勾股定理习题(1)

合集下载

备课中心-1-2-3-4-5-6-7-8-9-10-11-12-13-14

备课中心-1-2-3-4-5-6-7-8-9-10-11-12-13-14

勾股定理复习题组(1)1.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC 边的中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.(注:直角三角形斜边上的中线等于斜边的一半)错误!(第1题) 2.在△ABC中,D为BC的中点,AB=5,AD=6,AC=13,判断△ABD的形状.3.如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口O,各自沿一固定方向航行,A舰每小时航行32 n mile,B舰每小时航行24 n mile,它们离开港口一个小时后,相距40 n mile,已知A舰沿东北方向航行,则B舰沿哪个方向航行?(第3题) 4.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.(第4题)5.如图,圆柱形无盖玻璃容器高18 cm,底面周长为60 cm,在外侧距下底1 cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的外侧距上口1 cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.(第5题)6.如图,四边形ABCD是长方形,把△ACD沿AC折叠得到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.(第6题)7.在△ABC中,若AB=20,AC=15,AD是BC边上的高,AD =12,试求△ABC的面积.8.如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E,F分别是AB,AC边上的点,且AE=CF,若BE=14,CF=2,求线段DF的长.(注:直角三角形斜边上的中线等于斜边的一半)(第8题)。

勾股定理基础练习题(含答案与解析)

勾股定理基础练习题(含答案与解析)

勾股定理基础练习题(含答案与解析)勾股定理勾股定理基础练习题(含答案与解析)第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共15小题)1.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20 B.22 C.24 D.263.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算5.如图,在△ABC中,AD⊥BC于D,AB=17,BD=15,DC=6,则AC的长为()A.11 B.10 C.9 D.86.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.97.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()A.4 B.6 C.8 D.108.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()勾股定理基础练习题(含答案与解析)A.5m B.6m C.7m D.8m9.如图,已知,CD是Rt△ABC斜边上的高,∠ACB=90°,AC=4m,BC=3m,则线段CD的长为()A.5m B.C.D.10.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2 C.3cm2 D.4cm211.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A.8 B.9 C.10 D.1112.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.13.用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm14.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定15.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5勾股定理基础练习题(含答案与解析)第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共13小题)16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S 的边长为cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.18.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于,小于或等于)1米.19.如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=.勾股定理基础练习题(含答案与解析)20.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是.21.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.22.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为,整理后即为.23.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.勾股定理基础练习题(含答案与解析)24.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.25.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.26.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.27.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.勾股定理基础练习题(含答案与解析)28.一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3).评卷人得分三.解答题(共5小题)29.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?30.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.勾股定理基础练习题(含答案与解析)31.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.32.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?33.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?勾股定理基础练习题(含答案与解析)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

勾股定理练习题1-4

勾股定理练习题1-4

1S 3S 2S 1C BACBA D E FE F D C B A C A B D 课题:勾股定理(一) 姓名:直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系: (2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:勾股定理的内容是: 。

1、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为202、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。

3.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。

4、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为 。

5、一个直角三角形的两边长分别为3cm 和4cm,则第三边的为 。

6、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积.7、以直角三角形的两条直角边为边向外作正方形,他们它们面积分别是6和3.则斜边长是 。

8、若直角三角形三边存在关系,则最长边是 。

9、在,∠C =90°AB=34,并且AC:BC=8:15,则AC= BC=10、直角三角形的两直角边的长分别是5和12,则其斜边上的高的长为 .11、已知甲往东走了4km ,乙往南走了3km ,这时甲、乙俩人相距 .12、一直角三角形的斜边长比一条直角边长多2,另一直角边长为6,则斜边长为 . 13、直角三角形中,以直角边为边长的两个正方形的面积为7,8,则以斜边为边长的正方形的面积为____.14、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做_____?15、已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是_____ 16、如图所示,以的三边向外作正方形,其面积分别 为,且 ;17、等边三角形的边长为2,则该三角形的面积为18、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为19、如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AC 凿通?20、如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,•则这条小路的面积是多少?21、如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9。

