第二讲 整式

合集下载

第2讲 代数式与整式课件

第2讲 代数式与整式课件
的次数.
4.多项式: 由几个单项式相② 加 组成的代数式叫做多项式.
5.多项式的次数: 一个多项式中,⑤ 次数最高的项的次数 就是这个多项
式的次数.
【疑难典析】
6.整式:③ 单项式和多项式统称为整式. 字母x的次数是1而不是0;单项式xy
的次数是2;单项式的系数包括它前
面的符号,如-2xy的系数是-2.
C.4035x2018
D.4036x2018
课前考点过关
4. 已知 a,b,c 是△ABC 的三条边长,化简|a+b-c|-|c-a-b|的结果是 ( B )
A.2a+2b-2c
B.0
5. 若 am=2,an=8,则 am-n=
C.2a+2b
1
4
D.2c
.
6. 如图中的四边形为矩形,根据图形写出一个正确的等式
(1)去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号;括号前是“-”号,把
括号和它前面的“-”号去掉,括号里各项都改变符号. +(b+c)= b+c
(2)整式的加减可以归结为去括号和① 合并同类项.
-(b-c)= -b+c
课前考点过关
【疑难典析】
2.幂的运算
m
am+n
x,y 的值.
原式=(x²+2x+1)+(y²-6y+9)
=(x+1)2+(y-3)2+11.
∵(x+1)2≥0,(y-3)2≥0,
∴原代数式最小值为11,
此时
x=-1,y=3.
课堂互动探究
探究三 整式的创新应用(微专题)

第2讲整式

第2讲整式


运算 同底数 幂相乘 同底数 幂相除 积的乘方 法则 am· an= ________(m,n为正整数)
am-n am÷an= ______( a≠0,m,n为正整 数) am+n
amn m,n为正整数) 幂的乘方 (am)n= ______(
(ab)n=
b n ) = a
nbn a ______(n为正整数)
商的乘方 (
bn _____( a≠0,n为正整数) an

1. 定义:把一个多项式化为几个整式的乘积的
形式,像这样的式子变形叫做这个多项式的因
式分解. 2. 因式分解的基本方法 (1)提公因式法:ma+mb+mc=
m(a+b+c) __________.
系数:取各项整数系数的最大公约数 指数:取各项相同字母的最低次数
公因式的确定 字母:取各项相同的字母


类型一 代数式求值
2 2 2005 若a -3b=5,则6b-2a +2015=_ቤተ መጻሕፍቲ ባይዱ_____.

D

1 2
1 2

x(x+1)(x-1)
(a-1)2
(m+n)(x-y)

-13x8

测试
《互动中考》第10页: 双基训练1——10题
课堂小结
1、整式的考点 2、注意事项
学 用
考点二 整式的运算
1. 整式的加减法运算
指数 也 (1)同类项:所含字母相同,并且相同字母的______ 相同的项叫做同类项.常数项也是同类项. (2)合并同类项:把多项式中的同类项合并成一项,叫做 合并同类项.合并同类项后,所得项的系数是合并前各同 不变 类项的系数的___ 和 ,字母连同它的指数_______.

整式化简求值

整式化简求值

第二讲整式的化简求值一、知识回顾1、有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;2、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).3、两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘都得零;4、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

5、乘除混合运算的步骤:①先把除法转化为乘法;②确定积的符号;③运用乘法运算律和乘法法则进行计算得出结果。

二、典型例题【例1】当a=-1,b=1时,(a3-b3)-(a3-3a2b+3ab2-b3)的值是()A、0B、6C、-6D、9【例2】如果b=2a-1,c=3b,则a+b+c等于()A、9a-4B、9a-1C、9a-2D、9a-3【例3】a-b=5,那么3a+7+5b-6(a+13b)等于()A、-7B、-8C、-9D、10【例4】若a-b=2,a+c=6,则(2a+b+c)-2(a-b-c)=________ 【例5】当a=1/2 时,2a-(1-2a+a2)-(-1+3a-a2)=_______ 【例6】已知a+b=3,ab=-2,则4ab-2a-2b=_________【例7】若3a+2b=5,则(4a+7b)-(3b-2a)=_________【例8】已知M=23x+1,N=16x-5,若M+N=20,则x的值为__________三、综合练习1、(5-4x)(5+4x)-2x(1-3x),其中x=-22、2X―[6-2(X-2)] 其中 X=-23、(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-24、(2m2n+2mn2)-[2(m2n-1)+2mn2+2],其中m=-2,n=25、3(ab+bc)-3(ab-ac)-4ac-3bc 其中:a=2001/2002,b=1/3,c=16、(3xy +10y )+[5x -(2xy +2y -3x)]其中xy =2,x +y =37、已知a =-2,b =-1,c =3,求代数式5abc -2a 2b +[3abc -(4ab 2-a 2b )]的值。

第二讲整式的乘除(教案)

第二讲整式的乘除(教案)
在小组讨论环节,我尝试了作为一个引导者,而不是一个讲师。我发现这种方法很有效,因为它鼓励学生主动思考,而不是被动接受知识。学生们的讨论成果分享也显示出他们能够将所学的知识应用到不同的情境中。然而,我也注意到,一些学生在讨论中较为沉默,我需要找到方法来鼓励他们也参与到讨论中来。
最后,我感到很高兴的是,学生们对整式乘除的兴趣被激发了出来。我相信,通过持续的努力和适当的引导,他们不仅能够掌握这些基本技能,还能够在数学学习的道路上走得更远。接下来的课程中,我会继续关注学生的反馈,并根据他们的学习情况调整教学策略。
另一个有趣的观察是,学生在小组讨论中表现出了很高的积极性。他们似乎很喜欢通过解决实际问题来应用整式的乘除知识。这让我觉得,将现实生活中的情境融入数学教学中是非常有价值的,可以帮助学生更好地理解数学概念。
我还发现,通过实验操作和成果展示,学生能够更加直观地理解抽象的数学概念。这种实践活动不仅提高了他们的动手能力,还增强了他们对整式乘除运算的理解。因此,我认为在未来的课程中,应该设计更多类似的活动,让学生在实践中学习和探索。
3.重点难点解析:在讲授过程中,我会特别强调单项式乘以单项式、多项式乘以多项式这两个重点。对于难点部分,如分配律的应用和整式除法的步骤,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式乘除相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示整式乘除的基本原理。
五、教学反思
在今天的课堂中,我们探讨了整式的乘除,这是数学中一个相当基础但至关重要的部分。我发现,尽管学生对单项式乘以单项式的概念掌握得相对较好,但在涉及到多项式乘以多项式,特别是整式的除法时,他们遇到了一些挑战。这让我意识到,需要在这些难点上多花一些时间,用更直观的方法来解释和演示。

中考数学专题训练第2讲整式(知识点梳理)

中考数学专题训练第2讲整式(知识点梳理)

整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。

单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。

2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。

(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。

(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。

3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。

(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。

(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。

(4)运算时,要注意运算顺序。

(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。

2.单项式中不能含有加减法运算,但可以含有除法运算。

3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。

第2讲 整式及因式分解(精练)(解析版)

第2讲  整式及因式分解(精练)(解析版)

第2讲整式及因式分解(精练)(解析版)A基础训练B能力提升A基础训练一、单选题1.(2022•山东枣庄•中考真题)下列运算正确的是()A. 3屋一次=3 B. a3-ra2=a C. ( - 3ab2) 2= - 6a2h4 D. (a+h) 2=a2+ab+b2【答案】B【详解】A、3/-。

2=2〃2,故A错误,不符合题意;B、a3-ra2=ch故B正确,符合题意;C、( - 3ab2) 2 = 9612b4,故c错误,不符合题意;D、(6f+Z?) 2 = a2+2ah+h29故D不正确,不符合题意;故选:B.2.(2022•江苏泰州,中考真题)下列计算正确的是()A. 3ab + 2ab = 5ab B. 5y2 -2y2 = 3C. 7a + a = 7。

2D. /rTn — Imn2 = —mn2【答案】A【详解】解:A、3ab+lab - 5ab,故选项正确,符合题意;B、5/-2/=3/,故选项错误,不符合题意;C、Ja + a = Sa,故选项错误,不符合题意;D、和22不是同类项,不能合并,故选项错误,不符合题意;故选:A.3.(2022•广西河池・中考真题)多项式/一以+ 4因式分解的结果是()A. x (% - 4) +4 B. (x+2) (x- 2) C. (x+2) 2D. (%- 2) 2【答案】D【详解】解:d-4x+4 = (%-2)2.故选:D.4.(2022・湖南永州•中考真题)下列因式分解正确的是()A. 6+冲= i(x+y) + lB. 3Q +3Z?=3(Q+Z7)C. Q?+4Q +4=S+4『D. a2 -^b = a(a+b)【答案】B【详解】解:A、ax+ay=a(x+y),故选项计算错误;B、3a+3b=3(a+b)9选项计算正确;C> (a+b)2=a2^2ab+b2,故原选项错误;D、由A项解答可得a2-9b2=(a+3b)(a-3b),故原选项正确;故选D.2.(2022,江苏・顾山中学九年级阶段练习)直角三角形两直角边是方程%2一8%+ 14 = 0的两根,则它的斜边为()A. 8B. 7C. 6D. 2、/7【答案】C【详解】解:设直角三角形的斜边为J两直角边分别为〃与b,・・・直角三角形两直角边是方程8x + 14 = 0的两根,:,a + b = S,勿? = 14,根据勾股定理可得:=/+/=(〃 +与2—2^ = 64-28 = 36,• • c = 6 ♦故选:C.3.(2022・全国•七年级课时练习)若4 = /—2xy, 3 = J孙+ /,则A-23为()A. 3x2-2y2 -5xy^B. x2-2y2 -3xyC. —5xy — 2 y ~D . 3x~ + 2y~【答案】B【详解】解:A = £-2盯,8 = J孙+ y2,A — 2B = x~-2xy _ 2 _xy+y~] = x2 _2xy _ xy _ 2^~ =—2y——3xy ,故选:B.4.(2022 ・全国•八年级课时练习)对于多项式(1) d-y2;(2)-x2-y2; (3) 4x2-y ; (4)—4 + d中,能用平方差公式分解的是()A. (1) (2) B. (1) (3) C. (1) (4)D. (2) (4)【答案】C【详解】解:・・・平方差公式必须只有两项,并且是两个数平方差的形式,(1)—— y2两平方项符号相反,可以利用平方差公式;(2)-%2 - ,两平方项符号相同,不能运用平方差公式;(3)4/—y虽然是两项,并且是差的形式,但不是平方差的形式;(4)-4 + X2,两平方项符号相反,可以利用平方差公式.所以(1) (4)能用平方差公式分解.故选:C.5.(2022•辽宁•沈阳市南昌初级中学(沈阳市第二十三中学)八年级期中)小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:%-V, a—b, c , /_)/,《J工+了,分别对应下列六个字:抗,胜,必、,利,我,疫.现将y2户阳/_力因式分解,结果呈现的密码信息可能是() A.抗疫胜利B.抗疫必胜C.我必胜利D.我必抗疫【答案】B【详解】解:原式=(/一》2)(女—秘) = C(Q_〃)(X+・・・x-y, a-b,c, /_y2, 0 ,x+y,分别对应下列六个字:抗,胜,必,利,我,疫. 对应抗,x+y对应疫,。

