Identification of central nervous system neurons

合集下载

神经外科中枢神经系统感染诊治中国专家共识(2021版)

神经外科中枢神经系统感染诊治中国专家共识(2021版)
NSIs 的诊断分为临床诊断和病原学确诊诊断。 符合下列 1~4 条为临床诊断,符合 1~5 条为病原学确诊诊断。
1.临床表现:(1)全身炎性反应:出现发热(体温>38 ℃)或低体温(<36℃),心率(>90 次/min)和 呼吸频率(>20 次/min)增快等全身感染表现。(2)意识和精神状态的改变:出现嗜睡、昏睡,甚至昏迷 等意识状态进行性下降,,以及疲乏、精神萎靡不振、谵妄等。(3)颅内压增高的症状及体征:出现头痛头 晕、恶心呕吐、视盘水肿等典型颅内压增高的表现;(4)脑膜刺激征:脑膜炎患者会出现颈部抵抗、克氏 征和布氏征阳性。(5)伴发症状或体征:因感染的机制不同,患者可出现不同的伴发症状或体征,在不同 的功能区会出现不同的局灶性功能缺失体征,同时可能会发生电解质紊乱、脑积水及垂体功能紊乱等。行脑 室-腹腔分流者常伴随腹部压痛、反跳痛等腹膜炎体征。如行脑室-胸腔分流术, 可出现胸膜炎体征。 2.血液相关检查:血常规白细胞>10.0×109/L,中性粒细胞比例>0.8。
六、实验室检查
1.血常规检查:白细胞计数>10.0×109/L,中性粒细胞比例>0.8,部分患者白细胞 计数减少或正常。 2.脑脊液相关检查:多数CNSIs患者腰椎穿刺开放压>200mmH2O(1mmH2O=0.0098KPa); 急性期脑脊液外观呈混浊、黄色或典型脓性表现。 3.脑脊液涂片和微生物培养:若疑似颅内感染时,需要在开始应用或更改抗菌药之前、 抗菌药处于谷浓度时收集血清和脑脊液样本行涂片和微生物培养;在行脑脊液培养的同时 ,也应该行2~4次血培养检查;若疑似CNSIs时,对切口分泌物、引流管头端和取出的分 流管等植入物要及时行涂片并送检微生物培养。采集脑脊液标本时,因第1管脑脊液被皮 肤菌群污染的可能性很大,故脑脊液收集要≥2管,可以采用3管法。第1管脑脊液行生化 检查,第2管或第3管脑脊液行常规检查、微生物培养或分子生物学检测。

神经系统(英文版)课件

神经系统(英文版)课件

CENTRAL NERVOUS SYSTEM 中枢神经系统 脑 brain 脊髓 spinal cord
PERIPHERAL NERVOUS SYSTEM 周围神经系统 脑神经 cranial nerves 脊神经 spinal nerves 内脏神经 autonomic nervous system
内脏神经 autonomic nervous system 分布于心肌、平滑肌和 腺体,不受主观意识控 制,又称自主神经或植 物神经。又分为交感神 经sympathetic nerve 和付交感神经
parasympathetic
nerve
fundamental tissue of the nervous system:
Nissl bodies尼氏体
神经元纤 维 neurofibril
Nissl body Neurofibrils
树突棘 dendrite spine contacted by different types of synaptic terminals
types of neurons(1): morphologic types of neurons: classed by the configuration of their processes as unipolar, bipolar,or multipolar
the nervous tissue is made up of two classes of cells, the neurons and neurologia.
神经元
1.构造structure of neuቤተ መጻሕፍቲ ባይዱons:
胞体cell body
轴突axon 树突dendrites (Fig1:

中枢神经系统 英文汇总

中枢神经系统 英文汇总

中枢神经系统英文汇总English: The central nervous system (CNS) is the part of the nervous system consisting of the brain and spinal cord. It is responsible for integrating and coordinating sensory information as well as controlling and regulating bodily functions. The brain, which is the control center of the CNS, receives and processes information from the body's senses, initiates responses, and stores memories. The spinal cord connects the brain to the rest of the body and serves as a pathway for transmitting nerve signals between the brain and the peripheral nervous system. The CNS plays a crucial role in motor function, cognition, emotion, and behavior, and any damage or dysfunction in this system can have significant impacts on an individual's physical and mental health.中文翻译: 中枢神经系统(CNS)是由脑和脊髓组成的神经系统的一部分。

ervoussystem神经系统

ervoussystem神经系统
means of hormones, the nervous system functions by means of electric impulses电脉冲.
For study purposes, the nervous system may be
divided into the central nervous system (CNS), consisting of the brain and spinal cord脊髓, and
3.Structure of a common neuron dendrites(树突): receive stimuli or message from other
cells, and transmit the message to the cell body
cell body(细胞体): contains nucleus, mitochondria 线粒体 and other organelles
axon(轴突):conduct message away from the cell body
Synapse(突触)即轴突的末端:the connection between a
nerve cell axon and target cells靶细胞, which may be
other nerve cells, muscle cells, or gland cells. At the
external changes and transmit these
signals to CNS motor nerve fibers运动神经纤维 : carry signals to
skeletal muscles to produce action

大脑介绍英语版

大脑介绍英语版
第3页/共10页
1.The basic structure and function of human brain
第4页/共10页
• Frontal lobe :The functions of the frontal lobes involve the
ability to recognize future consequences resulting from current actions and determine similarities and differences between things or events.
signal pass through nerve cells.
第7页/共10页

• •
3.Some tips about how to use our brain more

efficient.
• 1. Good sleep, Balanced diet, Adequate water
The brain is like the engine, so you must provide high quality fuel to it and it can only concentrate on 25 minutes,so you need a break.
3.Be more happier Brain like joke. You feel more happy, higher the efficiency of your learning.Make yourself happier!
第9页/共10页
•The End!
•THANK YOU!
第10页/共10页
第2页/共10页

欧洲潜水与高气压医学医师教育和训练标准简介及对我国的启示解析

欧洲潜水与高气压医学医师教育和训练标准简介及对我国的启示解析

标准要求该类人员:(1)能完成对作业和娱乐潜水员或压缩 空气作业人员的初步及其他所有项目的评估。(2)能够处 理潜水事故,可以向潜水作业承包商等提供潜水医学及生理 学建议(在高气压医学专家或顾问的支持下)。(3)应具备
Safety,2006,91(7):778-791.
DOI:10.1016/j.ress.2005.07.004.
Ahlen C,Mandal LH,lversen the
true
OJ.An in—field demonstration of
sources
relationship between skin infections and their the North
时治疗。 9.感染的治疗:在医生的指导下使用抗生素进行治疗。 参考文献
Hind J,Attwell hyperbaric
in divers working in
seven
the North
Sea:a microbiological survey of
saturation
dives[J].J
Hyg(Lond),1977,78(3):395-409.DOI:10.1017/
业发展的主体,尤其是在商业潜水和军事潜水中,他们的健
康和安全事关潜水事业的前途和命运…。要保障潜水员的
健康与安全,其中之一就是培养理论知识丰富、实践操作能
力强的潜水高气压作业保障人员。发达国家都建立了针对
万方数据
本国或组织的潜水与高气压相关人员的培训标准,为本国的 潜水事业的发展和潜水员的安全与健康发挥了积极的作用。 欧洲高气压医学委员会(European
(4):277—284. e13] 徐雄利,陈双红,陈锐勇,等.氦氧饱和潜水实验人群铜绿 假单胞菌鉴定及毒力研究[J].中华疾病控制杂志,2012, 16(1):25—27. [14] Jones