勾股定理习题及答案

勾股定理习题及答案

勾股定理习题及答案勾股定理习题及答案勾股定理是数学中的一条重要定理,它描述了直角三角形中三边之间的关系。

在数学教育中,勾股定理常常作为基础知识进行教学,并且在习题中广泛应用。

本文将介绍一些关于勾股定理的习题,并提供详细的解答。

1. 习题一:已知直角三角形的斜边长为5,一条直角边长为3,求另一条直角边的长度。

解答:根据勾股定理,斜边的平方等于两直角边平方和。

设另一条直角边长度为x,则有5^2 = 3^2 + x^2。

化简得25 = 9 + x^2,进一步得到x^2 = 16。

因此,x的取值可以是正负4。

但由于长度不能为负数,所以另一条直角边的长度为4。

2. 习题二:已知直角三角形的两条直角边分别为6和8,求斜边的长度。

解答:同样利用勾股定理,斜边的平方等于两直角边平方和。

设斜边长度为y,则有y^2 = 6^2 + 8^2。

计算得到y^2 = 36 + 64,进一步得到y^2 = 100。

因此,斜边的长度为10。

3. 习题三:已知直角三角形的两条直角边分别为3和4,求斜边的长度。

解答:同样利用勾股定理,斜边的平方等于两直角边平方和。

设斜边长度为z,则有z^2 = 3^2 + 4^2。

计算得到z^2 = 9 + 16,进一步得到z^2 = 25。

因此,斜边的长度为5。

通过以上习题的解答,我们可以看到勾股定理在求解直角三角形问题中的应用。

它帮助我们确定了三角形的边长关系,从而解决了许多实际问题。

除了直角三角形,勾股定理还可以应用于其他几何形状。

例如,我们可以利用勾股定理计算矩形的对角线长度。

设矩形的长为a,宽为b,对角线的长度为c。

根据勾股定理,c^2 = a^2 + b^2。

这个公式可以帮助我们求解矩形的对角线长度,从而在实际问题中应用矩形的性质。

勾股定理的应用不仅限于几何学,它还可以在其他学科中发挥作用。

例如,物理学中的力学问题中,常常需要求解物体的速度、加速度等。

通过应用勾股定理,我们可以计算出物体在不同时间点的速度和加速度之间的关系,从而解决力学问题。

1、勾股定理真题1

1、勾股定理真题1

勾股定理复习题卷一.选择题(共10小题)1.如图,在△ABC中,∠A=∠B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.162.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.253.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b24.已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.485.如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=()A.4B.8C.12D.326.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.808.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米9.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 510.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2二.填空题(共8小题)11.如图,在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,则AD=cm.12.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.14.如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是.15.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.16.如图,△ABC中,AC=3,BC=4,AB=5,AB上的高CD=.17.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是.18.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.三.解答题(共9小题)19.如图,在四边形ABCD中,∠BAD=∠B=∠C=90°,AD=BC=20,AB=DC=16.将四边形ABCD 沿直线AE折叠,使点D落在BC边上的点F处.(1)求BF的长.(2)求EC的长.20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.21.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)22.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.23.已知:△ABC中AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.24.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.26.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.27.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.勾股定理复习题卷参考答案与试题解析一.选择题(共10小题)1.如图,在△ABC中,∠A=∠B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.16【解答】解:因为在△ABC中,∠A=∠B=45°,AB=4,所以AC==2,所以这个正方形的面积为=8,故选:C.2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.25【解答】解:如图所示:AB==5.故选:A.3.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.4.已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.5.如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=()A.4B.8C.12D.32【解答】解:∵S1=4,∴BC2=4,∵S2=12,∴AC2=8,∴在Rt△ABC中,BC2+AC2=AB2=4+8=12,∴S3=AB2=12.故选:C.6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.7.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.80【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE,=AB2﹣×AE×BE=100﹣×6×8=76.故选:C.8.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米【解答】解:Rt△ABC中,AC=1米,AB=2米;由勾股定理,得:BC==米;∴树的高度为:AC+BC=(+1)米;故选:C.9.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 5【解答】解:作AD⊥BC于D,如图所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,由勾股定理得:AD==8,当BM⊥AC时,BM最小,此时,∠BMC=90°,∵△ABC的面积=AC•BM=BC•AD,即×10×BM=×12×8,解得:BM=9.6,故选:B.10.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.二.填空题(共8小题)11.如图,在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,则AD=8cm.【解答】解:∵在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,∴BD=BC=6cm.在Rt△ABD中,∵AB=10cm,BD=6cm,∴AD===8cm.故答案为:8.12.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=17.【解答】解:∵S1=5,∴BC2=5,∵S2=12,∴AC2=12,∴在Rt△ABC中,BC2+AC2=AB2=5+12=17,∴S3=AB2=17.故答案为:17.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.【解答】解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.14.如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是(a+b)2﹣(a﹣b)2=4ab.【解答】解:观察图形得:大正方形边长为:a+b,小正方形边长为:a﹣b,根据大正方形面积﹣小正方形面积=阴影面积得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.15.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是47.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.16.如图,△ABC中,AC=3,BC=4,AB=5,AB上的高CD=.【解答】解:∵△ABC中,AC=3,BC=4,AB=5,∴AB2=AC2+BC2,即52=32+42,∴△ABC是直角三角形,∵CD⊥AB,∴AC•BC=AB•CD,即3×4=5×CD,解得CD=.故答案为:.17.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是3≤DE≤5.【解答】解:当E与C重合时,DE最长,在Rt△ABC中,AB=,∵点D是线段AB的中点,∴CD=5,当DE⊥BC时,DE最短,DE=,所以DE长度的取值范围是3≤DE≤5,故答案为:3≤DE≤518.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需7米.【解答】解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,已知AB=5米,AC=3米,且在直角△ABC中,AB为斜边,则BC==4米,则AC+BC=3米+4米=7米.故答案为:7.三.解答题(共9小题)19.如图,在四边形ABCD中,∠BAD=∠B=∠C=90°,AD=BC=20,AB=DC=16.将四边形ABCD 沿直线AE折叠,使点D落在BC边上的点F处.(1)求BF的长.(2)求EC的长.【解答】解:(1)∵△AFE是△ADE折叠得到的,∴AF=AD=20,∴在Rt△ABE中,BF===12.(2)∵△AFE是△ADE折叠得到的,∴EF=ED.设EC=x,则EF=ED=16﹣x,在Rt△EFC中,FC=BC﹣BF=8,∠C=90°,∴EF2=FC2+EC2,即(16﹣x)2=82+x2,解得:x=6,∴EC的长度为6.20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.【解答】解:(1)设木杆断裂处离地面x米,由题意得x2+52=(25﹣x)2,解得x=12.答:木杆断裂处离地面12米;(2)△ABC的面积=AC•AB=30平方米.21.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB==12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD===(米),∴BD=AB﹣AD=12﹣(米),答:船向岸边移动了(12﹣)米.22.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.【解答】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.∴∠A+∠C=360°﹣180°=180°.23.已知:△ABC中AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.【解答】解:作AE⊥BC于点E,∵△ABC中AB=AC=20,BC=32,∴CE=16,∴cos∠C=,∵AD⊥AC,∴∠CAD=90°,∴cos∠C=,∴,解得,CD=25,∵BC=32,∴BD=7.24.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,B C′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.【解答】(1)证明:∵∠ACB=90°,CD是AB边上的中线,∴CD=AD=DB.∵∠B=30°,∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高,∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED,又AC=2,∴CD=2,ED=1.∴.∴△CDE的周长=.26.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.【解答】解:(1)∵在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB2=AC2+BC2,解得AB=25.答:AB的长是25;(2)AC•BC=×20×15=150.答:△ABC的面积是150;(3)∵CD是边AB上的高,∴AC•BC=AB•CD,解得:CD=12.答:CD的长是12.27.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.【解答】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB==10,=AB•CD=AC•BC,∵S△ABC∴CD===4.8.。

勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案1. 直角三角形1.1 已知直角三角形的两个直角边分别为3cm和4cm,求斜边的长度。

解答:根据勾股定理,斜边的长度可以通过以下公式计算:c = √(a^2 + b^2)其中,a和b分别为两个直角边的长度。

代入已知值,可以得到:c = √(3^2 + 4^2) = √(9 + 16) = √25 = 5cm所以,斜边的长度为5cm。

1.2 已知直角三角形的斜边长度为10cm,其中一条直角边的长度为6cm,求另一条直角边的长度。

解答:同样根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2将已知值代入,可以得到:10^2 = 6^2 + b^2100 = 36 + b^2b^2 = 100 - 36b^2 = 64b = √64 = 8cm所以,另一条直角边的长度为8cm。

