百校联盟2018届高三TOP20四月联考(全国II卷)理数试题(解析版)
【全国校级联考】百校联盟2018届高三top20四月联考(全国ii卷)理数试题
百校联盟2018届高三TOP20四月联考(全国II 卷)理数试题第I 卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的.L 已知集合 A ={x|2 <x <51B =(x|x (x-3)<0},则 ApB=()2.已知复数4a =(x,1 )b =(2»),若(a +b )±b ,4.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他活动的民间艺术,在中国,剪A. (0,5)(3,5) D ・(0,3)A. 8 B . 10C.11 D 12纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分V2 ~2 ,在如图所示的古代 AB BC ,则向正八边形倒花矢昂:图片中任投一点,落在正方形 DEFG 中的概C.5.执行如图所示的程序框图,则输出 S 的值为(正八边形窗花矢最图片中,率为(A. 5 B . 11 0.14 D . 192 26. 过双曲线E :4-4=l (a >0,b>0)的右焦点且垂直于x 轴的直线与双曲线 E 交于A.B 两点,与双曲线Ea b 的渐近线交于C,D 两点,若|AB|=^|CD| ,则双曲线E 的渐近线方程为( )A. v = 土麗x B . y =±V5x C. y =i?x D . y =42^7. 如图,网格纸上小正方形的边长为1,粗线画岀的是某几何体的三视图,则该几何体的表面积为() A. — + ^3+4^2 B . 10+力+4 也 2 28. 已知f (x )=3 +1X1 +|x|),则不等式f (Ig X )< f (1网解集为(A -B . ^,10 I c. (0,10) D9. 已知数列 虹}中,a, =7, a n + -27a n +2 =& +1 ,则A. 1028 B . 1026 C. 1024 D . 102210. f [x -y +1 >0| 巳知 D =«x, y *x—t <0 >,若存在点产D ,便得x o -3y o =3 ,则t 的取值范围为(A. 11. 已知函数f (x )=2cos x +sin 2x ---------------- ,则函数f (X )在 K -2x 卜的所有零点之和为(DA・ 3力B・ 4了C・2jt D -7i212.在三棱锥P _ABC中,AB =BC =CP=1,匕ABC =zBCP=120气平面PBC和平面ABC所成角为120。
精品解析:【全国校级联考】百校联盟2018届TOP20三月联考(全国II卷)理数试题(解析版)
百校联盟2018届TOP20三月联考(全国Ⅱ卷)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则集合的子集个数为()A. B. C. D.【答案】D【解析】根据题意,,则,所以集合的子集个数为4.故选D.2. 已知是虚数单位,,则复数()A. B. C. D.【答案】C【解析】因为,所以.故选C.3. 古代数学名著《张丘建算经》中曾出现过高息借贷的题目:“今有举取他绢,重作券;要过限一日,息绢一尺;二日息二尺;如是息绢,日多一尺.今过限一百日,问息绢几何?”题目的意思是:债主拿欠债方的绢做抵押品,债务过期第一天要纳利息尺绢,过期第二天利息是尺,这样,每天利息比前一天增多尺,若过期天,欠债方共纳利息为()A. 尺B. 尺C. 尺D. 尺【答案】D【解析】每天的利息构成一个首项为1,公差为1的等差数列,所以共纳利息为(尺). 故选D.4. 某山区希望小学为丰富学生的伙食,教师们在校园附近开辟了如图所示的四块菜地,分别种植西红柿、黄瓜、茄子三种产量大的蔬菜,若这三种蔬菜种植齐全,同一块地只能种植一种蔬菜,且相邻的两块地不能种植相同的蔬菜,则不同的种植方式共有()A. 种B. 种C. 种D. 种【答案】B【解析】若种植2块西红柿,则他们在13,14或24位,其中两位是黄瓜和茄子,所以共有种种植方式;若种植2块黄瓜或2块茄子也是3种种植方式,所以一共种.故选B.5. 函数的图像上的点纵坐标不变,横坐标缩小到原来的,得到函数的图象,则时,的取值范围是()A. B. C. D.【答案】A【解析】由题意,,由函数图象变换可得,因为,所以,故的取值范围是.故选A.6. 已知为坐标原点,等轴双曲线的左,右顶点分别为,,若双曲线的一条渐近线上存在一点,使得,且的面积为,则双曲线的方程为()A. B. C. D.【答案】B【解析】根据题意,等轴双曲线的渐近线方程为,不妨设,设的中点为,由,又,所以,又,所以双曲线的方程为.故选B.7. 执行如图所示的程序框图,则输出的值为()A. B. C. D.【答案】C【解析】试题分析:程序执行中的数据变化如下:不成立,输出考点:程序框图8. 某几何体的三视图如图所示,则该几何体的体积是( )A. B. C. D. 【答案】C【解析】根据给定的三视图可知,该几何体为如图(1)所示的几何体,是一个斜三棱柱,过点D 作AC 的平行线分别交于点E,F ,因为平面,截取后,补到几何体左侧,使得与重合,构造一个以为底面,以为高的直三棱柱,如图(2)所示,所以.点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:①首先看俯视图,根据俯视图画出几何体地面的直观图;②观察正视图和侧视图找到几何体前、后、左、右的高度;③画出整体,然后再根据三视图进行调整.9. 当时,下列有关函数,的结论正确的个数为()①是偶函数;②与有相同的对称中心;③函数与的图象交点的横坐标之和为;④函数与的图象交点的纵坐标之和为.A. B. C. D.【答案】C【解析】根据题意,,故①不正确;.所以,函数关于点对称,根据图象的平移,可得的图象也关于点对称,故②正确;令,得,解得或.由,所以和.所以横坐标之和为0,纵坐标之和为,故③④正确,故选C.10. 已知为坐标原点,平行四边形内接于椭圆,点,分别为,的中点,且,的斜率之积为,则椭圆的离心率为()A. B. C. D.【答案】A【解析】根据平行四边形的几何特征,A和C,D和B关于原点对称,所以为坐标原点,所以,设,所以.所以,所以,所以离心率为.故选A.11. 如图:是圆锥底面圆的直径,,是圆锥的两种母线,为底面圆的中心,过的中点作平行于的平面,使得平面与底面圆的交线长为,沿圆锥侧面连接点和点,当曲线段长度的最小值为时,则该圆锥的外接球(圆锥的底面圆周及顶点均在球面上)的半径为()A. B. C. D.【答案】D【解析】根据线面平行的性质定理,平面与底面圆的交线一定经过底面圆心,所以底面圆的半径为2,设圆锥的侧面展开后的扇形圆心角为,如图,曲线段AD的最小值为线段AD,所以,所以,所以,因为底面圆的周长为,所以母线长为6,,根据图形,球心一定位于所在直线上,设球心为,半径为,所以,所以,所以.故选D.点睛:(1)曲面上两点距离的最小值,一般的思路是化曲为直,即将平面展开求两点连线即可.(2)与球有关的组合体,注意运用性质,为底面的外心.12. 已知函数,,存在,使得的最小值为,则函数图象上一点到函数图象上一点的最短距离为()A. B. C. D.【答案】C【解析】设,(1)当时,.所以在上单调递减.(舍去).(2)当时,.①当时,,在恒成立,所以在上单调递减.(舍去).②当时,,当时,,所以在上单调递减,当时,,所以在上单调递增.所以满足条件.设与直线平行的直线与相切,切点为,则,所以.所以切点为,所以最短距离为.故选C.点睛:利用导数解答函数最值的一般步骤:第一步:利用或求单调区间;第二步:解得两个根;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知菱形的边长为,,,,则__________.【答案】【解析】.所以.故答案为:.14. 若,满足约束条件则的取值范围为__________.【答案】【解析】满足条件的可行域如图所示,设,则,表示直线在轴上的截距,当直线经过(3,0)时最小,当直线经过(2,2)时,最大,所以,所以.故答案为:.15. 春节临近,某火车站三个安检入口每天通过的旅客人数(单位:人)均服从正态分布,若,假设三个安检入口均能正常工作,则这三个安检入口每天至少有两个超过人的概率为__________.【答案】【解析】根据正态分布的对称性,每个安检人口超过1100人的概率:.所以这三个安检人口每天至少有两个超过1100人的概率为.16. 已知数列的奇数项和偶数项为公比为的等比数列,,且.则数列的前项和的最小值为__________.【答案】【解析】当为奇数时,设;当为偶数时,设,综上:设.为偶数时,.又.当时,因为是关于的增函数,又也是关于的增函数,所以,学。
百校2018届高三第二次联考(理数)
广东省百校2018届高三第二次联考数学(理科)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1•复数z满足(z ,则z=()A. —2B. —C. 2D. 12 22•已知A={x|y =log2(3x-1)},B 二{y|x2y2=4},则A B二()1 111A. (0<)B. [-2-)C. H,2]D. (;,2)3 3 3 33.下表是我国某城市在20XX年1月份至10月份各月最低温与最高温(C)的数据一览表椅子该城市的各月最低温与最高温具有相关关系,根据该一览表,则下列结论错误的是()A •最低温与最高温为正相关B.每月最高温与最低温的平均值在前8个月逐月增加C.月温差(最高温减最低温)的最大值出现在1月D . 1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大4.已知命题p : x 2是x log 25的必要不充分条件;命题q :若sin x ',贝U32cos2x二sin x,则下列命题为真命题的上()A. p q B . (—p) q C . p 广q)D . (一p)(一q)5.在ABC 中,角A,B,C 的对边分别为a,b,c,若SnA3n ,Bc5、、,且csC=5,6 则a =()A . 2-2B . 3C . 3^2D . 46•某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为A . 8 4,2 2,5B . 6 4,2 4.5C . 6 2 2 2 5D . 8 2,2 2、5―17.将曲线C 1 : y =sin(x)上各点的横坐标缩短到原来的一倍,纵坐标不变,再把得到的62C 2:y = g x ,则g x 在[-二,0]上的单调递增区间是(x -2y-2 _09.设x, y 满足约束条件 x • 2y -6 一 0y -2 <07 A .[-]]7B .[-甸Jt6]A . 7B . 10 B .[丁丐A . [「6 则输出的C . 13D . 1610.函数 f (X )二 2 x - xe 「e x 2+ x _2的部分图象大致是( 曲线向左平移 一个单位长度,得到曲线22y x z=的取值范围是(yA, B 两点,D 为虚轴上的一个端点,且 ABD 为钝角三角形,则此双曲线离心率的取值范围为 ( )A . (1,、.2)B . (、、2, .2 .2)C . (、.2,2)D . (1,、.2) (.2 .2,::)1 x12. 已知函数f (x )=e 2x 二g (x )=:+1 ,若f (m )=g (n )成立,则n-m 的最小值为( )11 A . In2 B . In 2 C .2ln 2D . 2ln 222 第U 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设平面向量 m 与向量n 互相垂直,且m —2n = (11 -2),若m = 5,则n = ________14. 在二项式"』)6的展开式中,其3项为120,则x =——.15.如图,E 是正方体ABCD -A ]BC 1D 1的棱C 1D 1上的一点,且 BD 1 / /平面BQF ,则异面直线BD 1与CE 所成角的余弦值为216.已知点A 是抛物线C:x =2py (p 0)上一点,O 为坐标原点,若A, B 是以点M (0,8) 为圆心,OA 的长为半径的圆与抛物线 C 的两个公共点,且 ABO 为等边三角形,则p 的 值是 __________ .、解答题 (本大题共6小题,共70分■解答应写出文字说明、证明过程或演2 211.过双曲线 笃-当 "(a 0,b 0)的右焦点且垂直于a bx 轴的直线与双曲线交于算步骤.)(一)必考题(60分)17.已知正项数列 & ?满足印=1, a2 - a^a 2^ a n ,,数列:b n ?的前n 项和S n 满足2Sn = n - a n.