第二讲_整式

第二讲_整式

3 针对训练 2 1: 计算( 2x) ÷ x的结果正确的是(
)
( A) 8x2 ( B) 6x2 ( C) 8x3 ( D) 6x3 解析: 原式= 8x3÷ x= 8x2, 故选 A. 针对训练 2 2: ( 2011 年成都)下列计算正确的是( ( A) x+x=x2 ( B) x· x= 2x
• 例1,下列各式子中,是单项式的有___①、 ②、④、⑦ • ___________(填序号
多项式的项数与次数
• • • (1)多项式的次数不是所有项的次数的和,而是它的最高次项次数; (2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
• (4)一个多项式的次数最高项的次数是几,就说这个多项式是几次多 项式。 • (5).在多项式中,每个单项式都是这个多项式的项,每一项都有系 数,但对整个多项式来说,没有系数的概念,只有次数的概念。
• 【例1】若单项式-5x3ym的次数是9,求m 的值. • 【思路点拨】根据单项式次数的定义得到 关于m的一元一次方程,解方程得m的值. • 【自主解答】根据题意,得m+3=9, • 解得m=6.
• 3.(2010· 肇庆中考)观察下列单项式:a,2a2,4a3,-8a4, • 16a5,…按此规律第n个单项式是_____.(n 是正整数) • 【解析】由题意知第n项的系数为(1)n+12n-1, • 第n项a的次数为n, • 所以第n个单项式是(-1)n+12n-1an. • 答案:(-1)n+12n-1an
同类项
1,同类项的判定与合并同类项的法则: 例1 判断下列各式是否是同类项?
(1)2a b 与2 x y
2 3
2 3

数与式-第2讲:整式

数与式-第2讲:整式

1、几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.2、注意负数的乘方,若为偶数次方则为正数,奇数次方则为负数.即“奇负偶正”.例如:22()n n a a -=;2+121()n n a a +-=-.3应用公式的注意事项(1)完全平方公式的变换222()2a b a b ab +=+-222()+2a b a b ab +=-22()()+4a b a b ab +=-(2)分解因式时,特别是高次平方差公式要注意分解完全.例:44222222()()()()()a b a b a b a b a b a b -=-+=+-+(3)当平方差公式前含有系数时,要记得把系数写成平方数再用公式.例:22222516(5)(4)(54)(54)a b a b a b a b -=-=+-【方法技巧】 第二节 整式【知识梳理】(4)平方差公式一定是两个数平方异号才能用;完全平方公式一定要两个平方项同号才能用。