2. 直角三角形的应用2.1 一根长度为12cm的电话线在地面上拉出了一个直角三角形,其中一条直角边长为9cm,求另一条直角边和斜边的长度。

解答:根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2已知直角边的长度为9cm,将已知值代入公式,可以得到:c^2 = 9^2 + b^2c^2 = 81 + b^2又已知三角形的斜边是长为12cm的电话线,所以可以得到另一个公式:c = 12将这两个公式结合,可以得到以下方程:81 + b^2 = 12^281 + b^2 = 144b^2 = 144 - 81b^2 = 63b = √63 ≈ 7.94cm所以,另一条直角边的长度约为7.94cm,斜边的长度为12cm。

2.2 一根高度为10m的电线杆倒在地面上形成了一个直角三角形,其中一条直角边长为8m,求另一条直角边和斜边的长度。

解答:同样根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2已知直角边的长度为8m,将已知值代入公式,可以得到:c^2 = 8^2 + b^2c^2 = 64 + b^2又已知三角形的斜边是高度为10m的电线杆,所以可以得到另一个公式:c = 10将这两个公式结合,可以得到以下方程:64 + b^2 = 10^264 + b^2 = 100b^2 = 100 - 64b^2 = 36b = √36 = 6m所以,另一条直角边的长度为6m,斜边的长度为10m。

新人教版八年级下册勾股定理习题(附答案)

新人教版八年级下册勾股定理习题(附答案)

32520勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1.直角三角形一直角边长为12,另两条边长均为自然数,则其周长为().(A)30(B)28(C)56(D)不能确定2.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长(A)4cm(B)8cm(C)10cm(D)12cm3.已知一个△Rt的两边长分别为和4,则第三边长的平方是()(A)25(B)14(C)7(D)7或254.等腰三角形的腰长为10,底长为12,则其底边上的高为()(A)13(B)8(C)25(D)645.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()7242524202425207242015715 (A)7(B)1515(C)25(D)6.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()(A)钝角三角形(B)锐角三角形(C)直角三角形(D)等腰三角形. 7.如图小方格都是边长为1的正方形,则四边形ABCD的面积是()(A)25(B)12.5(C)9(D)8.5D8.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是()(A)等边三角形(B)钝角三角形A C(C)直角三角形(D)锐角三角形.B9△.ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金().(A)50a元(B)600a元(C)1200a元(D)1500a元10.如图,A B⊥CD于△B,ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为().B .(A )12(B )7 (C )5 (D )13AEDC 5 米 3 米B(第 10 题)(第 11 题) (第 14 题)二、填空题(每小题 3 分,24 分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形 ABC 中,斜边 AB =2,则 AB 2 + AC 2 + BC 2 =______.13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边 AB 为直径作半圆,则这个半圆的面积是____________.AEB(第 15 题)(第 16 题) (第 17 题)15. 如图,校园内有两棵树,相距 12 米,一棵树高 13 米,另一棵树高 8 米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交 BC 于 DDC若 BC =8,AD =5,则 AC 等于______________.C17. 如图,四边形 ABCD 是正方形, AE 垂直于 BE ,且BDAE =3, BE =4,阴影部分的面积是______.A第18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为 7cm,则正方形 A , ,C ,D 的面积之和为___________cm 27cm18 题 图三、解答题(每小题8分,共40分)19.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?BALC D第21题图22.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。

勾股定理练习题(含答案) (1)

勾股定理练习题(含答案) (1)

勾股定理练习题(含答案)一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 5.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 . 7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.AB12.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.14.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案: 一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C . 4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=. 答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC所以以直角边9=BC 为直径的半圆面积为10.125π. 答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴ 12=x (cm ).答案:12=x (cm ).13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m, 所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h . 答案:这辆小汽车超速了.。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)的值是()1.在直角三角形ABC中,斜边AB=1,则AB2+眈2€AC2A.2B.4C.6D.82•有一个形状为直角梯形的零件ABCD,AD〃BC,斜腰DC的长为10cm,Z D=120°,则该零件另一腰AB的长是cm(结果不取近似值).3.__________________________________________________ 直角三角形两直角边长分别为5和12,则它斜边上的高为•4•一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5•如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.第5题图6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.第7题图8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.第8题图9.如图,在四边形ABCD中,ZA=60°,ZB=ZD=90°,BC=2,CD=3,求AB的长.n第9题图10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家•他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元请你帮助计算一下,铺完这个楼道至少需要多少元钱?5m12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?、选择题1•下列各组数据中,不能作为直角三角形三边长的是(2•满足下列条件的三角形中,不是直角三角形的是()C.三边之比为訂:2:驀D.三个内角比为1:2:33•已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为()A 迈B.^10C.4-込或2颅D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()CD25,则三角形的最大内角的度数是.其面积为. 7•已知三角形ABC 的三边长为a ,b ,c 满足.「,c=8,则此三角形为三角形.a +b 二10,ab=188. 在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD=cm . 三、解答题9. 如图,已知四边形ABCD 中,Z B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.第9题图勾股定理的逆定理(2)A.9,12,15B.C.0.2,0.3,0.4D.40,41,9A.三个内角比为1:2:1B.三边之比为1:2:A B二、填空题5.△ABC 的三边分别是7、24、6•三边为9、12、15的三角(A)(B)(C)25 (D)110.如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=4BC,F为CD的中点,连接AF、AE,问A AEF是什么三角形?请说明理由.11.如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.12.如图,为修通铁路凿通隧道AC,量出ZA=40°ZB=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AB凿通?勾股定理的逆定理(3)一、基础•巩固1•满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5二、综合•应用9.如图18—2—9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论12.已知:如图18—2—10,四边形ABCD,AD〃BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD勾股定理的应用(4)2.求知中学有一块四边形的空地ABCD,如下图所示,学校计划在空地上种植草皮,经测量ZA=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200天,问学校需要投入多少资金买草皮?3..(12分)如图所示,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长。

勾股定理习题集(含答案)

勾股定理习题集(含答案)