(1)求数列〔a n !, IbJ 的通项公式;1(2)求数列{}的前n 项和T n.an 1bn18. 唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画,雕塑等工艺美术的特点,在中国文化中占有重要的历史地位, 在陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已由1300多年的历史,制作工艺蛇粉复杂,它的制作过程中必须先后经过两次烧制,当第 一次烧制合格后方可进入第二次烧制,两次烧制过程互相独立, 某陶瓷厂准备仿制甲乙丙三件不同的唐三彩工艺品, 根据该厂全面治污后的技术水平,经过第一次烧制后,甲乙丙三件1 4 3丄,兰,3,经过第二次烧制后,甲乙丙三件工艺品合格的概率依次2 5 54 1 2 5,2,3(1)求第一次烧制后甲乙丙三件中恰有一件工艺品合格的概率; (2)经过前后两次烧制后, 甲乙丙三件工艺品成为合格工艺品的件数为 X ,求随机变量X的数学期望•19•如图,四边形 ABCD 是矩形,AB =3、、3,BC =3,DE =2EC,PE _ 平面 ABCD,PE = 6. (1) 证明:平面PAC —平面PBE ; (2) 求二面角 A -PB -C 的余弦值.2 2 20.已知椭圆C :X2 -y ^=1(a b 0)的长轴长是短轴长的 2. 2倍,且椭圆C 经过点 a b工艺品合格的概率依次为42A(2,).2(1)求椭圆C的方程;(2)设不与坐标轴平行的直线丨交椭圆C于M , N两点,MN| = 2J2,记直线丨在y轴上的截距为m,求m的最大值.221.函数f x ]=x mln(1 x).(1 )当m .0时,讨论f x的单调性;(2)若函数f x有两个极值点x,,x2,且为:::x2,证明:2f (x2) • -捲• 2x, In2 . 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.「X = cos日22•在平面直角坐标系xOy中,曲线G的参数方程为G为参数),曲线C2的y = 1 +si n 日X x = 2cos参数方程为(「为参数)畀=s in申(1 )将G,C2的方程化为普通方程,并说明它们分别表示什么曲线;(2)以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,已知直线I的极坐标方程为:-(COST -2sin二)=4,若G上的点P对应的参数为,点Q上在C?,点M为2PQ的中点,求点M到直线I距离的最小值•23.已知f(x)=x—a +x+2a+3 .(1)证明:f x 一2 ;3(2)若f( ) <3,求实数a的取值范围.2数学(理科)参考答案、选择题、填空题三、解答题所以 订,是以1为首项,1为公差的等差数列,当n_2时,b n =S n -S n 」=2n ,当n =1时b =2也满足,所以b n =2n .1 1 111(2)由(1)可知(),a n卅b n2n (n+1) 2 n n +11 11111 1 1 n 所以人兮73)GV(丁百)“冇18.解:分别记甲乙丙第一次烧制后合格为事件A, A, A 3,(1)设事件E 表示第一次烧制后恰好有一件合格, 则 pg J 1 2.1 42 1 125525525550(2)因为每件工艺品经过两次烧制后合格的概率均为 所以随机变量X : B(3,0.4), 所以 E X P=3 0.4 = 1.2.19. ( 1)证明;设BE 交AC 于F ,因为四边形 ABCD 是矩形,AB =3、、3,BC =3,DE =2EC ,CE BC所以CE =寿3,,BC AB1-5: ACBAB6-10: CBDAD 11、 D 12: A13. 514.215.卫5216.—17•解:(1)因为 2 a n a n 二2a n 1-a n 1,所以,a n 1 a na n 1 - a n - 1= 0,因为 a n 10,a n,所以 a n 1 a n = 0,所以 a n 4 ~' a n-1,n又ABC 二BCD ,所以ABC ::BCE, BEC 二ACB ,2JT因为BEC 二ACE 二ACB ACE ,2所以AC _ BE,又PE _平面ABCD .所以AC _ PE,而PE BE = E,所以平面PAC _平面PBE ;(2)建立如图所示的空间直角坐标系,由题意可得A(3, -2. 3,0), B(3,. 3,0), C(0,3,0), P(0,0,6),——J则AB =(0,3 .3,0), BP =(-3,-'、3, \6),CB =(—,3设平面APB的法向量3>/3y1 = 0厲=(捲,比,乙),则——1-3捲- J3y1+ 46/=0=1,即n i =(±,0,1)3设平面BPC的法向量- 3x2 = 0"EM),则_3X2「3y2 危2=0,取X2 =0,% =2, Z i =1,即m = (0^. 2,1)设平面APB与平面BPC所成的二面角为二,则cos日n1n2、、5jr n i - 5厂由图可知二面角为钝角,所以cos= = -—55n20.解:(1)因为 ^2 2b ,所以椭圆的方程为22 2xb =1,a =8,椭圆的方程为y8m 2 二73 ,满足 口2 ::: 1 . 8k 2,8所以m 的最大值为y14 - 7 .把点 A(2,的坐标代入椭圆的方程,得丄丄18b 2 b 2所以(2) 设直线I 的方程为y 二kx m,M (X i ,yJ,N(X 2, y ?),联立方程组 —y 2 -1I 8y = kx m2 2 2得(1 8k )x 16kmx 8m -8 = 0,由 256m 2 -32(m 2 -1)(1 8k 2)0 ,得:::1 8k 2,216km 8m -8所以 x | X 22 , X [ X 22 ,所以MN = J 1+k 2 \&花+x 2)2—4为屜mi)2 4 8m 2 -8 4、2 1 k 2 : 8k 21-m 21 8k 2由4zrv.8k 2,得(8k 2 1)(3-4k 2)令k 21 2m =21当且仅当1 8k 24(k 2 1)二t(t 1)= k 2二 t _ 1,所以 m^-32t2 84t -49,4t-(8t49)4t _21 -14,2,即8^49,4tt =3时,上式取等号, 8此时k 221.解:函数f X 的定义域为(-1,七),f X =21(1 )令g x [=2x 2x m ,开口向上,x - - 为对称轴的抛物线, 当x • _1时,1 1 1①g (-2)m_0,即m_2时,gx_O ,即f x _ 0在(-1」::)上恒成立,J - 2m 1 J - 2m —2 —必2 _ _2 —2—、、1-2m 1,当 X 1 ::: X ::: X 2 时,22即 f x :0,当-1 . x x 1 或 x x 2 时,g x ],0,即 f x 0,11 *, 1~2m 1 T1-2m 「¥ 亠综上,当0 ::: m 时,f x 在(, )上递减,22 2 2 2亠 1 / —2m 1 J 1 —2m 、1在(-1,)和( ,=)上递增,当m 时,在(-1,=)上递增.2 2 2 2 2(2)若函数f X 有两个极值点X j ,X 2且X^ X 2,1 1则必有0 ::: m ::: £,且-1 :::洛 x 2 :: 0,且f x 在x 1, x 2上递减,在(-1,xJ 和(X 2, •::)上递增,则 f (x 2) :: f (0) =0,因为x , ,x 2是方程2x 2 2x ^0的两根,所以 X ! x 2 二-2,x 1x^-m ,即为=-1 - x 2, m = 2为,x 2,2要证 2f (x 2) -为 2x 1 In 2又 2 f (x 2) =2x ; 2mln(1 X 2)=2X ; 4x^21n(1 x 2)-2x | 4(1 x 2)x 2In(1 x 2)-(-1 x 2)2(-1 -x 2)ln 2=1 冷-2(1x 2)ln 2,2x 2 2x m1 ②当0 ::: m 时,2由 g x ] = 2x 2x m ,得 x =-因为 g -1 二 m ・0,所以-r :: x 1 < -1g X :0,即证2x; -4(1 x?)x21n(1 %) -(1 x2)(1 -21 n 2) 0 对--■ x ■■■ 0恒成立,221设」x =2x -4(1 x)xln(1 x) -(1 x)(1 -2ln 2),( x ::: 0)4则」x = -4(1 2x)ln(1 x) -Ine14 当 x ::: 0时,1 2x ■ 0,ln(1 x) ::: 0,ln — • 0 ,故’x 0 ,2e1所以,x 在(-3,0)上递增, J 1 1 1 1 故」x'( — )=2 4 — ln (1 —2ln 2) =0 , 2 4 2 2 2所以 2x ; -4(1 x 2)x 2ln(1 屜)-(1 x 2)(1 -2ln 2) 0 , 所以 2f (X 2)-为2x 1 ln2.22.解:(1) C 1的普通方程为x 2 (y -1)2 =1 , 它表示以(0,1)为圆心,1为半径的圆,2C 2的普通方程为y 2 -1,它表示中心在原点,焦点在 x 轴上的椭圆.41(2 )由已知得 P(0, 2),设 Q(2cos ysi nr),则 M(cos\1si nJ , 2直线l : x -2y -4 =0,点M 至y 直线l 的距离为cos : -sin v - 65 =所以d 兰异翌 =6血7° ,即M 到直线l 的距离的最小值为 6亦_后V555所以f x -2.3a 2 2a 3,a -3,a 2 _2a,a ::: - 3 L 423. (1)证明:因为f X 二而 x +2a 十3 —x +a 2 2x -a+|x + 2a +3 > =a 2 +2a+3 2x 2a 3-x a =(a 1)22 一2 ,3 2丄3 丄3f (_—) =a 2 +— + 2a +_2 2 2(2)因为- 3 -3a v — — a八——吕F ~—4£4〉2- 2r a + 2a + 3 < 3 r a —。
2018届高三4月联考数学试题(有答案,有附加题)
2018届高三联考数 学2018.04.一、填空题:本大题共14小题,每小题5分,共70分.1.若i z 231-=,)(12R a ai z ∈+=,21z z ⋅为实数,则=a _____.2.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取40辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在h km /70以下的汽车有_____.3.已知命题411:>a p ,01,:2>++∈∀ax ax R x q ,则p 成立是q 成立的_____.(选“充分必要”,“充分不必要”,“既不充分也不必要”填空).4.从甲、乙、丙、丁4个人中随机选取两人,则甲、乙两人中有且只有一个被选取的概率是_____.5.执行如图所示的程序框图,输出的S 值为____.6.设y x ,满足⎪⎩⎪⎨⎧≤-≤+-≥+-02023201y y x y x ,则y x z 43+-=的最大值是_____.7.若)(x f 是周期为2的奇函数,当)1,0(∈x 时,308)(2+-=x x x f ,则=)10(f _____.8.正方形铁片的边长为cm 8,以它的一个顶点为圆心,一边长为半径画弧剪下一个顶角为4π的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积为____.9.已知函数)cos()(ϕω+=x A x f 的图象如图所示,32)2(-=πf ,则=)0(f ____.10.平面直角坐标系xOy 中,双曲线)0,0(1:22221>>b a by a x C =-的渐近线与抛物线)0(2:22>p py x C =交于点B A O ,,,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为____.11.已知点)2,1(),0,3(---B A ,若圆)0()2(222>r r y x =+-上恰有两点N M ,,使得MAB ∆和NAB ∆的面积均为4,则r 的取值范围是____.12.设E D ,分别为线段AC AB ,的中点,且0=⋅CD BE ,记α为AB 与AC 的夹角,则α2cos 的最小值为____.13.已知函数x a a x e e x x x x f --++--=4ln 32)(2,其中e 为自然对数的底数,若存在实数0x 使3)(0=x f 成立,则实数a 的值为____.14.若方程0|12|2=---t x x 有四个不同的实数根4321,,,x x x x ,且4321x x x x <<<,则)()(22314x x x x -+-的取值范围是____.二、解答题:本大题共6小题,共90分.15.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知b c a 222=-,且C A C A sin cos 3cos sin =.(1)求b 的值; (2)若4π=B ,S 为ABC ∆的面积,求C A S cos cos 28+的取值范围.16.如图,在正三棱柱111C B A ABC -中,点D 在棱BC 上,D C AD 1⊥,点F E ,分别是111,B A BB 的中点.(1)求证:D 为BC 的中点; (2)求证:∥EF 平面1ADC .17.科学研究证实,二氧化碳等温空气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响,环境部门对A 市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A 市2017年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少%10.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m 万吨)0(>m .