临床麻醉学PPT课件

临床麻醉学PPT课件

△1927 Ralph waters sodalime (钠石 灰)
1956 halothane (氟烷) 1972 enflurane (恩氟烷) 1981 isoflurane (异氟烷) 1990 sevoflurane (七氟烷) 1992 desflurane (地氟烷)
(2)Intravenous anesthesia (静脉麻醉)
△The latest local anesthetics include ropivacaine(罗哌卡
因)and levobupivacaine(左旋布比卡因)
△Anesthesiologist prof Rovenstine established the first pain clinic
1.To combine basic medical sciences with clinical medicine(基础与临床结合)
2.To combine theory with practice (理论与实践结合) Anesthesiologist on paper; craftsman of anesthesia 3.To learn, to investigate continuously; and to make
·1934 Lundy 和waters thiopental (硫喷妥钠)
·benzodiazepines ( 苯二氮卓类药 )
diazepam (地西泮) 1959 midazolam (咪达唑仑) 1976
·others:
sodium hydroxybutyrate , r-oH (羟丁酸钠)1960 ketamine (氯胺酮) 1970 etomidate (依托咪酯) 1972 △propofol (丙泊酚) 1983

艺术体操运动员的气质类型与选材

艺术体操运动员的气质类型与选材

第44卷2008年第6期 西 北 师 范 大 学 学 报(自然科学版) Vol 144 2008 No 16 Jour nal of No rthwe st Nor mal U nive rsity (Natural Science) 收稿日期:2008Ο05Ο08;修改稿收到日期:2008Ο09Ο14基金项目:国家科技部攻关计划课题(2001BA904B01Ο07)作者简介:郭秀文(1968—),女,山东青州人,教授,博士.主要研究方向为艺术体操教学训练理论.Οx @631艺术体操运动员的气质类型与选材郭秀文1,魏复活2(11西北师范大学体育学院,甘肃兰州 730070;21西北师范大学研究生学院,甘肃兰州 730070)摘 要:通过对艺术体操项目特点的分析发现,神经类型为强型、平衡型的运动员较适合做艺术体操运动员.对我国现役104名艺术体操运动员气质类型的测试结果也表明,艺术体操运动员以多血质及其变种为最多,其次是粘液质及其变种,抑郁质及其变种的人数最少.在一级及以上水平的运动员中,神经系统类型为强型的运动员比例高达9019%.在挑选运动员时,应尽量挑选符合项目要求的气质类型,对于神经系统类型为弱型的运动员应慎重考虑其入选问题.关键词:艺术体操;运动员;气质中图分类号:G 804183 文献标识码:A 文章编号:10012988Ⅹ(2008)0620107203The temperament characteristic of rhythmic gymnastics athletesand scientific talent identificationG U O Xiu Οwen 1,W EI Fu Οhuo 2(11College of Physical Education ,No rthwest No rmal University ,Lanzho u 730070,G ansu ,China ;21College of G ra duate ,Nort hwest Normal Univer sity ,Lanzhou 730070,G ansu ,China)Abstract :Thro ugh anal ysi ng t he charact erist ic of rhyt hmic gymna stics ,t hi s st udy found t hat at hl et es πt ype of nervous syst em is st rong and bala nce ,t hey co uld fit to r hyt hmic gymna stics.The t emperamentt ype of 104rhyt hmic gymnast ics at hletes is te sted.The re sut shows t hat t he sa nguine a nd i t s variat ion is t he main t emperament t ype i n our rhyt hmic gymna stics at hlete s ,phle gm a nd i t s variat ion i s less t han t he for mer ,t ypical depression and it s vari at io n i s t he lea st.9019%at hlet es belong to st rong t ype of nervous system.Therefore chosi ng an at hlet e should consider he r t ype of ner vous syst em.If her type of nervo us system belongs to t he weak t ype ,we had bett er a voi d her ent er sport band.K ey w or ds :rhyt hmic gymnast ics ;at hl et e ;t empera ment 国外一些研究证明,不同运动项目运动员气质类型的分布趋势是有差异的,并且在同一运动项目中,不同气质类型的运动员具有不同的个人技术风格[1].了解艺术体操运动员的气质类型,对于教练员的训练工作来说具有很好的辅助作用.教练员可以根据每名运动员的气质特点,有针对性地、采取区别对待的方式进行训练,使运动员能够发挥自己个性中的优势,尽量避免或改善其中的不良因素的影响.同时,了解项目本身对运动员气质类型的要求,了解大多数运动员的气质类型归属情况,也将有利于科学选材工作的开展,尽量避免人才的浪费,对训练效率的提高是极为有益的.对1985年以来的有关艺术体操运动员气质类型方面的文献资料进行了检索,仅有邓唏翎和赵大701E mail :iuwenh 1com西 北 师 范 大 学 学 报(自然科学版) 第44卷 Journal of Nort hwest Normal Univer sity(Natural Scie nce) Vol144 宁2人就艺术体操运动员的气质类型进行了一定的研究[2,3].邓唏翎的研究结果认为,在艺术体操运动员中,多血质兼其他气质类型者占多数,他们所具备的这种气质类型与艺术体操项目有关[2].赵大宁的研究结果认为,少年艺术体操运动员的气质类型多属于粘液Ο胆汁质、胆汁Ο粘液质和粘液Ο多血质;青年艺术体操运动员的气质类型多属于粘液Ο胆汁质、粘液Ο多血质和多血Ο胆汁质,这3种气质类型占总数的6417%.认为粘液Ο胆汁质、胆汁Ο粘液质、粘液Ο多血质和多血Ο胆汁质这4种气质类型是艺术体操运动员比较理想的气质类型,属于胆汁质或抑郁质类型的人不适合做艺术体操运动员[3]. 