第二节一元一次方程的解

合集下载

人教版七年级上册第三章第二节解一元一次方程(二)——去括号与去分母(第1课时)

人教版七年级上册第三章第二节解一元一次方程(二)——去括号与去分母(第1课时)
义务教育教科书 数学 七年级 上册
3.3解一元一次方程(二) ——去括号与去分母 第1课时
学习目标
1.会用去括号解含括号的一元一次方程. 2.掌握解一元一次方程的具体步骤 3.掌握用一元一次方程解决实际问题的方法
复习导入
解方程:6x-7=4x-1 1、一元一次方程的解法我们学了哪几步?
移项
6x-4x=-1+7
X=0
(3)6(1 x 4) 2x 7 (1 x 1) X=6
2
3
2.解方程:3(5x-1)- 2(3x+2)=6(x-1)+2 解:去括号,得 15x-3-6x-4 =6x-6+2
移项得 15x-6x-6x =-6+2+3+4 合并同类项得 3x =3 系数化为1,得 x =1
★ 在前面再加上一个负号得6x-7=-(4x-1) 会吗?
自学指导1
自学课本93页,完成以下问题,(用时5分钟) 问题 1:若设上半年每月平均用电x度,
则下半年每月平均用电

上半年共用电
度,
下半年共用电
度,
可列方程
.
问题 2:以上方程有何特点?如何解方程? 问题 3:本题还有其他列方程的方法吗?
例题1 某工厂加强节能措施,去年下半年与上半年相比,
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
问题: 1.行程问题涉及哪些量?它们之间的关系是什么?
路程、速度、时间.
路程=速度×时间.
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.

初二数学十五章积累知识点

初二数学十五章积累知识点

初二数学十五章积累知识点第一节:分式的乘法与除法1.分式的乘法:两个分式相乘时,只需将两个分式的分子相乘,分母相乘即可。

如:12×34=1×32×4=38。

2.分式的除法:两个分式相除时,只需将第一个分式乘以第二个分式的倒数(即分子与分母互换位置)即可。

如:12÷34=12×43=1×42×3=46=23。

第二节:一元一次方程1.一元一次方程的定义:一元一次方程是指含有一个未知数,并且该未知数的最高次数为1的方程。

如:2x+3=7。

2.解一元一次方程的步骤:–将方程中的常数项移到等号右边;–整理方程,使得未知数的系数为1;–两边同时乘以倒数得到方程的解。

第三节:平方根与立方根1.平方根的定义:一个数的平方根是指乘以自己后等于该数的数。

如:√9=3。

2.求平方根的方法:可以通过试探法或使用计算器等工具来求平方根。

3.立方根的定义:一个数的立方根是指乘以自己三次后等于该数的数。

如:√83=2。

4.求立方根的方法:可以通过试探法或使用计算器等工具来求立方根。

第四节:多项式的加法与减法1.多项式的加法:多项式的加法是指将同类项相加。

如:(2x2+3x+1)+(4x2+2x+5)=6x2+5x+6。

2.多项式的减法:多项式的减法是指将同类项相减。

如:(6x2+5x+ 6)−(2x2+3x+1)=4x2+2x+5。

第五节:二次根式与分式的乘法与除法1.二次根式的定义:二次根式是指含有平方根的表达式。

如:2√3。

2.二次根式的乘法:二次根式的乘法可以类比分式的乘法,将系数相乘,并将根号内的数相乘。

如:2√3×3√2=6√6。

3.二次根式的除法:二次根式的除法可以类比分式的除法,将系数相除,并将根号内的数相除。

如:√63√2=2√3。

第六节:一元一次不等式1.一元一次不等式的定义:一元一次不等式是指含有一个未知数,并且该未知数的最高次数为1的不等式。

一元一次方程解法

一元一次方程解法

一元一次方程解法一元一次方程是数学中最基本的方程之一,它的解法简单而直接。

本文将详细介绍一元一次方程的解法。

一、一元一次方程的基本形式一元一次方程的基本形式可以表示为ax + b = 0,其中,a和b为已知的实数常数,x为未知数。

在解方程时,我们要找到使等式成立的未知数x的值。

二、一元一次方程的解法解一元一次方程的关键是将x从等式中分离出来,以得到x的值。

步骤一:将方程的形式改写成ax = -b通过将等式两边都减去b,将常数项移动到等式的右侧,方程可以改写成ax = -b。

步骤二:消去系数a为了得到x的值,我们需要消去未知数x的系数a。

如果a的值不为0,则可以通过除以a来消去系数。

而如果a的值为0,则无法继续求解,因为方程将变成一个矛盾的等式。

步骤三:解方程现在,方程变成了x = -b/a,通过计算-b/a的值,我们就可以得到一元一次方程的解。

三、解一元一次方程的例子让我们通过一个例子来演示一下解一元一次方程的过程。

例子:解方程2x + 3 = 7步骤一:将方程的形式改写成2x = 7 - 3通过减去3,方程变为2x = 4。

步骤二:消去系数2由于系数2不为0,我们可以通过除以2来消去系数。

这样方程变成x = 4/2,即x = 2。

步骤三:解方程计算4/2的值,我们得到x = 2。

所以,方程2x + 3 = 7的解为x = 2。

四、总结解一元一次方程的步骤可以概括为以下几个简单的步骤:将方程形式改写,消去系数,解方程。

通过掌握这些基本的解方程方法,我们可以轻松地解决一元一次方程。

五、应用领域一元一次方程在生活中有着广泛的应用。

例如,它可以用于计算物品购买的原价或折扣,解决物品比例的问题等等。

掌握一元一次方程的解法,可以帮助我们更好地理解和应用数学知识。

总结:一元一次方程的解法是学习数学中的基础内容。

通过对方程进行形式改写、消去系数和解方程,我们可以得到方程的解。

这一解法在实际生活中有着广泛的应用,能够帮助我们解决很多实际问题。

一元一次解方程初中

一元一次解方程初中

一元一次解方程初中
一元一次方程是初中数学中的一个重要概念,它只含有一个未知数,并且未知数的次数是1。

解一元一次方程的基本步骤是:
去分母:如果方程中有分数,首先要去分母,使方程变为整式方程。

去括号:如果方程中有括号,需要去掉括号,将方程展开。

移项:将方程中的同类项合并,使未知数项和常数项分别位于等式的两侧。

合并同类项:将方程中的同类项合并,简化方程。

系数化为1:通过除以未知数的系数,使未知数的系数为1,从而得到未知数的解。

例如,解方程2x + 3 = 5:
去分母:方程已经是整式方程,无需去分母。

去括号:方程中没有括号,无需去括号。

移项:将方程中的同类项合并,得到2x = 5 - 3。

合并同类项:简化方程,得到2x = 2。

系数化为1:将方程两边都除以2,得到x = 1。

所以,方程2x + 3 = 5 的解是x = 1。

以上是一元一次方程的基本解法,通过熟练掌握这些步骤,可以解决各种一元一次方程问题。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