(1)求A 市2019年的碳排放总量(用含m 的式子表示); (2)若A 市永远不需要采取紧急限排措施,求m 的取值范围.18.已知椭圆)0(1:2222>>b a by a x C =+的左顶点,右焦点分别为F A ,,右准线为m .(1)若直线m 上不存在点Q ,使AFQ ∆为等腰三角形,求椭圆离心率的取值范围;(2)在(1)的条件下,当e 取最大值时,A 点坐标为)0,2(-,设N M B ,,是椭圆上的三点,且ON OM OB 5453+=,求:以线段MN 的中点为圆心,过F A ,两点的圆的方程.19.设函数x ax x f ln 121)(2--=,其中R a ∈. (1)若0=a ,求过点)1,0(-且与曲线)(x f y =相切的直线方程;(2)若函数)(x f 有两个零点21,x x . ①求a 的取值范围;②求证:0)()(21<x f x f '+'.20.设+⊆N M ,正项数列}{n a 的前n 项的积为n T ,且M k ∈∀,当k n >时,k n k n k n T T T T =-+都成立.(1)若}1{=M ,31=a ,332=a ,求数列}{n a 的前n 项和; (2)若}4,3{=M ,21=a ,求数列}{n a 的通项公式.附加题21B .选修4-2:矩阵与变换(本题满分10分)已知矩阵1 1a A b ⎡⎤=⎢⎥-⎣⎦,A 的一个特征值2λ=,其对应的特征向量是121α⎡⎤=⎢⎥⎣⎦. (1)求矩阵A ; (2)设直线l 在矩阵1A -对应的变换作用下得到了直线:4m x y -=,求直线l的方程.21C .选修4-4:坐标系与参数方程(本题满分10分)圆C :2cos ρ=(4πθ-),与极轴交于点A (异于极点O ),求直线CA 的极坐标方程.22.(本小题满分10分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数i,i,2,2,--其中i 是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响). (1)求事件A “在一次试验中,得到的数为虚数”的概率()P A 与事件B “在四次试验中,至少有两次得到虚数” 的概率()P B ;(2)在两次试验中,记两次得到的数分别为,a b ,求随机变量a b ξ=⋅的分布列与数学期望.E ξ23.(本小题满分10分)已知数列{}n a 满足123012323C C C C 222n n n n na +++=++++…*C 2nn nn n ++∈N ,. (1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并证明.联考数学试题Ⅰ一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.若132z i =-,21()z ai a R +∈=,12·z z 为实数,则a = ▲ .232.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取40辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70 km/h 以下的汽车有 ▲ 辆. 163.已知命题11:>4p a ,命题210q x R ax ax +∀∈+>:,,则p 成立是q 成立的 ▲ 条件(选“充分必要”,“充分不必要”,“必要不充分”,“既不充分也不必要”填空). 充分不必要4.从甲、乙、丙、丁4个人中随机选取两人,则甲、乙两人中有且只有一个被选取的概率为▲ .235.执行如图所示的程序框图,输出的S 值为 ▲ .456.设,x y 满足约束条件10232020x y x y y -+≥⎧⎪-+≤⎨⎪-≤⎩,则34z x y =-+的最大值是 ▲ .57.已知()f x 是周期为2的奇函数且当()0,1x ∈时()2830f x x x =-+,则()10f= ▲ .24- 8.正方形铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧剪下一个顶角为4π的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积为▲ .π79.已知函数()()f x Acos x ωϕ=+的图象如图所示,2()23f π=-,则(0)f = ▲ .2310.平面直角坐标系xoy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于点,,O A B ,若O A B ∆的垂心为2C 的焦点,则1C 的离心率为▲ .3211.已知点3,0()1),2(A B ---,,若圆()222(2)0x y r r +=->上恰有两点M N ,,使得MAB∆和NAB ∆的面积均为4,则r 的取值范围是 ▲ .292(,)2212.设D ,E 分别为线段AB ,AC 的中点,且BE ―→·CD ―→=0,记α为AB ―→与AC ―→的夹角,cos 2α 的最小值为 ▲ .72513.已知函数2()23ln 4x aa x f x x x x ee --=--++,其中e 为自然对数的底数,若存在实数0x 使0()3f x =成立,则实数a 的值为 ▲ . 1ln 2-14. 若方程2|21|0x x t ---=有四个不同的实数根1234,,,x x x x ,且1234x x x x <<<,则41322()()x x x x -+-的取值范围是 ▲ . (8,45]二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,内角A B C 、、的对边分别为a b c 、、,已知222a c b -=,且3sinAcosC cosAsinC = .(1)求边b 的值;(2)若4B π=,S 为ABC ∆的面积,求82cos S AcosC +的取值范围.解:(1)由正弦定理sin sin a c A C = ,余弦定理222222cos ,cos 22a b c b c a C A ab bc+-+-== sin cos 3cos sin A C A C =可等价变形为222222322a b c b c a a c ab bc+-+-⋅=⋅化简得2222b a c -= ……………………3分222a c b -= 4b ∴=或0(b =舍)……………………6分若求范围: (2)由正弦定理sin sin b c B C =得114sin 4sin sin 82sin sin 22sin4S bc A A C A C π==⋅⋅=382cos 82cos()82cos(2)4S AcosC A C A π=-=-∴+……………………10分在ABC ∆中,由3040202A A C A Cπππ⎧<<⎪⎪⎪<<⎪⎨⎪<<⎪⎪⎪>⎩ 得3(,)82A ππ∈ 32(0,)44A ππ∴-∈,32cos(2)(,1)42A π∴-∈ 82cos (8,82)S AcosC ∈∴+……………………14分若求定值:由sin cos 3cos sin A C A C =得tan 3tan A C = 故2tan tan 4tan tan tan()11tan tan 13tan A C CB AC A C C+=-+=-=-=-- 解得27tan 3C ±=2220a c b -=>27tan 3C +∴=故tan 27A =+ 由正弦定理sin sin b c B C =得114sin 4sin sin 82sin sin 22sin4S bc A A C A C π==⋅⋅=382cos 82cos()82cos(2)8(sin 2cos 2)4S AcosC A C A A A π∴+=-=-=- 2222sin 2cos 22tan 1tan 8()8sin cos tan 1A A A A A A A --+==⋅++ 解得82cos 47S AcosC +=……………………14分16.(本小题满分14分)如图,在正三棱柱111C B A ABC -中,点D 在棱BC 上,D C AD 1⊥,点E ,F分别是1BB ,11B A 的中点. (1)求证:D 为BC 的中点; (2)求证://EF 平面1ADC .解:(1) 正三棱柱111C B A ABC -,∴⊥C C 1平面ABC ,又⊂AD 平面ABC ,∴AD C C ⊥1,又D C AD 1⊥,111C C C D C = ∴⊥AD 平面11B BCC ,………………………………………………………3分 又 正三棱柱111C B A ABC -,∴平面ABC ⊥平面11B BCC ,∴⊥AD BC ,D 为BC 的中点.………6分(2) 连接B A 1,连接C A 1交1AC 于点G ,连接DG 矩形11ACC A ,∴G 为C A 1的中点, 又由(1)得D 为BC 的中点,∴△BC A 1中,B A DG 1//…………………9分 又 点E ,F 分别是1BB ,11B A 的中点,∴△B B A 11中,B A EF 1//,∴DG EF //,……12分 又⊄EF 平面1ADC ,⊂DG 平面1ADC ∴//EF 平面1ADC .………14分17.(本小题满分14分)AA 1BCB 1C 1DEF AA 1BCB 1C 1DEF G科学研究证实,二氧化碳等温室气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响.环境部门对A 市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A 市2017年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m 万吨(m >0).(Ⅰ)求A 市2019年的碳排放总量(用含m 的式子表示); (Ⅱ)若A 市永远不需要采取紧急限排措施,求m 的取值范围. 解:设2018年的碳排放总量为1a ,2019年的碳排放总量为2a ,… (Ⅰ)由已知,14000.9a m =⨯+,220.9(4000.9)4000.90.9a m m m m =⨯⨯++=⨯++=324 1.9m +. (4分)(Ⅱ)230.9(4000.90.9)a m m m =⨯⨯+++324000.90.90.9m m m =⨯+++,…124000.90.90.90.9n n n n a m m m m --=⨯+++⋅⋅⋅+10.94000.94000.910(10.9)10.9nnn n m m -=⨯+=⋅+--(40010)0.910n m m =-⋅+.(8分) 由已知有*,550n n N a ∀∈≤(1)当400100m -=即40m =时,显然满足题意;(9分)(2)当400100m ->即40m <时,由指数函数的性质可得:(40010)0.910550m m -⨯+≤,解得190m ≤.综合得40m <;(11分)(3)当400100m -<即40m >时,由指数函数的性质可得:10550m ≤,解得55m ≤,综合得4055m <≤.(13分) 综上可得所求范围是(0,55]m ∈. (14分)18.(本小题满分16分)已知椭圆2222:1x y C a b+=(0)a b >>的左顶点,右焦点分别为,A F ,右准线为m .(1)若直线m 上不存在点Q ,使AFQ ∆为等腰三角形,求椭圆离心率的取值范围;(2)在(1)的条件下,当e 取最大值时,A 点坐标为(2,0)-,设B 、M 、N 是椭圆上的三点,且3455OB OM ON =+,求:以线段MN 的中点为圆心,过,A F 两点的圆方程.解: (1)设直线m 与x 轴的交点是Q ,依题意FQ FA ≥,即2a c a c c -≥+,22a a c c≥+,12a c c a ≥+,112e e ≥+,2210e e +-≤102e <≤…………………………………………4分 (2)当12e =且(2,0)A -时, (1,0)F ,故2,1a c ==, …………………………………………5分所以3b =,椭圆方程是:22143x y += …………………………………………6分 设1122()()M x y N x y ,,, ,则2211143x y +=,2222143x y +=. 由3455OB OM ON =+,得 12123434(,)5555B x x y y ++. 因为B 是椭圆C 上一点,所以2212123434()()5555+=143x x y y ++ …………………8分 即222222112212123434()()()()2()14354355543x y x y x xy y ++++⋅⋅+=1212043x x y y += ………① …………………10分 因为圆过,A F 两点, 所以线段MN 的中点的坐标为121 (,)22y y +- …………11分 又2222212121212121111()(2)[3(1)3(1)2]24444y y y y y y x x y y +=++=-+-+………② …………12分 由①和②得222212121212111313121()[3(1)3(1)3()][2()](2)24442444416y y x x x x x x +=-+-+-=-+=⋅-=所以圆心坐标为121(,)24-±…………14分 (少一解扣一分) 故所求圆方程为 2212157()()2416x y ++±= ………………16分 19.