2位研究者的研究结果不尽相同,这可能与2篇文章的研究样本数量有限(分别为21人和36人)有关.为了得到艺术体操运动员气质特征的普遍规律,笔者扩大了样本量.1 研究对象与方法利用陈会昌等人编制的气质量表对运动员进行测试.测试对象为我国现役艺术体操运动员104人,其中,健将级运动员33人,一级运动员33人,二级运动员38人.对测试结果进行一般的统计学处理.2 结果与分析211 艺术体操项目对运动员气质类型的要求21111 艺术体操技术动作对神经类型的要求 随着竞技性艺术体操的迅猛发展,身体难度动作的多样性越来越明显,不仅体现在动作数量上的大幅度增长[4],而且还体现在成套中动作多样化的运用上.现行规则要求运动员的成套动作在技术动作的使用上要均衡、多样[5],避免了运动员身体难度动作发展的不均衡性.而且,单个动作的结构呈现复杂化的特点,原来的一个难度动作包含一个技术的单一动作结构,被现在的一个难度动作包含多个技术的复杂动作结构所取代,身体动作与器械动作的结合也越来越紧密.项目的这些变化不仅要求运动员神经系统具有较好的灵活性和平衡性,而且还要求运动员的神经系统具有较强的调节及控制能力.21112 比赛特点对运动员神经类型的要求 艺术体操项目与对抗类项目不同,运动员在比赛中不直接与对手交锋,只需在场上完成好预先编排的动作即可.因此,项目对运动员的稳定性提出了较高的要求.运动员能否将成套动作完美地完成是取胜的关键.神经系统类型为强型、平衡型的运动员能够在比赛中较好地发挥训练水平.多血质所对应的神经活动类型为强、平衡而灵活型;粘液质对应的神经活动类型是强、平衡而不灵活型;胆汁质对应的是强不平衡型;抑郁质对应弱型.从项目特点分析,多血质及其混合型和粘液质及其混合型似乎更能够满足项目本身对运动员气质类型的需要.而且,测试结果也支持上述分析. 212 艺术体操运动员的气质类型20世纪20—30年代,俄国神经生理学家巴甫洛夫创立了神经系统类型学说,为气质类型的研究提供了科学的基础.目前在心理学界普遍得到公认的观点是:神经系统类型是气质的生理基础,气质是人的神经系统类型特征的心理活动的外在表现[6].气质是指人的心理活动的动力性特征,是人的最稳固、最典型的个性心理特征.所谓心理活动的动力性特征,主要是指心理活动的强度(如皮质工作能力强弱、情绪的强弱、意志的强弱和行为活动的强弱等)、速度(如知觉与思维的速度、心理活动的速率、节奏和动作反应速度等)、稳定性(如注意力集中的久暂,心理活动是倾向于外部,还是倾向于自身内部体验等)以及行为方式.这些特征使个体在全然不同的环境或活动中,显示出同样风格和色彩.气质不依赖于活动的内容、动机和目的,而是顽强地、无意识地表现出它的天赋特性和遗传的“痕迹”.利用陈会昌等人编制的气质量表对我国现役104名艺术体操运动员进行了测试,结果显示,属于典型多血质的人数最多,达24人;其次是多血质Ο胆汁质混合型及典型粘液质,均为16人;再次为多血质Ο粘液质混合型,12人.上述4种气质类型占总人数的6611%.在所有气质类型中,抑郁质及其混合类型的比例最小,典型抑郁质只有1人,抑郁质混合型及典型抑郁质共计15人,占总人数的1414%(表1).前苏联学者米尔林及其学生致力于神经系统特性对人类行为的影响领域的研究,他们对15~23岁的艺术体操运动员进行了研究.结果表明,运动员的活动效率依赖于情绪紧张水平和神经系统强度在能引起情绪高度紧张的比赛中,神经系统弱81. 2008年第6期 郭秀文等:艺术体操运动员的气质类型与选材 2008 No16The temper ame nt characteristic of r hythmic gymnastics at hletes a nd scie ntific talent identification 表1 艺术体操运动员气质类型分布情况Tab1The dist ribution of rhythmic gymnasticstemper ation type气质类型健将级(33人)一级(33人)二级(38人)共计/人(比例/%)多血质109524(23108)粘液质46616(15138)胆汁质2136(5177)抑郁质1001(0110)多血Ο粘液33612(11154)多血Ο胆汁78116(15138)粘液Ο胆汁2237(6173)粘液Ο抑郁0055(4181)胆汁Ο抑郁1113(2188)多血Ο抑郁1012(1192)多血Ο粘液Ο胆汁1258(7169)抑郁Ο胆汁Ο粘液0123(2188)多血Ο胆汁Ο抑郁1001(0110)型、具有较高程度焦虑和情绪激活水平高的个体,表现出运动水平下降.而强型个体在这种情况下,却往往表现出更高的活动效率,取得良好的运动成绩并在比赛中获胜[7].可见,神经系统类型为强型的运动员在比赛中与弱型者相比更易取胜.通过对现役优秀艺术体操运动员气质类型的统计结果也表明,艺术体操优秀运动员神经系统类型属强型的运动员占有相当高的比例,达到了9019%(一级及以上水平运动员).213 选材中对运动员气质类型的选择气质在很大程度上受先天遗传因素的影响和制约,但这并不意味着气质就是一成不变的,只能说明气质是较稳固的个性特征,在一般情况下不容易发生改变.当人体内部机能(特别是神经系统)和外部环境发生重大变化时,气质也会在一定程度上发生变化.对于一个健康人来说,气质类型并无好坏之分,任何一种气质可能在某一种情况下具有积极的意义,而在另一种情况下可能就具有消极的意义,即气质具有两极性特征.因此,在运动员的科学选材工作中不要轻易下结论认为哪种气质类型适合,哪种气质类型不适合项目的要求.但是,在运动员其他条件相当的情况下,还是应该尽量避免选择神经类型为弱型即气质类型为抑郁质及其混合型的运动员,因为毕竟对气质类型的改造需要花费大量的时间和精力,而且也不可能通过后天改造使气质类型发生彻底的改变.神经活动类型为弱型的运动员虽然具有情感体验深刻、观察细致等优点,但其谨小慎微、敏感孤僻、沉默寡言、行动迟缓等特征与艺术体操项目所要求的胆大、活泼、灵敏是格格不入的.当然,并不是说气质类型为抑郁质的运动员就一定不能入选,如果该运动员在其他诸方面表现确实特别突出,那么,将该运动员挑选出来进行继续培养也不是不可以,但是应该慎重.3 结论1)通过对艺术体操项目特点的分析发现,神经类型为强型、平衡型的运动员较符合项目特点对运动员提出的要求,这类运动员较适合做艺术体操运动员.2)对我国现役的104名艺术体操运动员的气质类型的测试结果表明,多血质及其变种为最多,其次是粘液质及其变种,运动员属于抑郁质及其变种的人数最少.在一级及以上水平的运动员中,神经系统类型为强型的运动员比例高达9019%.3)在艺术体操选材中,应尽量挑选气质类型符合项目要求的运动员,对于神经系统类型为弱型的运动员在挑选过程中应慎重考虑.参考文献:[1] 虞明蔚,黄超群.优秀体操运动员的气质类型与选材[J].山东体育学院学报,1995(4):38Ο40.[2] 邓唏翎.浅析艺术体操运动员的气质类型[J].上海体育学院学报,1987(3):51Ο52.[3] 赵大宁.艺术体操运动员的气质类型的特征[J].沈阳体育学术,1991(4):52Ο56.[4] 郭秀文,谢 颖.艺术体操项目的发展趋势[J].中国体育科技,2005(5):45Ο47.[5] 国际体操联合会.国际艺术体操评分规则[S].张 婷,李红艳,赵玉华,等译.北京:国家体育总局体操运动管理中心,2005:71Ο130.[6] 叶奕乾,孔克勤.个性心理学[M].上海:华东师范大学出版社,1993:178Ο180.[7] 张卿华,王文英.人的神经系统测评研究[M].北京:高等教育出版社,1993:198Ο202.(责任编辑 惠松骐)901。