华师版七年级下册数学第六章第二节解一元一次方程(1)

华师版七年级下册数学第六章第二节解一元一次方程(1)

例1:解方程: -3(x+1)=9
你能用几种
方法来解此 解法一:去括号,得: -3x-3=9 方程?试试
移项,得: -3x=9+3
化简,得: -3x=12
方程两边同除以-3,得: x=-4
解法二:方程两边同除以-3,得: X+1=-3
移项,得: X=-3-1
即:
X=-4
议一议:观察上述两种解法,说出它们的区别
5x 10x 2 10 5x 12 x 12 . 5 x 12 . 5
2(x 1) 2(x 1) 1 3x
解 : (x 1) 2(x 1) 1 3x x 1 2x 2 1 3x x 3 1 3x
x 3x 1 3
2x 2 x 1.
32(x 2) (4x 1) 3(1 x).
知识回顾
解方程 9-3x -5x 5 解: 移项得:
-3x+5x=5-9
合并同类项得:
2x = - 4
系数化为1得:
x=-2
移项,合并同类项,系数化为1, 要注意什么?
①移项要变号。 ②合并同类项,系数相加,字母部分 不变。
③系数化为1,要方程两边同时除以
未知数前面的系数。
新授:
☆ 一元一次方程定义:
解 : 2(x 2) (4x 1) 3(1 x). 2x 4 4x 1 3 3x 2x 3 3 3x 2x 3x 3 3 x 6.
列方程求解
2.1当x取何值时,代数式3(2 x)和2(3 x)的值相等 ?
解 : 3(2 x) 2(3 x)
6 3x 6 2x
Hale Waihona Puke 则m = 0 。3、判断下列哪些是一元一次方程。
3 x 1 , 3x 2, 5x2 3x 1 0,