(本小题满分16分)设函数21()1ln 2f x ax x =--,其中a R ∈ . (1)若0a =,求过点(0,1)-且与曲线()y f x =相切的直线方程; (2)若函数()f x 有两个零点1x ,2x ,① 求a 的取值范围;② 求证:12'()'()0f x f x +<.解(1)当a =0时,f (x )=-1-ln x ,f ′(x )=-1x .设切点为T (x 0,-1-ln x 0),则切线方程为:y +1+ln x 0=-1x 0( x -x 0). …………………… 2分因为切线过点(0,-1),所以 -1+1+ln x 0=-1x 0(0-x 0),解得x 0=e .所以所求切线方程为y =-1e x -1. …………………… 4分 (2)①f ′(x )=ax -1x =ax 2-1x ,x >0.(i) 若a ≤0,则f ′(x )<0,所以函数f (x )在(0,+∞)上单调递减,从而函数f (x )在(0,+∞)上至多有1个零点,不合题意. …………………… 5分(ii)若a >0,由f ′(x )=0,解得x =1a.当0<x <1a 时, f ′(x )<0,函数f (x )单调递减;当x >1a时, f ′(x )>0,f (x )单调递增,所以f (x )min =f (1a )=12-ln 1a -1=-12-ln 1a.要使函数f (x )有两个零点,首先 -12-ln 1a<0,解得0<a <e . …………… 7分当0<a <e 时,1a >1e>1e .因为f (1e )=a 2e 2>0,故f (1e )·f (1a)<0.又函数f (x )在(0,1a )上单调递减,且其图像在(0,1a)上不间断,所以函数f (x )在区间(0,1a)内恰有1个零点. …………………… 9分考察函数g (x )=x -1-ln x ,则g′(x )=1-1x =x -1x .当x ∈(0,1)时,g′(x )<0,函数g (x )在(0,1)上单调递减;当x ∈(1,+∞)时,g′(x )>0,函数g (x )在(1,+∞)上单调递增,所以g (x )≥g (1)=0,故f (2a )=2a -1-ln 2a ≥0.因为2a -1a =2-a a >0,故2a >1a .因为f (1a )·f (2a )≤0,且f (x )在(1a ,+∞)上单调递增,其图像在(1a,+∞)上不间断,所以函数f (x )在区间(1a ,2a ] 上恰有1个零点,即在(1a,+∞)上恰有1个零点.综上所述,a 的取值范围是(0,e). …………………… 11分②由x 1,x 2是函数f (x )的两个零点(不妨设x 1<x 2),得 ⎩⎨⎧12ax 12-1-ln x 1=0,12ax 22-1-ln x 2=0,两式相减,得 12a (x 12-x 22)-ln x 1x 2=0,即12a (x 1+x 2) (x 1-x 2)-ln x 1x 2=0,所以a (x 1+x 2)=2ln x 1x2x 1-x 2. …………………… 13分f ′(x 1)+f ′(x 2)<0等价于ax 1-1x 1+ax 2-1x 2<0,即a (x 1+x 2)-1x 1-1x 2<0,即2ln x 1x2x 1-x 2-1x 1-1x 2<0,即2ln x 1x 2+x 2x 1-x 1x 2>0. 设h (x )=2ln x +1x -x ,x ∈(0,1).则h ′(x )=2x -1x 2-1=2x -1-x 2x 2=-(x -1)2x 2<0, 所以函数h (x )在(0,1)单调递减,所以h (x )>h (1)=0.因为x 1x 2∈(0,1),所以2ln x 1x 2+x 2x 1-x 1x 2>0,即f ′(x 1)+f ′(x 2)<0成立. …………………… 16分20.(本小题满分16分)设M ⊂≠*N ,正项数列{}n a 的前项积为n T ,且k M ∀∈,当n k >时,n k n k n k T T T T +-=都成立. (1)若{1}M =,13a =,233a =,求数列{}n a 的前n 项和;(2)若}4{3M =,,12a =,求数列{}n a 的通项公式. 解:(1)当n ≥2时,因为M ={1},所以T n +1T n -1=T n T 1,可得a n +1=a n a 12,故a n +1a n=a 12=3(n ≥2).又a 1=3,a 2=33,则{a n }是公比为3的等比数列,…………2分故{a n }的前n 项和为3(1-3n )1-3=32·3n -32.…………4分(2)当n >k 时,因为T n +k T n -k =T n T k ,所以T n +1+k T n +1-k =T n +1T k ,所以T n +k T n -kT n +1+k T n +1-k=T n T kT n +1T k,即a n +1+k a n +1-k =a n +1,…………6分 因为M ={3,4},所以取k =3,当n >3时,有a n +4a n -2=a n +12; 取k =4,当n >4时,有a n +5a n -3=a n +12.…………8分 由a n +5a n -3=a n +12知,数列a 2,a 6,a 10,a 14,a 18,a 22,…,a 4n -2,…,是等比数列,设公比为q .………① 由a n +4a n -2=a n +12 知,数列a 2,a 5,a 8,a 11,a 14,a 17,…,a 3n -1,…,是等比数列,设公比为q 1,………② 数列a 3,a 6,a 9,a 12,a 15,a 18,…,a 3n ,…,成等比数列,设公比为q 2,………③ 数列a 4,a 7,a 10,a 13,a 16,a 19,a 22,…,a 3n +1,…,成等比数列,设公比为q 3,…④由①②得,a 14a 2=q 3,且a 14a 2=q 14,所以q 1=q 34;由①③得,a 18a 6=q 3,且a 18a 6=q 24,所以q 2=q 34;由①④得,a 22a 10=q 3,且a 22a 10=q 34,所以q 3=q 34;所以q 1=q 2=q 3=q 34.…………12分由①③得,a 6=a 2q ,a 6=a 3q 2,所以a 3a 2=qq 2=q 14,由①④得,a 10=a 2q 2,a 10=a 4q 32,所以a 4a 2=q 2q 32=q 12,所以a 2,a 3,a 4是公比为q 14的等比数列,所以{a n }(n ≥2)是公比为q 14的等比数列. 因为当n =4,k =3时,T 7T 1=T 42T 32;当n =5,k =4时,T 9T 1=T 52T 42, 所以(q 14)7=2a 24,且(q 14)10=2a 26,所以q 14=2,a 2=22.…………14分又a 1=2,所以{a n }(n ∈N *)是公比为q 14的等比数列.故数列{a n }的通项公式是a n =2n -1·2.…………16分21A .选修4-1:几何证明选讲如图,圆O 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D ,210CD =,3AB BC ==,求BD 以及AC 的长.解:由切割线定理得:2DB DA DC ⋅=, ………………………2分2()DB DB BA DC +=, 04032=-+DB DB ,5=DB . …………6分A B C D ∠=∠,∴ DBC ∆∽DCA ∆, …………………………………8分∴BC DBCA DC = ,得5106=⋅=DB DC BC AC . ……………………………10分21B .选修4-2:矩阵与变换(本题满分10分)已知矩阵1 1a A b ⎡⎤=⎢⎥-⎣⎦,A 的一个特征值2λ=,其对应的特征向量是121α⎡⎤=⎢⎥⎣⎦. (1)求矩阵A ; (2)设直线l 在矩阵1A -对应的变换作用下得到了直线:4m x y -=,求直线l的方程.OABCD解:(1)12211 12a b a A b α+⎡⎤⎡⎤==⎢⎥⎢⎥-+⎣⎡⎤⎢⎦⎣⎥-⎣⎦⎦,1242λλαλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦2422a b +=⎧∴⎨-+=⎩ 解得24a b =⎧⎨=⎩ 故12 14A ⎡⎤=⎢⎥-⎣⎦…………4分 (2)设直线:4m x y -=上的任意一点(,)x y 在矩阵A 对应的变换作用下得到点(',')x y则 '122'4 14x x x y y y x y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦, '2'4x x y y x y =+⎧∴⎨=-+⎩ 2''3''6x y x x y y -⎧=⎪⎪∴⎨+⎪=⎪⎩4x y -= ∴''8x y -= ∴直线l 的方程为80x y --=…………10分21C .选修4-4:坐标系与参数方程(本题满分10分)圆C :2cos ρ=(4πθ-),与极轴交于点A (异于极点O ),求直线CA 的极坐标方程.解:圆C :θρθρπθρρsin 2cos 24cos 22+=⎪⎭⎫⎝⎛-= 所以02222=--+y x y x …………………4分所以圆心⎪⎪⎭⎫⎝⎛22,22C ,与极轴交于()0,2A …………………6分直线CA 的直角坐标方程为2=+y x …………………8分即直线CA 的极坐标方程为14cos =⎪⎭⎫⎝⎛-πθρ. …………………10分 21D .选修4-5:不等式选讲(本题满分10分) 证明:n n12131211222-<++++ (n ≥2,*n N ∈). 证明:n n n )1(13212111131211222-++⨯+⨯+<++++………5分nn 11131212111--++-+-+= n12-=. ………10分 22.(本小题满分10分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数i,i,2,2,--其中i 是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响). (1)求事件A “在一次试验中,得到的数为虚数”的概率()P A 与事件B “在四次试验中,至少有两次得到虚数” 的概率()P B ;(2)在两次试验中,记两次得到的数分别为,a b ,求随机变量a b ξ=⋅的分布列与数学期望.E ξ23.(本小题满分10分)已知数列{}n a 满足123012323C C C C 222n n n n na +++=++++…*C 2n n nn n ++∈N ,. (1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并证明. 23.(本小题满分10分)解:(1)12a =,24a =,38a =. …… 3分 (2)猜想:2n n a =. 证明:①当1n =,2,3时,由上知结论成立; …… 5分 ②假设n k =时结论成立, 则有123012323C C C C C 22222k k k k k k k k kk a ++++=+++++=.则1n k =+时,12311112131111231C C C C C2222k+k k k+k+k+k k k+a ++++++++=+++++. 由111C C C k k kn nn +++=+得 102132112233123C C C C C C C 222k k k k k k k ka ++++++++++=++++11111C C C 22k k -k+k+k k+k k+k+k k+++++ 0121112311231C C C C C 222222k k+k k k k k k k+k+k k+-+++++=++++++, 12110231111121C C C C 12(C )22222k k+k k k k k k+k+k k k k a -++++++-=++++++ 121102311111121C C C C C 12(C )22222k k k+kk k k k -k+k k+k k k k+-+++++++-=++++++. 又111111(21)!(22)(21)!(21)!(1)12C C !(1)!(1)!(1)!(1)!(1)!2k+k+k+k k+k k k k k k =k k k k k k k ++++++++===+++++ 12110231111111211C C C C C 12(C )222222k k k+kk k k k -k+k k+k k k k k -++++++++-+=+++++++, 于是11122k k k a a ++=+.所以112k k a ++=, 故1n k =+时结论也成立.由①②得,2n n a =*n ∈N ,. …… 10分。
安徽省2018届百校联盟TOP20四月联考(全国I卷)数学理
x y 1 0
9.已知实数
x,
y
满足约束条件
x y 1 2x y
2
0
0
,若
z
mx
y
,
z
的取值范围为集合
A
,且
A
[1 3
,6] ,
则实数 m 的取值范围是( )
A.[1 , 2] 33
B.[ 11 , 2] 93
C.[ 11 , 1] 93
D.[ 2 ,6] 3