电解锰ELMNMSDS安全表(WORD格式)

电解锰ELMNMSDS安全表(WORD格式)

damage to health. All contact with the human body must be avoided.
3.3
Chronic exposure to high conc entrations of manganese may lead to Manganism, a
disease of the central nervous system.
MATERIAL SAFETY DATA SHEET Electrolytic Manganese Metal
1.
IDENTIFICATION OF THE SUBSTANCE / PREPARATION AND OF THE
COMPAN Y
1.1
Identification of the substance or preparation : Product Name : Electrolytic Manganese
2.1
Components :
CAS No.
Manganese
7439-96-5
Weight % >99
Danger symbol
Xn: Harmful
R and S-phras es
R : 10, 15, 15.1, 20, 22, 48. S : 3, 8, 9, 14.2, 14.5, 14.6, 15, 16, 20, 21, 22, 26.
1.2 1.3 1200 REPUB LIC OF SOUTH AFRICA Phone : (27) 013 7594600 E mergency Telephone
No. : ++27 013 7594600
2.

1例圣乔治教堂诺卡菌眼部感染病例及文献回顾

1例圣乔治教堂诺卡菌眼部感染病例及文献回顾

[收稿日期] 2020-03-22[作者简介] 刘艳芝(1990-),女(汉族),湖南省株洲市人,主管技师,主要从事临床微生物检验相关研究。

[通信作者] 李军 E mail:lijun198412@126.com犇犗犐:10.12138/犼.犻狊狊狀.1671-9638.20206002·论著·1例圣乔治教堂诺卡菌眼部感染病例及文献回顾刘艳芝1,李虹玲2,李艳明2,刘清霞2,晏 群2,邹明祥2,刘文恩2,李 军2(1.湖南省职业病防治院检验科,湖南长沙 410007;2.中南大学湘雅医院检验科,湖南长沙 410008)[摘 要] 圣乔治教堂诺卡菌隶属于诺卡菌属,诺卡菌广泛分布于土壤和水中,不属于人体正常菌群,主要通过呼吸道吸入和破损皮肤侵入人体。

诺卡菌病由诺卡菌感染所致,诺卡菌感染的常见部位以肺部和皮肤多见,眼部感染报道较少,圣乔治教堂诺卡菌所致眼部感染的报道更少。

因此,报道某院1例圣乔治教堂诺卡菌眼部感染的病例,并结合国内外文献进行复习,旨在提高临床对诺卡菌病的诊治水平。

[关 键 词] 圣乔治教堂诺卡菌;诺卡菌病;眼部感染[中图分类号] R772.2犈狔犲犻狀犳犲犮狋犻狅狀狑犻狋犺犖狅犽犪狉犱犻犪犮狔狉犻犪犮犻犵犲狅狉犵犻犮犪:狅狀犲犮犪狊犲狉犲狆狅狉狋犪狀犱犾犻狋犲狉犪 狋狌狉犲狉犲狏犻犲狑犔犐犝犢犪狀 狕犺犻1,犔犐犎狅狀犵 犾犻狀犵2,犔犐犢犪狀 犿犻狀犵2,犔犐犝犙犻狀犵 狓犻犪2,犢犃犖犙狌狀2,犣犗犝犕犻狀犵狓犻犪狀犵2,犔犐犝犠犲狀 犲狀2,犔犐犑狌狀2(1.犇犲狆犪狉狋犿犲狀狋狅犳犆犾犻狀犻犮犪犾犔犪犫狅狉犪狋狅狉狔,犎狌狀犪狀犘狉犲狏犲狀狋犻狅狀犪狀犱犜狉犲犪狋犿犲狀狋犐狀狊狋犻狋狌狋犲犳狅狉犗犮犮狌狆犪狋犻狅狀犪犾犇犻狊犲犪狊犲狊,犆犺犪狀犵狊犺犪410007,犆犺犻狀犪;2.犇犲狆犪狉狋犿犲狀狋狅犳犆犾犻狀犻犮犪犾犔犪犫狅狉犪狋狅狉狔,犡犻犪狀犵狔犪犎狅狊狆犻狋犪犾,犆犲狀狋狉犪犾犛狅狌狋犺犝狀犻狏犲狉狊犻狋狔,犆犺犪狀犵狊犺犪410008,犆犺犻狀犪)[犃犫狊狋狉犪犮狋] 犖狅犽犪狉犱犻犪犮狔狉犻犪犮犻犵犲狅狉犵犻犮犪(犖.犮狔狉犻犪犮犻犵犲狅狉犵犻犮犪)belongstothe犖狅犮犪狉犱犻犪狊狆狆.,犖狅犮犪狉犱犻犪distributeswidelyinsoilandwater,itdoesnotbelongtothenormalfloraofhumanbody,mainlyinvadeshumanbodythroughrespiratorytractinhalationanddamagedskin.Nocardiosisiscausedby犖狅犮犪狉犱犻犪infection,犖狅犮犪狉犱犻犪infectioniscommoninthelungandskin,therearefewreportsofeyeinfection,reportsofeyeinfectioncausedby犖.犮狔狉犻犪犮犻 犵犲狅狉犵犻犮犪isevenfewer.Thispaperreportsacaseofeyeinfectionwith犖.犮狔狉犻犪犮犻犵犲狅狉犵犻犮犪,andreviewsthelitera tureathomeandabroad,soastoimproveclinicaldiagnosisandtreatmentofnocardiosis.[犓犲狔狑狅狉犱狊] 犖狅犽犪狉犱犻犪犮狔狉犻犪犮犻犵犲狅狉犵犻犮犪;nocardiosis;eyeinfection 诺卡菌病(Nocardiosis)是由诺卡菌(犖狅犮犪狉犱犻犪)感染引起的一种急慢性化脓性疾病。

nervous的形容词和副词

nervous的形容词和副词

nervous的形容词和副词【释义】nervousadj.神经紧张的,担忧的;神经质的,神经过敏的;神经的,神经系统的;(疾病)由精神紧张引起的,由精神压力造成的;易激动的,易兴奋的;强健有力的比较级more nervous最高级most nervous【短语】1Nervous System解剖神经系统;神经组织;铁的神经系统;神经系2nervous tissue组织神经组织;神经弓3peripheral nervous system解剖周围神经系统;外周神经系统;末梢神经系统;外围神经系统4enteric nervous system解剖肠神经系统;肠道神经系统;神经系统;壁内神经5somatic nervous system解剖躯体神经系统;体神经系统;动体神经系;神经系统6nervous system disease神经系统病变;精神神经系统疾病7sympathetic nervous system交感神经;解剖交感神经系统;交感神经系;交感神经器官体系8parasympathetic nervous system副交感神经;解剖副交感神经系统;副交感神经系;和副交感神经系统9get nervous变得紧张;紧张不安;感到紧张【例句】1She flicked him a nervous glance.她紧张不安地瞟了他一眼。

