专题15 椭圆及其性质-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

合集下载

专题20 函数与导数综合-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

专题20 函数与导数综合-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见详解;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.专题20函数与导数综合(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.【母题原题2】【2018年高考全国Ⅲ卷理数】已知函数()()()22ln 12f x x ax x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1x f x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 【名师点睛】本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论0a ≥和0a <,当0a <时构造函数()()22f x axh x x =++时关键,讨论函数()h x 的性质,本题难度较大.【母题原题3】【2017年高考全国Ⅲ卷理数】已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L ,求m 的最小值. 【答案】(1)1a =;(2)3【解析】(1)()f x 的定义域为()0∞,+.①若0a ≤,因为11ln 2022f a ⎛⎫<⎪⎝⎭=-+,所以不满足题意; ②若a >0,由()1a x af 'x x x-=-=知,当()0x ,a ∈时,()f 'x <0;当(),+x a ∈∞时,()f 'x >0,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x =a 是()f x 在()0∞,+的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥.故a =1. (2)由(1)知当()1,x ∈+∞时,1ln 0x x -->. 令112n x =+得11ln 122nn ⎛⎫+< ⎪⎝⎭.从而 221111111ln 1ln 1ln 1112222222n n n ⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L .故2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L . 而231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.本专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要有以下几个角度:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.【命题意图】了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数不超过三次).主要考查考生的分类讨论思想、等价转化思想以及数学运算能力和逻辑推理能力.【命题规律】导数的综合应用一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查,一般出现在解答题的压轴位置,难度较大.【答题模板】1.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f'(x);(3)由f'(x)>0(或<0)解出相应的x的取值范围,对应的区间为f(x)的单调递增(减)区间.还可以通过列表,写出函数的单调区间.2.证明或讨论函数的单调性方法一:求出在对应区间上导数的正负即得结论.方法二:(1)确定函数f(x)的定义域;(2)求导数f'(x),并求方程f'(x)=0的根;(3)利用f'(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论f'(x)的正负,由符号确定f(x)在该子区间上的单调性.【知识总结】1.函数的极值设函数y=f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数y=f (x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有f(x)>f(x0),则f(x0)是函数y=f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.一般地,当函数f(x)在x0处连续时,(1)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是极小值.注意:(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f'(x0)=0是x0为f(x)的极值点的必要而非充分条件.例如,f(x)=x3,f'(0)=0,但x=0不是极值点.2.函数的最值在区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.在区间[a,b]上连续的函数f(x)若有唯一的极值点,则这个极值点就是最值点.注意:极值与最值的区别与联系极值只能在定义域内部取得,而最值却可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值.在指定区间上极值可能不止一个,也可能一个也没有,而最值最多有一个.3.利用导数解决函数单调性问题应该注意:(1)单调区间是函数定义域的子区间,所以求解函数的单调区间要先求函数的定义域;(2)求可导函数f(x)的单调区间,可以直接转化为f'(x)>0与f'(x)<0这两个不等式的解集问题来处理;(3)若可导函数f(x)在指定区间D上单调递增(减),则应将其转化为f'(x)≥0(f'(x)≤0)来处理;(4)涉及含参数的函数的单调性或单调区间问题,一定要弄清参数对导数f'(x)在某一区间内的符号是否有影响.