七年级上册第五章-第二讲 求解一元一次方程

七年级上册第五章-第二讲  求解一元一次方程

第一讲 认识一元一次方程一、用合并同类项法解一元一次方程1.合并同类项:将一元一次方程中含未知数的项与常数项分别合并,使方程转化为ax =b (a ≠0)的形式. 要点精析:(1)要把不同的同类项分别进行合并;(2)解方程中的合并同类项和整式加减中的合并同类项一样,它们的根据都是乘法分配律,实质都是系数的合并. 例1 解下列方程:总结:(1)合并同类项的目的是将原方程转化成ax =b (a ≠0)的形式,依据是合并同类项的法则;(2)系数化为1的依据是等式的性质2:将方程ax =b (a ≠0)的两边同时除以a ,当a 为分数时,可将方程两边同时乘a 的倒数. 例2 下面解方程的结果正确的是( )A .方程4=3x -4x 的解为x =4B .方程 x = 的解为x =2C .方程32=8x 的解为x =D .方程1-4= x 的解为x =-9例3 有一列数,按一定规律排列成1,-3, 9, -27, 81,-243, …,其中某三个相邻数的和是-1701, 这三个数各是多少?例4 某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6小时完成;如果让九年级学生单独工作,需要4小时完成.现在由八、九年级学生一起工作,需多少小时才能完成任务?例5 如果x =m 是方程 x -m =1的解,那么m 的值是( )A .0B .2C .-2D .-6 二、列方程解“总量=各部分量的和”的问题1.系数化为1:方程两边同时除以未知数的系数,使一元一次方程ax =b (a ≠0)变形为x = (a ≠0)的形式,变形的依据是等式的性质2.()51268;2x x -=-()27 2.53 1.51546 3.x x x x -+-=-⨯-⨯32131413ba122.易错警示:系数化为1时,常出现以下几种错误: (1)颠倒除数与被除数的位置; (2)忽略未知数系数的符号;(3)当未知数的系数含有字母时,不考虑系数是不是等于0的情况.例6 某校三年共购买计算机140台,去年 购买数量是前年的2倍,今年购买数量又是去年的 2倍.前年这个学校购买了多少台计算机?例7 解下列一元一次方程:(1)-x =3; (2)2x =-4; (3) x =-3.例8 把方程- x =3的系数化为1的过程中,最恰当的叙述是( )A .给方程两边同时乘-3B .给方程两边同时除以-C .给方程两边同时乘-D .给方程两边同时除以3 三、移项比较这个方程与原方程,可以发现,这个变形相当于即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫移项 . 1.定义:将方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫移项.2.方法:把方程右边含有未知数的项改变符号后移到方程左边,把方程左边不含未知数的项改变符号后移到方程右边;即:“常数右边凑热闹,未知左边来报到.”用移项法解一元一次方程的一般步骤: 移项→合并同类项→系数化为1. 移项的原则: 未知项左边来报到,常数项右边凑热闹.移项的方法: 把方程中的某些项改变符号后,从方程的一边移到另一边,即移项要变号. 例9 将方程5x +1=2x -3移项后,可得( ) A .5x -2x =-3+1 B .5x -2x =-3-1 C .5x +2x =-3-1 D .5x +2x =1-3 例10解方程时,移项法则的依据是( )A .加法交换律B .加法结合律C .等式的性质1D .等式的性质212233232例2 解下列方程:(1)2x +6 = 1; (2) 3x +3 = 2x +7. (3)例3 已知关于x 的方程3a -x = +3的解为2,则式子a 2-2a +1的值是________. 四、去括号法 去括号法则:1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 去括号的目的是能利用移项法解方程;其实质是乘法的分配律.3.去括号必须做到“两注意”:(1)如果括号外的因数是负数时,去括号后,原括号内各项都要改变符号. (2)乘数与括号内多项式相乘时,乘数应乘以括号内每一项,不要漏乘. 4.用去括号法解一元一次方程步骤:第一步:去括号(按照去括号法则去括号);第二步:用移项法解这个一元一次方程:移项→合并同类项→系数化为1. 例1 方程1-(2x +3)=6,去括号的结果是( )A .1+2x -3=6B .1-2x -3=6C .1-2x +3=6D .2x -1-3=6 例2 解方程:(1)-2(x -1) = 4. (2)4x +2(4x -3)=2-3(x +1).例5 解方程:2(x +1)- (x -1)=2(x -1)+ (x +1).例6 解下列方程:(1)5(x -1) = 1; (2)2-(1-x ) = -2; (3)11x +1 = 5(2x +1); (4)4x -3(20-x ) = 3; (5)5(x +8)-5 = 0; (6)2(3-x ) = 9; (7)-3(x +3) = 24; (8)-2 (x -2) = 12. 11 3.42x x -+2x1212五、去分母去分母的方法:方程两边同时乘所有分母的最小公倍数; 去分母的依据:等式的性质2;去分母的目的:将分数系数转化为整数系数;去分母的步骤:先找各个分母的最小公倍数,再依据等式的性质2,将方程两边同时乘这个最小公倍数. 例1 把方程3x +去分母,正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +2(2x -1)=3-3(x +1)C .18x +(2x -1)=18-(x +1)D .18x +4x -1=18-3x +1例2 在解方程 时,去分母正确的是( )A .7(1-2x )=3(3x +1)-3B .1-2x =(3x +1)-3C .1-2x =(3x +1)-63D .7(1-2x )=3(3x +1)-63 例3 解方程:(1) (2)例4 解下列方程:课堂小结211332x x1231337x x -+=-111(15)(7).523x x 0.10.010.011.0.20.063x x x --=-34(1);23x x 11(2)1)(23);37x x (2(3);54x x11(4)(1)(1);43x x 212(5)1;34x x 11(6)(1)2(2).25x x一、合并同类项1.下列解方程的过程中,错误的是( )A .由-4x +5x =2,得x =-2B .由y +2y =2,得3y =2,故y =C .由-2x +x =4-2,得-x =2,故x =-2D .由0.25a -0.75a =0,得-0.5a =0,故a =0 2.解方程11=x +6x +4x 的正确结果是( )A .x =1B .x =-1C .x =2D .x =-2 3.若关于x 的方程a -3ax =14的解是x =-2,则a 的值为( )A .-14B .-2C .2D .144.对于任意四个有理数a ,b ,c ,d ,定义新运算: .已知 =18,则x 的值为( )A .-1B .2C .3D .45.关于x 的方程3-x =2a 与方程x +3x =28的解相同,则a 的值为( )A .2B .-2C .5D .-5 6.解方程: (1)2x -4x +3x =5; (2) a + a - a =-12.7.已知关于x 的方程 +x =3a -3的解为x =2,求(-a )2-2a +1的值.8.如果甲、乙、丙三村合修一条公路,计划出工84人,按3:4 : 7出工,求各村出工的人数. ①设甲、乙、丙三村分别出工3x 人、4x 人、7x 人,依题意,得3x +4x +7x =84;②设甲村出工x 人,依题意,得x +4x +7x =84; ③设乙村出工x 人,依题意,得x +x +x =84; ④设丙村出工x 人,依题意,得3x +4x +x =84. 上面所列方程中正确的有( )A .1个B .2个C .3个D .4个9.某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6 h 完成;如果让九年级学生单独工作,需要4 h 完成.现在由八、九年级学生一起工作,需多少小时才能完成任务?10.我国明代数学家程大位曾提出一个有趣的问题.有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只羊.”问这群羊有多少只. 1213162x二、移项1.下列变形属于移项变形的是( )A .由 =3,得x -2=12B .由2x =3,得x =C .由4x =2x -1,得4x -2x =-1D .由3y -(y -2)=3,得3y -y +2=3 2.解方程3x +5=8x -10的一般步骤是:(1)移项,得________________; (2)合并同类项,得____________; (3)系数化为1,得____________.3.关于x 的方程3x +2=x -4b 的解是x =5,则b 等于( )A .-1B .-2C .2D .-34.某县由种玉米改为种优质杂粮后,今年农民人均收入比去年提高了20%,今年农民人均收入比去年的1.5倍少1 200元.问这个县去年农民人均收入多少元?若设这个县去年农民人均收入为x 元,则今年农民人均收入既可以表示为__________________,又可以表示为__________________,因此可列方程______________________________.5.(中考•荆州)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?( )A .140元B .150元C .160元D .200元 6.(中考•聊城)在如图所示的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .72 7.解方程:(1)0.4x - =8- x ; (2) x -3=5x + .8.如果5m +4与m -2互为相反数,求m 的值.9.已知|3x -6|+(2y -8)2=0,求2x -y 的值. 24x 321415141210.若-2x 2m +1y 6与 x 3m -1y 10+4n是同类项,求m ,n 的值.11.(中考·安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少? 请解答上述问题.12.有一群鸽子和一些鸽笼,若每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,若每个鸽笼住7只鸽子,则有一个鸽笼少1只鸽子.有多少只鸽子和多少个鸽笼?三、去括号1.下列解方程过程中,变形正确的是( )A .由2x -1=3得2x =3-1B .由2x -3(x +4)=5得2x -3x -4=5C .由-75x =76得x =D .由2x -(x -1)=1得2x -x =0 2.解方程2(x -3)-3(x -5)=7(x -1)的步骤:(1)去括号,得____________________; (2)移项,得_______________________; (3)合并同类项,得____________; (4)系数化为1,得__________. 3.下列四组变形中,属于去括号的是( )A .5x +4=0,则5x =-4 B. =2,则x =6 C .3x -(2-4x )=5,则3x +4x -2=5 D .5x =2+1,则5x =3 4.(中考·包头)若2(a +3)的值与4互为相反数,则a 的值为( )A .1B .C .-5D. 5.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,则k 的值为( )A.B .C.D . 7576-3x72-125989-5353-(2) (3)7.解方程: 278(x -3)-463(6-2x )-888(7x -21)=0.8.(中考•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程解应用题的方法求出问题的解.9.(中考·遵义)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为有一群人分银子,如果每人分七两,则剩余四两:如果每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语).10.当m 取什么整数时,关于x 的方程 的解是正整数?四、去分母1.解方程 ,为了去分母应给方程两边同乘的最合适的数是( ) A .6 B .9 C .12 D .242.(中考·株洲)在解方程 时,方程两边同时乘6,去分母后,正确的是( )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)3.若 与 互为相反数,则x 的值为( ) A .1B .-1C .D .-24.如果方程 的解也是方程 的解,那么a 的值是( ) ()()11211.223x x x ⎡⎤--=-⎢⎥⎣⎦43126 1.345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦15142323mx x ⎛⎫-=- ⎪⎝⎭3127146y y -+-=13132x x x -++=23516x -53-17236x x ++-=203a x--=5.解方程:(1) (2)(3) (4)6.在解方程3(x +1)- (x -1)=2(x -1)- (x +1)时,我们可以将x +1,x -1各看成一个整体进行移项、合并同类项,得到 (x +1)= (x -1),再去分母,得3(x +1)=2(x -1),进而求得x =-5,这种方法叫整体求解法.请用这种方法解方程:5(2x +3)- (x -2)=2(x -2)- (2x +3).7.小明在解方程 去分母时,方程右边的-1项没有乘3,因而求得的解是x =2,试求a 的值,并求出方程正确的解.8.已知(a +b )y 2- +5=0是关于y 的一元一次方程. (1)求a ,b 的值;(2)若x =a 是关于x 的方程 的解,求|a -b |-|b -m |的值.131.42x x x ---=-40.20.30.02.20.50.01x x x --+=()11115789.864x ⎧⎫⎡⎤-+++=⎨⎬⎢⎥⎣⎦⎩⎭1312727334121612121.156518x x x x ---+-=-+21133x x a-+=-123a y +2123626x x x mx +---+=-。