勾股定理习题集一、选择题(本大题共13小题,共39.0分)1.下列命题中,是假命题的是A. 在中,若,则是直角三角形B. 在中,若,则是直角三角形C. 在中,若:::4:5,则是直角三角形D. 在中,若a:b::4:5,则是直角三角形2.已知中,a、b、c分别为、、的对边,则下列条件中: , ;;:::3:2;:::4:5;其中能判断是直角三角形的有个.A. 1B. 2C. 3D. 43.下列四组线段中,可以构成直角三角形的是A. , ,B. , ,C. , ,D. , ,4.如图,直线l上有三个正方形,,,若,的面积分别为5和11,则b的面积为A. 4B. 6C. 16D. 555.一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据A. , ,B. , ,C. , ,D. , ,6.直角三角形两条直角边的和为7,面积为6,则斜边为A. B. 5 C. 25 D. 77.如图,在四边形ABCD中,,分别以四边形的四条边为边向外作四个正方形,若 , ,则8.9.A. 136B. 64C. 50D. 8110.如图,在矩形ABCD中, , ,将矩形沿AC折叠,点D落在处,则重叠部分的面积是11.12.A. 8B. 10C. 20D. 3213.如图,第1个正方形设边长为的边为第一个等腰直角三角形的斜边,第一个等腰直角三角形的直角边是第2个正方形的边,第2个正方形的边是第2个等腰三角形的斜边依此不断连接下去通过观察与研究,写出第2016个正方形的边长为14.15.A. B.C. D.16.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是A. 8cmB.C.D. 1cm17.中, , ,高,则的周长为A. 42B. 32C. 42或32D. 37或3318.如图,在中,, , , 是的平分线若,分别是AD和AC上的动点,则的最小值是A. B. 4 C. D. 519.如图所示,的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为A. B.C. D.二、填空题(本大题共15小题,共45.0分)20.如图, , , , , 则阴影部分的面积______ .21.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为______ .22.如图,在中, , , 是AB的中点,过点D作于点E,则DE的长是______.23.24.25.26.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为3cm,则图中所有正方形的面积之和为______ .27.28.29.30.31.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是______ .32.33.34.35.36.如图是由一系列直角三角形组成的螺旋形,37.,则第n个直角38.三角形的面积为______ .39.40.41.42.如图,在中, , ,点M为BC中点,43.于点N,则MN的长是______ .44.45.46.如图,点P是等边内一点,连接,,,:PB::4:5,以AC为边作≌,连接,则有以下结论:是等边三角形;是直角三角形;;其中一定正确的是______ 把所有正确答案的序号都填在横线上47.48.49.50.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边,下列四个说法:, , , 其中说法正确的结论有______ .51.已知,如图长方形ABCD中,,,将此长方形折叠,使点B与点D重合,折痕为EF,则的面积为______ .52.若直角三角形的两条边长为,,且满足,则该直角三角形的第三条边长为______ .53.如图,矩形ABCD中,,,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积______ .54.55.56.57.如果一架25分米长的梯子,斜边在一竖直的墙上,这时梯足距离墙角7分米,若梯子的顶端沿墙下滑4分米,那么梯足将向右滑______ 分米.58.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将绕点B顺时针旋转到的位置若 , , ,则______ 度59.60.61.62.63.已知a是的整数部分,,其中b是整数,且,那么以a、b为两边的直角三角形的第三边的长度是______ .三、计算题(本大题共2小题,共12.0分)64.如图,在中,, , ,垂足为,,求AB的长.65.66.67.68.69.70.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知,,求EC的长.71.72.四、解答题(本大题共8小题,共64.0分)73.如图,在笔直的铁路上A、B两点相距,、D为两村庄,,,于,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等求E应建在距A多远处?74.75.76.77.78.79.如图,在中, , , ,求的面积.80.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.81.作于D,设,用含x的代数式表示CD,则______ ;82.请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;83.利用勾股定理求出AD的长,再计算三角形的面积.84.85.如图,一个长方体形的木柜放在墙角处与墙面和地面均没有缝隙,有一只蚂蚁从柜角A处沿着木柜表面爬到柜角处86.请你画出蚂蚁能够最快到达目的地的可能路径;87.当 , , 时,求蚂蚁爬过的最短路径的长;88.求点到最短路径的距离.89.在中,, 、、的对边长分别为a、b、c,设的面积为S,周长为l.90.如果,观察上表猜想:______ ,用含有m的代数式表示;说出中结论成立的理由.91.点,的位置如图,在网格上确定点C,使,.92.在网格内画出;93.直接写出的面积为______.94.如图,将长方形ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处已知,求:95.的长;96.阴影部分的面积.97.98.99.100.小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.101.【思考题】如图,一架米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为米,如果梯子的顶端沿墙下滑米,那么点B将向外移动多少米?102.请你将小明对“思考题”的解答补充完整:103.解:设点B将向外移动x米,即,104.则 ,105.而,在中,由得方程______,106.解方程得______,______,107.点B将向外移动______米108.解完“思考题”后,小聪提出了如下两个问题:109.【问题一】在“思考题”中,将“下滑米”改为“下滑米”,那么该题的答案会是米吗?为什么?110.【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?111.请你解答小聪提出的这两个问题.112.113.如图,有一段15m长的旧围墙AB,现打算利用该围墙的一部分或全部为一边,再用32m长的篱笆围成一块长方形场地CDEF.114.怎样围成一个面积为的长方形场地?115.长方形场地面积能达到吗?如果能,请给出设计方案,如果不能,请说明理由.