例:2222)()a ab b a b --=-+(-;2222)()a ab b a b +-=--(-;2222()()2)a b a b a ab b --=+=++(;22222()()()2)a b a b b a a ab b -+=-=-=-+(考点一:整式的基本概念例1、单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,7变式1、单项式3x 2y 2的( )A .系数是0,次数是4B .系数是﹣1,次数是2C .系数是3,次数是4D .系数是﹣1,次数是3例2、下列各式中,是二次三项式的是( )A .B .32+3+1C .32+a+abD .x 2+y 2+x ﹣y变式1、下列关于多项式5ab 2﹣2a 2bc ﹣1的说法中,正确的是( )A .它的常数项是1B .它是四次两项式C .它的最高次项是﹣2a 2bcD .它是三次三项式例2、多项式的各项分别是( )A .B .C .D .变式1、多项式3x 2﹣2x ﹣1的各项分别是( )A .3x 2,2x ,1B .3x 2,﹣2x ,1C .﹣3x 2,2x ,﹣1D .3x 2,﹣2x ,﹣1考点二:幂的运算性质例1、(1)计算a 3•a 2正确的是( )A .aB .a 5C .a 6D .a 9 【考点突破】(2)下列计算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+2a2=3a4(3)计算:a3÷a2=.(4)下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y2变式1、(1)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5(2)下列运算正确的是()A.(a﹣3)2=a2﹣9B.a2•a4=a8C.=±3D.=﹣2(3)(﹣a5)2+(﹣a2)5的结果是()A.0B.﹣2a7C.2a10D.﹣2a10(4)计算:a8÷a4=.例2、已知2a=5,2b=3,求2a+b+3的值.变式1、(1)已知2m=3,4n=5,则23m+2n的值为()A.45B.135C.225D.675(2)已知x m=5,x n=7,求x2m+n的值.(3)若2•8n•16n=222,求n的值.考点三:整式的运算例1、计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4B.a2﹣3a+2C.a2﹣7a+2D.a2﹣7a+4变式1、化简2(a﹣b)﹣(3a+b)的结果是()A.﹣a﹣2b B.﹣a﹣3b C.﹣a﹣b D.﹣a﹣5b变式2、若代数式2x3﹣8x2+x﹣1与代数式3x3+2mx2﹣5x+3的和不含x2项,则m等于()A.2B.﹣2C.4D.﹣4例2、(1)计算:(﹣8ab)()=.(2)计算;(3)(2x﹣y)(x+y).变式1:(1)计算:(﹣3a2b)•(ab2)3=.(2).(3)计算:(3a+2)×(a﹣4)例3、(1)计算8x8÷(﹣2x2)的结果是()A.﹣4x2B.﹣4x4C.﹣4x6D.4x6(2)化简:(8a2b﹣4ab2)÷(﹣4ab)变式1、(1)计算:(6x3﹣9x2+3x)÷3x.(2)(﹣4a3﹣7a3b2+12a2b)÷(﹣2a)2.例4、化简:(x+5)(2x﹣3)﹣2x(x2﹣2x+3)变式1、化简:(x+5)(2x﹣3)﹣2x(x2﹣2x+3)例5、代数式y2+2y+7的值是6,则4y2+8y﹣5的值是()A.9B.﹣9C.18D.﹣18变式1、已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1B.4C.7D.不能确定变式2、已知3﹣x+2y=0,则3x﹣6y+9的值是()A.3B.9C.18D.27变式3、已知a2﹣2b=1,则代数式2a2﹣4b﹣3的值是()A.1B.﹣1C.5D.﹣5例6、若x2﹣x﹣2=0,则(2x+3)(2x﹣5)+2=.变式1、已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.考点四:乘法公式与因式分解例1、利用图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(a+b)(a2﹣ab+b3)=a3+b3例2、已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25变式1、计算:已知:a+b=3,ab=1,则a2+b2=.例3、如果x2+mx+9是一个完全平方式,则m的值为()A.3B.6C.±3D.±6变式1:在多项式x2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A.x B.3x C.6x D.9x例5、若x﹣=1,则x2+的值是()A.3B.2C.1D.4变式1、若x2+3x﹣1=0,则的值为()A.4B.7C.11D.﹣4例6、如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2变式1、如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个梯形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.a2﹣b2=(2a+2b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2例7、计算(x﹣3y)(x+3y)的结果是()A.x2﹣3y2B.x2﹣6y2C.x2﹣9y2D.2x2﹣6y2解:(x﹣3y)(x+3y)=x2﹣(3y)2=x2﹣9y2,故选C.变式1:下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)例8、因式分解:x2﹣3x=x(x﹣3).变式1、分解因式:2a2+ab=.例9、(1)分解因式:x2﹣9=.x2﹣6x+9=.x2﹣4x+4=.4x2﹣4xy+y2=.8a3﹣8a2+2a=.例10、若x2+px+q=(x+1)(x﹣2),则p=,q=.变式1、若x2﹣3x﹣10=(x+a)(x+b),则a=2或﹣5,b=﹣5或2.变式2、(1)分解因式:x2﹣2x﹣15=.(2)分解因式:2x2+x﹣6=.例11、多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y变式1、若将多项式x2﹣mx+6因式分解得(x+3)(x+n),则m n=.【分层训练】<A组>1.下列运算正确的是()A.(ab)2=ab2B.3a+2a2=5a2C.2(a+b)=2a+b D.a•a=a22.已知a+b=3,ab=﹣2,则a2+b2的值是.3.计算:(﹣2xy2)3=.4、①(2a﹣b)2=①(﹣12x5y3)÷(﹣3xy2)=.5、把多项式a2﹣4a分解因式为.6、把多项式ax2﹣2ax+a分解因式的结果是.7、已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.8、已知x2﹣5x=3,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.9、已知x2+4x﹣5=0,求代数式2(x+1)(x﹣1)﹣(x﹣2)2的值.10、如果m2﹣m=1,求代数式(m﹣1)2+(m+1)(m﹣1)+2015的值.11、已知x2﹣5x﹣4=0,求代数式(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)的值.<B组>1、已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是()A.12B.20C.28D.362、设a2+2a﹣1=0,b4﹣2b2﹣1=0,且1﹣ab2≠0,则=.3、若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.4、阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2=.5、观察并验证下列等式:13+23=(1+2)2=9,13+23+33=(1+2+3)2=36,13+23+33+43=(1+2+3+4)2=100,(1)续写等式:13+23+33+43+53=;(写出最后结果)(2)我们已经知道1+2+3+…+n=n(n+1),根据上述等式中所体现的规律,猜想结论:13+23+33+…+(n﹣1)3+n3=;(结果用因式乘积表示)(3)利用(2)中得到的结论计算:①33+63+93+…+573+603①13+33+53+…+(2n﹣1)3(4)试对(2)中得到的结论进行证明.参考答案【考点突破】考点一:整式的基本概念例1、解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.变式1.解:单项式3x2y2的系数是3,次数是4.故选C.例2、解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.变式1、解:5ab2﹣2a2bc﹣1的次数为4,项数为3,常数项为﹣1,最高次数项为﹣2a2bc故选(C)例2、解:﹣x2﹣x﹣1的各项分别是:﹣x2,﹣x,﹣1,故选B.变式1、解:多项式3x2﹣2x﹣1的各项分别是:3x2,﹣2x,﹣1.故选D.考点二:幂的运算性质例1、(1)解:a3•a2=a3+2=a5.故选B.(2)解:A、同底数幂的乘法底数不变指数相加,故A错误;B、积的乘方等于乘方的积,故B正确;C、幂的乘方底数不变指数相乘,故C错误;D、合并同类项系数相加字母及指数不变,故D错误;故选:B.(3)解:a3÷a2=a.故答案是:a.(4)解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.变式1、(1)解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.(2)解:A、(a﹣3)2=a2﹣6a+9,故错误;B、a2•a4=a6,故错误;C、=3,故错误;D、=﹣2,故正确,故选D.(3)解:(﹣a5)2+(﹣a2)5=a10﹣a10=0.故选:A.(4)解:a8÷a4=a4;故答案为:a4.例2、解:2a+b+3=2a•2b•23=5×3×8=120.变式1、(1)解:原式=(2m)3•(22)n=33•5=135.故选B.(2)解:∵x m=5,x n=7,∴x2m+n=x m•x m•x n=5×5×7=175.(3)解:2•8n•16n,=2×23n×24n,=27n+1,∵2•8n•16n=222,∴7n+1=22,解得n=3.考点三:整式的运算例1、解:(6a2﹣5a+3 )﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4.故选D.变式1、解:原式=2a﹣2b﹣3a﹣b=﹣a﹣3b,故选B变式2、解:2x3﹣8x2+x﹣1+3x3+2mx2﹣5x+3=5x3+(2m﹣8)x2﹣4x+2,又两式之和不含平方项,故可得:2m﹣8=0,m=4.故选C.例2、(1)解:(﹣8ab)()=﹣8×a3b2=﹣6a3b2.故答案为:﹣6a3b2.(2)解:=,=;(3)解:(2x﹣y)(x+y)=x2+xy﹣y2.变式1:(1)解:原式=(﹣3a2b)•a3b6=﹣3a5b7.故答案是:﹣3a5b7.(2)解:=,=﹣x3y+(﹣6xy)﹣(﹣2x)=﹣x3y﹣6xy+2x.(3)解:(3a+2)×(a﹣4)=3a2﹣12a+2a﹣8=3a2﹣10a﹣8;故答案为:3a2﹣10a﹣8.例3、解:(1)8x8÷(﹣2x2),=[8÷(﹣2)](x8÷x2),=﹣4x6.故选C.(2)(8a2b﹣4ab2)÷(﹣4ab)=﹣2a+b.变式1、解:(1)(6x3﹣9x2+3x)÷3x=6x3÷3x﹣9x2÷3x+3x÷3x=2x2﹣3x+1.(2)(﹣4a3﹣7a3b2+12a2b)÷(﹣2a)2=(﹣4a3﹣7a3b2+12a2b)÷4a2=﹣a﹣ab2+3b.例4、解:(x+5)(2x﹣3)﹣2x(x2﹣2x+3)=2x2﹣3x+10x﹣15﹣2x3+4x2﹣6x=﹣2x3+6x2+x﹣15.变式1、解:(x+5)(2x﹣3)﹣2x(x2﹣2x+3)=2x2﹣3x+10x﹣15﹣2x3+4x2﹣6x=﹣2x3+6x2+x﹣15.例5、解:∵代数式y2+2y+7的值是6;∴y2+2y+7=6;∴y2+2y=﹣1;∴4y2+8y﹣5=4(y2+2y)﹣5=4×(﹣1)﹣5=﹣9.故选B.变式1、解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1,=6+1,=7.故选C.变式2、解:∵3﹣x+2y=0,∴3x﹣6y=9,∴3x﹣6y+9=18,故选C.变式3、解:∵a2﹣2b=1,∴2a2﹣4b=2.∴原式=2﹣3=﹣1.故选:B.例6、解:∵x2﹣x﹣2=0,即x2﹣x=2,∴原式=4x2﹣4x﹣15+2=4(x2﹣x)﹣13=8﹣13=﹣5.故答案为:﹣5变式1、解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2 =﹣y(4x﹣3y).∵4x=3y,∴原式=0.考点四:乘法公式与因式分解例1、解:∵图中正方形的面积可表示为:a2+2ab+b2,也可表示为:(a+b)2,∴(a+b)2=a2+2ab+b2.故选A.例2、解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选B.变式1、解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7例3、解:∵(x±3)2=x2±6x+9,∴在x2+mx+9中,m=±6.故选D.变式1:解:①x2若为平方项,则加上的项是:±2x×3=±6x;②若x2为乘积二倍项,则加上的项是:()2=,③若加上后是单项式的平方,则加上的项是:﹣x2或﹣9.故为:6x或﹣6x或或﹣x2或﹣9.故选:C.变式2、解:根据题意,原式是一个完全平方式,∵64y2=(±8y)2,∴原式可化成=(x±8y)2,展开可得x2±16xy+64y2,∴kxy=±16xy,∴k=±16.故选:D.例5、解:当x﹣=1时,x2+===12+2=3.故答案为:A.变式1、解:∵x2+3x﹣1=0,∴x﹣=﹣3,两边平方.得x2+﹣2=9,∴x2+=11,故选C.例6、解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.变式1、解:图1中,阴影部分的面积=a2﹣b2,根据图1可得,图2中梯形的高为(a﹣b),因此图2中阴影部分的面积=(2a+2b)(a﹣b),根据两个图形中阴影部分的面积相等可得a2﹣b2=(2a+2b)(a﹣b).故选A.例7、解:(x﹣3y)(x+3y)=x2﹣(3y)2=x2﹣9y2,故选C.变式1:解:A、(2a+b)(2b﹣a)=ab﹣2a2+2b2不符合平方差公式的形式,故错误;B、原式=﹣(+1)(+1)=(+1)2不符合平方差公式的形式,故错误;C、原式=﹣(3x﹣y)(3x﹣y)=(3x﹣y)2不符合平方差公式的形式,故错误;D、原式=﹣(n+m)(n﹣m)=﹣(n2﹣m2)=﹣n2+m2符合平方差公式的形式,故正确.故选D.例8、解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)变式1、解:2a2+ab=a(2a+b).故答案为:a(2a+b).变式2、解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).例9、解:x2﹣6x+9=(x﹣3)2.x2﹣9=(x+3)(x﹣3).x2﹣4x+4=(x﹣2)2.4x2﹣4xy+y2,=(2x)2﹣2×2x•y+y2,=(2x﹣y)2.2a(2a﹣1)2例10、解:∵右边=x2﹣2x+x﹣2=x2﹣x﹣2,∴p=﹣1,q=﹣2.故答案为:﹣1,﹣2.变式1、解:∵(x+a)(x+b)=x2+(a+b)x+ab=x2﹣3x﹣10,∴a+b=﹣3,ab=﹣10,解得a=2,b=﹣5或a=﹣5,b=2.故答案为:2或﹣5,﹣5或2.变式2、(1)解:原式=(x﹣5)(x+3).故答案为:(x﹣5)(x+3).(2)解:原式=(2x﹣3)(x+2).故答案为:(2x﹣3)(x+2)例11、解:2x2﹣xy﹣15y2=(2x+5y)(x﹣3y).故选:B.变式1、解:x2﹣mx+6=(x+3)(x+n)=x2+(n+3)x+3n,可得﹣m=n+3,3n=6,解得:m=﹣5,n=2,则原式=25.故答案为:25.【分层训练】<A组>1、解:A、(ab)2=a2b2,故此选项错误;B、3a+2a2无法计算,故此选项错误;C、2(a+b)=2a+2b,故此选项错误;D、a•a=a2,故此选项正确;故选:D.2、解:①a+b=3,ab=﹣2,①a2+b2=(a+b)2﹣2ab,=32﹣2×(﹣2),=9+4,=13.故答案为:13.3、解:(﹣2xy2)3,=(﹣2)3x3(y2)3,=﹣8x3y6.故填﹣8x3y6.4、解:①(2a﹣b)2=4a2+b2﹣4ab;故答案为:4a2+b2﹣4ab;①(﹣12x5y3)÷(﹣3xy2)=4x4y.故答案为:4x4y.5、解:原式=a(a﹣4).故答案为:a(a﹣4).6、解:原式=a(x2﹣2x+1)=a(x﹣1)2.故答案为:a(x﹣1)27、解:(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,∵x2+x﹣5=0,∴x2+x=5,∴原式=5﹣3=2.8、解:(x﹣1)(2x﹣1)﹣(x+1)2+1=2x2﹣x﹣2x+1﹣(x2+2x+1)+1=2x2﹣x﹣2x+1﹣x2﹣2x﹣1+1=x2﹣5x+1,∵x2﹣5x=3,∴原式=3+1=4.9、解:∵x2+4x﹣5=0,即x2+4x=5,∴原式=2x2﹣2﹣x2+4x﹣4=x2+4x﹣6=5﹣6=﹣1.10、解:原式=m2﹣2m+1+m2﹣1+2015=2m2﹣2m+2015=2(m2﹣m)+2015∵m2﹣m=1,∴原式=2017.11.解:(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)=x2﹣4﹣(2x2﹣5x+2)=x2﹣4﹣2x2+5x﹣2=﹣x2+5x﹣6,∵x2﹣5x﹣4=0,∴x2﹣5x=4,∴原式=﹣(x2﹣5x)﹣6=﹣4﹣6=﹣10<B组>1、解:①实数x、y、z满足x2+y2+z2=4,①(2x﹣y)2+(2y﹣z)2+(2z﹣x)2=5(x2+y2+z2)﹣4(xy+yz+xz)=20﹣2[(x+y+z)2﹣(x2+y2+z2)]=28﹣2(x+y+z)2≤28①当x+y+z=0时(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是28.故选C.2、解:①a2+2a﹣1=0,b4﹣2b2﹣1=0,①(a2+2a﹣1)﹣(b4﹣2b2﹣1)=0,化简之后得到:(a+b2)(a﹣b2+2)=0,若a﹣b2+2=0,即b2=a+2,则1﹣ab2=1﹣a(a+2)=1﹣a2﹣2a=﹣(a2+2a﹣1),①a2+2a﹣1=0,①﹣(a2+2a﹣1)=0,与题设矛盾①a﹣b2+2≠0,①a+b2=0,即b2=﹣a,①==﹣=﹣()5=﹣25=﹣32.故答案为﹣32.解法二:①a2+2a﹣1=0,①a≠0,①两边都除以﹣a2,得﹣﹣1=0又①1﹣ab2≠0,①b2≠而已知b4﹣2b2﹣1=0,①和b2是一元二次方程x2﹣2x﹣1=0的两个不等实根①+b2=2,×b2==﹣1,①(ab2+b2﹣3a+1)÷a=b2+﹣3+=(b2+)+﹣3=2﹣1﹣3=﹣2,①原式=(﹣2)5=﹣32.3、解:①m2=n+2,n2=m+2(m≠n),①m2﹣n2=n﹣m,①m≠n,①m+n=﹣1,①原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.4、解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).5、解:(1)(1+2+3+4+5)2=225(2)原式=[n(n+1)]2=n2(n+1)2(3)①原式=(3×1)3+(3×2)3+(3×3)3+…+(3×20)3 =27×13+27×23+27×33+…+27×203=27(13+23+33+ (203)=27××202×212=27×44100=1190700①原式=[13+23+33+…+(2n)3]﹣[23+43+63+…+(2n)3]=(2n)2(2n+1)2﹣8(13+23+33…+n3)=×4n2(2n+1)2﹣8××n2×(n+1)2=n2(2n+1)2﹣2n2(n+1)2=n2(2n2﹣1)=2n4﹣n2(4)①(n+1)3=n3+3n2+3n+1①(n+1)3﹣n3=3n2+3n+1①n3﹣(n﹣1)3=3(n﹣1)2+3(n﹣1)+1…①33﹣23=3×22+3×2+1,①23﹣13=3×12+3×1+1上述n个等式相加,得(n+1)3﹣13=3(12+22+…+n2)+3(1+2+…+n)+n①3(12+22+…+n2)=(n+1)3﹣1﹣3(1+2+…+n)﹣n=(n+1)3﹣3×﹣(n+1)=(n+1)[(n+1)2﹣n﹣1]=(n+1)(n2+n)①12+22+…+n2=n(n+1)(2n+1)①(n+1)4=n4+4n3+6n2+4n+1,①(n+1)4﹣n4=4n3+6n2+4n+1,①n4﹣(n﹣1)4=4(n﹣1)3+6(n﹣1)2+4(n﹣1)+1,…34﹣24=4×23+6×22+4×2+124﹣14=4×13+6×12+4×1+1上述n个等式相加,得(n+1)4﹣n4=4(13+23+…+n3)+6(12+22+…+n2)+4(1+2+…+n)+n,①4(13+23+…+n3)=(n+1)4﹣1﹣6(12+22+…+n2)﹣4(1+2+…+n)﹣n =(n+1)4﹣6×n(n+1)(2n+1)﹣4×﹣(n+1)=(n+1)[(n+1)3﹣n(2n+1)﹣2n﹣1]=(n+1)(n3+n2)①13+23+…+n3=n2(n+1)2故答案为(1)225;(2)n2(n+1)2。