第二节 一元一次方程的解法(含答案)...七年级数学 学而思

第二节  一元一次方程的解法(含答案)...七年级数学 学而思

第二节 一元一次方程的解法1.一元一次方程的基本解法去分母、去括号、移项、合并同类项、x 项系数化为1.注:①去分母时,方程两边要同时乘以分母的最小公倍数,常数项不要漏乘;②去括号时,括号前的系数要与括号里的每一项都要相乘;③移项的时候要变号;④方程的解的形式要写成x 在等号左边的形式. 2.解一元一次方程的技巧小数化为整数、整体思想、裂项、凑项. 3.含绝对值的一元方程运用分类讨论法去绝对值,转化成一元一次方程后,再求解. 4.求含参方程的解的情况对原方程整理后,可化为ax =b (a 和b 为参数,x 为未知数)的形式.求此类方程的解时需要对a 和b 的取值分类讨论. 5.同解方程两个方程的解相同的方程. 6.整数解方程解为整数的方程.1.解一元一次方程的技巧(1)整体思想:方程中重复出现内容相同的括号时,可考虑将括号当成整体;(2)小数化整数:方程中,若分数的分子或分母中有小数出现,则利用分数的性质将分子分母同时扩大若干倍使分子或分母化为整数后再计算;(3)若方程中出现明显的裂项法的特征,则考虑裂项后消项,把方程化为简单形式后再求方程的解. 2.求含参方程的解的情况(1)先把方程整理成b ax =的形式; (2)分类讨论:①当0=/a 时,,abx =原方程有唯一解;②当0=a 且0=b 时.原方程有无数解: ③当a 0=且,0=/b 原方程无解. 3.同解方程问题(1)普通方程和含参方程的解相同:①解出普通方程的解;②将普通方程的解代入含参方程中; ③求出参数值;(2)两个含参方程的解相同:①将其中一个方程的解用参数表示出来;②将①中的解代入另一个方程中,消去未知数; ③求出参数值. 4.方程的 整数解问题①将方程整理成b ax =的形式; ②解方程,得⋅=ab x ③求出满足条件的参数值,常用枚举法或分离常数法.例1.解方程:⋅-=--05.035.22.04x x检测1.(四川雁江区期末)解方程:.2.15.023.01=+--x x 例2.解方程:.2016201720161262=⨯++++xx x x ΛΛ检测2.解方程:⋅=⨯++⨯+⨯+⨯2019120192017755331x x x x ΛΛ 例3.(广东普宁市期末)阅读下列解方程的过程,并完成(1)(2)小题的解答.解方程:.2|1|=-x解:当,01<-x 即1<x 时,原方程可化为:,2)1(=--x 解得,1-=x当≥-1x ,0即1≥x 时,原方程可化为:,21=-x 解得,3=x 综上所述,方程2|1|=-x 的解为1-=x 或.3=x (1)解方程:;8|32|=+x (2)解方程:.1|1||32|=--+x x检测3.解方程:.1|21|=--x x例4.(1)已知关于x 的方程)2(2)1(2--=-+m m x 的解比方程1)1(41)1(5+-=-+x x 的解大2,求m 的值;(2)已知方程1324+=+x m x 和方程1623+=+x m x 的解相同. ①求m 的值; ②求20202019)572()2(-⋅+m m 的值.检测4.(湖北黄冈期末)如果方程22834+-=--x x 的解与方程126)13(4-+=+-a x a x 的解相同,求式子a a 1-的值.例5.已知关于x 的方程b x ax -=+56有无数个解,试求b a +2的值.检测5.讨论关于x 的方程b x x a +-=-12的解的情况,其中a ,b 为已知数.例6.已知关于x 的方程),2(2)1(--=+x k x k 求当k 是取什么整数值时,方程的解是整数.检测6.(北京海淀区期末)已知关于x 的方程x kx -=7有正整数解,则整数k 的值为 例7.我们规定,若关于x 的一元一次方程b ax =的解为a b -则称该方程为定解方程,例如:293=x 的解为,23329=-则该方程293=x 就是定解方程.请根据上边规定解下列问题: (1)若x 的一元一次方程m x =2是定解方程,则=m(2)若x 的一元一次方程a ab x +=2是定解方程,它的解为a ,则=a (3)若x 的一元一次方程m mn x +=2和n mn x +=-2是定解方程,求代数式]2)[(21])[(3)24(222n m mn m m mn m ++-++++-的值,检测7.(福建永春县期末)对于两个不相等的有理数a ,b ,我们规定符号},max{b a 表示a ,b 中的较大值,如:,4}4,2max{=按照这个规定解决下列问题: =--}2,3max{)1((2)方程23},max{+=-x x x 的解为第二节 一元一次方程的解法(建议用时 35分钟)实战演练1.(1)(湖南株洲中考)在解方程21331+=+-x x x 时,方程两边同时乘以6,去分母后,正确的是( ) )13(3612.+=+-x x x A )13(36)1(2.+=+-x x x B )13(3)1(2.C +=+-x x x )1(3)1.(+=+-x x x D(2)(四川富顺县模拟)下列解方程过程中,变形正确的是( )A .由312=-x 得132-=xB .由2.11.01314++=+x x 得12110314++=+x x C .由7675=-x 得7675-=xD.由123=-xx 得632=-x x2.已知,1=/a 则关于x 的方程a x a -=-1)1(的解是( )0.=x A 1.=x B 1.-=x C D .无解3.(山东滕州市期末)规定一种计算法则为,c b d a db ca ⨯-⨯=如--⨯=-)2(12201,202-=⨯依此法则计算2423-=-x 中的x 值为4.a .b 互为相反数,c ,d 互为倒数,则关于x 的方程02)1(3)(2=--++x x cd x b a 的解为=x 5.马小哈在解一元一次方程923)x (+=-•x 时,一不小心将墨水泼在作业本上了,其中未知数x 前的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“所以,原方程的解为x=-2”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是6.已知关于x 的方程439+=-kx x 有整数解,那么满足条件的整数k 有 个 7.(四川岳池县期末)解方程:.14126110312-+=+--x x x 8.解方程:.02}2]2)231(31[31{31=----x9.解方程:⋅+=-++03.002.001.0355.09.05.0xx x10.已知方程,21)20191(541=-+x 求代数式)20191(203-+x 的值.11.(江苏东台市期末)我们定义一种新运算:ab b a b a +-=2*(等号右边为通常意义的运算):(1)计算:)3(*2-的值;(2)解方程:.*21*3x x =12.解方程:.2020202032132121=+++++++++++ΛΛx x x x 13.(山东牡丹区期末)阅读下面的解题过程:解方程:.2|3|=+x解:当03≥+x 时,原方程可化成为,23=+x 解得,1-=x 经检验1-=x 是方程的解;当,03<+x 原方程可化为,,2)3(=+-x 解得,5-=x 经检验5-=x 是方程的解.所以原方程的解是.5,1-=-=x x 解答下面的两个问题: (1)解方程:;04|23|=--x(2)探究:当a 为何值时,方程,|2|a x =-①无解;②只有一个解;③有两个解.14.当m 为何值时,关于x 的方程524+=-x m x 的解比1)2(3)(2--=-x m x 的解小2. 15.(湖南祁阳县期末)方程0)1(32=+-x 的解与关于x 的方程x k xk 2232=--+的解互为倒数,求k 的值. 16.已知:关于x 的方程b x a x a 3)5()1(2+-=-有无数多解,求a ,b 的值 17.解方程:.121115236362-=---xx x拓展创新18.若a ,b ,c 是正数,解方程:.3=--+--+--bac x a c b x c b a x 拓展1.若a ,b ,c 是正数,解方程:⋅++=-+-+-)111(222Cb a b cab xa bc a x c abc x拓展2.若a ,b ,c ,d 是正数且,1=abcd 解方程:⋅+++=+++)1111(||||||||2222dC b a d x abc b x acd a x bcd c x abd极限挑战19.若,1=abc 解方程:.1121212=++++++++c ca cxb bc bx a ab ax课堂答案培优答案11。

