一.填空:(每小题4分,共20分)(B卷)21.(4 分)若1 <x<4,则化简- 2=22.(4分)如图,一圆柱高8cm,底面的半径2cm, 一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.23.(4分)等边AABC的高为3cm,以AB为边的正方形面积为.24.(4分)若实数a、b满足(3 - 2 )之+仍- 2a二0,则b 一2a=・25.(4分)观察下列各式:眼^=艰'眼手Ml,J12专诟,而侍=艰, 请你将猜想到的规律用含自然数n (n>l)的代数式表示出来是.二.解答题:(每小题10分,共30分)26.(10分)八年级(3)班两位同学在打羽毛球,一不小心球落在离地面高为6米的树上.其中一位同学赶快搬来一架长为7米的梯子,架在树干上,梯子底端离树干2米远,另一位同学爬上梯子去拿羽毛球.问这位同学能拿到球吗?27.(10分)如图,E是正方形ABCD的边BC延长线上的点,且CE=AC(1)求ZACE, ZCAE 的度数;(2)若AB=3cm,请求出ZiACE的面积;(3)以AE为边的正方形的面积是多少?28.(10分)(2008・江西)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处点A落在点A,处;(1)求证:B' E=BF;(2)设AE=a, AB=b, BF=c,试猜想a, b, c之间的一种关系,并给予证明.八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题:(每小题3分,共30分)(A卷)1.(3分)在0.458, 4.;, 2L, V O74,-才o. ooi , $这几个数中无理数有()个.A. 4B. 3C. 2D. 1考点:无理数.分析:要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:it类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.解答:解:根据判断物无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,兰属于兀类是无理数,2..•无理数有2个.故选C点评:本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻.2.(3分)下列说法正确的是()A.- 81的平方根是±9B.任何数的平方是非负数,因而任何数的平方根也是非负C.任何一个非负数的平方根都不大于这个数D.2是4的平方根考点:平方根.分析:A、根据平方根的定义即可判定;B、根据平方、平方根的定义即可判定;C、可以利用反例,如:当0<a<l时结合平方根的定义即可判定;D、根据平方根的定义即可判定.解答:解:A:由于负数没有平方根,故A选项错误;B:任何数的平方为非负数,正确;但只有非负数才有平方根,且平方根有正负之分(0的平方根为0).故选项B错误;C:任何『个非负数的平方根都不大于这个数,不一定正确,如:当0<a<l时,a>a2,故选项错误;D: 2的平方是4,所以2是4的平方根,故选项正确.故选D.点评:本题考查了平方根的基础知识.也考查了学生综合应用的能力.3.(3分)等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64考点:勾股定理;等腰三角形的性质.专题:计算题.分析:先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.解答:解:作底边上的高并设此高的长度为x,根据勾股定理得:62+X2-102,解得:x=8.故选B.点评:本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然 后根据勾股定理即可求出底边上高的长度.4. (3分)下列各式中,正确的是( )A.、(-2)2=-2B.(一扼)2=9考点:算术平方根. 专题:计算题.分析:根据开平方、完全平方,二次根式的化简的知识分别计算各选项,然后对比即可得出答案. 解答:解:A 、J ( _ 2)2=2,故本选项错误;B 、 (-2=3,故本选项错误;C 、 ^9=3,故本选项错误;D 、 +V9=±3,故本选项正确; 故选D.点评:此题考查了算术平方根的知识,属于基础题,解答本题的需要我们掌握开平方、完全平方的计算,难度一 般.考点:勾股定理的逆定理.分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可. 解答:解:A 、72+242=252, 152+202#242 , 222+202*252,故不正确;B 、 72+242=252, 152+202^242,故不正确;C 、 72+242=252, 152+202=252,故正确;D 、 72+202*252 , 242+152#252,故不正确. 故选C.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股 定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a 2+b 2=c 2,那么这个三角形是直角三 角形.6. (3 分)ZiABC 中,AB=15, AC=13,高 AD=12,则ZXABC 的周长为( )A. 42B. 32C. 42 或 32D. 37 或 33考点:勾股定理.专题:分类讨论.分析:由于高的位置是不确定的,所以应分情况进行讨论.(1) AABC 为锐角三角形,高AD 在内部;(2) A ABC 为钝角三角形,高AD 在AABC 外部.C. V^=±3D. +V9=+35. (3分)五根小木棒,其长度分别为7, 15, 20, 24, 25,现将它们摆成两个直角三角形,如图,其中正确的是解答:解(1) AABC为锐角三角形,高AD在AABC内部;,BD=7A B2 - AD 2=9' CD=7A C2 - AD 2=5.'.△ABC 的周长为13+15+ (9+5) =42(2)AABC^钝角三角形,高AD在AABC外部.A BD=9, CD=5.'.AABC 的周长为13+15+ (9 - 5) =32故选C.点评:本题需注意,当高的位置是不确定的时候,应分情况进行讨论.7.(3分)斜边长为17cm, 一条直角边为15cm的直角三角形的面积为( )A. 30cm2B. 60cm2C. 90cm2D. 120cm2考点:勾股定理.