初中复习方略数学第二讲 整式、因式分解

初中复习方略数学第二讲 整式、因式分解

第二讲整式、因式分解列代数式及求代数式的值1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的__字母__连接起来的式子,叫做代数式.2.求代数式的值:用__数__代替字母,并按照运算关系求出结果.代数式求值的两种方法1.直接代入法:把已知字母的值代入代数式,并按原来的顺序计算求值.2.整体代入法:观察已知条件和所求代数式的关系,将所求代数式变形后与已知代数式成倍分关系,把已知代数式看成一个整体代入所求代数式中求值.整式的相关概念1.52的次数是2.(×)2.x3y2的系数是0,次数是5.(×)3.多项式3x2y-m2的次数是5.(×)1.同类项与系数无关,与字母的排列顺序无关.2.所有常数项都是同类项.3.只有同类项才能合并,如x2与x3不能合并.整式的运算1.整式的加减2.幂的运算3.整式的乘法4.整式的除法单项式除以单项式把系数、同底数幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式多项式除以单项式 先用多项式的每一项分别除以这个单项式,再把所得的商相加5.整式混合运算的顺序先算__乘方__,再算__乘除__,最后算__加减__,同级运算按照从左到右的顺序计算.遇到幂的乘方时,需要注意:(1)当括号内有“-”号时,(-a m )n =⎩⎪⎨⎪⎧-a mn (n 为奇数)a mn (n 为偶数); (2)当含有系数时,一定也要给系数进行乘方运算.1.3a(5a -2b)=15a -6ab.(×)2.(1+x)(-1+x)=x 2-1.(√)3.(-3a -2)(3a -2)=9a 2-4.(×)1.6m÷3m=2m.(×)2.(6a 2b -4a 2c)÷(-2a 2)=-3b +2c.(√)3.(2a 3-a 2)÷(-a)2=2a -1.(√)因式分解的定义1.因式分解的定义:把一个多项式化成几个__整式__的乘积的形式,叫做把这个多项式因式分解.2.基本方法:(1)提公因式法:ma+mb+mc=__m(a+b+c)__.(2)公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2.3.因式分解的步骤:(1)因式分解一定要分解到每个因式都不能再分解为止;(2)有数字因式时,不要忘记提取;(3)结果必须是乘积的形式.考点一列代数式及其求值【典例1】(2021·自贡中考)已知x2-3x-12=0,则代数式-3x2+9x+5的值是(B)A.31 B.-31C.41 D.-41【思路点拨】由已知可得:x2-3x=12,将代数式适当变形,利用整体代入的思想进行运算即可得出结论.【例题变式】(变换条件)(2020·连云港中考)按照如图所示的计算程序,若x=2,则输出的结果是__-26__.【思路点拨】把x=2代入程序中计算,当其值小于0时将所得结果输出即可.1.(2021·温州中考)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为(D)A.20a元 B.(20a+24)元C.(17a+3.6)元 D.(20a+3.6)元2.(2021·金华中考)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是(B)A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30% D.先提价25%,再降价25% 3.(2021·台州中考)已知(a+b)2=49,a2+b2=25,则ab=(C)A.24 B.48 C.12 D.2 6考点二整式的相关概念【典例2】(2021·青海中考)已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__3__.【思路点拨】根据同类项的定义,列方程求解即可.1.单项式是表示省略了乘法符号的乘法运算.2.多项式是单项式之间的加减运算.1.(2020·日照中考)单项式-3ab的系数是(B)A.3 B.-3 C.3a D.-3a2.(2021·上海中考)下列单项式中,a2b3的同类项是(B)A.a3b2 B.3a2b3 C.a2b D.ab33.(2020·滨州中考)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为(D)A.4 B.8 C.±4 D.±84.(2020·绵阳中考)若多项式xy|m-n|+(n-2)x2y2+1是关于x,y的三次多项式,则mn=__0或8__.考点三整式的运算【典例3】(2021·自贡中考)下列运算正确的是(B)A.5a2-4a2=1 B.(-a2b3)2=a4b6C.a9÷a3=a3 D.(a-2b)2=a2-4b2【思路点拨】按照合并同类项的运算方法、整数指数幂的运算法则、完全平方公式逐个验证即可.【例题变式】(变化问法)(2021·北京中考)已知a2+2b2-1=0,求代数式(a-b)2+b(2a+b)的值.【思路点拨】直接利用乘法公式以及单项式乘多项式运算法则化简,进而把已知代入得出答案.【自主解答】原式=a2-2ab+b2+2ab+b2=a2+2b2,∵a2+2b2-1=0,∴a 2+2b 2=1,∴原式=1.1.幂的运算要注意区分幂的乘方和同底数幂的乘法.2.单项式的乘法是利用交换律和结合律转化为幂的运算.3.多项式的乘法是利用分配律转化为单项式的乘法.4.整式的除法与乘法互为逆运算.5.乘法公式中的字母可以表示数,也可以表示单项式或多项式.1.(2021·连云港中考)下列运算正确的是(D)A .3a +2b =5abB .5a 2-2b 2=3C .7a +a =7a 2D .(x -1)2=x 2+1-2x2.(2021·遂宁中考)若|a -2|+a +b =0,则a b=__14 __. 3.(2021·重庆中考A 卷)计算:(x -y)2+x(x +2y).【解析】(x -y)2+x(x +2y)=x 2-2xy +y 2+x 2+2xy =2x 2+y 2.4.(2021·长沙中考)先化简,再求值:(x -3)2+(x +3)(x -3)+2x(2-x),其中x =-12. 【解析】原式=x 2-6x +9+x 2-9+4x -2x 2=-2x , 当x =-12时, 原式=-2×⎝ ⎛⎭⎪⎫-12 =1. 考点四 因式分解【典例4】(2021·恩施中考)分解因式:a -ax 2=__a(1+x)(1-x)__.【思路点拨】直接提取公因式,再利用公式法分解因式.公因式的确定1.系数:取各项系数的最大公约数;2.字母:取各项相同的字母;3.指数:取各相同字母的最低次数.1.(2021·杭州中考)因式分解1-4y2=(A)A.(1-2y)(1+2y) B.(2-y)(2+y)C.(1-2y)(2+y) D.(2-y)(1+2y)2.(2021·盐城中考)分解因式:a2+2a+1=__(a+1)2__.3.(2021·北京中考)分解因式:5x2-5y2=__5(x+y)(x-y)__.4.(2020·内江中考)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=mn .例如:18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的最佳分解,所以f(18)=36=12.(1)填空:f(6)=________;f(9)=________.(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有符合条件的两位正整数;并求f(t)的最大值.(3)填空:①f(22×3×5×7)=________;②f(23×3×5×7)=________;③f(24×3×5×7)=________;④f(25×3×5×7)=________.【解析】(1)6可分解成1×6,2×3,∵6-1>3-2,∴2×3是6的最佳分解,∴f(6)=23 .9可分解成1×9,3×3,∵9-1>3-3,∴3×3是9的最佳分解,∴f(9)=33 =1.答案:23 1(2)设交换t 的个位上数与十位上的数得到的新数为t′,则t′=10b +a , 根据题意,得t′-t =(10b +a)-(10a +b)=9(b -a)=54, ∴b =a +6.∵1≤a≤b≤9,a ,b 为正整数,∴满足条件的t 为:17,28,39;∵f(17)=117 ,f(28)=47 ,f(39)=313 ,∵47 >313 >117 ,∴f(t)的最大值为47 .(3)①∵22×3×5×7的最佳分解为20×21,∴f(22×3×5×7)=2021 .答案:2021 ②∵23×3×5×7的最佳分解为28×30, ∴f(23×3×5×7)=2830 =1415 . 答案:1415③∵24×3×5×7的最佳分解是40×42,∴f(24×3×5×7)=4042 =2021 . 答案:2021④∵25×3×5×7的最佳分解是56×60,∴f(25×3×5×7)=5660 =1415. 答案:1415人教版七年级上册 P112 T4先化简,再求值:(2x +3y)2-(2x +y)(2x -y),其中x =13 ,y =-12 . 【思路点拨】利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【自主解答】原式=4x 2+12xy +9y 2-4x 2+y 2=10y 2+12xy ,当x =13 ,y =-12,原式=0.5.(变换条件)(2021·南充中考)先化简,再求值:(2x+1)(2x-1)-(2x-3)2,其中x=-1.【解析】原式=4x2-1-(4x2-12x+9)=4x2-1-4x2+12x-9=12x-10. ∵x=-1,∴12x-10=12×(-1)-10=-22.(变换条件与问法)(2020·邵阳中考)已知:|m-1|+n+2 =0,(1)求m,n的值;(2)先化简,再求值:m(m-3n)+(m+2n)2-4n2.【解析】(1)根据非负性得:m-1=0且n+2=0,解得:m=1,n=-2.(2)原式=m2-3mn+m2+4mn+4n2-4n2=2m2+mn,当m=1,n=-2,原式=2×1+1×(-2)=0.人教版七年级上册P120 T10观察下列式子:2×4+1=9=32;6×8+1=49=72;14×16+1=225=152;…你得出了什么结论?你能证明这个结论吗?【思路点拨】式子可以整理为:(22-2)×21+1+1=(22-1)2;(23-2)×22+1+1=(23-1)2;(24-2)×23+1+1=(24-1)2;…得到第n个式子的结论即可.【自主解答】(2n+1-2)·2n+1+1=(2n+1-1)2.证明:(2n +1-2)·2n +1+1=22n +2-2n +2+1=(2n +1)2-2×2n +1+1=(2n +1-1)2.(变换条件)(2020·青海中考)观察下列各式的规律:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1.请按以上规律写出第4个算式__4×6-52=24-25=-1__.用含有字母的式子表示第n 个算式为__n(n +2)-(n +1)2=-1__.(变换条件与问法)(2021·眉山中考)观察下列等式:x 1=1+112+122 =32 =1+11×2 ; x 2=1+122+132 =76 =1+12×3 ; x 3=1+132+142 =1312 =1+13×4 ; …根据以上规律,计算x 1+x 2+x 3+…+x 2 020-2 021=__-12 021 __.。

第二讲、代数式—整式与因式分解复习讲义

第二讲、代数式—整式与因式分解复习讲义

一、知识点归纳 ★整式部分 (1)代数式的分类⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 (2)概念:①代数式: 用______把数与表示数的字母连接而成的式子叫___________.注:单独一个_____或一个_____也是代数式.②代数式的值: 用_____代替代数式的字母计算后所得的_____,叫代数式的________. ③整式: 分母中不含有________的_______式叫整式. ④同类项:条件是 _______________,_____________________.⑤单项式:是数与字母的______.注:★不含_____运算,★★单独的一个_____或____也是单项式.⑥多项式:是几个单项式的______. (3)运算:整式的加减:(实质是去括号,合并同类项)①合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变; ②去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里面各项都不变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都变号.③添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号. 整式的乘除:①单项式相乘:把它们的系数、相同字母分别相乘;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:就是根据分配律用单项式乘以多项式的每一项,在把所得的积相加.mc mb ma c b a m ++=++)(.③多项式与多项式相乘:方法★bn bm an am n m b a +++=++))((方法★★乘法公式(用于多项式乘法的简便运算) 平方差公式:__________))((=-+b a b a ;完全平方公式:___________)(2=+b a ;___________)(2=-b a .④单项式相除:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的因式.⑤多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. ⑥幂的运算性质(m 、n 为正整数)____=⋅n m a a ; ____=÷n m a a (0≠a ); _____)(=n m a ;____)(=n ab .10=a )0(≠a ,)0(1≠=-a aa n n . ★分解因式部分:(1)概念:把一个多项式化成几个整式的积的形式,这种式子变形叫做把这个多项式因式分解. (2)常用分解因式方法: ①提取公因式法:_____________=++mc mb ma .其分解步骤为:★确定多项式的公因式:公因式=各项系数的最大公约数与相同字母的最低次幂的积;★★将多项式除以它的公因式从而得到多项式的另一个因式. ②运用公式法:__________22=-b a ;__________222=+±b ab a .注意:★如果多项式中各项含有公因式,应该先提取公因式,再考虑运用公式法;★★公式中的字母,即可以表示一个数,也可以表示一个单项式或者一个多项式. ③分组分解法.多项式四项及以上的考虑用这种方法.(3)分解因式的一般步骤:一提二套三分组,二次三项想十字. 注:必须进行到每一个多项式因式都不能再分解为止. (4)整式乘法与分解因式的区别和联系:互为逆变形 .多项式整式的积因式分解方法 1. 提取公因式法:例:将2x 3n -20x 2n y 3+50x n y 6分解因式. 解:原式=2x n (x 2n -10x n y 3+25y 6) =2x n (x n -5y 3)2 2. 公式法:a 2-b 2=(a -b )(a +b ) a 2±2ab +b 2=(a ±b )2 a 3+b 3=(a +b )(a 2-ab +b )2 a 3-b 3=(a -b )(a 2+ab +b 2)例:64x 6-y 12解:原式=(8x 3+y 6)(8x 3-y 6)=(2x +y 2)(4x 2-2xy 2+y 4)(2x -y 2)(4x 2+2xy 2+y 4) 3. 分组分解法:例:(am +bn )2+(an -bm )2+c 2m 2+c 2n 2解:原式=a 2m 2+b 2n 2+2abmn +a 2n 2+b 2m 2-2abmn +c 2m 2+c 2n 2=a 2m 2+b 2n 2+a 2n 2+b 2m 2+c 2(m 2+n 2) =(m 2+n 2)(a 2+b 2+c 2) 4.十字相乘法:例:12x 2+10xy -12x +5y -9 解:原式=12x 2+(10y -12)x +5y -9 2x 16x 5y -9∴ 原式=(2x +1)(6x +5y -9) 5.配方法:例:将x 4+y 4+z 4-2x 2y 2-2x 2z 2-2y 2z 2分解因式。