且 x 1时, f (x) 2x x2 x 2 ,若 f (log a 2a) 6(a 0 且 a 1) ,则实数 a 的取值范围是( )
A. (1 ,1) (1,2) 2
B. (0, 1) (2,) 2
C. (0, 1) (1,2) 2
D. (1 ,1) (2,) 2
C. y 2 5 x 5
D. y 5 x 2
7.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )
·1·
A. 8 4 2 8 5
B. 24 4 2
C. 8 20 2
D.28
8.已知定义域为 R 的函数 f (x) 满足 f (2 x) f (x) ,
()
A. 5
B.9
C.11
D.13
6.已知点
F1
,
F2
是双曲线
ቤተ መጻሕፍቲ ባይዱ
C
:
x2 a
1
y2 a
1(a
0) 的左,右焦点,
点 P 是以 F1, F2 为直径的圆与双曲线 C 的一个交点,若 PF1F2 的面 积为 4,则双曲线 C 的渐近线方程为( )
百校联盟2018届高三TOP20四月联考(全国II卷)文数试题(含精品解析)
百校联盟2018届高三TOP20四月联考(全国II卷)文数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】A【解析】分析:解二次不等式化简集合,然后求并集.详解:由题意,得,又,∴故选:A点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解2. 已知复数,则的虚部为()A. B. C. D.【答案】C【解析】分析:直利用复数代数形式的乘除运算化简,然后求出虚部.详解:=,则z的虚部为.故选:C.点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意和以及运算的准确性,否则很容易出现错误.3. 已知,若,则()A. 8B. 10C. 11D. 12【答案】D【解析】分析:由向量垂直,得到关于的方程,解之即可.详解:∵,∴,又∴,∴故选:D点睛:本题考查了向量垂直的坐标表示,属于基础题.4. 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻面系统的研究,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点与两定点的距离之比为,那么点的轨迹就是阿波罗尼斯圆.已知,点满足,则直线被点的轨迹截得的弦长为()A. B. C. D.【答案】A【解析】分析:先设,再代入化简得到点M的轨迹,再联立轨迹与直线x=4得弦长.详解:设,则,整理得,与直线联立得,∴弦长为.故选A.点睛:本题主要考查运用直接法求点的轨迹方程,属于基础题.5. 执行如图所示的程序框图,则输出的值为()A. 5B. 11C. 14D. 19【答案】B【解析】分析:根据题意,模拟程序框图的运行过程,求出该程序运行后输出的S的值.详解:第一次循环:是,否;第二次循环:是,否;第三次循环:是,否;第四次循环:是,否;第五次循环:是,是,输出.故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6. 已知抛物线的焦点为,抛物线的准线与轴交于点,点在抛物线上,,则()A. B. C. D.【答案】C【解析】分析:先利用抛物线的定义和已知条件求出,再过点M作抛物线的准线的垂线,设垂足为E,最后解直角三角形AME得的值.详解:由抛物线的定义知,解得,又点点在抛物线上,代入解得.过点M作抛物线的准线的垂线,设垂足为E,则.故选C.点睛:本题主要考查抛物线的定义和几何性质,属于基础题.7. 如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为()A. B. C. 4 D.【答案】B【解析】分析:先找到三视图对应的几何体原图,再求几何体的体积.详解:由三视图可知该几何体为一个直三棱柱削掉一个三棱锥所得,所以其体积为.故选B.点睛:本题的关键是找到几何体的原图,本题利用了模型法. 找三视图对应的几何体的原图,一般有模型法和直接法两种方法,不同的题目可以有不同的方法,大家要理解掌握灵活运用.8. 已知是定义在上的奇函数,当时,,则不等式的解集为()A. B. C. D.【答案】A【解析】分析:先利用已知条件判断函数在R上的单调性,再解不等式.详解:由于是定义在上的奇函数,∴,且在上为增函数,∴f(x)是R上的增函数,∵f(1)=3,所以,∴2x-1<1,∴x<1.故选A.点睛:解抽象的函数不等式,一般先要判断函数的单调性,再把不等式化成的形式,再利用函数的单调性去掉“f”,转化为具体的函数不等式解答.9. 某高中在今年的期末考试历史成绩中随机抽取名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在中的学生有1名,若从成绩在和两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在中的概率为()A. B. C. D.【答案】C【解析】分析:先利用已知条件计算出n=20,再计算出成绩在的有4人,再利用古典概型的概率公式求所求的概率.详解:因为在的频率为5×0.01=0.05,所以n=,在的频率为1-5×(0.01+0.02+0.06+0.07)=0.2,所以在中的学生人数为20×0.2=4,所以中有一个人,有4个人,共5个人,从5个人中任意取两个人共有10个基本事件,2名学生成绩都在的事件有6个,所以由古典概型的概率公式得所求概率为.故选C.点睛:本题主要考查频率分布直方图和古典概型,属于基础题.10. 在三棱锥中,和均为边长为3的等边三角形,且,则三棱锥外接球的体枳为()A. B. C. D.【答案】C【解析】分析:先过△ABC的外心作平面PBC的垂线,过△PBC的外心作平面PBC的垂线,设两条垂线交于点O,则O为三棱锥P-ABC外接球的球心.再求出,,再解△得到外接球的半径R=OA=,最后求三棱锥P-ABC外接球的体积.详解:取BC的中点D,连接PD,AD,因为△ABC和△PBC均为等边三角形,所以AD⊥BC,PD⊥BC,AD∩PD=D,所以BC⊥平面PAD,因为△ABC和△PBC均为边长为3的等边三角形,所以AD=PD=,又因为,所以PD⊥AD,过△ABC的外心作平面PBC的垂线,过△PBC的外心作平面PBC的垂线,设两条垂线交于点O,则O为三棱锥P-ABC外接球的球心.,,所以,所以外接球的半径R=OA=,所以三棱锥P-ABC外接球的体积.故选C.点睛:类似这种几何体的外接球的问题,一般先找到截面圆的圆心和球心O,再计算出和(A 为截面圆周上一点),最后解直角△求出外接球半径R.这基本上是一个规律,大家要理解掌握并灵活运用.11. 下列关函数的命题正确的个数为()①的图象关于对称;②的周期为;③若,则;④在区间上单调递减.A. 1B. 2C. 3D. 4【答案】A【解析】分析:逐一研究函数的对称性、周期性和单调性等,再作出判断.详解:因为,所以①错误;由,得②错误;令,则,但是,所以③错误;当x∈时,f(x)=sinxcosx=在上单调递减,所以④正确.综上所述,只有一个正确,故选A.点睛:本题主要是考查函数的图像的对称性、周期性和单调性等,属于基础题,一般研究函数的图像的对称性、周期性和单调性等,再作出判断.12. 已知数列中,,定义,则()A. B. C. D.【答案】C【解析】分析:先通过已知求出,再利用裂项相消求和.详解:∵,∴,所以,因为=(n+1)n,所以,所以故选C.点睛:本题主要考查累乘法求数列的通项和裂项相消求和,属于基础题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知满足不等式则的最大值为__________.【答案】【解析】分析:先作出不等式组对应的可行域,再利用斜率的几何意义求出的最大值.详解:不等式组表示的可行域如图所示,表示可行域内一点与点(5,0)连线的斜率,由图可知,在的交点A(1,3)处取得最大值,.点睛:差之比表示点(c,a)和点(d,b)连线的斜率,利用斜率的几何意义解答在本题中优化了解题,提高了解题效率.14. 已知若,则__________.【答案】或【解析】分析:先计算出=,再对分类讨论求m的值.详解:=,当<1时,即m<时,=-2()+m=1-m=2,得m=-1.当≥1,即m≥时,=.所以m=或.故填或.点睛:解答此题要注意分类讨论思想的运用,因为不知道它在分段函数的哪一段,所以要分类讨论.15. 已知双曲线的左焦点,直线与双曲线的渐近线分别交于两点,其中点在第二象限,若,则双曲线的离心率为__________.【答案】【解析】分析:先求出再利用相似三角形得到,再化简得到离心率的方程,即得离心率的值.详解:因为双曲线的渐近线方程为y=,所以由得,由得,由得.由三角形相似可知,即.故填.点睛:在圆锥曲线里求离心率,一般方法是找关于离心率的方程再解方程,本题是根据相似三角形找到的方程,所以解这种题目的关键是善于从已知里找到方程.16. 已知的内角的对边分別为,,角最大,则的取值范围为__________.【答案】【解析】分析:先化简已知得到,再代入,利用基本不等式求取值范围.详解:∵,,∴=,即c-2bcosA=2bsinA,由正弦定理得sinC-2sinBcosA=2sinBsinA,即sin(A+B)- 2sinBcosA=2sinBsinA,即sinAcosB-cosAsinB=2sinBsinA,∴tanA-tanB=2 tanAtanB∴,因为角C是最大角,所以tanA>0,所以2tanA+1>0,∴=当且仅当即时等号成立.∴的取值范围为,故填点睛:处理取值范围的问题常用函数的方法,一般先求出函数的解析式,再求函数的定义域,最后决定用什么方法求函数的值域. 本题就是先求出=,再求A的范围,再利用基本不等式求函数的最小值.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和,且,等差数列满足,.(1)求数列的通项公式;(2),求数列的前项和.【答案】(1),;(2).【解析】分析:(1)利用项和公式求数列的通项公式,再求出,再写出等差数列的通项公式. (2)利用错位相减求数列的前项和.详解:(1)当时,,解得,所以,当时,,当时,,所以,设等差数列的公差为,由,得,解得,所以.(2)由(1)得,所以,,两式相减得,即,整理得.点睛:本题主要考查数列通项的求法和错位相减法求和,属于基础题.18. 如图,四棱锥中,侧面底面,为等腰直角三角形,,为直角梯形,.(1)若为的中点,上一点满足,求证:平面;(2)若,求四棱锥的表面积.【答案】(1)见解析;(2)四棱锥的表面积为.【解析】分析:(1)过点作,连接,证明,即证平面. (2)先求出四棱锥的各个面的面积,再求四棱锥的表面积.详解:(1)过点作,连接,因为,所以,,即,因为,所以,所以,又因为,所以为平行四边形,故,因为平面,平面.所以平面.(2)因为平面平面.平面平面,平面,且,所以平面.又因为平面,所以,所以,连接,同理,由平面平面,,可得平面.过点作交于点,连接.则由,得.因为,所以.则.过点作,连接,易得.由平面几何知识得,所以,,所以,又因为,,所以四棱锥的表面积为.点睛:本题主要考查空间线面关系的证明和面积的计算,属于基础题.19. 某地区农产品近几年的产量统计如下表:为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表:(1)根据表中数据,求关于的线性回归方程;(2)若近几年该农产品每万吨的价格 (万元)与年产量(万吨)满足,且每年该农产品都能售完,当年产量为何值时,销售额最大?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分別为:.【答案】(1) ;(2) 年产量为7万吨时,销售额最大.【解析】分析:(1)利用最小二乘法求关于的线性回归方程. (2)先写出销售额的函数表达式,再求其最大值.详解:(1)由题意知,,,,,所以,又,所以关于的线性回归方程为.由,得,即.(2)当年产量为时,销售额,当时,函数取得最大值,即年产量为7万吨时,销售额最大.点睛:本题主要考查线性回归方程的求法,属于基础题.20. 已知为圆上一动点,圆心关于轴的对称点为,点分别是线段上的点,且.(1)求点的轨迹方程;(2)直线与曲线交于两点,的中点在直线上,求(为坐标原点)面积的取值范围. 【答案】(1) 点的轨迹方程为;(2) 面积的取值范围为.【解析】分析:(1)利用待定系数法(定义法)求点M的轨迹方程. (2)先求出面积的表达式,再求函数的取值范围.详解:(1)因为,所以为的中点,因为,所以,所以点在的垂直平分线上,所以,因为,所以点在以为焦点的椭圆上,因为,所以,所以点的轨迹方程为.(2)由题意知直线的斜率存在,设,,由得,,,,设的中点为,则,由题意知,所以,由,得,因为,原点到直线的距离,所以,即,故面积的取值范围为.点睛:本题的难点在第(2)问,求面积的取值范围,一般利用函数的方法处理. 先求出面积的表达式,再求函数的取值范围.这是高中数学处理取值范围问题常用方法.21. 已知.(1)求在处的切线方程;(2)证明:.【答案】(1) ;(2)见解析.【解析】分析:(1)先求出,再求切点坐标和切线的斜率,再写出切线方程. (2)先求函数f(x)的最小值,再证明f(x)的最小值大于-1.详解:(1)由题意得,,令,得,解得,所以,因为,所以,又因为,所以切线方程为,即.(2)由(1)得,令,所以,故在上单调递增,又,所以存在,使得,即,所以,所以随的变化情况如下:所以,由式得,代入上式得,令,所以,所以在上单调递减,,又,所以,即,所以.点睛:本题难点在第(2)问,第一个难点,一次求导后,不能求单调区间,还需要二次求导.第二个难点,函数的零点不能确定具体的值,只能确定它的范围.第三个难点,求出函数f(x)的最小值后,还要再次求导.22. 已知平面直角坐标系中,曲线的参数方程为 (为参数),直线,直线,以原点为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线和直线的极坐标方程;(2)若直线与曲线交于两点,直线与曲线交于两点,求.【答案】(1);(2)【解析】分析:(1)把曲线的参数方程化为普通方程,将代入上式得曲线的极坐标方程,同理易得直线的极坐标方程;(2)设两点对应的极径分别为,.详解:(1)依题意,曲线,即,将代入上式得,因为直线,直线,故直线的极坐标方程为.(2)设两点对应的极径分别为,在中,令得,,令得,,因为,所以.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.23. 已知.(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.【答案】(1)解集为;(2)的取值范围是.【解析】分析:(1)可利用绝对值的定义去掉不等式中绝对值符号,从而分段求解;(2) 不等式,即为,利用绝对值三角不等式求左侧函数的最小值即可.详解:(1)当时,由,得,当时,由,得;当时,由,得;当时,由,得;综上所述,的解集为.(2)不等式,即为,即关于的不等式恒成立,而,当且仅当时等号成立,所以,解得或,解得或.所以的取值范围是.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