分析:根据勾股定理可将另一直角边长求出,然后代入直角三角形的面积公式S=lab即可. 2解答:解:I.斜边长为17cm, 一条直角边为15cm,另一直角边长为寸1了2 - ]52=8cm,S=-^ab=—xl5x8=60»2 2故直角三角形的面积为60cm2.故选B.点评:本题主要考查勾股定理的应用,比较简单.8.(3分)三角形的三边长分别为a、b、c,且满足等式:(a+b) 2 - c2=2ab,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形考点:勾股定理的逆定理.分析:因为a、b、c,为三角形的三边长,可化简:(a+b) 2 - c2=2ab,得到结论.解答:解:V (a+b) 2 - c2=2ab,a2+b2=c2.所以为直角三角形.故选B.点评:本题考查勾股定理的逆定理,若是两边的平方和等于另一个边的平方,那么这个三角形是直角三角形.9.(3分)(2004・南山区)要使二次根式丁而有意义,字母x必须满足的条件是( )A. x>lB. x> - 1C. x> - 1D. x>l考点:二次根式有意义的条件.分析:根据二次根式有意义的条件:被开方数是非负数作答.解答:解:根据二次根式的意义,被开方数X+120,解得X>- 1.故选C.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.(3分)(2001・济南)若日(a- 3)2=a- 3 ,则a的取值范围是()A. a>3B. a>3C. a<3D. a<3考点:二次根式的性质与化简.专题:计算题.分析:根据题中条件可知a - 3>0,直接解答即可.解答:解—(a-3) 2=a-3,即 a - 3>0,解得a>3;故选B.点评:本题主要考查二次根式的性质与化简,题中涉及使根式有意义的知识点,属于基础题.二、填空题:(每小题4分,共20分)_11.(4分)36的平方根是±6 ,而的立方根是2 , 一框的绝对值是_、应_.考点:立方根;平方根;实数的性质.专题:存在型.分析:分别根据平方根、立方根的定义及绝对值的性质进行解答即可.解答:解:..•(±6) 2=36,36的平方根是±6;•.*764=8 , 23=8,•,•V64的立方根是2;•/ -V2<0,••.l-V2l=V2. _故答案为:±6; 2;扼. _ _点评:本题考查的是平方根、立方根的定义及绝对值的性质,特别是求加的立方根时一定要先求出扃的值, 再根据立方根的定义解答.12.(4分)如图,正方形A的面积是36考点:勾股定理.分析:要求正方形的面积只需求出正方形的边长即可,由图中可知右上角正方形和右下方正方形的面积分别为100, 64,则其边长分别为:10, 8;由勾股定理可得正方形A的边长=寸1°2 一注=6,所以面积为:36.解答:解:如图所不,在RtABCD中,BD= /i布=10, CD=>/函=8,由勾股定理得:BC=J BD2- CD2= /102 - 82=6即:正方形A的边长为:6, 所以A的面积为:6x6=36.点评:本题主要考查由勾股定理求正方形的边长,并由边长求面积的过程.由图中可知,正方形A的一边是一个直角三角形的-边,由勾股定理可以求出,求的过程中注意分清直角边和斜边.13.(4 分)在ZXABC 中,ZC=90°,若c=10, a: b=3: 4,则a= 6 , b= 8 .考点:勾股定理.专题:计算题.分析:设a=3x, b=4x,则利用勾股定理a2+b2=c2,可解出x的值,进而能得出a及b的值.解答:解:设a=3x, b=4x,则a2+b2=c2,即9X2+16X2=100,解得:x=2,.•.a=3x2=6, b=4x2=8.故答案为:6, 8.点评:本题考查勾股定理的知识,属于基础题,掌握在直角三角形中,两条直角边长的平方之和等于斜边长的平方是解答本题的关键.14.(4分)已知lx - 61+ly - 81+ (z - 10)2=0,则由x, y, z为三边组成的三角形是直角三角形.考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.分析:首先根据非负数的性质可得x、y、z的值,再根据勾股定理逆定理可判断出由x, y, z为三边组成的三角形的形状.解答:解:V lx - 61+ly - 81+ (z- 10)2=0,「.X - 6=0, y - 8=0, z - 10=0,解得:x=6, y=8, z=10,V62+82=102,.•.由x, y, z为三边组成的三角形是直角三角形,故答案为:直角三角形.点评:此题主要考查了非负数的性质,以及勾股定理逆定理,关键是根据题意计算出x、y、z的值.15.(4 分)如图,在梯形ABCD 中,DC〃AB, ZD=90°, AD=4cm, AC=5cm, S 梯形ABCD=18cm2,那么AB= 6考点:梯形.分析:根据勾股定理求得CD的长,再根据面积公式求得AB的长. 解答:解:在直角三角形ACD中,根据勾股定理,得CD=3,根据梯形的面积公式,得AB=18x2+4-3=6.点评:熟练运用勾股定理以及梯形的面积公式进行计算.三、计算或化简:(每小暨24分,共24分)16.(24 分(1)(2+赡)(2 - V3);(2)324- ( - 3) 2+1 - ^-Ix ( - 6) +V49;6(3)已知(x+1) 2 - 1=24,求x 的值;(4)已知(a+bT) (a+b+1) =8,求a+b 的值.考点:实数的运算;平方根.专题:计算题.分析:(1)运用平方差公式进行运算即可;(2)分别进行平方、绝对值及开平方的运算,然后按照先乘除后加减的法则进行运算即可.(3)先移项,将(x+1)看做一个整体,然后再求x的值;(4)将(a+b)看做一个整体,求出(a+b) 2的值,然后开平方即可.解答:解(1)原式=2? - (^3)2=4-3=1;(2)原式=9+9+A X ( - 6) +76=1 - 1+7=7;(3)由题意得,(x+1) 2=25,则x+l=±5,解得:x= - 6或4.(4)由题意得,(a+b) 2 - 1=8,则(a+b) 2=9,解得:(a+b) =±3.点评:本题考查了实数的运算,涉及了绝对值、平方差公式及解一元二次方程的知识,解答本题的关键是掌握各部分的运算法则.四、解答题:(共26分)17.(6分)小文房间的面积为lOKn?,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖的边长是多少?