答案和解析【答案】1. C2. C3. C4. C5. B6. B7. B8. B9. B10. A11. C12. C13. A14. 2415. 12016.17. 2718. 4719.20.21.22.23.24. 5或25.26. 827. 13528. 或529. 解:在中,, ,, ;即,.在中,.30. 解:四边形ABCD为矩形,, , ,折叠矩形的一边AD,使点D落在BC边的点F处, ,在中,,,设,则,,在中,,,解得,的长为3cm.31. 解:设,则,由勾股定理得:在中,,在中,,由题意可知:,所以:,解得:分所以,E应建在距A点15km处.32.33. 解:如图,木柜的表面展开图是矩形或.故蚂蚁能够最快到达目的地的可能路径有如图的或;蚂蚁沿着木柜表面矩形爬过的路径的长是.蚂蚁沿着木柜表面矩形矩形爬过的路径的长,蚂蚁沿着木柜表面爬过的路径的长是.,故最短路径的长是.作于E,,是公共角,∽ ,即,则为所求.34.35. 536. 解:如图, , ,;由勾股定理得:;由题意得:设为, ;;,,而,∽,,解得:..由题意得:,阴影矩形.37. ;;舍去;38. 解:设,则,依题意得:,整理得,解得 , ,当时,当时不合题意舍去能围成一个长14m,宽9m的长方形场地.设,则,依题意得整理得故方程没有实数根,长方形场地面积不能达到.【解析】1. 解:A、在中,若,则是直角三角形,是真命题;B、在中,若,则是直角三角形,是真命题;C、在中,若:::4:5,则是直角三角形,是假命题;D、在中,若a:b::4:5,则是直角三角形,是真命题;故选C.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理.2. 解:,,此三角形是直角三角形,故本小题正确;:::3:2,设,则,,,,此三角形是直角三角形,故本小题正确;:::4:5,设,则,.,,解得,, , ,此三角形不是直角三角形,故本小题错误;,设,则,,解得:,,此三角形是直角三角形,故本小题正确.故选C.分别根据三角形内角和定理、勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.3. 解:A、,不能构成直角三角形,故不符合题意;B、,不能构成直角三角形,故不符合题意;C、,能构成直角三角形,故符合题意;D、,不能构成直角三角形,故不符合题意.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理:如果三角形的三边长,,满足,那么这个三角形就是直角三角形.4. 解:、b、c都是正方形,,;,,, ,≌,,;在中,由勾股定理得:,即,运用正方形边长相等,结合全等三角形和勾股定理来求解即可.此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.5. 解:由题可知,在等腰三角形中,底边的一半、底边上的高以及腰正好构成一个直角三角形,且,符合勾股定理,故选B.根据等腰三角形的三线合一,得底边上的高也是底边上的中线根据勾股定理知:底边的一半的平方加上高的平方应等于腰的平方,即可得出正确结论.考查了等腰三角形的三线合一以及勾股定理的逆定理.6. 解:设一直角边为x,则另一直角边为,根据题意得,解得:或,则另一直角边为3和4,根据勾股定理可知斜边长为,故选:B.设一直角边为x,则另一直角边为,可得面积是,根据“面积为6”作为相等关系,即可列方程,解方程即可求得直角边的长,再根据勾股定理求得斜边长.此题主要利用三角形的面积公式寻找相等关系,同时也考查了勾股定理的内容找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7. 解:由题意可知:, , , ,如果连接BD,在直角三角形ABD和BCD中,,即,因此,故选B.连接BD,即可利用勾股定理的几何意义解答.本题主要考查的是勾股定理的灵活运用,解答的关键是利用两个直角三角形公共的斜边.8. 解:重叠部分的面积是矩形ABCD的面积减去与的面积再除以2,矩形的面积是32,,,由翻折而成,,,,,,.故选B.解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.本题通过折叠变换考查学生的逻辑思维能力.9. 解:第2016个正方形的边长.第一个正方形的边长是2,设第二个的边长是x,则,则,即第二个的边长是:;设第三个的边长是y,则,则,同理可以得到第四个正方形的边长是,则第n个是:.正确理解各个正方形的边长之间的关系是解题的关键,大正方形的边与相邻的小正方形的边,正好是同一个等腰直角三角形的斜边与直角边.10. 解:易知最长折痕为矩形对角线的长,根据勾股定理对角线长为:,故折痕长不可能为8cm.故选:A.根据勾股定理计算出最长折痕即可作出判断.考查了折叠问题,勾股定理,根据勾股定理计算后即可做出选择,难度不大.11. 解:此题应分两种情况说明:当为锐角三角形时,在中,,在中,的周长为:;当为钝角三角形时,在中,,在中,,.的周长为:当为锐角三角形时,的周长为42;当为钝角三角形时,的周长为32.故选C.本题应分两种情况进行讨论:当为锐角三角形时,在和中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将的周长求出;当为钝角三角形时,在和中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将的周长求出.此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.12. 解:如图,过点C作交AB于点M,交AD于点P,过点P作于点Q,是的平分线.,这时有最小值,即CM的长度,, , ,.,即的最小值为.故选:C.过点C作交AB于点M,交AD于点P,过点P作于点Q,由AD是的平分线得出,这时有最小值,即CM的长度,运用勾股定理求出AB,再运用,得出CM的值,即的最小值.本题主要考查了轴对称问题,解题的关键是找出满足有最小值时点P和Q的位置.13. 解:的面积,由勾股定理得,,则,解得,故选:A.根据图形和三角形的面积公式求出的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.14. 解:在中,,, ,,即可判断为直角三角形,阴影部分的面积.答:阴影部分的面积.故答案为:24.先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD为直角三角形.15. 解:设三边分别为,,,则,,三边分别为,,,,三角形为直角三角形,.故答案为:120.根据已知可求得三边的长,再根据三角形的面积公式即可求解.此题主要考查学生对直角三角形的判定及勾股定理的逆定理的理解及运用.16. 解:过A作于F,连接CD;中, , ,则;中, , ;,;,即.故答案为:.过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出的面积;连接CD,由于,则、等底同高,它们的面积相等,由此可得到的面积;进而可根据的面积求出DE的长.此题主要考查了等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.17. 解:最大的正方形的边长为3cm,正方形G的面积为,由勾股定理得,正方形E的面积正方形F的面积,正方形A的面积正方形B的面积正方形C的面积正方形D的面积,图中所有正方形的面积之和为,故答案为:27.根据正方形的面积公式求出正方形G的面积,根据勾股定理计算即可.本题考查的是勾股定的应用,如果直角三角形的两条直角边长分别是,,斜边长为c,那么.18. 解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:;;;即最大正方形E的边长为:,所以面积为:.