【最新】课件-初一数学整式PPT

【最新】课件-初一数学整式PPT

【解析】选C.3月份产值为a万元,则4月份产值为a(1-10%)万元,5月份产值为a(110%)(1+15%)万元.
【知识归纳】列代数式四规范 1.表示数与字母或字母与字母的积时,“×”可以用“·”代替或省略不写. 2.带分数与字母相乘时,要化成假分数. 3.除号用分数线表示.
4.结果带单位时,若表示结果的式子是多项式,则必须用括号把多项式括起来.
故本选项错误;D. xy2的系数是 ,故本选项正确.
A.2a2b B.a2b2 C.ab2
D.3ab
【解析】选A.含有相同字母,并且相同字母的指数相同的单项式为同类项.
2.(2015·通辽中考)下列说法中,正确的是 ( )
A.- x2的系数是
B. πa2的系数是
C.3ab2的系数是3a
D. xy2的系数是
3
3
3
3
4
4
2
2
2
2
5
5
【解析】选D.A.- x2的系数是- ,故本选项错误;B. πa2的系数是 π,故本选项错误;C.3ab2的系数是3,
(3)把所求式子和已知式子都变形,再整体代入求值:将已知条件和所求的代数式同时 变形,使它们含有相同的式子,再将变形后的已知条件代入变形后的要求的代数式,计 算得出结果.
【题组过关】 1.(2016·呼和浩特中考)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5 月份比4月份增加了15%,则5月份的产值是 ( ) A.(a-10%)(a+15%)万元 B.a(1-90%)(1+85%)万元 C.a(1-10%)(1+15%)万元 D.a(1-10%+15%)万元
7,解得:mn 3,1,

整式、分式、二次根式

整式、分式、二次根式

第二讲 整式、分式一、课标下复习指南 (一)代数式1.代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独一个数或表示数的字母也叫做代数式.2.求代数式的值用数值代替代数式里的字母,按照代数式指明的运算计算出结果,叫做求代数式的值. 3.代数式的分类(二)整式1.整式的有关概念(1)单项式及有关概念由数字和字母的积组成的代数式叫单项式,单独的一个数和单独的一个字母也叫单项式.单项式的数字因数叫做这个单项式的系数,所有字母的指数之和叫做这个单项式的次数.(2)多项式及有关概念几个单项式的和叫做多项式.在多项式中,每个单项式叫多项式的项,其中,不含字母的项叫做常数项.多项式里次数最高的项的次数叫多项式的次数.(3)同类项的概念 多项式中,所含字母相同,相同字母的指数也相同的项,叫做同类项.两个常数项也是同类项.2.整式的运算(1)整式的加减 ①合并同类项把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.②添(去)括号法则如果括号前面是正号,括号里的各项都不变符号;如果括号前面是负号,括号里的各项都改变符号.③整式的加减几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项.(2)整数指数幂及其运算性质①整数指数幂正整数指数幂:⎪⎩⎪⎨⎧≥⋅⋅⋅⋅==),2(),1(为正整数个n n a a a a n aa n n零指数幂:10=a (a ≠0).负整数指数幂:n n aa 1=-(a ≠0,n 为正整数). ②整数指数幂的运算性质(以下四式中m ,n 都是整数) a m ·a n =a m +n : (a m )n =a mn ;(ab )m =a m ·b m . a m ÷a n =a m -n(a ≠0). (3)整式的乘法①单项式乘以单项式,把它们的系数、相同字母分别相乘;对于只在一个单项式里含的字母,连同它的指数作为积的一个因式.②单项式乘以多项式,根据分配律用这个单项式去乘多项式的每一项,再把所得的积相加.③多项式乘以多项式,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.④乘法公式:(a +b )(a -b )=a 2-b 2; (a ±b )2=a 2±2ab +b 2;常用的几个乘法公式的变形:a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ;(a -b )2=(a +b )2-4ab .(4)整式的除法(结果为整式的)①单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,只在被除式里含有的字母,连同它的指数也作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.3.因式分解的概念 (1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解.②因式分解后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简,同时,每个因式的首项不含负号.③多项式的因式分解是多项式乘法的逆变形. (2)因式分解的方法 ①提公因式法:ma +mb +mc =m (a +b +c ). ②运用公式法: a 2-b 2=(a +b )(a -b ); a 2±2ab +b 2=(a ±b )2:*③十字相乘法:x 2+(a +b )x +ab =(x +a )(x +b ).④用一元二次方程求根公式分解二次三项式的方法:ax 2+bx +c =a (x -x 1)(x -x 2).(当b 2-4ac ≥0时,,2421a acb b x -+-=)2422aac b b x ---=(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用乘法公式分解;③对于二次三项式,可先尝试用十字相乘法分解;④检查每一个因式是否都已分解彻底,是否符合要求.必要时,可用多项式的乘法运算从结果逆推回去,以检验因式分解所得结果是否正确. 4.分式(1)分式的有关概念①分式:若A 和B 均为整式(其中B 中含有字母),则形如BA的式子叫做分式. 注意 对于一个分式BA,字母的取值必须使分母B 的值不为零. ②最简分式:分子、分母没有公因式的分式叫做最简分式. 注意 关于分式概念的应用,一般有以下几种: 分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0⇔⎩⎨⎧≠=.0,0分母分子分式值为1⇔⎩⎨⎧==.0,分母分母分子分式值为正⇔分子、分母同号. 分式值为负⇔分子、分母异号.(2)分式的基本性质分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.M B MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). (3)分式的运算①加减法:bd bc ad d c b a ±=±.特别地,当b =d 时,b c a b c b a ±=±. ②乘法:⋅=bdacd c b a . ③除法:bcadc d b a d c b a ==÷.(此法则将分式的除法转化为乘法). ④乘方:n nn b a ba =)((n 为正整数).二、例题分析例1 下列运算中,计算结果正确的个数是( ).(1)a 4·a 3=a 12;(2)a 6÷a 3=a 2;(3)a 5+a 5=a 10;(4)(a 3)2=a 9;(5)(-ab 2)2=ab 4;(6)⋅=-22212x x A .无 B .1个 C .2个 D .3个 解 A .说明 整数指数幂的运算性质是整式运算的基础,容易混淆.其原因是做题时不按性质做,而是跟着感觉走,必须培养良好的做题习惯.例2 如果关于x ,y 的单项式2ax my 与5bx 2m -3y 是同类项,(1)求(9m -28)2009的值;(2)若2ax m y +5bx 2m -3y =0,并且xy ≠0,求(2a +5b )2009的值. 解 ∵2ax m y 与5bx 2m -3y 是同类项, ∴2m -3=m .解得m =3. (1)(9m -28)2009=(9×3-28)2009=-1.(2)∵m =3,且2ax my +5bx 2m -3y =0, ∴2ax 3y +5bx 3y =0,即(2a +5b )x 3y =0. 又∵xy ≠0,∴2a +5b =0. ∴(2a +5b )2009=02009=0.说明 此题考查了同类项的概念,要注意同类项与单项式的系数无关.在合并同类项时,只要将它们的系数合并,而字母及字母的指数不变.例3 计算: (1);)3()41(212335a b a b a -⋅-÷ (2)(3xy 3-9x 4y 2)÷3xy -(x 2-2xy )·4x 2.解 (1)原式=23359)41(21a b a b a ⋅-÷.189)4(21242335b a a ba b a -=⋅-⨯=(2)原式=y 2-3x 3y -4x 4+8x 3y=y 2+5x 3y -4x 4.说明 正确运用幂的运算法则是进行幂的运算的关键.单项式相乘除时,要注意运算顺序,先做乘方,然后按从左到右的顺序做乘除法.例4 计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a +b -1)(a -b +1)-a 2+(b +2)2. 解 (1)原式=8x 2-(3x 2-5x -2)-2(x 2-4x -5) =8x 2-3x 2+5x +2-2x 2+8x +10 =3x 2+13x +12.(2)原式=[a +(b -1)][a -(b -1)]-a 2+(b +2)2 =a 2-(b -1)2-a 2+(b +2)2=(b +2)2-(b -1)2=(b +2+b -1)(b +2-b +1) =(2b +1)×3=6b +3.说明 在整式运算中,要注意:(1)灵活运用运算律、运算法则和乘法公式,寻找合理、简捷的运算途径;(2)利用乘法公式进行计算时,要分析式子的特点,正确选择公式,尤其要注意公式中字母的顺序及符号;(3)当几个多项式乘积前面出现负号时,处理负号的方法是可将负号视为(-1)先与其中的一个因式相乘,或将负号后面的多项式结合在一起先相乘,然后利用去括号法则去括号.例5 把下列各式分解因式:(1)6(a -b )2+8a (b -a ); (2)(x +y )2-4(x +y )+4; (3)16x 2-(x 2+4)2; (4).4412+-x 解 (1)原式=6(a -b )2-8a (a -b ) =2(a -b )[3(a -b )-4a ] =2(a -b )(3a -3b -4a ) =-2(a -b )(a +3b ).(2)原式=[(x +y )-2]2=(x +y -2)2. (3)原式=(4x )2-(x 2+4)2 =[4x +(x 2+4)][4x -(x 2+4)] =-(x 2+4x +4)(x 2-4x +4) =-(x +2)2(x -2)2.(4)原式)16(412--=x).4)(4(41-+-=x x说明 (1)分解因式必须进行到每一个因式都不能再分解为止(每个因式分别整理、化简后,一般要按降幂排列);(2)如果多项式最高次项的系数是负数,一般要提出负号,使括号内该项的系数是正数;(3)遇到有多项式乘方时,应注意下面的规律:(b -a )2k =(a -b )2k ;(b -a )2k +1=-(a -b )2k +1(k 为整数).(4)注意换元思想在因式分解中的应用:将题目中相同的代数式看成一个整体去提取公因式、运用乘法公式或进行十字相乘.例6 (1)当x 取何值时,分式6532+--x x x 无意义?(2)当x 取何值时,分式12922---x x x 有意义?值为零?解 (1)要使分式无意义,只需x 2-5x +6=0.解得x 1=2,x 2=3.∴当x =2或x =3时,分式无意义.(2)要使分式有意义,只要使x 2-x -12≠0,解得x ≠-3且x ≠4. ∴当x ≠-3且x ≠4时,分式有意义.要使分式的值为零,只⎪⎩⎪⎨⎧=/--=-.012,0922x x x解得⎩⎨⎧≠-=/-==.43,33x x x x 且或∴当x =3时,分式的值等于零.说明 (1)确定分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式;(2)只有当字母的取值使分子的值等于零且分母的值不等于零时,分式的值才等于零;(3)注意准确使用“或”和“且”字.例7 计算: (1)2121111x x x ++++-; (2)⋅--++--÷++-+296.4144222222x x x x x x x x x x 解 (1)原式212)1)(1(11x x x x x +++--++=)1)(1()1(2)1(21212222222x x x x x x +--++=++-= 414x-=. (2)原式.1)2)(2(.)2()2)(1(2--+++-=x x x x x x ⋅+++=++=-++1961)3()2)(1()3(222x x x x x x x x说明 对异分母的分式相加减时,一般先通分,变为同分母的分式,然后再加减.对于某些具体的分式运算也可以采取一些特殊的方法,如(1)题采用逐步合并的方法.对于分子、分母都是多项式的分式进行乘除运算时,一定要先将每个多项式分解因式,然后将除法统一为乘法,最后再进行约分,如(2)题.对于运算结果,一般的,二次的多项式应乘开.例8 已知12-=a ,化简求值:⋅+-÷++--+-24)44122(22a a a a a a a a解法一 原式42])2(1)2(2[2-+⨯+--+-=a a a a a a a 41)212(-⨯+---=a a a a a ⋅+=-⨯+-=)2(141)2(4a a a a a a .122,12+=+∴-=a a ∴原式.1)12)(12(1=+-=解法二 由12-=a ,得21=+a ,平方,移项,可得a 2+2a =1.∴将原式化简为aa 212+后,立即得其值为1. 例9 已知x +y =-4,xy =-12,求+++11x y 11++y x 的值. 解 原式)1)(1()1()1(22+++++=y x x y=1121222++++++++y x xy x x y y1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式,∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2说明 求代数式的值的问题,一般先将所求代数式进行化简,然后利用已知条件求值.在使用条件时有三种方式:(1)将已知条件直接代入计算;(2)将已知条件变形后再代入计算;(3)将已知条件整体代入再计算求值.例10 已知321=+xx ,求441x x +的值.解 2)1(122244-+=+xx x x2]2)32[(2]2)1[(2222--=--+=xx=102-2=98.说明 此题是反复运用完全平方公式把所求代数式变形,使问题得解. 三、课标下新题展示例11 在解题目“当x =1949时,求代数式x x x x x x x 122444.222-+-÷-+-+1的值.”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.解 聪聪说得有道理.∵原式11)2(2.)2)(2()2(2+--+-+-=xx x x x x x ,1111=+-=xx ∴只要使原式有意义,无论x 取何值,原式的值都相同,为常数1.例12 某种长途电话的收费方式如下:接通电话的第=分钟收费a (a <8)元,之后的每=分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .ba-8分钟 B .b a +8分钟 C .bba +-8分钟D .bba --8分钟解 C .说明 用代数式表示实际问题中的数量关系,是一类常见的考题.二次根式一、课标下复习指南 (一)二次根式的有关概念 1.二次根式形如)0(≥a a 的式子叫做二次根式. 2.最简二次根式(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 满足上述两个条件的二次根式叫做最简二次根式. (二)二次根式的主要性质1.)0(≥a a 是一个非负数; 2.);0()(2≥=a a a 3.⎩⎨⎧<-≥==);0(),0(||2a a a a a a4.);0,0(≥≥⋅=b a b a ab5.);0,0(>≥=b a ba ba6.若a >b ≥0,则.b a > (三)二次根式的运算1.二次根式的加减二次根式加减时,先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. *3.分母有理化把分母中的根号化去,分式值不变,叫做分母有理化.常用的二次根式的有理化因式: (1)a 与a 互为有理化因式;(2)b a +与b a -,一般的,b c a +与b c a -互为有理化因式;(3)b a +与b a -,一般的,b d a c +与b d a c -互为有理化因式. 二、例题分析例1 当x 为何值时,下列代数式有意义? .1)2(;322)1(232x x x x x -+----解 (1)欲使3222---x x x 有意义,只要使⎩⎨⎧=/--≥-.032,022x x x 即⎩⎨⎧≠-=/≥.31,2x x x 且 解得x ≥2且x ≠3. ∴当x ≥2且x ≠3时,3222---x x x 有意义.(2)欲使231x x -+-有意义,只要使-x 2≥0,解得x =0. ∴当x =0时,231x x -+-有意义.说明 代数式有意义的条件:分式有意义的条件是分式的分母不为零;二次根式有意义的条件是被开方数为非负数;由实际意义得到的代数式还要符合实际意义.例2 化简:(1);14962123xx x x x -+ *(2)已知1<x <2,化简122+-x x .442x x +-+ 解 (1)原式x x x x x x 4221-+=x x 23-=(2)∵1<x <2,∴x -1>0,2-x >0. 224412x x x x +-++-∴22)2()1(x x -+-==|x -1|+|2-x |=(x -1)+(2-x )=1.说明 (1)二次根式的化简要考虑最简二次根式的两个条件,根号内是多项式时,要考虑是否是完全平方式;(2)化简2a 时,要考虑字母a 的取值范围;(3)在二次根式运算中,根号外的因式可以平方后作为被开方数的因式移进根号内,从而使运算简化.例3 计算:(1);22)8321464(÷+- (2)+⋅-+-5()625()2332(202.)6219 解 (1)原式22)262264(÷+-=.232+=(2)原式=5)(625[()1861212(-++-62561230)625()]6219-+-=-⋅+.61435-=说明 整式和分式的运算性质在二次根式的运算中同样适用,乘法公式、分配律、约分等都有可能简化运算过程,要根据式子的结构特征灵活使用.例4 已知xy =3,求yxyx y x+的值. 分析 因为xy =3,所以x ,y 同正或同负,要分情况讨论. 解 当x >0,y >0时, 原式.322==+=xy xy xy 当x <0,y <0时,原式.322-=-=--=xy xy xy 综上可知,原式.32±= 三、课标下新题展示例5 若n 20是整数,则满足条件的最小正数n 为( ). A .2B .3C .4D .5解 D .说明 对于二次根式的性质:||);0()(22a a a a a =≥=,会有多种形式进行考查,要熟练掌握.例6 对正实数a ,b ,定义,*b a ab b a +-=若4*x =44,则x 的值是______. 解 依题意,得.4444=+-x x 整理,得.484=+x x 变形,得.4912)(2=++x x.49)1(2=+∴x71=+∴x 或,71-=+x 6=x 或8-=x (舍). ∴x =36.经检验,x =36是原方程的解. ∴x 的值是36.说明 此题考查了阅读理解能力、完全平方公式、二次根式的性质、配方法解方程,是一道代数综合题,要求每个基本知识点都熟练掌握.四、课标考试达标题(一)选择题1.下列各式中正确的是( ). A .-2(a -b )=-2a -b B .(-x )2÷x 3=xC .xyz ÷(x +y +z )=yz +xz +xyD .(-m -n )(m -n )=n 2-m 2 2.下列等式中不成立的是( ).A .y x y x y x -=--22 B .y x yx y xy x -=-+-222 C .y x yxyx xy -=-2 D .xyx y y x x y 22-=-3.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( ). A .①②B .①③C .②③D .①②③ 4.用配方法将代数式a 2+4a -5变形,结果正确的是( ). A .(a +2)2-1B .(a +2)2-5C .(a +2)2+4 D .(a +2)2-95.已知411=-b a ,则ab b a b ab a 7222+---的值等于( ).A .6B .-6C .152D .72-(二)填空题6.某公司2009年5月份的纯利润是a 万元,如果每个月纯利润的增长率都是x ,那么预计7月份的纯利润将达到______万元(用代数式表示). 7.多项式9x 2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是______ (填上一个正确的即可).8.若2x=3,4y=5,则2x -2y的值为______. 9.观察下面的单项式:x ,-2x 2,4x 3,-8x 4,…根据你发现的规律,写出第7个式子是______.10.已知),3,2,1()1(12=+=n n a n , b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出b n 的表达式为b n =______.(用含n 的代数式表示) (三)解答题 11.求63)(41)(21ba b a b a b a --++++-的值,其中|a -1|=-(b +2)2.12.在实数范围内分解因式:(1)4x 4-1;(2)x 2+2x -5.13.观察下列等式:,322322,211211-=⨯-=⨯=.,433433 -=⨯(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.14.按下列程序计算,把答案填写在表格内,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:(2)发现的规律是:(3)用简要的过程证明你发现的规律.(一)选择题1.在根式⑤④③②①;2;15;;5223ab a a -2;12a a ⑥中,最简二次根式是( ).A .②③⑤B .②③⑥C .②③④⑥D .①③⑤⑥2.如果最简根式ab b -3和22+-a b 是同类二次根式,那么a 、b 的值分别是( ).A .a =0,b =2B .a =2,b =0C .a =-1,b =1D .a =1,b =-23.下列各式中,运算正确的是( ). A .553322=+ B .236=÷ C .632=D .12233=-(二)填空题4.当x 满足______条件时,32++-x x在实数范围内有意义. 5.若式子|2|)1(2-+-x x 化简的结果为2x -3,则x 的取值范围是______. 6.已知x 为整数,且满足32≤≤-x ,则x =______.7.观察下列各式:=+=+412,312311514513,413=+…请你将发现的规律用含自然数n 的等式表示出来______.(n ≥1)(三)解答题 8.计算:.)2(xy yxxyxy ⋅+-9.化简:.)23(36329180-++--10.先化简,再求值:423)225(--÷---a a a a ,其中.33-=a。