考点:算术平方根.专题:应用题.分析:根据正方形的面积公式及已知条件可列方程为120x2=10.8,解之即可.解答:解:设每块地砖的边长是X,则120x2=10.8,解得x=0.3,即每块地砖的边长是0.3m.点评:本题主要考查了平方根、算术平方根概念的运用.要注意一个正数的平方根有两个,它们互为相反数.注意实际问题中有关线段的长度都是非负数.18.(6分)有一块土地形状如图所示,ZB=ZD=90°, AB=20米,BC=15米,CD=7米,请计算这块地的面积.考点:勾股定理的应用.专题:计算题.分析:连接AC,则和AACD均为直角三角形,根据AB, BC可以求出AC,根据AC, CD可以求出AD, 根据直角三角形面积计算可以求出^ABC和AACD的面积,四边形ABCD的面积为两个直角三角形面积之和.解答:解:连接AC,将四边形分割成两个三角形,其面积为两个三角形的面积之和,在直角^ABC中,AC为斜边,则AC= J 20 之 +15 2=25 米,在直角AACD中,AC为斜边则25? - 了2=24 米,四边形ABCD面积S=-ABxBC+-ADxCD=234平方米.2 2答:此块地的面积为234平方米.点评:本题考查了勾股定理在实际生活中的应用,考查了直角三角形面积计算,本题中正确的运用勾股定理计算AC是解题的关键.19.(7分)已知2a- 1的平方根是±3, 4是3a+b - 1的算术平方根,求a+2b的值.考点:算术平方根;平方根.专题:计算题.分析:先由平方根的定义和算术平方根的定义求出a、b的值,再即可求a+2b的值.解答:解:LZa-l的平方根是±3,.\2a- 1=9,. . a=5,又LF是3a+b- 1的算术平方根,3a+b - 1=16,「.b=2,「・a+2b=5+2x2=9.点评:本题主要考查了平方根、算术平方根的概念,解题的关键是求a、b的值.20.(7分)把长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,如图,已知AB=8, BC=1O,求EC的长.考点:翻折变换(折叠问题);勾股定理.分析:由长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,可得AF=AD=10, DE=EF,然后设EC=x,则DE=EF=CD - EC=8 - x,首先在RtAABF中,利用勾股定理求得BF的长,继而可求得CF的长,然后在RtACEF 中,由勾股定理即可求得方程:X2+42= (8-x)2,解此方程即可求得答案.解答:解:..•四边形ABCD是长方形,...ZB=ZC=90°, AD=BC=10, CD=AB=8,•/ A ADE折叠后得到△ AFE,.,.AF=AD=10, DE=EF,设EC=x,则DE=EF=CD - EC=8 - x,在RtAABF 中,AB2+BF2=AF2,82+BF2=102,BF=6,.・.CF=BC - BF=10- 6=4,在RtAEFC 中,EC2+CF2=EF2,X2+42= (8 - x)2,解得:x=3,即EC的长度为3.点评:此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.填空:(每小题4分,共20分)(B卷)21.(4 分)若1V X V4,则化简寸(*-心2 _寸(*_])2= 5-2X .考点:二次根式的性质与化简.分析:先判断x - 4、x- 1的符号,再根据二次根式的性质化简.解答:解:.*.x - 4<0, x - 1>0则""° ~ 寸(K - ])""=枝 ~ 41 - lx - 11=4 - x - x+l=5 - 2x.点评:此题的关键是根据X的取值范围,确定x-4<0, X- l>0.22.(4分)如图,一圆柱高8cm,底面的半径2cm, 一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是据舄演cm.考点:平面展开-最短路径问题.分析:此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.解曰’解:底面圆周长为2兀r,底面半圆弧长为nr,即半圆弧长为:—x2nx2=2ncm,2展开得:又因为bc=8cm, AC=2ncm,根据勾股定理得:AB= _ =衬兀2+]6«11.点评:本题主要考查立体图形的展开和两点之间线段最短.23.(4分)等边的高为3cm,以AB为边的正方形面积为12CH?.考点:等边三角形的性质;正方形的性质.分析:首先根据题意画出图形,利用三角函数计算出AB的长,然后再计算出以AB为边的正方形面积.解答:解:如图所示:...等边ZXABC的高为3cm,AD=3cm,AB=AD-rsinB =3+sin60°=2(cm ),.•.以AB为边的正方形面积为:2^3x273=12 (cm2),故答案为:12CH?.B D C点评:此题主要考查了等边三角形的性质,以及三角函数,关键是计算出等边三角形的边长.24.(4分)若实数a、b满足(a-2)之+而胃=0,贝U b - 2a= 0 .考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:计算题.分析:先根据非负数的性质列出方程组,求出a、b的值,进而可求出b - 2a的值.故 b - 2a=4 - 2x2=0.故答案为0.点评:本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.请你将猜想到的规律用含自然数n (n>l)的代数式表示出来是考点:算术平方根.专题:规律型.分析:分别观察前面的几组数据,先观察根号下的整数可得依次是4, 8、12, 16...,分数依次是【,A,【...,结果2 3 4 部分根号外面的数依次是3、5、7、9...从而可得出规律.解答:解:观察各式可得出规律:J4n4^_= (2n+l) J岳.故答案为:^4n47+i=(2n+1)/再・点评:本题考查算术平方根的知识,属于规律型题目,关键是观察出前面几个根式中各数的关系,从而得出一般规律,难度一般,仔细观察、总结比较重要.二.解答题:(每小题10分,共30分)26.(10分)八年级(3)班两位同学在打羽毛球,一不小心球落在离地面高为6米的树上.其中一位同学赶快搬来一架长为7米的梯子,架在树干上,梯子底端离树干2米远,另一位同学爬上梯子去拿羽毛球.问这位同学能拿到球吗?考点:勾股定理的应用.专题:应用题.分析:根据梯子的长和距离树干的距离求出树干的高度和6米比较即可得到答案.解答:解:由题意得,梯子顶端距离地面的距离为:抨一 2日宙=3据>6,这位同学能拿到球.点评:本题考查了勾股定理的应用,解决此类问题的关键是正确的构造直角三角形.27.(10分)如图,E是正方形ABCD的边BC延长线上的点,且CE=AC(1)求ZACE. ZCAE 的度数;(2)若AB=3cm,请求出ZXACE的面积;(3)以AE为边的正方形的面积是多少?考点:正方形的性质;等腰三角形的性质;勾股定理.分析:(1)根据正方形的对角线平分一组对角求出NACB=45。