若有影响,则必须分类讨论.4.函数的图象与导函数图象的关系理解导函数y=f'(x)的图象与函数f(x)图象的升降关系,导函数大于0对应原函数图象由左至右上升,导函数小于0对应原函数图象由左至右下降,在解题时要注意原函数的定义域,如判断定义域是否具有对称性等.5.由函数的单调性求参数的取值范围的技巧(1)由可导函数f(x)在D上单调递增(或递减)求参数范围问题,可转化为f'(x)≥0(或f'(x)≤0)对x∈D恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f'(x)>0(或f'(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f(x)在D上不单调,则f(x)在D上有极值点,且极值点不是D的端点.6.求函数f(x)在[a,b]上的最值的方法(1)若函数在区间[a,b]上单调递增或递减,f(a)与f(b)一个为最大值,一个为最小值;(2)若函数在区间[a,b]内有极值,要先求出函数在[a,b]上的极值,再与f(a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成;(3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.注意:求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.7.已知函数的极值、最值求参数(1)已知函数的极值求参数时,通常利用函数的导数在极值点处的取值等于零来建立关于参数的方程.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.(2)已知函数的最值求参数,一般先求出最值(含参数),再根据最值列方程或不等式(组)求解.8.利用导数解决不等式问题(1)利用导数证明不等式的方法证明f(x)<(>)g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F'(x)<(>)0,则F(x)在(a,b)上是减(增)函数,同时若F(a)≤(≥)0,由减(增)函数的定义可知,x∈(a,b)时,有F(x)<(>)0,即证明了f(x)<(>)g(x).其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.(2)不等式成立(恒成立)问题①f(x)≥a恒成立⇔f(x)min≥a,f(x)≥a成立⇒f(x)max≥a.②f(x)≤b恒成立⇔f(x)max≤b,f(x)≤b成立⇔f(x)min≤b.③f(x)>g(x)恒成立F(x)min>0.④∀x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)min.∀x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)max.∃x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)min.∃x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)max.注意:不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f(a)≥g(x)(f(a)≤g(x))对存在x∈D能成立等价于f(a)≥g(x)min(f(a)≤g(x)max),f(a)≥g(x)(f(a)≤g(x))对任意x∈D都成立等价于f (a)≥g(x)max(f(a)≤g(x)min),应注意区分,不要搞混.9.导数在研究函数零点中的应用(1)研究函数图象的交点、方程的根、函数的零点,归根到底是研究函数的性质,如单调性、极值等. (2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.1.【四川省百校2019年高三模拟冲刺卷数学】已知函数()()()1ln 0,f x a x a g x x x=≠=-. (1)当2a =时,比较()f x 与()g x 的大小,并证明;(2)令函数()22F x fg ⎡⎤⎡⎤=-⎣⎦⎣⎦,若1x =是函数()F x 的极大值点,求a 的取值范围. 【答案】(1)见解析;(2)[)(]2,00,2a ∈-U . 【解析】(1)当2a =时,()()12ln f x g x x x x -=-+,令()12ln h x x x x=-+, 则()()222221212110x x x h x x x x x--+-=--=-'=≤, 所以函数()12ln h x x x x=-+在()0,∞+上单调递减,且()10h =, 所以当01x <<时,()0h x <,即()()f x g x >; 当1x >时,()0h x <,即()()f x g x <, 当1x =时,()0h x =,即()()f x g x =.(2)()22F x fg⎡⎤⎡⎤=-⎣⎦⎣⎦221ln 2,04a x x x x ⎛⎫=-+-> ⎪⎝⎭, 令202a m =>,则()2ln 1111ln x F x m m x x x x x x ⎛⎫=⋅-+=-+ ⎝'⎪⎭, 令()1ln G x m x x x =-+,则()222111m x mx G x x x x -+=--=-', ①当02m <≤时,()2210x mx G x x-+=-≤'恒成立, 所以()1ln G x m x x x=-+在()0,+∞上递减,且()10G = 所以01x <<时,()()0,F x F x '>在()0,1上递增,1x >时,()()0,F x F x '<在()1,+∞上递减,此时1x =是函数()F x 的极大值点,满足题意.