第2课 整式(含因式分解)课件

第2课 整式(含因式分解)课件
PPT课程第2课 整式(含因式分解)
主讲老师:
第2课 整式(含因式分解)
一、知识要点 1.(1)单项式:数与字母的积所表示的代数式叫做单项式,
单独一个数或者一个字母也是单项式. (2)多项式:几个单项式的和叫做多项式. (3)整式:单项式与多项式统称为整式.
对应练习
1. (1)单项式-3xy2 的系数是__-__3____,次数是____3____. (2)多项式 2x-5xy3-1 是___四_____次___三_____项式,其中 一次项为___2_x____,一次项系数为____2____.
10.(1)(2018·舟山)分解因式:m2-3m=
__m_(_m__-__3_) _______________________________________.
(2)(2017·深圳)分解因式:a3-4a=
__a_(_a_+__2_)_(a_-__2_)___________________________________.
3y2-xy
B组
20.(2018·菏泽)若 a+b=2,ab=-3,则代数式 a3b+2a2b2
+ab3 的值为__-__1_2___. 21.(临夏中考)如果单1项式 2xm y +2n n-2m +2 与 x5y7 是同类项,
那么 nm 的值是____3____. 22.(丽水中考)已知 x2+2x-1=0,则 3x2+6x-2=___1____.
中 y=-1.
解:原式=1-4y, 将 y=-1 代入得原式=1-4×(-1)=5.
12. (2018·襄阳)先化简,再求值: (x+y)(x-y)+y(x+2y)-(x-y)2,其中 x=2+ 3,y=2
- 3.
解:原式=3xy, 将 x=2+ 3,y=2- 3代入得