2She was of a nervous disposition.她生性容易紧张。

3He's not the nervous type.他不是那种好紧张的人。

4She gave a nervous giggle.她发出紧张的傻笑。

5I was too nervous to eat.我紧张得饭都吃不下。

6I get the giggles when I'm nervous.我紧张时就不停地咯咯大笑。

7At our first meeting I was nervous.我们第一次见面时我很紧张。

兴奋性突触后电位抑制性突触后电位

兴奋性突触后电位抑制性突触后电位
2. chemical synapses:化学突触 use chemical transmitter(s)
Chemical Synapses
1. Typical Chemical Synapse 经典突触
2. Non-synaptic chemical transmission
非突触性化学传递
Typical Chemical Synapse Synapse:
AP propagate to synaptic knob Ca2+ influx
Vesicle move to presynaptic membrane Release neurotransmitters
递质
synaptic cleft: transmitter diffused to the postsynaptic membrane
(Acetylcholine
ACh
cholinesterase )
AChE
2. reuptake: be transported back into 重利用 the synaptic knob
( epinephrine and norepinephrine ) 3. Go to peripheral interstitial space 外周组织
Synapse is the anatomically specialized junction between two neurons, where information is transmitted from one neuron to another.
一个神经元的轴突末梢与其 他神经元的胞体或突起相接 触并进行信息传递的部位。
• Classification of synapses 分类

神经生理学的英文名词解释

神经生理学的英文名词解释

神经生理学的英文名词解释神经生理学是研究神经系统的功能和活动的学科,结合生物学和生理学的知识,涵盖了神经元、神经网络以及神经传递的研究。

以下将介绍一些与神经生理学相关的英文名词,为读者提供更深入的了解。

1. Neuron(神经元)Neurons, also known as nerve cells, are the fundamental building blocks of the nervous system. They are specialized cells that transmit electrical signals throughout the body. Neurons have three main components: the cell body, dendrites, and axons. The cell body contains the nucleus and other organelles, while the dendrites receive signals from other neurons. The axon carries electrical impulses away from the cell body to other neurons or target cells.2. Synapse(突触)A synapse is a junction between two neurons where communication occurs. It is the site where the electrical signal from one neuron is transmitted to another neuron or target cell. Synapses can be either electrical or chemical. In chemical synapses, neurotransmitters are released from the presynaptic neuron and bind to receptors on the postsynaptic neuron, allowing the electrical signal to be transmitted.3. Action potential(动作电位)An action potential is a rapid and brief change in the membrane potential of a neuron. It is the result of depolarization and repolarization of the neuron's membrane, which allows the electrical signal to be conducted along the axon. The action potential is an "all-or-nothing" response, meaning it either occurs fully or not at all.4. Neurotransmitter(神经递质)Neurotransmitters are chemical messengers that transmit signals across synapses. They are released from the presynaptic neuron and bind to receptors on the postsynapticneuron, causing changes in the electrical activity of the postsynaptic neuron. Examples of neurotransmitters include dopamine, serotonin, and acetylcholine.5. Central nervous system(中枢神经系统)The central nervous system (CNS) consists of the brain and spinal cord. It is responsible for processing and integrating information received from sensory neurons and initiating appropriate responses. The CNS controls various functions, including movement, learning, memory, and emotion.6. Peripheral nervous system(外周神经系统)The peripheral nervous system (PNS) includes all the nerves and ganglia outside of the CNS. It connects the CNS to the rest of the body and is responsible for transmitting sensory information to the CNS and motor commands from the CNS to muscles and organs. The PNS can be further divided into the somatic nervous system and the autonomic nervous system.7. Somatic nervous system(躯体神经系统)The somatic nervous system controls voluntary movements and transmits sensory information from the body to the CNS. It consists of sensory neurons, motor neurons, and interneurons. Motor neurons carry signals from the CNS to muscles, allowing for voluntary movements.8. Autonomic nervous system(自主神经系统)The autonomic nervous system regulates involuntary processes in the body, such as heartbeat, digestion, and breathing. It has two main divisions: the sympathetic nervous system and the parasympathetic nervous system. The sympathetic nervous system prepares the body for "fight-or-flight" responses, while the parasympathetic nervous system promotes "rest-and-digest" activities.通过以上对于神经生理学的英文名词解释,我们可以更好地理解神经系统的基本原理和功能。

中枢神经系统感染ppt课件

中枢神经系统感染ppt课件
• 发热 • 意识障碍 • 抽搐 • 脑膜刺激征:头痛、呕吐、颈
强直、病理反射等 • 局限性神经损害体征
精选ppt课件最新
4
表 各种脑膜炎的脑脊液变化
疾病
压力 (Kp a)
外观
白细 胞 (×1 06/L)
化脓性脑 膜炎(未治)
升高
混浊、 脓样
升高 (>10
0)
化脓性脑 膜炎(部分 治疗)
升高
混浊
升高 (>10 00)
antibiotics • Increased brain water • Increased CSF (=intracranial) pressure • Reduced cerebral perfusion pressure • Risk of CSF obstruction leading to
– 2月~10岁以脑膜炎球 菌、流感杆菌和肺炎 球菌为主
• 好发季节 – 季节性不明显 – 流感杆菌四季均有,
但以秋冬季多见
– 肺炎球菌以冬季发病 率高
– 脑膜炎双球菌多在冬 春季
– 成人以肺炎球菌、脑
膜炎球菌多见
精选ppt课件最新
9
感染途径
• 由鼻咽部、肺、肠、皮肤和内脏等 寄殖处或感染灶,经血行达脑膜
中枢神经系统感染
Central Nervous System Infection
精选ppt课件最新
1
概述
• 不同病原体:类似的临床表现 • 病原治疗:有很大的差别 • 诊断与鉴别诊断:非常关键 • 正确处理:对于转归与预后有重要意义
精选ppt课件最新
2
Modes of pathogenesis of central system infections