故答案为:47.分别设中间两个正方形和最大正方形的边长为,,,由勾股定理得出, , ,即最大正方形的面积为.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.19. 解:根据题意可知: , ,第n个直角三角形的直角边长为.第n个直角三角形的另一条直角边长为1.第n个直角三角形的面积为.故答案为:.这是一个规律性题目,第一个三角形的斜边正好是第二个三角形的直角边,依次进行下去,且有一个直角边的边长为从而可求出面积.本题考查勾股定理的应用,应用勾股定理求出三角形的斜边正好是下一个三角形的直角边.20. 解:连接AM,,点M为BC中点,三线合一, ,, ,,根据勾股定理得:,又,.连接AM,根据等腰三角形三线合一的性质得到,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.综合运用等腰三角形的三线合一,勾股定理特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.21. 解:是等边三角形,则,又≌ ,则, ,是正三角形,正确;又PA:PB::4:5,设,则:,,,根据勾股定理的逆定理可知:是直角三角形,且, 正确;又是正三角形,,正确;错误的结论只能是.故答案为.先运用全等得出,,从而,得出是等边三角形,, ,再运用勾股定理逆定理得出,由此得解.本题主要考查了勾股定理的逆定理、全等三角形的性质以及等边三角形的知识,解决本题的关键是能够正确理解题意,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.22. 解:为直角三角形,根据勾股定理:,故本选项正确;由图可知,,故本选项正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,列出等式为,即;故本选项正确;由可得,又,得,,整理得,,,故本选项错误.正确结论有.故答案为.根据正方形的性质、直角三角形的性质、直角三角形面积的计算公式及勾股定理解答.本题考查了勾股定理及正方形和三角形的边的关系,此图被称为“弦图”,熟悉勾股定理并认清图中的关系是解题的关键.23. 解:长方形折叠,使点B与点D重合,,,,解得:,的面积为:,故答案为:.首先翻折方法得到,在设出未知数,分别表示出线段,,的长度,然后在中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得的面积了.此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.24. 解:该直角三角形的第三条边长为x,直角三角形的两条边长为,,且满足,, .若4是直角边,则第三边x是斜边,由勾股定理得:,;若4是斜边,则第三边x为直角边,由勾股定理得:,;第三边的长为5或.故答案为:5或.设该直角三角形的第三条边长为x,先根据非负数的性质求出a、b的值,再分4是斜边或直角边的两种情况,然后利用勾股定理求解.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.25. 解:四边形ABCD是矩形,,,,,.与关于BD对称,≌,,,.设DE为x,则,,由勾股定理,得,解得:,,.故答案为90.根据轴对称的性质及矩形的性质就可以得出,由勾股定理就可以得出DE的值,由三角形的面积公式就可以求出结论.本题考查了轴对称的性质的运用,矩形的性质的运用,勾股定理的运用,解答时运用轴对称的性质求解是关键.26. 解:如下图所示:AB相当于梯子,是梯子和墙面、地面形成的直角三角形,是下滑后的形状,,即:分米,分米,分米,BD是梯脚移动的距离.分米.分米,在中,由勾股定理可得:,分米,分米,故答案为:8.梯子和墙面、地面形成的直角三角形,如下图所示可将该直角三角形等价于和,前者为原来的形状,后者则是下滑后的形状由题意可得出分米,分米,分米,在中,由勾股定理可得:,将AB、CB的值代入该式求出AC的值,;在中,求出OD的值,分米,即求出了梯脚移动的距离.本题主要考查勾股定理在实际中的应用,通过作相应的等价图形,可以使解答更加清晰明了.27. 解:连接绕点B顺时针旋转到是直角,是直角三角形,与全等,,, , ,,是直角三角形,,.故答案为:135.首先根据旋转的性质得出,是直角三角形,进而得出,即可得出答案.此题主要考查了旋转的性质,根据已知得出是直角三角形是解题关键.28. 解:,,,,,又是整数,且,, .分两种情况:若为直角边,则第三边;若为斜边,则第三条边.故答案为或5.先根据,可得出a的值,根据,结合b是整数,且,求出b、c的值,再分情况讨论,为直角边,为斜边,根据勾股定理可求出第三边的长度.本题考查了估算无理数的大小、勾股定理的知识,注意“夹逼法”的运用是解答本题的关键.29. 根据等腰三角形的性质和三角形内角和定理,易求得,故,由此可证得是等腰三角形,即可求出AD的长,再根据含30度角的直角三角形的性质即可求出AB的长.此题主要考查等腰三角形的判定和性质以及三角形内角和定理的应用;求得是正确解答本题的关键.30. 根据矩形的性质得 , , ,再根据折叠的性质得 , ,在中,利本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理.31. 根据题意设出E点坐标,再由勾股定理列出方程求解即可.本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.32. 解: , ,,故答案为:;,, ,,解得:;由得:,.直接利用BC的长表示出DC的长;直接利用勾股定理进而得出x的值;利用三角形面积求法得出答案.此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.33. 根据题意,先将长方体展开,再根据两点之间线段最短.本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.34. 解:的面积,周长,故当a、b、c三边分别为3、4、5时, , ,故,同理将其余两组数据代入可得为 ,.应填:, ,通过观察以上三组数据,可得出.,,.,, ,即.的面积,周长,分别将3、4、 , 、12、 , 、15、17三组数据代入两式,可求出的值;通过观察以上三组数据,可得出:;根据, , 可得出:,即.本题主要考查勾股定理在解直角三角形面积和周长中的运用.在中,,.故的面积为.故答案为:5.先连结AB,再确定C点,连结,即可求解;根据勾股定理得到,的长,再根据三角形面积公式即可求解.本题考查了勾股定理,学生作图与根据图象分析处理、以及计算面积的能力.36. 证明∽,列出比例式,求出,得到.,即可解决问题.运用阴影该题主要考查了旋转变换的性质及其应用、勾股定理及其应用等问题.37. 解:,故答案为; ,舍去, .不会是米,若米,则米米米,米米米,,,该题的答案不会是米.有可能.设梯子顶端从A处下滑x米,点B向外也移动x米,则有,解得:或舍当梯子顶端从A处下滑米时,点B向外也移动米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.直接把C、C、的值代入进行解答即可;把中的换成可知原方程不成立;设梯子顶端从A处下滑x米,点B向外也移动x米代入中方程,求出x的值符合题意.本题考查的是解直角三角形的应用及一元二次方程的应用,根据题意得出关于x的一元二次方程是解答此题的关键.38. 首先设,则,进而利用面积为得出等式求出即可;结合中求法利用根的判别式分析得出即可.此题主要考查了一元二次方程的应用,表示出长方形的面积是解题关键.。