2013-2014学年八年级数学9月月考试题 (新人教版 第40套)
重庆市巴南区马王坪学校2013-2014学年八年级9月月考数学试题新人教版(全卷共三个大题,满分150分,考试时间120分钟)一、选择题(4′× 10=40′)1、只有以下元素对应相等,不能判定两个三角形全等的是()A. 两角和一边B. 两边及夹角C. 三个角D. 三条边2、如果两个三角形全等,下列说法错误的是:()A.他们的最小角相等B.他们的对应外角相等C.它们是直角三角形D.它们的最长边相等3、如图,△ABC中,AB=AC,AD⊥BC,点D、E、F分别是BC、BD、DC的中点,则图中全等三角形共有()A.3对B.4对C.5对 D.6对4、如图4全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去5.下面4个汽车标志图案中,不是轴对称图形的是()A B C D6.如图6所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A、40°B、50°C、45°D、60°7.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是()A.21:10 B.10:21 C.10:51 D.12:018、如图AB⊥BC,D为BC的中点,以下结论正确的有()个。
①△ABD≌△ACD ②AB=AC ③∠B=∠C ④AD是△ABC的角平分线。
A、1B、2C、3D、49、如图,在△ABC中,AB=AC=20cm,DE垂直平分E,AC于D,若△DBC的周长为35cm,则BC的长为()A、5cmB、10cmC、15cmD、17.5cm(第4题图)AD OCB15题10、如图,在四边形ABCD 中,AD ∥BC ,若∠DAB 的角平分线AE 交CD 于E ,连结BE ,且BE 边平分∠ABC ,则以下命题不正确的个数是( )①BC+AD=AB;②E 为CD 中点;③∠AEB=90°; ④S △ABE =21S 四边形ABCD ;⑤BC=CE A.0个 B.1个 C.2个 D.3个B A(第10题)二.填空题(4′×6=24′)11、如图,已知∠1=∠2,请你添加一个条件:___________,使△ABD ≌△ACD.12、如图,∠BAC=110°,若MP 、NQ 分别垂直平分AB 、AC ,则∠PAQ= 13、在平面直角坐标系中,点M (-1,2)关于y 轴对称的点M ′的坐标为 14、如图,点P 是∠BAC 的平分线上一点,PE⊥AB,PF⊥AC,E 、F 分别为垂足,①PE=PF;②AE=AF;③∠APE=∠APF,上述结论中正确的是 .15、如图在Rt ΔABC 中,∠C=90°,BD 是∠ABC的平分线,交于点D ,若CD=n ,AB=m ,则ΔABD 的面积是_______。
新人教版八年级数学九月月考试卷
2015——2016学年八年级九月月考数学试题(满分120分 考试时间100分钟)题序 一 二 三总分1617181920212223得分一、选择题(每小题3分,共24分)1. 如图四个图形中,线段BE 是△ABC 的高的图是( )2. 以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm3. 已知等腰三角形的一个角为75°,则其顶角为( ) A .30° B .75° C .105° D .30°或75°4. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A .n 个B .(n-1)个C .(n-2)个D .(n-3)个 5.三角形中,有一个外角是79º,则这个三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定形状 6.如右图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,那么图中与∠A 相等的角是( )A .∠B B .∠ACDC .∠BCD D .∠BDC 7.适合条件∠A=12∠B=13∠C 的△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 8. 已知等腰△ABC 的一边BC=8cm ,│AC-BC │=4cm ,则腰的长为( )A .8cmB .8cm 或4cmC .8cm 或12cmD .4cm 或12cm 二、填空题(每小题3分,共21分)9. 造房子时屋顶常用三角结构,从数学角度来看,是应用了 ,而活动挂架则用了四边形的 。
A B C D(D)ECB A (C)EC BA(B)ECB A(A)E CBAABCD考场号 班级 姓名 考号 座号 ……………………………………密……………………………………封………………………………………………线………………………………………(3)10. 已知在△ABC 中,∠A=40°,∠B-∠C=40°,则∠B= , ∠C= .11. n 边形的每个外角都等于45°,则n= .12. 如图(1)所示,AB ∥CD ,∠A=45°,∠C=29°,则∠E= . 13.如图(2)所示,共有 个三角形,其中以AB 为边的三角形是 ,以∠C•为一个内角的三角形是 . 14. 如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有 •条对角线.15. 如图(3)所示,∠A+∠B+∠C+∠D+∠E= . 三、解答题(本大题共8个小题,满分75分)16. (8分)一个多边形的内角和是外角和的2倍,它是几边形?17. (9分)如图,在△ABC 中: (1)作出△ABC 的中线AD ; (2)作出△ADC 的边AD 上的高CE; (3)若AD=7cm,CE=4cm,求△ABC 的面积。