一元一次方程解法

一元一次方程解法

一元一次方程解法初中数学中,一元一次方程是一个重要的内容,也是学习代数的基础。

解一元一次方程的方法有很多种,下面我将介绍几种常见的解法。

直接运算法是最简单直接的解法之一。

我们以一个例子来说明,假设有一个方程:2x + 3 = 9。

首先,我们将方程中的常数项移到等号的另一边,得到2x = 9 - 3,即2x = 6。

然后,我们将方程两边同时除以系数2,得到x = 3。

这样,我们就得到了方程的解。

代入法是另一种常见的解法。

我们以一个例子来说明,假设有一个方程:3x -5 = 4x + 2。

首先,我们将方程中的未知数移到等号的另一边,得到3x - 4x = 2 + 5,即-x = 7。

然后,我们将方程两边同时乘以-1,得到x = -7。

这样,我们就得到了方程的解。

消元法是解一元一次方程的常用方法之一。

我们以一个例子来说明,假设有一个方程组:2x + 3y = 7,3x - 2y = 1。

首先,我们可以通过乘以适当的系数,使得两个方程的系数相等。

在这个例子中,我们可以将第一个方程乘以3,将第二个方程乘以2,得到6x + 9y = 21,6x - 4y = 2。

然后,我们将两个方程相减,得到13y= 19,即y = 19/13。

接着,我们将y的值代入其中一个方程,得到2x + 3(19/13) = 7,通过计算可以得到x的值。

这样,我们就得到了方程组的解。

图像法是通过绘制方程的图像来解方程的方法。

我们以一个例子来说明,假设有一个方程:y = 2x + 3。

首先,我们可以选择一些x的值,计算对应的y的值,然后将这些点连接起来,得到方程的图像。

接着,我们可以通过观察图像来确定方程的解。

在这个例子中,方程的解就是图像与x轴的交点,即y = 0时的x值。

通过观察图像,我们可以得到x = -3/2。

这样,我们就得到了方程的解。

以上介绍的是一些常见的解一元一次方程的方法,当然还有其他的方法,如等价转化法、倍增法等。

不同的方法适用于不同的情况,我们可以根据具体的题目选择合适的方法进行求解。

初中三年级一元一次方程的解法

初中三年级一元一次方程的解法

初中三年级一元一次方程的解法一、一元一次方程的概念和解法一元一次方程是指只含有一个未知数,并且未知数的最高次数是1的方程。

它的一般形式为ax + b = 0,其中a和b是已知的实数,而x 是未知数。

解一元一次方程的基本思路是通过逆运算将方程变换,使得未知数x的系数为1,从而得到方程的解。

下面将介绍两种主要的解法:使用加减法和使用乘除法。

二、使用加减法解一元一次方程使用加减法解一元一次方程的步骤如下:步骤1:将方程两边的常数项(b)移到等号的另一边,得到ax = -b。

步骤2:将方程两边除以未知数的系数a,得到x = -b/a。

这样,我们就得到了一元一次方程的解x。

例如,考虑方程3x + 5 = 2。

按照上述步骤解方程,可以得到3x = -3,进而得到x = -1。

因此,方程的解是x = -1。

三、使用乘除法解一元一次方程使用乘除法解一元一次方程的步骤如下:步骤1:将方程两边除以未知数的系数a,使得未知数系数变为1,得到x + b/a = 0。

步骤2:将方程两边减去常数项b/a,得到x = -b/a。

这样,我们同样得到了一元一次方程的解x。

举个例子,考虑方程2x - 3 = 7。

按照上述步骤解方程,可以得到x - 3/2 = 7/2,进而得到x = 7/2 + 3/2 = 10/2 = 5。

因此,方程的解是x = 5。

四、实际问题中的一元一次方程一元一次方程在实际问题中具有广泛的应用。

我们来看一个例子:例子:小明买了一些苹果和一些橙子,总共花费了30元。

已知苹果的价格是2元/个,橙子的价格是3元/个,问小明买了多少个苹果和橙子?解:设小明买了x个苹果和y个橙子。

根据题目中的信息,我们可以列出一个一元一次方程:2x + 3y = 30。

现在,我们可以使用上述介绍的解法来解这个方程。

首先,我们使用加减法解方程:将方程改写为2x = 30 - 3y。

然后,我们使用乘除法解方程:将方程改写为x = (30 - 3y)/2。

5.2求解一元一次方程(教案)