百校联盟2018版高三TOP20四月联考(全国II卷)数学(理)试题 Word版含答案
百校联盟2018届高三TOP20四月联考(全国II 卷)理数试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}(){}25,30A x x B x x x =<<=-<,则A B ⋃=( ) A .()0,5 B .()2,3 C.()3,5 D .()0,32.已知复数12iz i-=-,则z 的虚部为( ) A .35- B .35i C.15- D .15i -3.已知()(),1,2,4a x b ==- ,若()a b b +⊥,则x =( )A .8B .10 C.11 D .124.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他活动的民间艺术,在中国,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分.在如图所示的古代正八边形窗花矢量图片中,AB BC =图片中任投一点,落在正方形DEFG 中的概率为( )A D 5.执行如图所示的程序框图,则输出S 的值为( )A .5B .11 C. 14 D .196.过双曲线2222:10,0()x y E a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线E 交于,A B 两点,与双曲线E 的渐近线交于,C D 两点,若AB =,则双曲线E 的渐近线方程为( ) A.y = B.y = C.2y x =± D.y =±7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A.212.10+212++8.已知()()()211f x x x =++,则不等式()()lg 1f x f <的解集为( )A .()1,10,10⎛⎫-∞⋃+∞ ⎪⎝⎭B .1,1010⎛⎫ ⎪⎝⎭ C.()0,10 D .1,10100⎛⎫⎪⎝⎭9.已知数列{}n a中,117,1n n a a a +=-=+,则30a =( ) A .1028 B .1026 C. 1024 D .102210.已知()10,00x y D x y x t y t ⎧-+>⎫⎧⎪⎪⎪=-<⎨⎨⎬⎪⎪⎪+>⎩⎩⎭,若存在点()00,x y D ∈,使得0033x y -=,则t 的取值范围为( )A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎛⎫-+∞ ⎪⎝⎭ C. 3,4⎛⎫+∞ ⎪⎝⎭ D .3,4⎛⎫-+∞ ⎪⎝⎭11.已知函数()22cos sin 22f x x x x π=+--,则函数()f x 在3,22ππ⎡⎤-⎢⎥⎣⎦上的所有零点之和为( )A .3πB .4π C. 2π D .32π12.在三棱锥P ABC -中,1,120AB BC CP ABC BCP ===∠=∠=︒,平面PBC 和平面ABC 所成角为120︒,则三棱锥P ABC -外接球的体积为( ) ABD第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 已知函数()221,1,log ,1,x x f x x x -+<⎧=⎨≥⎩则()f f= .14.已知()22nx x --的展开式中所有项的系数之和为16,则展开式中含2x 项的系数为 .(用数字 作答).15.抛物线24y x =的焦点为F ,其准线为直线l ,过点(5,M 作直线l 的垂线,垂足为H ,则FMH ∠的 角平分线所在的直线斜率是 .16.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若222sin ,02a b bc A A π=+<<,则tan 4tan A B -的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 的前n 项和()*n S n N ∈满足123n n S a a =-,且22a +是13,a a 的等差中项,{}n b 是等差数列,2283,b a b a ==.(1)求数列{}{},n n a b 的通项公式; (2)n n n c a b =,求数列{}n c 的前n 项和n T .18.如图所示,在三棱台111ABC A B C -中,ABC ∆和111A B C ∆均为等边三角形,四边形11BCC B 为直角梯形,1CC ⊥平面ABC ,111112B C CC BC ===,,D E 分别为11,AA CB 的中点.(1)求证://DE 平面ABC ; (2)求二面角11A A E C --的余弦值.19.某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线 生产的大量产品中各抽取了 40件产品作为样本,检测某一项质量指标值t ,得到如图所示的频率分布直方图,若20t <,亦则该产品为示合格产品,若2050t ≤<,则该产品为二等品,若50t ≥,则该产品为一等品.(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好;(3)从甲生产线的样本中,满足质量指标值t 在[)0,20的产品中随机选出3件,记X 为指标值t 在[)10,20中的件数,求X 的分布列和数学期望•20.已知N 为圆()221:224C x y ++=上一动点,圆心1C 关于y 轴的对称点为2C ,点,M P 分别是线段12,C N C N 上的点,且2220,2MP C N C N C P ⋅== . (1)求点M 的轨迹方程;(2)直线:l y kx m =+与点M 的轨迹Γ只有一个公共点P ,且点P 在第二象限,过坐标原点O 且与l 垂直的直线l '与圆228x y +=相交于,A B 两点,求PAB ∆面积的取值范围.21.已知函数()f x 的导函数为()f x ',且()()()1ln f x f e e x x ef e e '=+--++⎡⎤⎣⎦,其中e 为自然对数的底数.(1)求函数()f x 的最大值; (2)证明 :()221x xf x e x x <-+-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C 的参数方程为12x y αα⎧=⎪⎨=⎪⎩ (α为参数),直线1:0l x =,直线2:0l x y -=,以原点O 为极点,x 轴正半轴为极轴(取相同的长度单位)建立极坐标系. (1)写出曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长度. 23.选修4-5:不等式选讲 已知()22f x x a x =+--.(1)当2a =-时,求不等式()4f x ≤的解集;(2)若关于x 的不等式()2332f x a x ≥--恒成立,求a 的取值范围.试卷答案一、选择题1-5: ACDCB 6-10: BDBDC 11、12:CA 二、填空题13. 0 14. 8- 16.12- 三、解答题17.(1)由题意知,当2n ≥时,11123n n S a a --=-, 又因为123n n S a a =-,且1n n n a S S -=-, 则()132n n a a n -=≥, 所以213213,39a a a a a ===, 又123,2,a a a +成等差数列,则()21822a a a +=+,所以()1112329a a a +=+, 解得19a =, 所以数列{}n a 是以1为首项,3为公比的等比数列,故13n n a -=. 设{}n b 的公差为d ,则113,79b d b d +=+=, 解得11,2d b ==,所以()2111n b n n =+-⨯=+.(2)由(1)得()113n n n n c a b n -==+⋅, 所以()2121334313n n T n -=⨯+⨯+⨯+++⨯ ,()2313233343313n n n T n n -=⨯+⨯+⨯++⨯++⨯ , 两式相减得()23122333313n n n T n --=+++++-+⨯ ,整理得113424n n n T ⎛⎫=+⨯- ⎪⎝⎭.18.(1)取1BB 的中点F ,连接,EF DF , 则//EF BC ,因为EF ⊄平面ABC ,BC ⊂平面ABC , 所以//EF 平面ABC ,因为三棱台111ABC A B C -中,11//AB A B , 所以//DF AB ,因为DF ⊄平面ABC ,AB ⊂平面ABC , 所以//DF 平面ABC ,因为D F EF F ⋂=,所以平面//DEF 平面ABC , 因为DE ⊂平面DEF ,所以//DE 平面ABC .(2)取BC 的中点O ,连接1,AO OB , 因为1CC ⊥平面ABC ,AO ⊂平面ABC , 所以1CC AO ⊥,因为1,CB AO CB CC C ⊥⋂=,所以AO ⊥平面11BCC B ,所以1AO OB ⊥, 因为11BCC B 为直角梯形,11112B C CO BC ===, 所以11OCC B 为正方形,所以1OB BC ⊥,所以1,,OB OB OA 两两互相垂直,分别以1,,OB OB OA 为,,x y z 轴建立空间直角坐标系, 因为111112B C CC BC ===,所以(()()()()1111,1,0,0,0,1,0,1,0,0,1,1,0,,,022A B B C C E ⎛⎫--- ⎪⎝⎭,由1112B A BA =,得112A ⎛- ⎝⎭,所以11111110,,,,,,022222EA EA EC ⎛⎛⎛⎫==-=- ⎪ ⎝⎝⎭⎝⎭, 设平面1AA 的一个法向量为()111,,m x y z =, 由10,0,m EA m EA ⎧⋅=⎪⎨⋅=⎪⎩得111110,0,y x y ⎧=⎪⎨-+=⎪⎩,令1z =(9,m =--,设平面11C A E 的一个法向量为()222,,n x y z =, 由110,0,n EA n EC ⎧⋅=⎪⎨⋅=⎪⎩得22220,0,y x y ⎧=⎪⎨-=⎪⎩令2x)1n =-,所以cos ,m n m n m n⋅==⋅由图观察可知,平面1AA E 与平面11C A E所成二面角为钝角,所以其余弦值为.19.(1)由频率分布直方图可知,甲生产线中二等品的概率为()100.0300.0200.0150.65⨯++=, —等品的概率为100.0050.05⨯=,乙生产线中二等品的概率为()100.0200.0350.0250.80⨯++=, 一等品的概率为100.0150.15⨯=,所以两件产品中一件为二等品,一件为一等品的概率为0.650.150.050.80=0.1375⨯+⨯. (2)设两条生产线样本的平均值分别为,x x 甲乙,则50.1150.2250.3350.2450.15550.0527.5x =⨯+⨯+⨯+⨯+⨯+⨯=甲, 150.05250.2350.35450.25550.1537.5x =⨯+⨯+⨯+⨯+⨯=乙,由频率分布直方图可知,甲生产线的数据较为分散,乙生产线的数据较为集中,所以甲生产线的数据方差大于乙生产线的数据方差,所以乙生产线更好. (3)甲生产线样本质量指标值t 在[)0,10的件数为400.01104⨯⨯=, 质量指标值t 在[)10,20的件数为400.02108⨯⨯=, 由题意可知X 的取值为0,1,2,3;所以()304831241022055C C P X C ====,()21483124812122055C C P X C ====,()124831211228222055C C P X C ====,()03483125614322055C C P X C ====.