八年级数学9月月考试卷含解析新人教版
广西省钦州港经济技术开发区2016-2017学年八年级9月月考数学试卷一、单选题(共12小题)1.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5B.10C.11D.12考点:三角形的性质及其分类答案:B试题解析:根据三角形边的性质“两边之和大于第三边,两边之差小于第三边”可得第三边的长大于8-3=5,小于8+3=11,则10在5~11之间,故选B。
2.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种考点:三角形的性质及其分类答案:C试题解析:根据三角形边的性质“两边之和大于第三边,两边之差小于第三边”可得成立的有,“4,5,6”,“4,6,9”,“5,6,9”,故选C3.如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中BC边上的高是()A.CF B.BE C.AD D.CD考点:三角形中的角平分线、中线、高线答案:B试题解析:∵AD⊥BC,∴△ABC中BC边上的高是AD,故选B。
4.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC考点:线段的垂直平分线答案:C试题解析:∵AC垂直平分BD,∴AB=AD (垂直平分线的性质),故A正确;由三线合一可得AC平分∠BCD,故B正确,从而D选项△BEC≌△DEC 正确,没有任何条件可以证明AB=BD ,故C错,故选C。
5.如图, BE、CF都是△ABC的角平分线,且∠BDC=110 0,则∠A的度数为()A.50°B.40°C.70°D.35°考点:三角形中的角平分线、中线、高线答案:B试题解析:∵BE、CF都是△ABC的角平分线,∴∠A=180°-(∠ABC+∠ACB),=180°-2(∠DBC+∠BCD)∵∠BDC=180°-(∠DBC+∠BCD),∴∠A=180°-2(180°-∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°-90°)=40°.故选B.6.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°考点:平行线的判定及性质三角形中的角平分线、中线、高线答案:C试题解析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.7.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE= CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6B.7C.8D.10考点:平行线的判定及性质答案:C试题解析:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.8.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC 的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍考点:三角形中的角平分线、中线、高线答案:C试题解析:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC,∴S△BCE=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE.∴△ABC的面积等于△BEF的面积的4倍.故选C.9.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90° αB.90°+ αC.D.360°α考点:三角形中的角平分线、中线、高线答案:C试题解析:∵四边形ABCD中,∠ABC+∠BCD=360°-(∠A+∠D)=360°-α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°-α)=180°-α,则∠P=180°-(∠PBC+∠PCB)=180°-(180°-α)=α.故选:C.10.下列正多边形的组合中,能够铺满地面的是()A.正六边形和正方形B.正六边形和正三角形C.正五边形和正八边形D.正十边形和正三角形考点:平面图形的镶嵌答案:B试题解析:A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正六边形的每个内角为120°,正三角形的每个内角为60°,一个正六边形和一个正三角形刚好能铺满地面;C、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;D、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满.故选B.掌握好平铺的条件,算出每个图形内角和即可.11.一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个为()A.正三角形B.正四边形C.正五边形D.正六边形考点:平面图形的镶嵌答案:B试题解析:∵正三角形、正四边形、正六边形的内角分别为60°、90°、120°,又∵360°-60°-90°-120°=90°,∴另一个为正四边形.故选B.12.如图,已知矩形ABCD ,一条直线将该矩形 ABCD 分割成两个多边形,若这两个多边形的内角和分别为 M和 N,则M + N 不可能是()A.360°B.540°C.720°D.630°考点:多边形的内角与外角答案:D试题解析:如图,一条直线将该矩形ABCD分割成两个多边(含三角形)的情况有以上三种,①当直线不经过任何一个原来矩形的顶点,此时矩形分割为一个五边形和三角形,∴M+N=540°+180°=720°;②当直线经过一个原来矩形的顶点,此时矩形分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;③当直线经过两个原来矩形的对角线顶点,此时矩形分割为两个三角形,∴M+N=180°+180°=360°.故选D.二、填空题(共4小题)13.用一种正五边形或正八边形的瓷砖_______铺满地面.(填“能”或“不能”)考点:平面图形的镶嵌答案:不能试题解析:根据平面镶嵌的条件,可知用一种正五边形或正八边形的瓷砖不能铺满地面。
最新人教版八年级数学上册9月份月考模拟检测题及答案.docx