②当2m >时,()()120,1,1,x x ∃∈∈+∞,使得当()12,x x x ∈时,()0G x '≥, 所以()1ln G x m x x x=-+在()12,x x 上递增,且()10G =, 所以11x x <<时,()()0,F x F x '<在()1,1x 上递减;21x x <<时,()()0,F x F x '>在()21,x 上递增,此时1x =是函数()F x 的极小值点,不合题意.综合得(]20,22a m =∈,解得[)(]2,00,2a ∈-U .【名师点睛】本题考查函数与导数的综合,函数极值与最值,转化化归思想,分类讨论,准确推理计算是关键,是中档题.2.【四川省乐山市高中2019届高三第三次调查研究考试数学】已知函数()()21ln 1f x a x x a =+--+(1)讨论函数()f x 的单调性;(2)若1a <,求证:当0x >时,函数()y xf x =的图像恒在函数()32ln 1y x a x x =++-的图像上方.【答案】(1)见解析;(2)见证明 【解析】(1)函数的定义域为()0,+∞,且()()121f x a x x =+-'()2211a x x+-=,当1a ≤-时,()0f x '<,函数()f x 在()0,+∞上为增函数; 当1a >-时,令()0f x '=,解得x =此时函数()f x 在⎛ ⎝⎭上递减,在⎫⎪+∞⎪⎝⎭上递增, (2)证明:若1a <,则当0x >时,问题转化为不等式()()32ln 1xf x x a x x >++-在()0,+∞上恒成立,只需要证明()()321ln 1ln 1x a x x a x a x x ⎡⎤+--+>++-⎣⎦在()0,+∞上恒成立,即证ln ln 1xx x a x-<-+在()0,+∞上恒成立, 令()()ln ln ,1xF x x x g x a x=-=--+, 因为()111xF x x x-=-=',易得()F x 在()0,1单调递增,在()1,+∞上单调递减,所以()()11F x F ≤=-, 又()221ln ln 1x x g x x x='--=-, 当0e x <<时,()0g x '<,当e x >时,()0g x '>, 所以()g x 在()0,e 上递减,在()e,+∞上递增,所以()()1e 1e g x g a ≥=--+, 又1a <,所以1111e ea --+>->-,即()()max min F x g x <,所以ln ln 1xx x a x-<-+在()0,+∞上恒成立, 所以当1a <时,函数()xf x 的图像恒在函数()32ln 1y x a x x =++-的图像上方.【名师点睛】本题考查函数的单调性质的讨论,考查不等式恒成立问题,是中档题,解题时要认真审题,注意导数性质和构造法的合理运用.3.【四川省内江市2019届高三第三次模拟考试数学】已知函数()21f x x ax =-+,()()ln g x x a a =+∈R . (1)若1a =,求函数()()()h x f x g x =-在区间1,e t ⎡⎤⎢⎥⎣⎦(其中1e et <<,e 是自然对数的底数)上的最小值;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围. 【答案】(1)见解析;(2)(],1-∞.【解析】(1)由题意,可得()221ln 1ln (0)h x x x x x x x x =-+--=-->,()2121'21x x h x x x x --=--=()()211x x x+-=, 令()'0h x =,得1x =.①当11e t <≤时,()h x 在1,e t ⎡⎤⎢⎥⎣⎦上单调递减, ∴()222min111e e 11e e ee h x h -+⎛⎫==-+= ⎪⎝⎭. ②当1t >时,()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,在[]1,t 上单调递增, ∴()()min 10h x h ==.综上,当11e t <≤时,()22min e e 1eh x -+=,当1t >时,()min 0h x =. (2)设函数()f x 在点()()11,x f x 处与函数()g x 在点()()22,x g x 处有相同的切线, 则()()()()121212''f x g x f x g x x x -==-,∴211212121ln 12x ax x ax a x x x -+---==-, ∴12122ax x =+,代入21211221ln x x x ax x a x -=-+--,得222221ln 20424a a x a x x ++++-=. ∴问题转化为:关于x 的方程221ln 20424a ax a x x ++++-=有解,设()221ln 2(0)424a a F x x a x x x =++++->,则函数()F x 有零点, ∵()211ln 24F x a x a x ⎛⎫=+++- ⎪⎝⎭,当2e a x -=时,ln 20x a +-=,∴()2e 0a F ->. ∴问题转化为:()F x 的最小值小于或等于0.()23231121'222a x ax F x x x x x--=--+=, 设()20002100x ax x --=>,则当00x x <<时,()'0F x <,当0x x >时,()'0F x >.∴()F x 在()00,x 上单调递减,在()0,x +∞上单调递增,∴()F x 的最小值为()2002001ln 2424a a F x x a x x =++++-. 由200210x ax --=知0012a x x =-,故()20000012ln 2F x x x x x =+-+-. 设()212ln 2(0)x x x x x x ϕ=+-+->, 则()211'220x x x xϕ=+++>,故()x ϕ在()0,+∞上单调递增,∵()10ϕ=,∴当(]0,1x ∈时,()0x ϕ≤, ∴()F x 的最小值()00F x ≤等价于001x <≤.又∵函数12y x x=-在(]0,1上单调递增,∴(]0012,1a x x =-∈-∞. 【名师点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.