八年级数学下册勾股定理习题(附答案)(含答案)

八年级数学下册勾股定理习题(附答案)(含答案)

C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1.在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D=120°,则该零件另一腰AB 的长是______cm (结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地6.飞机在空中水平飞行上方4000米处,过了209.如图,在四边形CD=3,求AB 的长10.如图,一个牧童在小河的南的小屋B 的西8km 2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗? 第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC ,所以AB222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+,再利用面积法得,136011米,由勾所以飞机飞行的速度为CE=60.2⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13. 9.解:延长BC 、AD 交于点E.(如图所示)第5题图第8题∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

勾股定理的应用 习题精选及答案(一)

勾股定理的应用  习题精选及答案(一)

勾股定理的应用习题精选(一)1.填空题(1)若一个三角形三边长分别为45,28,52则这个三角形是=(2)在△ABC中,若AC2+AB2=BC2,则∠B+∠C=(3)若三角形三边长分别为n+1,n+2,n+3,当n=时,这三角形是直角三角形。

2.3.如图,△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h(2)a+b<c+h(3)以a+b,h和c+h为边的三角形是直角三角形4.若△ABC的三边a、b、c满足条件a2+b2+c2=10a+24b+26c-338。

求证:△ABC是直角三角形。

答案:1.(1)直角三角形(2)90°(3)n=22.分析:作法:(1)过点O作l⊥OA(2)在l上截取OM=OA,连结AM(3)以 A为圆心,AM为半径作弧交正半轴于点C(4)作OC的垂直平分线交OC于B点,则点B就是所求的点。

3.分析:(1)利用三角形面积公式判定a、b、c、h的关系,将其公式变形可得。

(2)利用求差方法进行大小比较(3)验证勾股定理的逆定理证明:(1)∵∠ACB=90° CD⊥AB于D∴AB·CD=AC·BC即ch=ab(2)∵(c+h)-(a+b)∵c>a,c>b∴(c+h)-(a+b)>0∴c+h>a+b即a+b<c+h(3)∵c+h>a+b c+h>h∴c+h是三角形的最长边∴(c+h)2=c2+2ch+h2=a2+b2+2ab+h2=(a+b)2+h2∴以a+b,h,c+h为边的三角形为直角三角形此题第二问还有其它证法:(2)证法二(分析法)欲证c+h>a+b只须证c2+2ch+h2>a2+2ab+b2只须证c2+h2>a2+b2只须证h2>0最后这个不等式虽然成立,且每一步都是前一步成立的充分条件,所以原不等式成立。

证法三(作差c-b,a-h,将它们集中在同一三角形中)如图在AB上截取AE=b,作EG⊥AC,作EF⊥BC,连接CE又AE=AC∴EG=CD=CF∴EB=c-b,BF=a-h在Rt△FEB中∵EB>BF∴c-b>a-h∴c+h>a+b说明:此题综合了多个知识点,像三角形三边关系定理、三角形面积公式、公式运算、因式分解中的分组分解法以及勾股定理及其逆定理的应用等,并且涉及了一些解题的重要方法:如怎样比较两个数的大小,我们说常用的方法有做差、做商等,在这里第②问的证法一就是利用做差,计算(c+h)-(a+b)的结果大于零,从而证明c+h〉a+b。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1. 在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( )A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.6.,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7. 如图所示,无盖玻璃容器,高18cm ,底面周长为60cm,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8. 一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 。

求CD 的长.9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.4km 的A 处牧马,而他正位于北7km 处,他想把他的马牵到小河边去饮 5m,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗? 第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC ,所以AB222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m,AC=12m ,,由勾股定理,2222201216=+=,m ), 32m 高. 6. ,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时)7. 解:将曲线沿AB 展开,如图所示,过点C 作在R 90=,EF=18-1-1=16(cm ), CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+ABC 中,根据勾股定理,得 在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13. 9. 解:延长BC 、AD 交于点E.(如图所示) ∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8,设AB=x ,则AE=2x ,由勾股定理。

勾股定理练习题附答案(免费)

勾股定理练习题附答案(免费)

勾股定理同步练习题1.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( ) A. 4cm B . 34cm C . 6cm D . 36cm2.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 333.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A . 9分米B . 15分米C . 5分米D . 8分米4. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 5. 在△ABC 中,∠C =90°,(1)已知 a =2.4,b =3.2,则c= ;(2)已知c =17,b =15,则△ABC 面积等于 ;(3)已知∠A =45°,c =18,则a = .6. 一个矩形的抽斗长为24cm ,宽为7cm ,在里面放一根铁条,那么铁条最长可以是 .7. 在Rt △ABC 中,∠C =90°,BC =12cm ,S △ABC =30cm 2,则AB = .8. 等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 .9. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .10.一天,小明买了一张底面是边长为260cm 的正方形,厚30cm 的床垫回家.到了家门口,才发现门口只有242cm 高,宽100cm .你认为小明能拿进屋吗? .11.如图,你能计算出各直角三角形中未知边的长吗?12.如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?5m 13m “路”4m3m 第4题图13.有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m 的一棵大树的树梢上发出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?14.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km /h .如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?15.将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm , 在无风的天气里,彩旗自然下垂,如右图. 求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm ).A 小汽车 小汽车BC 观测点 120 90勾股定理同步练习题答案1.C2.C3.D4.105.4; 60; 36.25cm7.13cm8.6cm, 24cm29.6, 8, 10 10.能 11.5; 4; 3 12.612元 13.5s 14.BC=72km,这辆小汽车超速了 15. h=170cm。

勾股定理习题

勾股定理习题

∠ACB=90°,AB=5cm,
BC=3cm, CD⊥AB于D,求CD.
C
B
D
A
1. 在Rt△ABC中,
AB=6、BC=8,求AC. 2. Rt△ABC的斜边AB的中线长为1,
周长为பைடு நூலகம்+ 6 ,求其面积.
3. 等腰直角三角形斜边长为2厘米, 则它的周长为 厘米, 面积为 平方厘米, 三边的平方和为 .
在Rt△ABC中,∠C=90°,AC=4,BC=3 ⑴ 求△ABC内接正方形DEFG的边长;
C G
F
A
D
E
B
在Rt△ABC中,∠C=90°,AC=4,BC=3
⑵ 两个相等的正方形并排构成的矩形内接于
△ABC,试求正方形的边长;
C G H F
A
D
K
E
B
在Rt△ABC中,∠C=90°,AC=4,BC=3
⑶ 三个相等的正方形并排构成的矩形内接于 △ABC,试求正方形的边长;
C
G
F B
A
D
E
在Rt△ABC中,∠C=90°,AC=4,BC=3 ⑷ n个相等的正方形并排构成的矩形内接于
△ABC,试求正方形的边长。
C
G A D
F E
B
例1. 在Rt△ABC中,∠C=90°,若
(1) a=6、c=10,则b=
(2) a=4、b=8,则c= (3) c=25、b=15,则a= .
.
13
.
(4) 2a=3b、c=2
则a= ,b=

.
例2. 如图,小方格都是边长为1的正方形, 四边形EFGH的周长为
A H
,面积为
D

《勾股定理》典型练习题[1]

《勾股定理》典型练习题[1]

《勾股定理》典型练习题[1]《勾股定理》典型例题分析⼀、知识要点:1、勾股定理勾股定理:直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅。

也就是说:如果直⾓三⾓形的两直⾓边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理如果三⾓形ABC的三边长分别是a,b,c,且满⾜a2 + b2= c2,那么三⾓形ABC 是直⾓三⾓形。