中考数学总复习 第2讲 整式及因式分解二次函数(基础讲

中考数学总复习 第2讲 整式及因式分解二次函数(基础讲

第2讲整式及因式分解考标要求考查角度1.明确字母表示数的真实内涵及其规范的书写格式,能用代数式探索有关的规律.2.会用语言文字叙述代数式的意义,同时掌握求代数式的值的方法.3.理解同类项的概念,掌握合并同类项的法则和去括号的法则以及乘法公式,能准确地进行整式的加、减、乘、除、乘方等混合运算.4.能对多项式进行因式分解.整式作为初中数学的基础内容之一,在中考试题中多以填空题和选择题的形式命题,重点考查其基本概念及运算法则,同时也会设计一些新颖的探索与数、式有关的规律性问题.知识梳理一、整式的有关概念1.整式整式是单项式与__________的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的________因数叫做单项式的系数;单项式中所有字母指数的____叫做单项式的次数.3.多项式几个单项式的______叫做多项式;多项式中,每一个________叫做多项式的项,其中不含字母的项叫做常数项;多项式中__________项的次数就是这个多项式的次数.二、整数指数幂的运算正整数指数幂的运算法则:a m·a n=______,(a m)n=______,(ab)n=a n b n,a ma n=a m-n(m,n是正整数).三、同类项与合并同类项1.同类项所含字母相同,并且相同字母的______也分别相同的项叫做同类项.2.合并同类项把多项式中的同类项合并成一项叫做____________,合并的法则是系数相加,所得的结果作为合并后的______,字母和字母的指数不变.四、求代数式的值1.代数式的值一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要______.2.整式的乘除(1)整式的乘法.①单项式与单项式相乘:把______、__________分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m (a +b +c )=ma +mb +mc .③多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nB . (2)整式的除法.①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.②多项式除以单项式:(a +b )÷m =a ÷m +b ÷m . 3.乘法公式(1)平方差公式:(a +b )(a -b )=a 2-b 2;(2)完全平方公式:(a ±b )2=a 2±2ab +b 2. 六、因式分解1.因式分解的概念把一个多项式化成几个整式的____的形式,叫做多项式的因式分解. 2.因式分解的方法 (1)提公因式法.公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法.①运用平方差公式:a 2-b 2=__________.②运用完全平方公式:a 2±2ab +b 2=________. 3.因式分解的一般步骤一提(提取公因式法);二套(套公式法).一直分解到不能分解为止. 自主测试1.(2012福建福州)下列计算正确的是( )A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 72.下列各式中,与x 2y 是同类项的是( )A .xy 2B .2xyC .-x 2yD .3x 2y 23.(2012四川绵阳)图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空白部分的面积是( )A .2mnB .(m +n )2C .(m -n )2D .m 2-n 24.(2012四川宜宾)分解因式:3m 2-6mn +3n 2=__________.5.单项式-3π5m 2n 的系数是______,次数是______.考点一、整数指数幂的运算【例1】 (2012湖南郴州)下列计算正确的是( )A .a 2·a 3=a 6B .a +a =a 2C .(a 2)3=a 6D .a 8÷a 2=a 4解析:A 项是同底数幂的乘法,a 2·a 3=a 2+3=a 5,故A 项错误;B 项是整式的加减运算,a +a =2a ,故B 项错误;C 项是幂的乘方,(a 2)3=a 2×3=a 6,故C 项正确;D 项是同底数幂的除法,a 8÷a 2=a 8-2=a 6,故D 项错误.答案:C方法总结 幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.触类旁通1下列运算中,正确的是( )A .x 3·x 2=x 5B .x +x 2=x3C .2x 3÷x 2=xD .⎝ ⎛⎭⎪⎫x 23=x 32考点二、同类项与合并同类项【例2】 单项式-13x a +b y a -1与3x 2y 是同类项,则a -b 的值为( )A .2B .0C .-2D .1解析:本题主要考查了同类项的概念及方程组的解法,由-13x a +b y a -1与3x 2y 是同类项,得⎩⎪⎨⎪⎧a +b =2,a -1=1,解得⎩⎪⎨⎪⎧a =2,b =0.所以a -b =2-0=2. 答案:A方法总结 1.同类项必须具备以下两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.二者必须同时具备,缺一不可;2.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项. 3.根据同类项概念,相同字母的指数相同,列方程(组)是解此类题的一般方法.触类旁通2如果3x 2n -1y m 与-5x m y 3是同类项,则m 和n 的取值是( ) A .3和-2 B .-3和2 C .3和2 D .-3和-2 考点三、整式的运算【例3】 先化简,再求值:(a +b )(a -b )+(a +b )2-2a 2,其中a =3,b =-13.解:(a +b )(a -b )+(a +b )2-2a 2=a 2-b 2+a 2+2ab +b 2-2a 2=2ab ,当a =3,b =-13时,2ab =2×3×⎝ ⎛⎭⎪⎫-13=-2. 方法总结 整式的乘法法则和除法法则是整式运算的依据,必须在理解的基础上加强记忆,并在运算时灵活运用法则进行计算.使用乘法公式时,要认清公式中a ,b 所表示的两个数及公式的结构特征,注意套用公式.触类旁通3 已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值. 考点四、因式分解【例4】 (2012湖南常德)分解因式:m 2-n 2=__________. 答案:(m +n )(m -n )方法总结 (1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提取公因式时,若括号内合并的项有公因式,应再次提取;注意符号的变换y -x =-(x -y ),(y -x )2=(x -y )2.(3)应用公式法因式分解时,要牢记平方差公式和完全平方公式及其特点. (4)因式分解要分解到每一个多项式不能分解为止.1.(2012湖南常德)下列运算中,结果正确的是( )A .a 3·a 4=a 12B .a 10÷a 2=a 5C .a 2+a 3=a 5D .4a -a =3a 2.(2012湖南益阳)下列计算正确的是( )A .2a +3b =5abB .(x +2)2=x 2+4C .(ab 3)2=ab 6D .(-1)0=13.(2012湖南湘潭)因式分解:m 2-mn =__________.4.(2012湖南益阳)写出一个在实数范围内能用平方差公式分解因式的多项式:__________.5.(2012湖南怀化)当x =1,y =15时,3x (2x +y )-2x (x -y )=__________.6.(2012湖南株洲)一组数据为:x ,-2x 2,4x 3,-8x 4,…观察其规律,推断第n 个数据应为__________.1.将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+42.如图所示,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a ±b )2=a 2±2ab +b 23.多项式__________与m 2+m -2的和是m 2-2m .4.若3x m +5y 2与x 3y n 的和是单项式,则n m=__________.5.若m -n =2,m +n =5,则m 2-n 2的值为__________.6.若2x =3,4y =5,则2x -2y的值为__________.7.给出3个整式:x 2,2x +1,x 2-2x .(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?参考答案 【知识梳理】一、1.多项式 2.数字 和 3.和 单项式 次数最高二、a m +n a mn三、1.指数 2.合并同类项 系数 五、1.(2)变号2.(1)①系数 同底数幂 (2)①指数 六、1.积2.(2)①(a +b )(a -b ) ②(a ±b )2导学必备知识 自主测试1.A a +a =2a ,A 项正确;b 3·b 3=b 6,B 项错误;a 3÷a =a 2,C 项错误;(a 5)2=a 10,D 项错误.2.C 只有C 选项中相同字母的指数与x 2y 分别相同.3.C 因为长方形的长为2m ,宽为2n (m >n ),则小长方形的长为m ,宽为n ,小正方形的边长为(m -n ),所以面积是(m -n )2.4.3(m -n )2 原式=3(m 2-2mn +n 2)=3(m -n )2.5.-3π53探究考点方法触类旁通1.A A 项是同底数幂相乘,x 3·x 2=x3+2=x 5,B 项中的两项不是同类项,不能合并,C 项是单项式相除,2x 3÷x 2=(2÷1)x 3-2=2x ,D 项⎝ ⎛⎭⎪⎫x 23=x 323=x38.触类旁通 2.C 此题考查同类项概念和二元一次方程组的解法,由题意得⎩⎪⎨⎪⎧ 2n -1=m ,m =3,解得⎩⎪⎨⎪⎧m =3,n =2. 触类旁通3.分析:本题需先把2x -1=3进行整理,得出x 的值,把代数式进行化简,再把x 的值代入即可求出结果.解:由2x -1=3得x =2,又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,∴当x =2时,原式=14.品鉴经典考题1.D a 3·a 4=a 7,所以A 项不正确;a 10÷a 2=a 8,所以B 项不正确;a 2与a 3不是同类项,不能合并,所以C 项不正确;4a -a =3a ,D 项正确.2.D 2a 与3b 不能合并,A 项不正确;(x +2)2=x 2+4x +4,B 项不正确;(ab 3)2=a 2b 6,C 项不正确;由任何一个不等于零的数的零次幂等于1,知D 项正确.3.m (m -n ) m 2-mn =m (m -n ).4.答案不唯一,如x 2-1.5.5 3x (2x +y )-2x (x -y )=6x 2+3xy -2x 2+2xy =4x 2+5xy .当x =1,y =15时,原式=4×12+5×1×15=4+1=5.6.(-2)n -1x n x 的系数为1=(-2)1-1,次数为1;-2x 2的系数为-2=(-2)2-1,次数为2;4x 3的系数为4=(-2)3-1,次数为3;-8x 4的系数为-8=(-2)4-1,次数为4;….所以第n 个数据的系数为(-2)n -1,次数为n ,即(-2)n -1x n.研习预测试题1.C x 2+4x -1=(x 2+4x +4)-4-1=(x +2)2-5.2.C 因为第一个图是一个大的正方形挖去了一个小的正方形,其面积表达式为a 2-b 2.第二个图是一个梯形,下底为2a ,上底为2b ,高为(a -b ),其面积为12(2a +2b )(a -b )=(a+b )(a -b ),所以两个图验证了公式:a 2-b 2=(a +b )(a -b ).3.2-3m 由题意得此多项式为(m 2-2m )-(m 2+m -2)=m 2-2m -m 2-m +2=2-3m . 4.14 由题意得m +5=3,n =2,所以m =-2,所以n m =2-2=122=14. 5.10 m 2-n 2=(m +n )(m -n )=5×2=10. 6.35 2x -2y =2x ÷22y =2x ÷4y =3÷5=35. 7.解:(1)x 2+(2x +1)=x 2+2x +1=(x +1)2或x 2+(x 2-2x )=2x 2-2x =2x (x -1)或(2x+1)+(x 2-2x )=2x +1+x 2-2x =x 2+1.(2)由(1)可知,概率为23.。

第2讲 整式PPT课件

第2讲 整式PPT课件

= 1-2a
例4.已知当x = 1时,2a x2 + bx的值为3,则当x = 2
时,a x2 + bx的值为 6 .
【举一反三】4.(2015·淄博)当x = 1时,代数 式ax3-3bx+4的值是7,则当x =-1时,这个代 数式的值是(C ) A.7 B.3 C.1 D.-7
为方便学习与使用课件内容
第2讲 整式
知识梳理
一、幂的运算
整数指数幂.
1.意义:几个相同因数乘积运算的结果.
2.性质(m,n是整数,是a正mn 整数):
① a m ·a n =
; ②(a m )n =

③(ab)n =
⑤a0= 1
;④a m÷a n = ;⑥ a -p =
( a ≠ 0 ); (a≠0).
二、整式运算
1. 整式的加减运算.
B.(a2)3 = a5
C. a 6÷a 2 - a 3
D. (a b2)2 = a 2b 4
3.(2015·曰照)若 3 x=4,9 y =7,则3 x-2y的
值为( A )
考点3:整式的化简求值.
例3:先化简,再求值: (1 +a)( 1- a) + a(a-2),其中a =
1 2.
解:原式=1-a 2 + a 2 -2a
(4)单项式÷单项式: ①系数相除;②同底数幂相除; ③只在被除式里出现的字母照抄.
(5)多项式÷单项式: ①多项式的每一项除以单项式;②商相加.
3.整式的乘法分式.
(1)平方差公式:(a + b)(a-b)=
a 2 - b2

(2)完全平方公式:(a ± b)2=

第二讲 整式及其加减法计算

第二讲  整式及其加减法计算

第二讲整式及其加减法计算【知识要点】整式的特征:1.单项式的分母中不含字母,分子中不能出现加减运算.单项式主要有以下五种形式:①单独一个数;②单独一个字母;③数与数的积;④数与字母的积;⑤字母与字母的积。

2.单项式的系数是指单项式中的数字因数(应包括前面的符号);单项式的次数是指单项式中所有字母的指数和,这里应特别注意常数 不是字母。

3.对于多项式来说,没有系数的概念,只有次数的概念,多项式中次数最高项的次数就是这个多项式的次数。

4.单项式和多项式统称为整式,对整式的判断从单项式和多项式入手判断即可。

整式加减法:1、同类项,两个单项式中,如果所含有的字母相同且相同字母的指数也相等,那么这两个单项式叫同类项。

2、整式的加减:整式的加减的本质也就是合并同类项,合并同类项的法则是:把系数相加减,字母和字母的指数不变。

整式加减涉及的概念准确地掌握这些概念并注意它们的区别与联系是解相关问题的基础,归纳起来就是要注意以下几点:1. 理解四式(单项式、多项式、整式、n次m项式)、三数(系数、次数、项数)和二项(常数项、同类项)。