5.2求解一元一次方程(教案)
五、教学反思
在本次教学活动中,我发现学生们对一元一次方程的概念和解法掌握程度整体较好。他们在导入环节中能积极参与,对日常生活中的问题进行思考,这为后续的学习打下了良好的基础。然而,我也注意到一些问题需要进一步关注和改进。
在理论讲授环节,我发现部分学生在理解一元一次方程的定义时,对“a≠0”的条件不够重视。在今后的教学中,我需要强调这一条件的重要性,并通过具体例子让学生明白原因。此外,对于移项解法中的符号变化,学生们普遍存在一定的困难。我考虑在下一节课中,通过设计更多有针对性的练习题,帮助学生巩固这一知识点。
4.培养学生的数学抽象能力:通过对一元一次方程的学习,使学生能从具体问题中抽象出数学模型,感受数学在解决实际问题中的作用。
本节课旨在使学生在掌握一元一次方程知识的同时与重点
1.教学重点
a.一元一次方程的定义:强调方程的形式ax+b=0(a≠0),让学生理解常数a和b的含义,以及未知数x的作用。
3.重点难点解析:在讲授过程中,我会特别强调一元一次方程的定义和两种解法(直接解法和移项解法)。对于难点部分,比如移项时符号的变化,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过测量和计算来求解一个物体的速度问题,演示一元一次方程的基本原理。
-举例:年龄问题,已知小明比小华大3岁,两人年龄之和为35岁,设小明年龄为x,则小华年龄为x-3,列出方程x+(x-3)=35。
教学重点在于让学生通过具体例题,掌握一元一次方程的定义和基本解法,并能将实际问题转化为方程模型。
2.教学难点

初一数学书一元一次方讲解

初一数学书一元一次方讲解

一元一次方程的概念
一元一次方程是指只含有一个未知数,且未知数的次数是1的方程。

通常形式为ax + b = 0 (其中a和b是常数,a≠0)。

解一元一次方程的步骤
去分母:将方程两边同时乘以分母的最小公倍数,消除分母。

去括号:根据括号前是加号还是减号,决定去括号后各项的符号。

移项:将含有未知数的项移到等号的左边,常数项移到等号的右边。

合并同类项:将等号右边的常数项移到等号左边后,将左边的未知数系数化为1,得到方程的解。

一元一次方程的解法
直接开平方法:对于形如ax^2 = b (a > 0) 的方程,可以直接开平方求解。

配方法:将方程两边同时加上一次项系数一半的平方,使左边成为一个完全平方的形式,再求解。

公式法:对于任意实数a、b,都可以通过公式ax^2 + bx + c = 0 的解为x = [-b ±sqrt(b^2 - 4ac)] / (2a) 来求解。

因式分解法:将方程左边分解因式,右边化为0,然后求解。

待定系数法:先假设方程左边多项式的系数为未知数,然后根据题目条件列出关于这些系数的方程组,解之得到系数值。

七年级上册数学《一元一次方程》-的知识点整理

七年级上册数学《一元一次方程》-的知识点整理

一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。

对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。

解一元一次方程常用的技巧有:1)有多重括号,去括号与合并同类项可交替进行 2)当括号内含有分数时,常由外向内先去括号,再去分母 3)当分母中含有小数时,可用分数的基本性质化成整数 4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系) 2)根据数量关系与解题需要设出未知数,建立方程; 3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c 则这个三位数表示为:abc , 10010abc a b c =++(其中a 、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题; 4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形; 8)优化方案问题9)浓度问题:溶液×浓度=溶质 10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量 11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.一元一次方程一、本节学习指导本节我们要掌握一元一次方程的解法,需要多做一些练习题,本节有配套学习视频。