Central nervous system drug

Central nervous system drug

Medicinal chemical properties of successful central nervous system drug成功的中枢神经系统药物的医药化学性质Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeability, metabolic stability, protein binding, and human ether-ago-go-related gene inhibition of CNS compounds need to be optimized simultaneously with potency, selectivity, and other biological parameters. The balance between optimizing the physiochemical and pharmacokinetic properties to make the best compromises in properties is critical for designing new drugs likely to penetrate the blood brain barrier and affect relevant biological systems. This review is intended as a guide to designing CNS therapeutic agents with better drug-like properties.的中枢神经系统的药物的基本物理特性都与他们的穿透血脑屏障亲和力和展览的CNS活性的能力。

跨膜蛋白P190胞外段互作蛋白的筛选及验证

跨膜蛋白P190胞外段互作蛋白的筛选及验证
中国医科大学 硕士学位论文 跨膜蛋白P190胞外段互作蛋白的筛选及验证 姓名:李策 申请学位级别:硕士 专业:生物学;发育生物学 指导教师:赵伟东 201205
・中文论著摘要・
跨膜蛋白P1 90胞外段互作蛋白的筛选及验证
背景及目的
P190蛋白是一种神经元跨膜蛋白,由1384个氨基酸组成。最初发现于有髓 神经纤维郎飞氏节的节旁侧,主要在脊椎动物脑内表达,另外在卵巢、胰脏、肠、 肺、心脏及睾丸等组织内也有少量表达。P190蛋白与髓鞘蛋白NFl55等结合, 在神经轴突的节旁侧形成节旁连接(paranodM iunction),这种连接结构类似于间 隔连接(septme iunction)。间隔连接广泛存在于果蝇等无脊椎动物的血.神经屏障 处,与脊椎动物血脑屏障处的紧密连接功能类似。目前研究表明,脊椎动物内由 P190、NFl55等蛋白形成的节旁连接在维持神经冲动的跳跃式传导、轴突.胶质细 胞间信息快速传递、轴突特化区域的形成及轴.胶间隙与细胞外基质间屏障形成中 发挥重要作用。P190蛋白表达异常可产生严重的神经系统功能紊乱,P190./-型小 鼠的神经冲动传导速度明显低于正常小鼠,而且在出生后不久即因神经元变性坏 死而导致死亡。另外有研究显示多发性硬化症(multiple sclerosis,MS)患者脑内 P190表达水平明显降低。P190表达降低可进一步导致髓鞘脱离轴突,促进轴突 变性坏死,进而形成神经元变性损伤的恶性循环。在糖尿病性神经病变的大鼠中, P190的表达水平也明显降低。由此可见,P190蛋白的功能是至关重要的,但其 具体功能和作用机制还不清楚。 血脑屏障(blood.brain barrier,BBB)是由脑微血管内皮细胞、星型胶质细 胞、基膜及周细胞等共同组成的高度特化的神经血管结构单元。其中脑微血管内 皮细胞间的紧密连接和粘附连接是构成血脑屏障结构的基础,也是维持血脑屏障 功能的关键。目前已知的内皮细胞间连接相关蛋白已有很多,包括跨膜蛋白和细 胞内的衔接蛋白;同时对内皮细胞问紧密连接和粘附连接的作用机制也有了深入 认识,但仍有待发现更多的连接蛋白及更深入的了解内皮细胞屏障功能机制。 我室研究人员发现P190蛋白除了在神经轴突有表达外,在人脑微血管内皮
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PII S0361-9230(01)00674-8Identification of central nervous system neurons innervating the respiratory muscles of the mouse:A transneuronal tracing studySusana P.Gayta ´n,1*Rosario Pa ´saro,1Patrice Coulon,2Michelle Bevengut 3and Ge ´rard Hilaire 31Department of Animal Physiology and Biology,University of Sevilla,Sevilla,Spain;2FRE CNRS,Neurocybernetique Cellulaire,Marseille,France;and 3FRE CNRS,Development and Pathology of Movement,Marseille,FranceABSTRACT:In recent years,the central control of breathing in mammals has been the subject of numerous studies.The aim of the present one was to characterize the neuronal network pro-jecting to the main respiratory motoneurons,in adult mice.To this end,the morphology and location of the respiratory mo-toneurons and their sequential connections with other neurons were revealed using a transneuronal tracing technique by means of the rabies virus infection.The injections of the rabies virus in the respiratory muscles resulted in labeling the mo-toneurons and their serially connected interneurons at multiple levels of the mouse central nervous system:spinal cord,pons and medulla,cerebellum,mesencephalon,diencephalon,and telencephalon.Most of these labeled areas have been previ-ously identified in the control of cardiorespiratory regulation,as well as in other autonomic functions.These anatomical data provide support for the integration of respiratory-related activ-ities in complex behavioral responses.Furthermore,these data suggest similarities in the evolution of central respiratory net-works in mammals.©2002Elsevier Science Inc.KEY WORDS:Control of respiration,Phrenic nucleus,Spinal cord,Hypothalamus,Ventrolateral reticular formation,Parabra-chial nucleus,Central gray,Thalamus,Cortex.INTRODUCTIONThe nervous control of respiration that has been mainly studied in vivo in adult mammals (rats,cats,dogs,rabbits)[2],is now studied in neonatal rodents [7,8].However,little information is available on the adult mouse [1,7,8].Substantial evidence in-dicates that central nervous system (CNS)regions involved in regulation of behavioral and emotional responses also play a role in the modulation of autonomic functions [2].From a comparative point of view,it is generally accepted that the respiratory control system possesses a similar anatomical orga-nization among different rodent species [2,11].However,dif-ferences between the rat and mouse respiratory system should be emphasized [7,8].First,the vagal control of the respiratory rhythm is stronger in the mouse than in the rat [7].Second,respiratory bursts mainly occur in phrenic roots in mouse prep-arations,whereas they occur in all the cervical rootlets in rat preparations [7].Finally,pontine control of the medullary re-spiratory rhythm generator may differ between the mouse and the rat.Respiratory bursts occur spontaneously in rat pontomed-ullary preparations,but the pons must be removed in the mouse preparation to obtain similar activity [7].We have studied the motor and premotor components of the anatomical network of respiratory control in mice by means of a transneuronal labeling technique using rabies virus [1,6].MATERIAL AND METHODSIn order to characterize the morphology and the location of the respiratory motoneurons and their serially connected chains of neurons,the Challenge Virus Standard of rabies virus was used.This tracer is amplified across the synapses [1]and has the ability to invade cell dendrites as well as somata,thereby labeling all the neuronal arborizations.Experiments were carried out in adult mice of the CH3/HeJ strain,at least 3months old,and weighing 36Ϯ2g.The animals were anesthetized by a peritoneal injection of sodium pentobarbital (30mg/kg)in accordance with the European Community Directive (86/609/EEC).Thereafter,2␮l of virus solution (2.5ϫ107PFU/␮l)[10]were injected through a 10-␮l Hamilton syringe inserted either in the left part of the diaphragm or in the left intercostal muscles.The surgical wound was sutured,and the animals were kept in a warm enclosure.After 3–5-day survival periods,the animals were deeply anaesthetized and transcardially perfused with paraformaldehyde (4%)in saline.To accurately define the spatial distribution of the cells,the brains were sectioned at 30␮m in either coronal (n ϭ2)or sagittal (n ϭ1)planes,by means of a freezing