9月月考八年级数学试题第Ⅰ卷(选择题,共30分)一、你一定能选对!(本题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1. 四边形的内角和等于A. 360oB. 540oC. 900oD. 1080o2. 若下列各组值代表线段的长度,则以它们为边能构成三角形的是A. 6、7、13B. 6、6、12C. 6、9、14D. 10、5、33. 下列各组条件中,能够判定△ABC≌△DEF的是A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E4. 若n边形恰好有n条对角线,则n为A. 4B. 7C. 6D. 55.等腰三角形的两边长为3和6,则此等腰三角形的周长为A. 12或15B. 12C. 15D. 186. 在△ABC中,∠C=90°,点D,E分别是边AC,BC的中点,点F在△ABC内,连接DE,EF,FD.以下图形符合上述描述的是A. B. C. D. 7. 如图,在△ABC 中,AB=AC ,∠A=38°,CD ⊥AB 于D ,则∠DCB 等于A.70°B.19°C.40°D.20°8. 如图,设△ABC 和△CDE 都是等边三角形,且∠EBD =63°,则∠AEB 的度数是 A.115°B.123°C.125°D.130°9. 如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于A.550oB.270oC.315oD.585o 10. 如图,已知线段AB=20米,MA ⊥AB 于点A ,MA=6米,射线BD ⊥AB 于B ,P 点从B 点向A 运动,每秒走1米,Q 点从B 点向D 运动,每秒走3米,P 、Q 同时从B 出发,则出发x 秒后,在线段MA 上有一点C ,使△CAP 与△PBQ 全等,则x 的值为A.5B.5或10C. 10D.6或10第7题图第8题图第Ⅱ卷(非选择题,共90分)二、你能填得又快又准吗?(本题共有6小题,每小题3分,共18分)11. 如果六边形的各个内角都相等,那么它的一个内角是 . 12. 已知△ABC ≌△A ′B ′C ′,A 与A ′,B 与B ′是对应点,△A ′B ′C ′周长为18cm, AB=3cm ,BC=4cm ,则A ′C ′= cm.13. 如图,四边形ABCD 中,∠1=∠2,请你补充一个条件 ,使△ABC ≌△CDA.(只需填写一个..即可)14. 如图,△ABC 中,∠ABC 与∠ACB 的角平分线交于点O ,若∠BAC =82°,则∠BOC =________. 15.如图,AD 是△ABC 的对称轴,点E ,F 是AD 的三等分点,若△ABC 的面积为302cm ,则图中阴影部分的面积是2cm.第10题图第14题图第15题图第13题图第9题图第16题图OE DBA C16.如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则∠BOC= .三、解下列各题(本题共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.70,∠B=2∠C,求∠A、∠B、∠C的度数.17.(本题8分)已知△ABC中,∠B-∠A=o18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(本题8分)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.20.(本题8分)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等,AC ,BD 相交于O ,OD ⊥CD .垂足为D ,已知AB=20米,请根据上述信息求标语CD 的长度.21. (本题8分)如图,已知AD 为△ABC 中BC 边上的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD.求证:(1) △ADC ≌△BDF ;(2)BE ⊥AC.22.(本题10分)如图,E 是正方形ABCD 中CD 边上的任意一点,以点A 为中心 , 把△ADE 顺时针旋转90°得△ABE 1,∠EAE 1的平分线交BC 边于点F , 求证:△CFE 的周长等于正方形ABCD 的周长的一半.EFDBCA23.(本题10分)已知:如图1,在△ABC 中,∠ABC 、∠ACB 的角平分线交于点O , ∠ABC 、∠ACB 的外角平分线交于点D . (1)求证:∠BOC+∠BDC=180°;(2)若△ABC 的三个外角平分线交点为D 、E 、F (如图2),求证:△DEF 为锐角三角形.24.(本题12分)如图,平面直角坐标系中,已知点A (a-1,a+b ),B (a ,0),且 ()0232=-+-+b a b a ,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰△ACD ,使AD=AC ,∠CAD=∠OAB ,直线DB 交y 轴于点P . (1)求证:AO=AB ; (2)求证:OC=BD ;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?数学试卷参考答案一、你一定能选对!1 2 3 4 5 6 7 8 9 10A C C D C CB B D A二、你能填得又快又准吗?11.120O12.1113.BC=DA(或或14. 131O;15.15 ;16. 120O三、解下列各题17.(1)∠A=30O,∠B=100O,∠C=50O18. 证明:略19. 证明:略20. CD=20米21. 证明:略22. 证明:略23. 证明:略24.(1)略;(2) 略;(3)不变,略.。
八年级数学9月月考试题新人教版(2021-2022学年)
OA22=( )2+1=2 ;
OA32=( )2+1=3 ﻩ ;
OA42=( )2+1=4 ﻩ …
填空:(1)请写出含有n(n为正整数)的等式Sn=;(3分)
(2)推算出OA10=。(3分)
(3)求S12+S22+S32+…+S102的值。(3分)
4.下列说法中,不正确的是
A、3是 的算术平方根 ﻩB、-3是 的算术平方根
C、±3是 的平 方根 D、-3是 的立方根
5.下列计算正确的是
A、 ﻩ ﻩ ﻩB、
C、 ﻩﻩ ﻩﻩﻩﻩD、