【广西桂林市、崇左市2019届高三下学期二模联考数学】设函数()()2e 1xf x a x x =---.(1)当1a =时,讨论()f x 的单调性;(2)已知函数()f x 在()0,+∞上有极值,求实数a 的取值范围.【答案】(1)()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减;(2)3,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)()()e 211xf x a x '=---.当1a =时()e 1xf x '=-.由()0f x '≥有e 10x -≥,解得0x ≥;()00f x x ≤'⇒≤. 所以函数()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减. (2)设()()()e 211xg x f x a x '==---,()()e 21xg x a ='--,因为函数()f x 在()0,+∞上有极值点,所以函数()g x 在()0,+∞上有零点.①当32a ≤时,0x >,∴e 1x >,∴()()e 210xg x a =-->', ∴()g x 在()0,+∞上单调递增,∵()00g =,所以当0x >时()()00g x g >=恒成立, 即函数()g x 在()0,+∞上没有零点. ②当32a >时,()211a ->,()ln210a ->, ()()e 210x g x a =-->'时,()ln21x a >-,()()e 210x g x a =--<'时,()ln21x a <-,∴()g x 在()(0,ln21a ⎤-⎦上单调递减,在())ln21,a ⎡-+∞⎣上单调递增, ∵()00g =,且()g x 在()(0,ln21a ⎤-⎦上单调递减,∴()()ln210g a -<. 对于0a >,当x →+∞时,()g x →+∞, 所以存在())0ln21,x a ⎡∈-+∞⎣使()00g x >. 所以函数()g x 在()()ln21,a -+∞上有零点.所以函数()f x 在()0,+∞上有极值点时,实数a 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.【名师点睛】本题主要考查利用导数研究函数的单调性,利用导数研究函数的极值,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知函数1()ln f x x mx x=--在区间(0,1)上为增函数,m ∈R .(1)求实数m 的取值范围;(2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求a b +的最小值.【答案】(1)2m ≤;(2)a b +的最小值为–1. 【解析】(1)∵()1ln f x x mx x=--, ∴()211f x m x x =+-'.又函数()f x 在区间()0,1上为增函数, ∴()2110f x m x x=-'+≥在()0,1上恒成立, ∴()221111124m t x x x x ⎛⎫≤+=+-= ⎪⎝⎭在()0,1上恒成立.令()()2211111,0,124t x x x x x ⎛⎫=+=+-∈ ⎪⎝⎭,则当1x =时,()t x 取得最小值,且()min 2t x =, ∴2m ≤,∴实数m 的取值范围为(],2-∞. (2)由题意的()11ln 22ln F x x x x x x x ⎛⎫=--+=- ⎪⎝⎭,则()211F x x x +'=, 设切点坐标为0001,ln x x x ⎛⎫- ⎪⎝⎭,则切线的斜率()020011a f x x x ==+', 又0001ln x ax b x -=+, ∴002ln 1b x x =--, ∴020011ln 1a b x x x +=+--. 令()211ln 1(0)h x x x x x=+-->, 则()()()23233211212x x x x h x x x x x x'+-+-=-+==, 故当()0,1x ∈时,()()0,h x h x '<单调递减;当()1,x ∈+∞时,()()0,h x h x '>单调递增. ∴当1x =时,()h x 有最小值,且()()min 11h x h ==-, ∴a b +的最小值为1-.【名师点睛】本题考查导数的几何意义和导数在研究函数性质中的作用,其中在研究函数的性质中,单调性是解题的工具和基础,而正确求导并判断导函数的符号是解题的关键,考查计算能力和转化意识的运用,属于基础题.6.【贵州省2019届高三高考教学质量测评卷(八)数学】已知函数()()ln xf x ax a x=-+∈R ,'()f x 为()f x 的导函数.(1)当0a =时,求函数()f x 的极值;(2)若212,e,e x x ⎡⎤∃∈⎣⎦,使()()123'4f x f x a ≤++成立,求实数a 的最小值. 【答案】(1)见解析;(2)211e 2-+. 【解析】(1)()f x 的定义域为(0,1)(1,)+∞U ,当0a =时,2ln 1()(ln )x f 'x x -=,令()0f 'x =,得e x =, 列表得所以当e x =时,()f x 取得极小值,且极小值为e ;无极大值.(2)若212,e,e x x ⎡⎤∃∈⎣⎦,使()()123'4f x f x a ≤++成立()()12min max 3'4f x f x a ⇔++≤. 由(1)知,2ln 1'()(ln )x f x a x -=-+,所以()()2222ln 133'44ln x f x a x -++=+, 令21ln t x =,则原式231,142t t t ⎛⎫⎡⎤=-++∈ ⎪⎢⎥⎣⎦⎝⎭的最大值为1,故存在21[e,e ]x ∈,1()1f x ≤,即1111ln x ax x -+≤,化为1111ln a x x ≥-+, 令11()ln h x x x=-+,2e,e x ⎡⎤∈⎣⎦, 则2222211(ln )'()(ln )(ln )x xh x x x x x x -=-=.