microtome.The virus was detected using immu-nohistochemistry with a mouse monoclonal antibody specific for the viral phosphoprotein as primary antibody,and a fluorescein (FITC)-conjugate (Jackson ImmunoResearch,West Grove,PA,USA)as secondary antibody to visualize the labeled neurons.The sections were mounted on gelatine-coated slides,air dried,and cover-slipped with DPX (Fluka Chemika,Switzerland).To delimit the CNS regions,every third section was counterstained using the Nissl method.The green fluorescent FITC-labeled neurons were visualized under a Zeiss Axiophot (Germany)fluorescence microscope,by means of a barrier filter system H (450–490-nm excitation wave-*Address for correspondence:Susana P.Gayta ´n,Departmento de Fisiologı´a y Biologia Animal,Facultad de Biologia,Avda.Reina Mercedes,6,41012-Sevilla,Spain.Fax:34-954233480.E-mail:sgaytan@us.esBrain Research Bulletin,Vol.57,Nos.3/4,pp.335–339,2002Copyright ©2002Elsevier Science Inc.Printed in the USA.All rights reserved0361-9230/02/$–see front matter335length)(Fig.1).The labeled neurons were charted onto anatomical outlines of brain sections (Figs.2,3).The terminology for CNS nuclei was based on the Paxinos and Watson [9]and Valverde [12]atlases.RESULTSLabeled neurons were found bilaterally throughout the CNS (x ៮ϭmean number of labeled cells in each slice and in each experiment).At the spinal level,phrenic (x ៮ϭ11;range,8–15)and intercostal (x ៮ϭ9;range,8–13)motoneurons,as well as interneurons (x ៮ϭ6;range,3–13)were labeled.The cells were organized in clusters of neurons in the ventral horn (Fig.1A)and were located inside the layers 6–9.However,in one of the experiments,cells were also found in the layers 1–3.At the pons and medulla levels (Figs.2,3),labeledneuronsFIG.1.Fluorescence photomicrographs,taken under a 450-nm excitation filter,of coronal sections of themouse brain.(A)Coronal section through the right ventral part of the spinal cord shows the labeled somas.The white arrow points to a phrenic motoneuron.(B)Coronal section of the left ventrolateral medulla shows labeled cells and fibers in the ambiguus nucleus and surrounding reticular formation,and the arrow points to a labeled ambiguus nucleus premotor neuron.(C)Labeled neurons within the medial cerebellar nucleus (arrows).Note the presence of labeled granule cells.(D)Fluorescence photomicrograph of labeled neurons (arrow)within the different parietal cortex layers (arrowheads).Bars:100␮m.Abbreviations:Amb,nucleus ambiguus;fu,funiculus of the spinal cord;Med,medial (fastigial)cerebellar nucleus;LRt,lateral reticular nucleus;Par,parietal cortex;py,pyramidal tract;Sp5C,spinal trigeminal nucleus,caudal part.336GAYTA´N ET AL.were observed bilaterally in different nuclei.The cells found in the nucleus of the solitary tract (x ៮ϭ9;range,2–19)showed the greatest density in its medial beled neurons were also located within the medial reticular formation (x ៮ϭ14;range,11–25)(Figs.1B,2),and in one experiment within the gelatinous layer of the caudal spinal trigeminal nucleus (x ៮ϭ9;range,7–13)(Fig.1B).Labeled cells were present in the retroambiguus (x ៮ϭ2;range 0–3)and ambiguus (x ៮ϭ8;range,2–14)nuclei (Figs.1B,2).Scattered labeled somata were also located within the lateralparagigantocellular nucleus (x ៮ϭ3;range,1–5),parapyramidal region (x ៮ϭ2;range,1–3),raphe obscurus nucleus (x ៮ϭ1;range,1–2),and A5area (x ៮ϭ2;range,1–3)(Fig.2).The greatest number (x ៮ϭ17;range,11–21)of labeled somata was found within the medial subdivision of the parabrachial/Ko ¨lliker –Fuse complex (Figs.2,3).In addition,neurons were present in the Barrington ’s nucleus (x ៮ϭ1;range,0–2),subcoeruleus nucleus (x ៮ϭ7;range,FIG.2.Schematic summary drawing of coronal sections of the mouse brain shows the distribution of labeled somata (dots,each dot represents 1labeled soma)after injection of the virus into the diaphragm and intercostal muscles.The data are from a representative single experiment (section thickness:30␮m).The coordinates indicate the distance on respect to the bregma taken as zero reference.Abbreviations:AP,area postrema;csc,commissure of the superior colliculus;DCIC,dorsal cortex of the inferior colliculus;DTg,dorsal tegmental nucleus;ECu,external cuneate nucleus;InG,intermediate gray layer of the superior colliculus;IRt,intermediate reticular nucleus;LC,locus coeruleus;LPGi,lateral paragigantocellular nucleus;PB,parabrachial nucleus;PnC,pontine tegmental nucleus,caudal part;ROb,raphe obscurus nucleus;SNR,substantia nigra,reticular part;Sol,nucleus of the solitary tract;Sp5I,spinal trigeminal nucleus,interpolar part.MOUSE CNS PROJECTIONS TO THE PHRENIC NUCLEUS 3373–9),locus coeruleus (x ៮ϭ2;range,0–6),lateral superior olive (x ៮ϭ2;range,1–4),and dorsal tegmental nucleus (x ៮ϭ2;range,1–3)(Figs.2,3).At the level of the cerebellum,labeled neurons were found within the medial cerebellar nucleus (x ៮ϭ9;range,2–19),and in one experiment,numerous granule cells were also labeled (x ៮ϭ16;range,13–38)(Figs.1C,2,3).At the midbrain level,labeled somata (x ៮ϭ14;range,8–26)were located in the periaqueductal central gray,arranged in a compact cluster near the aqueduct (Fig.2).Other labeled cells (x ៮ϭ2;range,1–6)were observed within the pedunculopontine tegmental nucleus (Fig.2).Scattered labeled neurons (1to 4)were also found within the deep mesencephalic nucleus and superior colliculus.At the hypothalamic level,a few labeled neurons (1to 4)were found in the lateral and in the anterior hypothalamic areas.A sparse group of cells (x ៮ϭ5;range,2–9)was present in the zona incerta (Fig.3).Labeled somata were found within the subthalamic nucleus (x ៮ϭ8;range,5–13).At the thalamic level,labeled cells were observed within the laterodorsal (x ៮ϭ5;range,2–9),dorsomedial (x ៮ϭ3;range,1–5),and posterior (x ៮ϭ7;range,2–11)thalamic nuclei (Fig.3).The neurons found in the laterodorsal thalamic nuclei,were located at the ventral limit of the nucleus.Finally,labeled neurons were also present in the frontal (x ៮ϭ10;range,8–15)(Fig.3)and parietal (x ៮ϭ11;range,8–15)cortices (Figs.1D,3).DISCUSSIONThese preliminary results show labeled cells related to the control of breathing at different levels of the CNS.However,some