(完整版)一元一次方程及其解法

(完整版)一元一次方程及其解法

3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根. ②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解. (3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =12ab ;B.x -y =0;C.x =0;D.12x +3=1;E.3-1=2;F.4y -5=1;G .2x 2+2x +1=0;H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解. A .-5(x -1)=-4(x -2) B .4x +2=1C .13x +5=5 D .-3x -1=0解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为:如果a =b ,那么ac =bc ,a c =bc(c ≠0).③性质3:如果a =b ,那么b =a .(对称性) 如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性) 如:若∠1=60°,∠2=∠1,则∠2=60°. (2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换. 谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若x 2=0,则x =2D .若x 6-1=1,则x -6=1解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =57.答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20. 方程的两边同时除以5,得x =4. (2)方程的两边同时减去2x ,得2x -2=0. 方程的两边同时加上2,得2x =2. 方程的两边同时除以2,得x =1. (3)方程两边都同时减去1, 得x +1-1=6-1,∴x=6-1.∴x=5.(4)方程两边都加上x,得3-x+x=7+x,3=7+x,方程两边都减去7,得3-7=7+x-7,∴-4=x,即x=-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x=7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x=7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x=1,把3从方程的左边移到右边要变号,得5x=1-3,是属于移项;而把5x-15x+11x=11变成5x+11x -15x=11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体变形名称具体做法变形依据注意事项去分母方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号分配律;去括号的法则不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1 移项要变号合并同类项将方程化为ax=b的最简形式合并同类项的法则只将系数相加,字母及其指数不变化系数为1 方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2 分子、分母不能颠倒值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ). A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程2-x 3-5=x -14.分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12, 得4(2-x )-60=3(x -1). 去括号,得8-4x -60=3x -3. 移项,得-4x -3x =-3-8+60. 合并同类项,得-7x =49. 两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程0.4x -90.5-x -52=0.03+0.02x0.03.分析:由于0.4x -90.5和0.03+0.02x 0.03的分子、分母中含有小数,可利用分数的基本性质把小数化为整数,在式子0.4x -90.5的分子、分母中都乘以10,变为4x -905,在式子0.03+0.02x0.03的分子、分母中都乘以100,变为3+2x3,然后去分母,再按解一元一次方程的步骤求解.解:分母整数化,得 4x -905-x -52=3+2x3.去分母,得6(4x -90)-15(x -5)=10(3+2x ). 去括号,得24x -540-15x +75=30+20x . 移项,得24x -15x -20x =540-75+30. 合并同类项,得 -11x =495. 两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题 方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .43C .2D .-43解析:解方程3x +5=0,得x =-53.将x =-53代入方程3x +3k =1,得-5+3k =1,解得k =2,故应选C. 答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________. 解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8. 答案:86.一元一次方程的常用解题策略 我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程34⎣⎡⎦⎤43⎝⎛⎭⎫12x -14-4=32x +1. 分析:注意到34×43=1,把34乘以中括号的每一项,则可先去中括号,34×43⎝⎛⎭⎫12x -14-34×4=32x +1,再去小括号为12x -14-3=32x +1,再按步骤解方程就非常简捷了. 解:去括号,得12x -14-3=32x +1.移项,合并同类项,得-x =174.两边同除以-1,得x =-174.【例6-2】 解方程x +37-x +25=x +16-x +44.分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,5(x +3)-7(x +2)35=2(x +1)-3(x +4)12,把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012. 去分母,得12(-2x +1)=35(-x -10). 去括号,得-24x +12=-35x -350. 移项、合并同类项,得11x =-362.两边同除以11,得x =-36211.7.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值 利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数. (2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-116.答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程x -k 3+3k +26-x =x +k2的解,求k 的值.分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得 -2-k 3+3k +26-(-2)=-2+k2. 去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ). 去括号,得-4-2k +3k +2+12=-6+3k . 移项、合并同类项,得 -2k =-16.方程两边同除以-2,得k =8.【题01】下列变形中,不正确的是( ) A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x ya a=,则ax ay =. 【题02】下列各式不是方程的是( ) A .24y y -=B .2m n =C .222p pq q -+D .0x =【题03】解为2x =-的方程是( ) A .240x -=B .5362x +=C .3(2)(3)5x x x ---=D .275462x x --=- 【题04】若关于x 的方程223(4)0n x n -+-=是一元一次方程,求n 的值.课后作业【题05】已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .【题06】若关于x 的方程2(2||)(2)(52)0m x m x m -+---=是一元一次方程,求m 的解.【题07】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .【题08】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .【题09】2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( ) A .2140- B .2140C .5615-D .5615【题10】解方程:135(3)3(2)36524x x ---=【题11】解方程:11 (4)(3) 34y y-=+【题12】解方程:122233x xx-+ -=-【题13】解方程:21511 36x x+--=【题14】解方程:11(0.170.2)1 0.70.03x x--=【题15】解方程:1(4)33519 0.50.125xxx+++=+【题16】解方程:0.20.450.0150.010.5 2.50.250.015x xx++-=-【题17】解方程:0.10.90.21 0.030.7x x--=【题18】解方程:4213 2[()] 3324x x x--=【题19】解方程:111[(1)6]20343x --+=。

5.2一元一次方程(教案)

5.2一元一次方程(教案)
-掌握一元一次方程的解法:包括移项、合并同类项、系数化为1等方法。
-举例:解方程5x - 2 = 3x + 1时,需要将同类项移至同一边,得到2x = 3,然后系数化为1,得到x = 1.5。
-应用一元一次方程解决实际问题:培养学生将方程应用于解决生活中的问题。
-举例:利用一元一次方程解决速度与时间、单价与总价等实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是只含有一个未知数,并且未知数的最高次数为1的方程。它在数学中具有重要地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算小明购买苹果的总花费,通过建立一元一次方程,我们可以轻松解决这个问题。
五、教学反思
在今天的教学中,我发现学生们对于一元一次方程的概念和解法掌握得还不错,但在实际应用方面还存在一些困难。让我来具体谈谈几个观察到的现象和相应的思考。
首先,我发现很多同学在从实际问题中抽象出一元一次方程时感到困惑。他们知道要用方程来解决问题,但不知道如何将问题中的信息转化为数学表达式。这说明我们在教学中需要更多地强调如何从文字描述中提炼出关键信息,如何将现实问题转化为数学问题。我考虑在下一节课中增加一些具体的例子,让学生多加练习,以便提高他们这方面的能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

一元一次方程求解

一元一次方程求解

一元一次方程求解在代数学中,一元一次方程是指只含有一个未知数且最高次数为一次的方程。

解一元一次方程是数学中非常基础且重要的内容,因此我们有必要掌握解一元一次方程的方法。

一元一次方程的一般形式为:ax + b = 0其中,a和b为已知常数,x为未知数。

为了求解方程,我们需要遵循以下步骤:步骤一:将一元一次方程的形式改写为标准形式。

标准形式为:ax = b这可以通过以下步骤实现:1.1 将方程中的常数项(即b)移到等号的右边。

1.2 如果方程中x的系数(即a)为1,则无需更改。

如果x的系数不为1,则将整个方程除以x的系数,以使x的系数变为1。

步骤二:将方程两侧同时乘以逆元素,以消除x系数。

逆元素是指两个数相乘得到单位元(通常为1)。

对于a ≠ 0 的情况,逆元素为1/a。

通过将方程两侧同时乘以1/a,可以使x系数变为1,简化方程的求解。

步骤三:计算方程的解。

将方程化简为x = b/a 的形式后,我们可以得到方程的解。

解释:一元一次方程的解即为使得方程等式成立的未知数的值。

对于一元一次方程,解可以分为无解、有唯一解和有无穷多解三种情况。

如果通过前面的步骤求得b/a ≠ 0,那么方程有唯一解,解为x = b/a。

如果通过前面的步骤求得b/a = 0,那么方程无解。

如果a = b = 0,则方程有无穷多解,在此情况下,任何实数都是方程的解。

示例一:解方程3x + 4 = 10。

首先,将方程改写为标准形式,得到3x = 6。

然后,将方程两侧同时乘以1/3,得到x = 2。

因此,方程3x + 4 = 10 的解为x = 2。

示例二:解方程5x - 7 = 3x + 1。

首先,将方程改写为标准形式,得到5x - 3x = 7 + 1,即2x = 8。

然后,将方程两侧同时乘以1/2,得到x = 4。

因此,方程5x - 7 = 3x + 1 的解为x = 4。

总结:在求解一元一次方程时,我们需要将方程改写为标准形式,然后消除x系数,最后计算解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 一元一次方程的解 一、课标导航
课标内容 课标要求 目标层次 一元一次方程的解 了解一元一次方程解法中的各个步骤 ★ 熟练掌握一元一次方程的解法;会解含有字母系数的一元一次方程
★★
二、核心纲要
1.解一元一次方程的一般步骤
(1)去分母:在方程的两边都乘以各分母的最小公倍数。