6.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形。若斜边AB=3,则图中阴影部分的面积为
A、 ﻩﻩ B、3 ﻩ C、 ﻩﻩD、9
ﻬ
23.(10分)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)。
(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(6分)
(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a=2,b=4时,求这个四边形的周长.(4分)
八年级数学答案:北师大
2017年秋学季八年级学业水平测试数学试题
题 号
一
二
三
总 分
得 分
本试卷分第Ⅰ卷和第Ⅱ卷两部分。测试时间90分钟,满分120分
第Ⅰ卷(选择题)30分
一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)
题 号
1
2
3
4
5
新人教版八年级数学上册9月份月考试卷
新人教,新,人教,版,八年级,数学,上册,9月份,八年级数学第一次月考试题考试时间:100分钟总分:100分班级座号姓名成绩一. 选择题(每题3分,共30分)1.下列长度的三条线段中,能组成三角形的是()A、3cm,5cm ,8cmB、8cm,8cm,18cmC、0.1cm,0.1cm,0.1cmD、3cm,40cm,8cm2.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃那么最省事的办法是()A. 带①去B. 带②去C. 带③去D. 带①和②去3.一个多边形内角和是1080°,则这个多边形的边数为()A、 6B、 7C、 8D、 94.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙C.只有乙 D.只有丙5.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离是( )A.2cmB.3cmC.4cmD.6cm6.如图,将两根钢条AA′、BB′的中点 O连在一起,使AA′、BB′能绕着点 O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽 AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.HL7.下列说法:①角的内部任意一点到角的两边的距离相等;②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC中∠BAC的平分线上任意一点到三角形的三边的距离相等,正确的()A.1个 B.2个 C.3个 D.4个8.已知,如图,AB∥CD,∠A=70°,∠B=40°,则∠ACD=()A、 55°B、70°C、40°D、110°9.如图所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 等于()A、90°B、135°C、270°D、315°10.如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=50°,则∠BPC等于()A、90°B、130°C、270°D、315°二、填空题(每题3分,共24分)11. 若等腰三角形的两边长分别为3cm和8cm,则它的周长是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③
②
①
B D
重庆市巴南区马王坪学校-八年级9月月考数学试题新人教版
(全卷共三个大题,满分150分,考试时间120分钟)
一、选择题(4′× 10=40′)
1、只有以下元素对应相等,不能判定两个三角形全等的是()
A. 两角和一边
B. 两边及夹角
C. 三个角
D. 三条边
2、如果两个三角形全等,下列说法错误的是:()
A.他们的最小角相等
B.他们的对应外角相等
C.它们是直角三角形
D.它们的最长边相等
3、如图,△ABC中,AB=AC,AD⊥BC,点D、E、F
分别是BC、BD、DC的中点,则图中全等三角形共有()
A.3对B.4对C.5对 D.6对
4、如图4,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完
全一样的玻璃,
那么最省事的办法是()
A.带①去
B.带②去
C.带③去
D.带①和②去
5.下面4个汽车标志图案中,不是轴对称图形的是()
A B C D
6.如图6所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()
A、40°
B、50°
C、45°
D、60°
7.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是()
A.21:10 B.10:21 C.10:51 D.12:01
8、如图AB⊥BC,D为BC的中点,以下结论正确的有()个。
①△ABD≌△ACD ②AB=AC ③∠B=∠C ④AD是△ABC的角平分线。
A、1
B、2
C、3
D、4
9、如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,AC于D,若△DBC的周
长为35cm,则BC的长为()
A、5cm
B、10cm
C、15cm
D、17.5cm
C
F
E D
B
A
(第3题图)
(第4题图)
A
D O C
B 15题
10、如图,在四边形ABCD 中,AD ∥BC ,若∠DAB 的角平分线AE 交CD 于E ,连结BE ,且BE 边平分∠ABC ,则以下命题不正确的个数是( )
①BC+AD=AB;②E 为CD 中点;③∠AEB=90°; ④S △ABE =
S 四边形ABCD ;⑤BC=CE A.0个 B.1个 C.2个 D.3个 B A
(第10题)
二.填空题(4′×6=24′)
11、如图,已知∠1=∠2,请你添加一个条件:___________,使△ABD ≌△ACD.
12、如图,∠BAC=110°,若MP 、NQ 分别垂直平分AB 、AC ,则∠PAQ= 13、在平面直角坐标系中,点M (-1,2)关于y 轴对称的点M ′的坐标为 14、如图,点P 是∠BAC 的平分线上一点,PE⊥AB,PF⊥AC,E 、F 分别为垂足,①PE=PF;②AE=AF;③∠APE=∠APF,上述结论中正确的是 .