所以X 的分布列为:X 的数学期望()11228140123255555555E X =⨯+⨯+⨯+⨯=. 20.(1)因为222C N C P = ,所以P 为2C N 的中点,因为20MP C N ⋅= ,所以2MP C N ⊥,所以点M 在2C N 的垂直平分线上,所以2MN MC =,因为1214MN MC MC MC +=+=>,所以点M 在以12,C C 为焦点的椭圆上,因为2a c ==,所以22b =,所以点M 的轨迹方程为22162x y +=.(2)由22162x y y kx m +==+⎧⎪⎨⎪⎩得,()222316360k x kmx m +++-=,因为直线:l y kx m =+与椭圆Γ相切于点P ,所以()()()()2222264313612620km k m k m ∆=-+-=+-=,即2262m k =+,解得223,3131km mx y k k -==++, 即点P 的坐标为223,3131kmm k k -⎛⎫ ⎪++⎝⎭, 因为点P 在第二象限,所以0,0k m >>,所以m所以点P的坐标为, 设直线l '与l 垂直交于点Q ,则PQ 是点P 到直线l '的距离,设直线l '的方程为1y x k =-,则PQ ==≤==当且仅当2213k k =,即2k =时,PQ,所以142PAB S PQ ∆=⨯≤,即PAB ∆面积的取值范围为(0,4⎤⎦.21.(1)因为()()()1ln f x f e e x x ef e e '=+--++⎡⎤⎣⎦,所以 ()()11f e e f x x +-'=-, ()()()()()1,11,f e f e e e ef e e f e e f e e '=+--++⎧⎪⎨+-'=-⎪⎩解得()()1,2,e f e e f e e -⎧'=⎪⎨⎪=-⎩则()ln 1f x x x =-+, 所以()1x f x x-'=, 令()0f x '>,得01x <<,令()0f x '<得1x >,所以当1x =时,()()max 10f x f ==.(2)由(1)得()f x 的最大值为0,所以ln 10x x -+≤,即ln 1x x ≤-,从而()ln 1x x x x ≤-,要证22ln 21x x x x x e x x -+<-+-,即2ln 1x x x e x <--,故只需证()211x e x x x -->-,即证()22100x e x x x -+->>成立;令()()2210x h x e x x x =-+-≥则()41x h x e x '=-+,令()()F x h x '=,则()4x F x e '=-,令()0F x '=,得2ln 2x =,因为()F x '单调递增,所以当[]0,2ln 2x ∈时,()0F x '≤,()F x 单调递减,即()h x '单调递减. 当()2ln 2,x ∈+∞时,()0F x '>,()F x 单调递增, 即()h x '单调递增, 因为()2ln 258ln 20h '=-<,()()2020,2810h h e ''=>=-+>,由零点存在定理可知,[)()120,2ln 2,2ln 2,2x x ∃∈∃∈,使得()()120h x h x ''==, 故当10x x <<或2x x >时,()()0,h x h x '>单调递增;当12x x x <<时,()()0,h x h x '<单调递减,所以()h x 的最小值是()00h =或()2h x .由()20h x '=,得2241x e x =-,()()()222222222221252221x h x e x x x x x x =-+-=-+-=---,因为()22ln 2,2x ∈,所以()20h x >,故当0x >时,()0h x >,所以原不等式成立.22.(1)依题意,曲线()()22:125C x y -+-=,即22240x x y y -+-=, 将cos ,sin x y ρθρθ==代入上式得,2cos 4sin ρθθ=+ 因为直线1:0l x =,直线2:0l x y -=,故直线12,l l 的极坐标方程为()()12:,:24l R l R ππθρθρ=∈=∈. (2)设,A B 两点对应的极径分别为12,ρρ, 在2cos 4sin ρθθ=+中, 令2πθ=得,12cos 4sin 4ρθθ=+=,令4πθ=得,22cos 4sin ρθθ=+= 因为244πππ-=,所以AB =23.(1)当2a =-时,由()4f x ≤, 得2124x x ---≤,当1x ≤时,由()()2124x x ---≤,得41x -≤≤; 当12x <<时,由()()2124x x ---≤,得12x <<; 当2x ≥时,由()()2124x x ---≤,得24x ≤≤;综上所述,()4f x≤的解集为[]4,4-.(2)不等式()2332f x a x≥--,即为22423x a x a++-≥,即关于x的不等式22243x a x a++-≥恒成立,而()()2242244x a x x a x a++-≥+--=+,当且仅当()()2240x a x+-≤时等号成立,所以243a a+≥,解得243a a+≥或243a a+≤-,解得413a-≤≤或a∈∅.所以a的取值范围是41,3⎡⎤-⎢⎥⎣⎦.。
2018年高考全国卷2理科数学真题附含答案解析
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
百校联盟2018届高三TOP20四月联考(全国II卷)理数试题(解析版)
百校联盟2018届高三TOP20四月联考(全国II卷)理数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】A【解析】分析:解二次不等式化简集合,然后求并集.详解:由题意,得,又,∴故选:A点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解2. 已知复数,则的虚部为()A. B. C. D.【答案】C【解析】分析:直利用复数代数形式的乘除运算化简,然后求出虚部.详解:=,则z的虚部为.故选:C.3. 已知,若,则()A. 8B. 10C. 11D. 12【答案】D【解析】分析:由向量垂直,得到关于的方程,解之即可.详解:∵,∴,又∴,∴故选:D点睛:本题考查了向量垂直的坐标表示,属于基础题.4. 中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他活动的民间艺术,在中国,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分.在如图所示的古代正八边形窗花矢量图片中,,则向正八边形窗花矢量图片中任投一点,落在正方形中的概率为()A. B. C. D.【答案】C【解析】分析:设,分别计算正方形与正八边形的面积,即可得到所求.详解:设,则,根据对称性可知,落在正方形中的概率为.故选:C点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.5. 执行如图所示的程序框图,则输出的值为()A. 5B. 11C. 14D. 19【答案】B【解析】分析:根据题意,模拟程序框图的运行过程,求出该程序运行后输出的S的值.详解:第一次循环:是,否;第二次循环:是,否;第三次循环:是,否;第四次循环:是,否;第五次循环:是,是,输出.故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6. 过双曲线的右焦点且垂直于轴的直线与双曲线交于两点,与双曲线的渐近线交于两点,若,则双曲线的渐近线方程为()A. B. C. D.【答案】B【解析】分析:根据题意,分别求出,,利用条件,搭建的方程,从而得到双曲线的渐近线方程.详解:双曲线的渐近线方程为,令,得,所以,又因为,所以由,得,整理得,,所以双曲线E的渐近线方程为.故选:B点睛:本题重点考查了双曲线的几何性质,通径的求法,渐近线方程,考查了运算能力及逻辑推理能力.7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】分析:由三视图可还原出该几何体为一个直三棱柱削掉一个三棱锥,进而求其表面积即可.详解:由三视图可知该几何体为一个直三棱柱削掉一个三棱锥所得,所以其表面积为.故选:D点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.8. 已知,则不等式的解集为()A. B. C. D.【答案】B【解析】分析:先明确函数的单调性与奇偶性,然后解抽象不等式即可.详解:因为是偶函数,且在上为增函数,所以由,得,解得.故选:B点睛:对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.9. 已知数列中,,则()A. 1028B. 1026C. 1024D. 1022【答案】D【解析】分析:由递推关系可得,即,从而得到的通项公式,进而求即可.详解:因为,所以,即,所以,即,故是以3为首项,1为公差的等差数列,所以,所以,所以1022故选:D点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.10. 已知,若存在点,使得,则的取值范围为()A. B. C. D.【答案】C【解析】分析:作出不等式组表示的可行域,利用图象的直观性建立的不等式组,即可求出的取值范围.详解:作出不等式组表示的可行域,如图,要使可行域存在,必有,若可行域存在点,使得,则可行域内含有直线上的点,只需边界点在直线上方,且在直线下方,解不等式,解得故选:C点睛:题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.11. 已知函数,则函数在上的所有零点之和为()A. B. C. D.【答案】C【解析】分析:原问题可转化为与的图象交点问题,注意到二者都关于点对称,作图象交点情况一目了然.详解:设,因为和的图象关于点对称,所以的图象关于点对称,因为,当,即时,,当,即时,,所以在上单调递增,在上单调递减,根据对称性可知在上单调递减,在上单调递增,当时,,当时,,又因为关于点对称,且,同一坐标系中作出与的图象,由图象可知所有零点之和为.故选:C点睛:(1)函数零点个数(方程根的个数)的判断方法:①结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;②利用函数图像交点个数判断方程根的个数或函数零点个数.(2)本题将方程实根个数的问题转化为两函数图象交点的问题解决,解题时注意图象具有良好的对称性,从而问题得以简化.12. 在三棱锥中,,平面和平面所成角为,则三棱锥外接球的体积为()A. B. C. D.【答案】A【解析】分析:先明确球心的位置:过△ABC的外心作平面ABC的垂线,过△PBC的外心作平面PBC的垂线,设两条垂线交于点O,则O为三棱锥外接球的球心,然后把问题转化为解三角形的问题.详解:如图,过△ABC的外心作平面ABC的垂线,过△PBC的外心作平面PBC的垂线,设两条垂线交于点O,则O为三棱锥外接球的球心,过点作,连接,则BC⊥平面,BC⊥平面,所以四点共面,所以BC⊥,由BC⊥,BC⊥,所以∠为平面PBC和平面ABC所成角,即∠,由,得,由余弦定理得,由正弦定理得,即,又因为,所以由余弦定理得,所以,所以,三棱锥外接球的体积为故选:A点睛:解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数则__________.【答案】0【解析】由分段函数的定义可得,则,应填答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百校联盟2018届高三TOP20四月联考(全国II卷)理数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】A【解析】分析:解二次不等式化简集合,然后求并集.详解:由题意,得,又,∴故选:A点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解2. 已知复数,则的虚部为()A. B. C. D.【答案】C【解析】分析:直利用复数代数形式的乘除运算化简,然后求出虚部.详解:=,则z的虚部为.故选:C.3. 已知,若,则()A. 8B. 10C. 11D. 12【答案】D【解析】分析:由向量垂直,得到关于的方程,解之即可.详解:∵,∴,又∴,∴故选:D点睛:本题考查了向量垂直的坐标表示,属于基础题.4. 中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他活动的民间艺术,在中国,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分.在如图所示的古代正八边形窗花矢量图片中,,则向正八边形窗花矢量图片中任投一点,落在正方形中的概率为()A. B. C. D.