of the labeled neurons may originate from virus infection through muscular afferents,because the dorsal roots were intact.Our findings show labeled phrenic and intercostal motoneurons and interneurons in the spinal cord.The latter may have an important role in respiratory integration.In mammals,it is postu-lated that the respiratory rhythm is generated by the oscillations of a neuronal network,which comprises different types of respiratory neurons,most of them being located in the reticular formation of the brainstem [2,3].Our data in the adult mouse are comparable to previous studies in the rat [3].Respiratory control-related neurons are present within the medial reticular formation and within the lateral tegmental field;although these projections may not be prominent in providing respiratory drive,they may be involved in the modulation of motoneuronal excitability,as suggested for other rodents [3].The neurons found within the medullary reticular formation,including the ventral respiratory group and the nucleus of the solitary tract,are comparable to the pattern of premotor neurons described in the rat.These neurons correspond totheFIG.3.Schematic summary drawing of sagittal sections shows the general distribution of labeled somata (dots,each dot represents 1labeled soma)after injections of the virus into the diaphragm and intercostal muscles.The data are from a representative single experiment (section thickness:30␮m).The coordinates indicate the distance lateral to the midline.Abbreviations:CPu,caudate putamen;IC,inferior colliculus;Gi,gigantocel-lular reticular nucleus;MD,mediodorsal thalamic nucleus;R,red nucleus;Tu,olfactory tubercle.338GAYTA´N ET AL.primary descending pathway,which provides the transmission of rhythmic respiratory drive to respiratory motoneurons[3].The neurons located within parabrachial/Ko¨lliker–Fuse complex sup-port the idea that this area is involved in the direct control of respiratory function via their projections to phrenic and intercostal motoneurons and premotor neurons[4,5,8]at the spinal level.So far,no evidence existed of premotor neurons located within nuclei outside the pons and medulla in mice.However,our results show otherwise.The labeled cells within the cerebellum could be part of the modulation of the respiratory outputs,via influences on medullary respiratory neurons[5].The link between the periaque-ductal central gray and the respiratory motoneurons could mediate respiratory-related functions,such as vocalization[5].The teg-mental pedunculopontine nucleus could participate in respiratory final respiratory motoneuronal output[5].In addition,labeled cells within the anterior and the lateral hypothalamic areas,as well as within the zona incerta,may correspond to second-order neurons implicated in autonomic functions,as described in rats[5].These regions are involved in the integration of vegetative and behavioral responses[5].Our experiments also have demonstrated labeled cells within the subthalamus and the laterodorsal,dorsomedial,and lateral posterior thalamic nuclei,which indicates that respiratory motoneurons receive information from structures involved in so-matosensorial and motor control as shown in rats by the existing connections between the thalamic and cardiorespiratory areas[5]. This connectivity may provide a pathway by which respiratory control-related neurons may gain access to the limbic system. Finally,the present study shows a moderate number of labeled neurons in the cerebral cortex,which may provide a cortical modulation of the respiratory motoneurons activities.In conclusion,these preliminary results showed that the Chal-lenge Virus Standard of rabies virus is a useful tool for labeling the respiratory network,which provides an anatomical basis for the circuitry underlying respiratory control.However,it will be nec-essary to use different virus infection times and dorsal rhizotomies to decipher step by step the anatomical organization and identify precisely the connections between the different labeled areas. Finally,our data suggest a high similarity in the organization of central respiratory networks in rodents.ACKNOWLEDGEMENTSSupported by the Acciones Integradas Hispano-Francesas/Picasso Pro-gram,IFR Sciences du Cerveau and CNRS-ATIPE“Virologie”.The au-thors wish to thank Dr W.E.Cameron for the comments made to improve the manuscript.REFERENCES1.Astic,L.;Saucier,D.;Coulon,P.;Lafay,F.;Flamand,A.The CVSstrain of rabies virus as transneuronal tracer in the olfactory system of mice.Brain Res.19:146–156;1993.2.Bianchi,A.L.;Denavit-Sauvie,M.;Champagnat,J.Central control ofbreathing in mammals:Neuronal circuitry,membrane properties and neurotransmitters.Physiol.Rev.75:1–45;19953.Dobbins,E.G.;Feldman,J.L.Brainstem network controlling de-scending drive to phrenic motoneurons in p.Neurol.347: 64–86;1994.4.Gayta´n,S.;Calero,F.;Nu´n˜ez-Abades,P.A.;Morillo,A.M.;Pa´saro,R.Pontomedullary efferent projections of the ventral respiratory neu-ronal subsets of the rat.Brain Res.Bull.42:323–334;1997.5.Gayta´n,S.P.;Pa´saro,R.Connections of the rostral ventral respiratoryneuronal cell group:An anterograde and retrograde tracing study in the rat.Brain Res.Bull.47:625–642;1998.6.Haxhiu,M.A.;Jansen,A.S.P.;Cherniack,N.S.;Loewy,Sinnervation of airway-related parasympathetic preganglionic neurons:A transneuronal labelling study using pseudorabies virus.Brain Res.618:115–134;1993.7.Hilaire,G.;Bou,C.;Monteau,R.Rostral ventrolateral medulla andrespiratory rhythmogenesis in mice.Neurosci.Lett.224:13–16;1997.8.Hilaire,G.;Duron,B.Maturation of the mammalian respiratory sys-tem.Physiol.Rev.79:325–360;1999.9.Paxinos,G.;Watson,C.The rat brain in stereotaxic coordinates,2nded.San Diego:Academic Press;1986.10.Pre´haud,C.;Coulon,P.;Lafay,F.;Thiers,C.;Flamand,A.Antigenicsite II of rabies virus glycoprotein:structure and role in viral virulence.J.Virol.62:1–7;1988.11.Tankersley,C.;Rabold,R.;Mitzner,W.Differential lung mechanismare genetically determined in inbred murine strains.J.Appl.Physiol.86:1764–1769;1999.12.Valverde,F.Golgi atlas of postnatal mouse brain.New York:Spring-er-Medicine;1998.MOUSE CNS PROJECTIONS TO THE PHRENIC NUCLEUS339。

相关文档
最新文档