这个定理叫做勾股定理的逆定理.该定理在应⽤时,同学们要注意处理好如下⼏个要点:①已知的条件:某三⾓形的三条边的长度.②满⾜的条件:最⼤边的平⽅=最⼩边的平⽅+中间边的平⽅.③得到的结论:这个三⾓形是直⾓三⾓形,并且最⼤边的对⾓是直⾓.④如果不满⾜条件,就说明这个三⾓形不是直⾓三⾓形。

3、勾股数满⾜a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或⼩数。

②⼀组勾股数扩⼤相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运⽤的依据是两点之间线段最短。

⼆、考点剖析考点⼀:利⽤勾股定理求⾯积1、求阴影部分⾯积:(1)阴影部分是正⽅形;(2)阴影部分是长⽅形;(3)阴影部分是半圆.32. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的⾯积之间的关系.4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的⾯积。

235、在直线l上依次摆放着七个正⽅形(如图4所⽰)。

已知斜放置的三个正⽅形的⾯积分别是1、2、3,正放置的四个正⽅形的⾯积依次是S S12、、S S S S S S341234、,则+++=_____________。

考点⼆:在直⾓三⾓形中,已知两边求第三边1.在直⾓三⾓形中,若两直⾓边的长分别为1cm,2cm ,则斜边长为.2.(易错题、注意分类的思想)已知直⾓三⾓形的两边长为3、2,则另⼀条边长是3、已知直⾓三⾓形两直⾓边长分别为5和12,求斜边上的⾼.4、把直⾓三⾓形的两条直⾓边同时扩⼤到原来的2倍,则斜边扩⼤到原来的()A. 2倍B. 4倍C. 6倍D. 8倍5、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的⾯积是=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理习题(一)2017.12
1.下列三条线段不能组成直角三角形的是( )
A. 5、4、3
B. 13、12、5
C. 10、8、6
D. 30、24、10
2.如图:图形A的面积是()
A. 225
B. 144
C. 81
D. 无法确定
⊥,垂足为B,且3.如图,数轴上点A对应的数是0,点B对应的数是1,BC AB
BC=,
1
以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为()
A. 1.4 C.1.5 D.2
4.将一根24cm的筷子置于底面直径为15cm,高为8cm的圆柱形水杯中,如图,设筷子露在杯子外面的长度为h cm,则h的取值范围是()
A.h≤17
B. 7≤h≤16
C. 15≤h≤16
D.h≥8
5.如图是一个楼梯的示意图,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,
地毯的长度至少需要()米
A. 120cm
B. 130cm
C. 140cm
D. 150cm
2题3题4题5题
6.如图,在Rt△ABC中,∠C=90°,以AC、BC为直径的半圆面积分别
是12.5πcm2和4.5πcm2,则Rt△ABC的面积为()
A. 24cm2
B. 30cm2
C. 48cm2
D. 60cm2
7.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,
则正方形③的边长为()
A. 81
B. 7
C. 9
D. 12
8.如图,以直角三角形a ,b ,c 为边,向外作等边三角形、半圆、等腰直角三角形和 正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( )
A. 1
B. 2
C. 3
D. 4
9.如图,在Rt △ABC 中,∠C =90°,D 为AC 上一点,且DA =DB =5,又△DAB 的
面积为10,那么DC 的长是 ( )
A. 3
B. 4
C. 5
D. 6
10.如图,Rt △ABC 中,AC =BC =4,点D ,E 分别是AB ,AC 的中点,在CD 上找一点P , 使PA +PE 最小,则这个最小值是( ).
A. B. 4 C. D. 5
11.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为3和4, 那么P 到矩形两条对角线AC 和BD 的距离之和是( ) A. 65 B. 125 C. 245
D. 不确定 12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角 三角形.若正方形A ,B ,C ,D 的边长分别是3,5,2,3,则最大正方形E 的面积是( )
A. 13
B. 26
C. 47
D. 94
9题 10题 11题 12题
13.如图,Rt ABC ∆中,9AB =,6BC =,90B ∠= ,将ABC ∆折叠,使A 点与BC 的
中点D 重合,折痕为PQ ,则线段BQ 的长度为( ).
A.
53 B. 4 C. 52 D. 5
14.如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁
从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为
()厘米
A. 8
B. 10
C. 12
D. 13
15.如图,OP=1,过点P作PP
1⊥OP且PP1=1,得OP1再过点P1
作P1P2⊥OP1且P1P2=1,得OP2又过点P2作P2P3⊥OP2且P2P3=1,
得OP3=2……依此法继续作下去,得OP2017=( )
A. B. C. D.
16. 两边长为,,则第三边长为_______.
17.已知△ABC的三边长分别是9、12、15,则△ABC是______三角形.
18.如图是“俄罗斯方块”游戏中的一个图案,由四个完全相同的小正方形拼成,
则∠ABC的度数为__________.
19.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,
则这棵在折断前(不包括树根)长度是__________。

20.如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为__________。

18题19题20题21题21.如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,,∠B=90°,则四边形的面积是___________.
22.如图,有一个长方体盒子,长、宽、高分别为6cm、5cm、4cm,有一只
小虫要从点A处沿长方体表面爬到点B处,最短的路径长为_________cm.
23.三角形的三边分别为a,b,c,且(a-b)2+(a2+b2-c2)2=0,则三角形的形
状为_____________
24.方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图①,△ABC是格点三角形.
(1)试在图②中确定格点D,画一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(画出一个即可)
(2)试在图③中画一个“格点正方形”,使其面积等于10.
25.有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米。

由于居住在A处的居民去健身践踏了绿地,小明想在A处树立一个标牌“少走■米,踏之何忍”。

请你计算后帮小明在标牌的■处填上适当的数。

26.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.
(1)求此时梯顶A距地面的高度AC;
(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?
27.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力。

如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点 C为一海港,且点 C与直线 AB上两点A,B的距离分别为300km和400km,又 AB=500km,以台风中心为圆心周围250km以内为受影响区域。

(1)海港C受台风影响吗?为什么?
(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?
28.如图,小明所在学校的旗杆BD高约为13米,距离旗杆20米处刚好有一棵高约为3米的香樟树AE.活动课上,小明有意在旗杆与香樟树之间的连线上来回踱步,发现有一个位置到旗杆顶部与树顶的距离相等.请你求出该位置与旗杆之间的距离.
29.如图,△ABC中,∠C=90°,AB=10 cm,BC=6 cm,动点P从点C出发,以每秒2 cm 的速度按C→A的路径运动,设运动时间为t秒.
(1)出发2秒时,△ABP的面积为cm2;
(2)当t为何值时,BP恰好平分∠ABC?。

相关文档
最新文档