【答案】C【解析】分析:设,分别计算正方形与正八边形的面积,即可得到所求.详解:设,则,根据对称性可知,落在正方形中的概率为.故选:C点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.5. 执行如图所示的程序框图,则输出的值为()A. 5B. 11C. 14D. 19【答案】B【解析】分析:根据题意,模拟程序框图的运行过程,求出该程序运行后输出的S的值.详解:第一次循环:是,否;第二次循环:是,否;第三次循环:是,否;第四次循环:是,否;第五次循环:是,是,输出.故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6. 过双曲线的右焦点且垂直于轴的直线与双曲线交于两点,与双曲线的渐近线交于两点,若,则双曲线的渐近线方程为()A. B. C. D.【答案】B【解析】分析:根据题意,分别求出,,利用条件,搭建的方程,从而得到双曲线的渐近线方程.详解:双曲线的渐近线方程为,令,得,所以,又因为,所以由,得,整理得,,所以双曲线E的渐近线方程为.故选:B点睛:本题重点考查了双曲线的几何性质,通径的求法,渐近线方程,考查了运算能力及逻辑推理能力.7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】分析:由三视图可还原出该几何体为一个直三棱柱削掉一个三棱锥,进而求其表面积即可.详解:由三视图可知该几何体为一个直三棱柱削掉一个三棱锥所得,所以其表面积为.故选:D点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.8. 已知,则不等式的解集为()A. B. C. D.【答案】B【解析】分析:先明确函数的单调性与奇偶性,然后解抽象不等式即可.详解:因为是偶函数,且在上为增函数,所以由,得,解得.故选:B点睛:对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.9. 已知数列中,,则()A. 1028B. 1026C. 1024D. 1022【答案】D【解析】分析:由递推关系可得,即,从而得到的通项公式,进而求即可.详解:因为,所以,即,所以,即,故是以3为首项,1为公差的等差数列,所以,所以,所以1022故选:D点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.10. 已知,若存在点,使得,则的取值范围为()A. B. C. D.【答案】C【解析】分析:作出不等式组表示的可行域,利用图象的直观性建立的不等式组,即可求出的取值范围.详解:作出不等式组表示的可行域,如图,要使可行域存在,必有,若可行域存在点,使得,则可行域内含有直线上的点,只需边界点在直线上方,且在直线下方,解不等式,解得故选:C点睛:题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.11. 已知函数,则函数在上的所有零点之和为()A. B. C. D.【答案】C【解析】分析:原问题可转化为与的图象交点问题,注意到二者都关于点对称,作图象交点情况一目了然.详解:设,因为和的图象关于点对称,所以的图象关于点对称,因为,当,即时,,当,即时,,所以在上单调递增,在上单调递减,根据对称性可知在上单调递减,在上单调递增,当时,,当时,,又因为关于点对称,且,同一坐标系中作出与的图象,由图象可知所有零点之和为.故选:C点睛:(1)函数零点个数(方程根的个数)的判断方法:①结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;②利用函数图像交点个数判断方程根的个数或函数零点个数.(2)本题将方程实根个数的问题转化为两函数图象交点的问题解决,解题时注意图象具有良好的对称性,从而问题得以简化.12. 在三棱锥中,,平面和平面所成角为,则三棱锥外接球的体积为()A. B. C. D.【答案】A【解析】分析:先明确球心的位置:过△ABC的外心作平面ABC的垂线,过△PBC的外心作平面PBC的垂线,设两条垂线交于点O,则O为三棱锥外接球的球心,然后把问题转化为解三角形的问题.详解:如图,过△ABC的外心作平面ABC的垂线,过△PBC的外心作平面PBC的垂线,设两条垂线交于点O,则O为三棱锥外接球的球心,过点作,连接,则BC⊥平面,BC⊥平面,所以四点共面,所以BC⊥,由BC⊥,BC⊥,所以∠为平面PBC和平面ABC所成角,即∠,由,得,由余弦定理得,由正弦定理得,即,又因为,所以由余弦定理得,所以,所以,三棱锥外接球的体积为故选:A点睛:解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数则__________.【答案】0【解析】由分段函数的定义可得,则,应填答案。
14. 已知的展开式中所有项的系数之和为16,则展开式中含项的系数为__________.(用数字作答).【答案】【解析】分析:通过因式分解“三项问题”可转化为“二项问题”进而分类讨论即可求出展开式中含项的系数.详解:令,得,得,因为,所以展开式中含项的系数为故答案为:点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.15. 抛物线的焦点为,其准线为直线,过点作直线的垂线,垂足为,则的角平分线所在的直线斜率是__________.【答案】【解析】分析:由抛物线定义可知,进而可推断出∠FMH的角平分线所在的直线经过HF的中点,利用斜率的两点式即可得到结论.详解:连接HF,因为点M在抛物线上,所以由抛物线的定义可知,所以△MHF为等腰三角形,所以∠FMH的角平分线所在的直线经过HF的中点,因为F,,所以HF的中点为,所以∠FMH的角平分线的斜率为.故答案为:点睛:在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。
抛物线定义有两种用途:一是当已知曲线是抛物线时,抛物线上的点M满足定义,它到准线的距离为d,则|MF|=d,可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.16. 已知的内角的对边分别为,若,则的最小值为__________.【答案】【解析】分析:由余弦定理结合可得,从而把两元问题转化为一元问题,然后利用均值不等式即可求出的最小值.详解:由余弦定理及,得即,再由正弦定理,得即,即所以,所以,所以,当且仅当,即时等号成立,所以的最小值为故答案为:点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和满足,且是的等差中项,是等差数列,. (1)求数列的通项公式;(2),求数列的前项和.【答案】(1),(2)【解析】分析:(1)利用与的关系求得的通项公式,利用等差数列基本量关系得到的通项公式;(2)由(1)得,利用错位相减法求出数列的前项和.详解:(1)由题意知,当时,,又因为,且,则,所以,又成等差数列,则,所以,解得,所以数列是以1为首项,3为公比的等比数列,故.设的公差为,则,解得,所以.(2)由(1)得,所以,,两式相减得,整理得.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18. 如图所示,在三棱台中,和均为等边三角形,四边形为直角梯形,平面,,分别为的中点.(1)求证:平面;(2)求二面角的余弦值.【答案】(1)见解析(2)【解析】分析:(1)取的中点,连接,要证平面,可转证平面平面,即证平面,平面;(2)先证明两两互相垂直,以为轴建立空间直角坐标系,求出平面与平面的法向量,利用公式即可求出二面角的余弦值.详解:(1)取的中点,连接,则,因为平面,平面,所以平面,因为三棱台中,,所以,因为平面,平面,所以平面,因为,所以平面平面,因为平面,所以平面.(2)取的中点,连接,因为平面,平面,所以,因为,所以平面,所以,因为为直角梯形,,所以为正方形,所以,所以两两互相垂直,分别以为轴建立空间直角坐标系,因为,所以,由,得,所以,设平面的一个法向量为,由得,令,得,设平面的一个法向量为,由得令,得,所以由图观察可知,平面与平面所成二面角为钝角,所以其余弦值为.点睛:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.19. 某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线生产的大量产品中各抽取了 40件产品作为样本,检测某一项质量指标值,得到如图所示的频率分布直方图,若,亦则该产品为示合格产品,若,则该产品为二等品,若,则该产品为一等品.(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好;(3)从甲生产线的样本中,满足质量指标值在的产品中随机选出3件,记为指标值在中的件数,求的分布列和数学期望•【答案】(1)(2)乙生产线更好(3)见解析【解析】分析:(1)由频率分布直方图可知,甲、乙生产线一、二等品的概率,利用独立事件乘法公式可得结果;(2)求出两条生产线样本的平均值,由频率分布直方图可知,甲生产线的数据较为分散,乙生产线的数据较为集中,从而作出判断;(3)由题意可知的取值为0,1,2,3,求出相应的概率值,即可求出的分布列和数学期望.详解:(1)由频率分布直方图可知,甲生产线中二等品的概率为,—等品的概率为,乙生产线中二等品的概率为,一等品的概率为,所以两件产品中一件为二等品,一件为一等品的概率为.(2)设两条生产线样本的平均值分别为,则,,由频率分布直方图可知,甲生产线的数据较为分散,乙生产线的数据较为集中,所以甲生产线的数据方差大于乙生产线的数据方差,所以乙生产线更好.(3)甲生产线样本质量指标值在的件数为,质量指标值在的件数为,由题意可知的取值为0,1,2,3;所以,,,.所以的分布列为:的数学期望.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.20. 已知为圆上一动点,圆心关于轴的对称点为,点分别是线段上的点,且.(1)求点的轨迹方程;(2)直线与点的轨迹只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于两点,求面积的取值范围.【答案】(1)(2)【解析】分析:(1)利用椭圆定义求出点的轨迹方程;(2)由直线与椭圆相切可知,点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,利用均值不等式求最值,从而得到面积的取值范围.详解:(1)因为,所以为的中点,因为,所以,所以点在的垂直平分线上,所以,因为,所以点在以为焦点的椭圆上,因为,所以,所以点的轨迹方程为.(2)由得,,因为直线与椭圆相切于点,所以,即,解得,即点的坐标为,因为点在第二象限,所以,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,,当且仅当,即时,有最大值,所以,即面积的取值范围为.点睛:圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21. 已知函数的导函数为,且,其中为自然对数的底数.(1)求函数的最大值;(2)证明:.【答案】(1)0(2)见解析【解析】分析:(1)由题意可得,明确函数的单调性,从而得到函数的最大值;(2)由(1)得,即,要证,即,故只需证,故只需证,即证成立.详解:(1)因为,所以,,解得则,所以,令,得,令得,所以当时,.(2)由(1)得的最大值为0,所以,即,从而,要证,即,故只需证,即证成立;令则,令,则,令,得,因为单调递增,所以当时,,单调递减,即单调递减. 当时,,单调递增,即单调递增,因为,,由零点存在定理可知,,使得,故当或时,单调递增;当时,单调递减,所以的最小值是或.由,得,,因为,所以,故当时,,所以原不等式成立.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 已知平面直角坐标系中,曲线的参数方程为 (为参数),直线,直线,以原点为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线和直线的极坐标方程;(2)若直线与曲线交于两点,直线与曲线交于两点,求.【答案】(1);(2)【解析】分析:(1)把曲线的参数方程化为普通方程,将代入上式得曲线的极坐标方程,同理易得直线的极坐标方程;(2)设两点对应的极径分别为,.详解:(1)依题意,曲线,即,将代入上式得,因为直线,直线,故直线的极坐标方程为.(2)设两点对应的极径分别为,在中,令得,,令得,,因为,所以.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.23. 已知.(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.【答案】(1)解集为;(2)的取值范围是.详解:(1)当时,由,得,当时,由,得;当时,由,得;当时,由,得;综上所述,的解集为.(2)不等式,即为,即关于的不等式恒成立,而,当且仅当时等号成立,所以,解得或,解得或.所以的取值范围是.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。