15、如图在Rt ΔABC 中,∠C=90°,BD 是∠ABC
的平分线,交于点D ,若CD=n ,AB=m ,则ΔABD 的面积是_______。
16、如图,已知的周长是21,分别平分∠ABC 和∠ACB , OD ⊥BC 于D ,且OD =4,△ABC 的面积是___________。
八年级数学第一次单元检测答题卷
(全卷共三个大题,满分150分,考试时间120分钟)
一、选择题(4× 10=40分) 1 2
3
4
5
6
7
8
9
10
二.填空题(4×6=24分)
11、 12、 13、
2
1
ABC △OB OC ,C
D E _ F _ E
_ P _ C _ B
_ A
D C
B
A
x
y
A
B
C
O 5
6
-5
-2
14、 15、 16、
三、解答题(共86分)
17、(6分)如图,在平面直角坐标系中,,,.
(1)求出的面积.
(2)作出关于直线x=1的对称图形.
(3)写出点的坐标.
18、(8分)已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.
19、(8分)如右图,AB=AD ,∠BAD=∠C AE,AC=AE
,求证:CB=ED
20、(8分)如图:四边形ABCD中,AB//CD,AD//BC,
求证:AB=CD
21、(本题8分) 如图,B、D、C、E四点共线,AD⊥BC,BD=DC,
点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并
(15)
A-,(10)
B-,(43)
C-,
ABC
△
ABC
△
111
A B C
△
111
A B C
,,
A
B
C
D
E
A
加以证明.
22、(8分)已知,如图, BE 、CF 分别是△ABC 的边AC 、AB 上的高,在BE 上截取BD=AC ,在
CF 的延长线上截取CG=AB ,连结AD 、AG 。
请你判断线段AD 与AG 有什么关系?并证明。
的关系是
(1)先填空,再用一句简明的语言总结它的规律:
(2)用(1)的结论证明下题:如图2,在△ABC 中,∠ABC 的平分线
E A
B
D F
G H C
N A
D
N C
BN 与A C 的垂直平分线MN 相交于点N ,过N 分别作ND⊥AB 交BA 的延长线于点D ,NE⊥BC 于点E ,求证:AD=CE 。
26、(12分)如图所示,已知,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且 AM ⊥MN 于M ,BN ⊥MN 于N 。
(1)当直线MN 绕点C 旋转到图①的位置时,求证:MN =AM+BN
图①
(2)当直线MN 绕点C 旋转到图②的位置时,(1)中的结论还成立吗?若成立,请给出证明; 若不成立,写出线段AM 、BN 与MN 之间的数量关系?并说明理由。
图②
N M C
B
A A
M
B
C
N
∴∠BAD=∠CAE
∴AC∥DF┄┄8分
19、证明:∵∠BAD=∠CAE
∴∠BAD+∠CAD=∠CAD+∠CAE┄┄2分
∴∠BAC=∠DAE
又AB=AD,AC=AE
∴ΔABC≌ΔADE┄┄6分
∴CB=ED┄┄8分
20、证明:连接BD
∵AB∥CD
∴∠ABD=∠BDC┄┄2分
∵AD∥CB
∴∠ADB=∠DBC┄┄4分
又DB=BD
∴ΔABD≌ΔBCD┄┄6分
∴AB=CD┄┄8分
21、答:AC+CD=DE. ┄┄1分
理由如下:
∵AD⊥BC
∴∠ADB=∠ADC┄┄2分
∵BD=CD,AD=AD
∴⊿ADB≌⊿DAC┄┄4分
∴AB=AC
∴AB+BD=AC+CD
又点C在AE的垂直平分线上
∴CA=CE┄┄6分
∴CA+CD=CE+CD
∴AC+CD=DE┄┄8分
22、答:AG=AD┄┄1分
证明:∵AB⊥FC,AC⊥BF
∴∠HFB=∠HEC=900┄┄2分
又∠FHB=∠EHC
∴∠HBF=∠HCA┄┄4分
又CG=BA,DB=AC
∴⊿ADB≌⊿GAC┄┄6分
∴AG=AD┄┄8分
(2)AM⊥DM.理由如下:┄┄6分
∵∠B=∠C=900
∴CD∥AB
∴∠CDA+∠DAB=1800
又∠ADM=∠CDA/2 ∠DAM=∠DAB/2=900┄┄┄┄
∴2∠ADM+2∠DAM=1800
∴∠ADM+∠DAM=900
∴∠AMD=900,即AM⊥DM. ┄┄10分
25、解:AC=BC;┄┄1分
(1)线段垂直平分线的点到这条线段两个端点的距离相等┄3分(2)连结AN、CN,由(1)知AN=CN,
∵BN平分∠ABC,ND⊥AB,NE⊥BC,
∴DN=NE,
∴Rt△DNA≌Rt△ENC(HL)
∴AD=CE┄┄10分
26、(1)证明:∵∠ACB=900
∴∠ACM+∠BCN=900
又AM⊥MN,BN⊥MN,
∴∠AMC=∠BNC=900
∴∠ACM=∠BCN
又AC=BC
∴⊿AMC≌⊿BNC
∴⊿ADF≌⊿BEC┄┄6分
又 MN=MC+CM
∴MC=BN+AM┄┄5分。