注:不要漏乘分母为1的项,分子是个整体,含有多项式时应加上括号。

(2)去括号:一般地,先去小括号,再去中括号,最后去大括号。

注:不要漏乘括号里的项,不要弄错符号。

(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边。

注:①移项要变号;②不要丢项。

(4)合并同类项:把方程化成b ax =的形式。

注:字母和其指数不变。

(5)系数化为1:在方程的两边都除以未知数的系数)0(≠a a ,得到方程的解a
b x =。

. 注:不要把分子、分母位置颠倒。

2.解一元一次方程常用的方法技巧
解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项等。

3.含字母系数的一次方程
(l)当方程中的系数用字母表示时,这样的方程叫做含字母系数的方程,也叫含参数的方程。

(2)方程b ax =的解的情况
①当0≠a 时,a
b x =,原方程有唯一解; ②当0=a 且0=b 时,原方程有无数解;
③当0=a 且0≠b 时,原方程无解。

4.同解方程
如果方程①的解都是方程②的解,并且方程②的解都是方程①的解(即方程①与方程②的解都相同)那么这两个方程是同解方程。

本节重点讲解:一个步骤,一个方法技巧,一个解的讨论(含字母系数的方程解的讨论),两个概念。

三、全能突破
基础演练
1.下列解方程步骤正确的是( )。

A.由1342+=+x x ,得4132+=+x x
B.由)3(2)1(7+=-x x ,得3217+=-x x
C.由x x 3.157.05.0-=-,得x x 13575-=-
D.由26
231=+--x x ,得12222=---x x
2.将方程5
.055.12.02.05.09.0x x -=-+
变形正确的是( )。

A.5
50152259x x -=-+ B.55152259.0x x -=-+ C.55152259x x -=-+ D.x x 1032259.0-=-+ 3.已知:0)1(22=-+-n m ,则方程n x m =+2的解为( )。

A.4-=x
B.3-=x
C.2-=x
D.1-=x
4.与方程352
3=-x 的解相同的方程是( )。

A.163=x B.133=x C.83=x D.43=x
5.已知关于x 的方程0=+b ax 与0=+a bx 的解相同,则b a 、的关系为( )。

A.b a =
B.0=+b a
C.b a =或0=+b a
D.0≠=b a
6.(1)方程3=x 的解是__________,03=-x 的解是__________,33-=x 的解是__________,若33=+x ,则=x __________。

7.已知关于x 的一元一次方程x kx -=4的解为正整数,求k 所能取得的整数值。

能力提升
8.某书中有一道解方程的题:
x x =++13
□1,□处在印刷时被墨盖住了,查后面的答案,得知这个方程的解是2-=x ,那么□处应该是数字( )。

A.7
B.5
C.2
D.-2 9.若n m 、是有理数,关于x 的方程x n n x m )2(3)12(3-=--有至少两个不同的解,则另一个关于x 的方程m x x n m +=++43)(的解的情况是( )。

A.有至少两个不同的解
B.有无限多的解
C.有一个解
D.无解
10.要使方程0523256=--+-+k ky kx y x 中不含有y ,那么k 的值应是( )。

A.0 B.
52 C.25- D.2
5 11.关于x 的方程n x mx 351+=-有无数多个解,那么=m __________,=n __________。

12.若b a ,为定值,关于x 的一元一次方程26
32=--bx x ka ,无论k 为何值时,它的解总是1=x ,则=a __________,=b __________。

13.若关于x 的方程143-=-x 与c b ax -=+-1有相同的解,则=+-2012)(c b a __________。

14.若关于x的方程
121
13
32
x x
x
-+
-=-与关于x的方程
6
32
x a a
x x
-
+=的解互为倒数,求a的
值.
15.已知关于x的方程2
23(3)3
x t x t x
-+=-+的一个解是1
x=-,求关于x的方程2
32(1)5
x t x x t
+-=-的解。

16.小明解方程21
1
52
x x a
-+
+=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,
由此求得的解为4
x=,试求a的值,并正确地求出方程的解.17.解方程:
(1)0.10.40.21
1
1.20.3
x x
-+
-= (2)
0.20.450.0150.01
0.5 2.5
0.250.015
x x
x
++
-=-
18.解方程:(1)1113
331 2242
y
⎡⎤
⎛⎫
---= ⎪
⎢⎥
⎝⎭
⎣⎦
(2)
1111107 12
33223
x x x x x
+-⎛⎫⎛⎫--=--
⎪ ⎪
⎝⎭⎝⎭
19.解方程:
20181614125357911x x x x x -----++++=
20.解方程:
1335x x ++⨯⨯…20102007200920092011x x ++=⨯⨯
21.解方程:
1121123x x +--+-=
22.关于x 的方程
31x a +-=有三个解,求a 的值.
中考链接
23.(湖北十堰)把方程2113332
x x x -++=-去分母正确的是( ) A.182(21)183(1)x x x +-=-+ B.3(21)3(1)x x x +-=-+
C.18(21)18(1)x x x +-=-+
D.32(21)33(1)x x x +-=-+
24.(山东滨州)依据下列解方程0.30.5210.23
x x +-=的过程,请在前面的括号内填写变形步骤,
在后面的括号内填写变形依据.
解:原方程可变形为3521
23
x x
+-
=()
去分母,得3(35)2(21).
x x
+=-( ) 去括号,得91542
x x
+=-.( )
( ),得
17
5
x=-.( )
合并,得517
x=-.( )
( ),得
17
5
x=-.()
25.(中国台湾)若(1):74:5
a-=,则108
a+之值为何( )
A.54 B.66 C.74 D.80
巅峰突破
26.若3
a
的倒数与
29
3
a-
互为相反数,则a=( )
27.解方程:
111
3,0 x a b x b c x c a
c a b a b c
------⎛⎫
++=≥++≠

⎝⎭
28.已知关于x的方程
1
(6) 326
a
x
a x x
+=--
(l)当a取什么值时,方程无解?
(2)当a取什么值时,方程有无穷多个解?
(3)当a取3时,方程的解是多少?
(4)如果方程的解是-2,那么a的值是多少?。

相关文档
最新文档