2. 掌握三个法则(去括号法则、添括号法则、合并同类项法则)。

3. 熟悉两种排列(升幂排列、降幂排列)。

【例题精讲】【例题1】找出各代数式中是单项式2,,2y a ab bc -,334xy +,323x +,572x ,13x +【练习1】下列单项式书写不正确的有( ).①312a 2b ; ②2x 1y 2; ③-32x 2; ④-1a 2b . A .1个 B .2个 C .3个 D .4个【例题2】(1)单项式2323a b -的系数是,次数是. (2)单项式π5352x y -的系数是,次数是. (3)4243527x x y xy ---是次项式,最高次项是,最高次项的系数是,常数项是。

【练习2】(1)单项式3243x y z -的系数是,次数是.(2)已知多项式2123236m x y xy x +-+--是关于x 、y 的六次四项式,单项式253n m x y -与该多项式次数相同,则mn =.(3)多项式(1)1m x n x -+-+为关于x 的二次二项式,则m =,n =。

第二讲 整式与因式分解(台儿庄--鹿守太)

第二讲 整式与因式分解(台儿庄--鹿守太)

考点四 因式分解
1.因式分解的定义及与整式乘法的关系 多项式 化为几个单项式的积 (1)把一个 的形式,就是因式分解. (2)因式分解与 整式乘法 是互逆变形. 2.因式分解的常用方法 (1)提公因式法 m(a+b+c). 用公式可表示为 am bm cm 最大公约数 公因式的确定:公因式为各项系数的 与相同因式的 的乘积. (2)运用公式法 a 2 b 2 = (a+b)(a-b) , a 2 2ab b 2 (a b)2 . 3.因式分解的一般步骤 (1)一提:如果多项式的各项有公因式,那么先提公因式; (2)二用:如果各项没有公因式,可以尝试运用公式法来分解; (3)三查: 因式分解必须进行到每一个多项式因式都不能再分解
例 5(2013•娄底)先化简,再求值:
3 3
3 y ( x y)(x y) (4x y 8xy ) 2xy , 其中 x 1 , 3 .
2 2 3 6 xy 9 x y y 例 6(2014▪ 呼和浩特)把多项式 因式分
解,最后结果为

1.(2014▪ 随州)计算 A.
2. (2014•张家界)若﹣5x2ym 与 xny 是同类项,则 m+n
4. (2014•湖州) 计算 2x (3x2+1) , 正确的结果是 ( C ) A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x
5.(2014•毕节)下列因式分解正确的是(A ) A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2 C.x +1=(x+1)
例 2(2014▪ 日照)若 3 4 , 9 为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础整合
考点突破
化简时要搞清运算顺序, 分清每步运算的依据. (1) )化简时要搞清运算顺序, 分清每步运算的依据. (2) 多项式的乘法能用乘法公式的要尽量用公式运算. )多项式的乘法能用乘法公式的要尽量用公式运算. 去括号时要注意符号变化. (3) )去括号时要注意符号变化.
基础整合
考点突破
基础整合
考点突破
幂的运算 2. 1) m n m +n m +n m an m n 为正整数) ( ) a = a ⇔a = a ·a ( , 为正整数) a ;
m n m +n m +n m n
( ) am ) = am n⇔am n= ( m ) ( , 为正整数) 2) n ( a n m n 为正整数) ;
基础整合
考点突破
整式的有关概念 考点解读: 在整式的有关概念的考查中, 同类项是命题热点, 考点解读 : 在整式的有关概念的考查中, 同类项是命题热点, 判断是否 为同类项, 只需看是否含有相同的字母, 为同类项 , 只需看是否含有相同的字母 , 而且相同字母的指数应分别 相同, 与字母的顺序和系数都无关, 另外, 所有的常数项都是同类项. 相同, 与字母的顺序和系数都无关, 另外, 所有的常数项都是同类项. 一 个单项式的次数应是所有字母的指数和, 的情况. 个单项式的次数应是所有字母的指数和, 不要忽略指数是 1 的情况. 年红河自治州) 【例 1】( 】 2010 年红河自治州)如果 3x2n-1ym 与- 5xm y3 是同类项, m 和 n x x 是同类项, 则 的取值是( 的取值是( ) A) 3 B) ( ) 和- 2 ( ) 3 和 2 C) 3 D) ( ) 和 2 ( ) 3 和- 2 -
基础整合
考点突破
正确掌握幂的运算性质是关键, 在运算过程中注意结果 正确掌握幂的运算性质是关键, 的符号. 的符号.
基础整合
x) ÷ 的结果正确的是( 计算( 3 x的结果正确的是( 2x x的结果正确的是 A) 8x B) 6x ( ) x2 ( ) x2 C) 8x D) 6x ( ) x3 ( ) x3 解析: 原式= 8x3÷ x2, x=8x 故选 A. 解析: 原式= x x= .
年成都) 下列计算正确的是( 针对训练 2 2: 2011 年成都)下列计算正确的是( : ( ( ) A) B) x= x+x=x2 ( ) ·x= x x x=2x C) 3 D) x=x ( ) x2) =x5 ( ) 3÷ 2 ( x
)
解析: 中 x+x=2x, 中 x·x=x2, 中( 2)3=x6, 解析: A x+x= x B C x 只有 D 正确. 正确. 故选 D. .
基础整合
考点突破
第二讲 整 式
基础整合
考点突破
一、整式的有关概念 代数式: 字母用基本的运算符号连结而成的式子叫代数式 用基本的运算符号连结而成的式子叫代数式, 1. 代数式: 数和 字母 用基本的运算符号连结而成的式子叫代数式, 由 单独一个数或一个字母也是代数式. 单独一个数或一个字母也是代数式.
基础整合
考点突破
解析: 因为 3x2n-1ym 与- 5xm y3 是同类项. 解析: x x 是同类项. 所以 故选 C. . 即 .
基础整合
考点突破
正确理解同类项的概念是关键, 由于整式加减运算的实 正确理解同类项的概念是关键, 质是去括号合并同类项, 所以在考查同类项时题型多样. 质是去括号合并同类项, 所以在考查同类项时题型多样. 若干个单项 式的和或差仍是单项式, 实质是说这若干个单项式是同类项. 式的和或差仍是单项式, 实质是说这若干个单项式是同类项.
2 2x ) x+ ( ) x x ) x+2) ( x- 1) - ( ) x- 2) 4x( - 1)其中 x= ,
.
解: 原式= 4x2- 4x+ - ( 2- 4) 4x2+ 4x 原式= x x+1- x ) x x x+ = 4x2- 4x+ - x2+ 4- 4x2+ 4x x+1x x+ - x x = - x2+ 5. . 当 x= 原式= - ( 时, 原式=
m n m -n m -n m n
5) n ( ) ) = ( ≠0, 为正整数) ( b , 为正整数) n .
n
6) a ( ) 0= 1( ≠0)a-p= ( ≠0, 为正整数) a ( a ) ; , 为正整数) p .
基础整合
考点突破
整式的乘除 3. 1) 整式的乘法: a+b ( +n) +bn. () 整式的乘法: ( ) m +n) am +an+bm +bn. 即 a+b) = 2) 整式的除法: 单项式相除, 系数与同底数幂分别相除作为商的因 ( )整式的除法 : 单项式相除 , 系数与 同底数幂 分别相除作为商的因 把 多项式除以单项式, 先把这个多项式的每一项除以这个单项式, 每一项除以这个单项式 再 式, 多项式除以单项式, 先把这个多项式的每一项除以这个单项式, 把所得的商相加. 把所得的商相加. () 3) 乘法公式: 两数和乘以这两数的差:a+b) (a = 乘法公式: 两数和乘以这两数的差:a+b) a- b) a2- b2. ① ( ( 两数和的平方: b 2 (a± 2ab+b ②两数和的平方: a±) = a2± ab+b2. ( b) 三、因式分解的有关概念 因式分解: 把一个多项式化为几个整式的积的形式. 1. 因式分解: 把一个多项式化为几个整式的积的形式. 因式分解与整式乘法的关系: 互逆变形, 2. 因式分解与整式乘法的关系 :互逆变形, 可以用整式乘法来检验因 式分解的正误. 多项式 式分解的正误. 积的形式. 积的形式.
n 3) ab) n n n n ab n n 为正整数) ab) ( ) ab) = a b ⇔a b = ( ) ( 为正整数) ( ; n n n n n n
( ) m ÷ n= am -n⇔am -n= am ÷ n( , 为正整数, 4) a a≠0) a a m n 为正整数, a≠ ) ;
整式 2.
基础整合
考点突破
同类项: 所含字母相同, 字母相同 并且相同字母的指数也相等的项. 并且相同字母的指数也相等的项. 指数也相等的项 3. 同类项: 所含字母相同, 二、整式的运算 1. 整式的加减 1) 合并同类项法则: 合并同类项时, 只把同类项的系数相加, 系数相加 所得的结 () 合并同类项法则: 合并同类项时, 只把同类项的系数相加, 果作为系数, 字母和字母的指数保持不变. 保持不变. 果作为系数, 字母和字母的指数保持不变 ( ) 、添括号法则 2) 去 去括号法则: b+c =a+ b+c; a+( =a+b+c ①去括号法则: ( ) b+c; a+ b+c) b+c) =aa- ( ) - b- c. b+c =a 添括号法则: a+b+c=a+( ; b+c) ②添括号法则: a+b+c=a+ ( ) b+c b+c) c=a- b+c . a- b- c=a- ( )
基础整合
考点突破
单项式针对训练 1 1: : 单项式- m 2n 的系数是
次数是 ,
.
解析: 解析: 由单项式系数的定义知系数是- ; 由单项式系数的定义知系数是- 由次数定义知 2+ 1= 3, + = , 即次数 是 3. . 答案: 答案: 3
基础整合
考点突破
幂的运算性质 考点解读: 这部分主要是对基本计算层面的考查. 考点解读: 这部分主要是对基本计算层面的考查. 要正确区分幂的乘 方和同底数幂的乘法运算. 幂的乘方运算, 方和同底数幂的乘法运算. 幂的乘方运算, 是转化为指数的乘法运算 底数不变); 同底数幂的乘法是转化为指数的加法运算( 底数不变) (底数不变); 同底数幂的乘法是转化为指数的加法运算(底数不变). 年广州) 下面的计算正确的是( 【例 2】 ( 】 2011 年广州)下面的计算正确的是( ) A) 3x x B) x ( ) x2·4x2= 12x2 ( ) 3·x5=x15 x x C) x=x D) 2 ( ) 4÷ 3 x ( ) x5) =x7 ( 解析: 3x A. 故本选项错误; x B. 故本选项错误; 正 C. 解析: . x2·4x2= 12x4, x x 故本选项错误; . 3·x5=x8, 故本选项错误; . D. 故本选项错误. 确; . x5)2=x10, ( 故本选项错误. 故选 C. .
基础整合
考点突破
首项为负时, 提公因式时将“ 号一起提出. (1) )首项为负时, 提公因式时将“ ” - 号一起提出. (2)当二项式可看作某两次平方的差时, )当二项式可看作某两次平方的差时, 可用平方差公式进行因式分 当三项式中的两项是两个数的平方和, 解, 当三项式中的两项是两个数的平方和, 另一项是这两项乘积的 2 倍时, 可用完全平方公式进行因式分解. 倍时, 可用完全平方公式进行因式分解. (3)因式分解的最后结果中重因式的乘积写成幂的形式, )因式分解的最后结果中重因式的乘积写成幂的形式, 结果中不能 含有多重括号, 书写最后结果时, 单项式要写在多项式的前面. 含有多重括号, 书写最后结果时, 单项式要写在多项式的前面. 可以用整式乘法检验因式分解的结果是否正确. (4) )可以用整式乘法检验因式分解的结果是否正确.
)
b=- 那么代数式 5- a+ b的值是( 针对训练 3 1: : 如果 a- 3b= - 3, b= , - a+3b的值是( A) 0 ( ) B) 2 ( ) C) 5 ( ) D) 8 ( )
相关文档
最新文档