对于函数()ln x x ϕ=,(0x >),1'()x x ϕ==, 当4x =时,()x ϕ取最大值为ln 420-<,所以ln x <2(ln )x x <,故()0h'x <恒成立,()h x 在2e,e ⎡⎤⎣⎦为减函数,最小值为211e 2-+, 所以211e 2a ≥-+,a 的最小值为211e 2-+.【名师点睛】本题主要考查了利用导数求函数的极值,利用导数研究不等式成立的问题,涉及存在性问题,构造函数利用导数求其最大最小值问题,换元法,属于难题.此类问题要注意理解存在性和恒成立的差别,结合具体问题实现正确转换为最大值和最小值是关键.7.【贵州省贵阳市2019年高三5月适应性考试(二)数学】已知函数()e xf x bx =+.(1)讨论()f x 的单调性;(2)若曲线()y f x =的一条切线方程为210x y -+=, (i )求b 的值;(ii )若210x x >>时,()()12f x f x -()()12121x x mx mx <-++恒成立,求实数m 的取值范围. 【答案】(1)见解析;(2)(i )1,(ii )e ,2⎛⎤-∞ ⎥⎝⎦.【解析】由()e xf x bx =+得()e xf x b '=+,若0b ≥,则()0f x '>,即()e xf x bx =+在(),-∞+∞上是增函数;若0b <,令()0f x '>得()ln x b >-,令()0f x '<得()ln x b <-,即()e xf x bx =+在()(),ln b -∞-上是单调减函数,在()()ln ,b -+∞上是单调增函数.(2)(i )设切点为()00,x y ,()e xf x bx =+得()e xf x b '=+由题意得000000e 2e 210x xb y bx x y ⎧+=⎪=+⎨⎪-+=⎩,消去b 与0y , 得000e e 10xxx -+=,令()e e 1x x g x x =-+,()e xg x x '=,0x <时,()0g x '<;0x >时,()0g x '>;0x =时,()0g x '=; ()g x ∴在(),0-∞上是减函数,在()0,+∞上是增函数,()()min 00g x g ∴==,即()e e +1x x g x x =-仅有一个零点0x =,即方程000e e 10xxx -+=仅有一个根0x =,02e 1b ∴=-=,(ii )由(i )知()e xf x x =+,()()12f x f x -<()()12121x x mx mx -++即为()2111f x mx x --<()2222f x mx x --, 由210x x >>知,上式等价于函数()()22e x xf x mx x mx φ=--=-在()0,+∞为增函数, ()e 20xx mx φ∴=-≥',即e2x m x≤,令()e xh x x =,()0x >,()()2e 1x x h x x='-, ()0h x '<时,01x <<;()0h x '>时,1x >;()0h x '=时,1x =, ()h x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 1e h x h ∴==,则2e m ≤,即e 2m ≤,所以实数m 的范围为e ,2⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题主要考查导数研究函数的单调性及切线方程,利用导数研究恒成立问题等知识,考查了转化能力和计算求解能力,属于较难题.8.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】已知221()ln ,02f x x a x a =->. (1)若()0f x ≥,求a 的取值范围;(2)若()()12f x f x =,且12x x ≠,证明:122x x a +>.【答案】(1)a 的取值范围是;(2)见解析.【解析】(1)()()()2x a x a a f x x x x+='-=-, 当()0,x a ∈时,()()0,f x f x '<单调递减; 当(),x a ∈+∞时,()0f x '>单调递增; 当x a =时,()f x 取最小值()221ln 2f a a a a =-.令221ln 02a a a -≥,解得0a <≤a 的取值范围是(. (2)由(1)知,()f x 在(0,)a 上单调递减,在(),a +∞上单调递增, 不失一般性,设120.x a x <<<,则22a x a -<,要证122x x a +>,即122x a x >-,则只需证()()122f x f a x <-, 因为()()12f x f x =,则只需证()()222f x f a x <-, 设()()()2,2g x f x f a x a x a =--≤<.则()()()22222022a a x a a g x x a x x a x x a x -=-+--'=-≤--, 所以()g x 在[),2a a 上单调递减,从而()()0.g x g a ≤= 又由题意得22a x a <<,于是()()()22220g x f x f a x =--<,即()()222f x f a x <-, 因此122x x a +>.【名师点睛】本题考查了利用导数求出函数单调性,解决不等式恒成立问题、同时也考查了通过函数值的大小来判断两个的变量的大小的问题.9.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知函数21()ln (1)()2f x x ax a x a =+-+∈R .(1)当1a ≥时,函数()f x 在区间[1,]e 上的最小值为–5,求a 的值;(2)设3211()()(1)22g x xf x ax a x x =-++-,且()g x 有两个极值点1x ,2x . (i )求实数a 的取值范围;(ii )证明:212e x x >.【答案】(1)8;(2)(i )1(1,1)e--;(ii )详见解析.【解析】(1)()()111()1a x x a f 'x ax a x x⎛⎫-- ⎪⎝⎭=+-+=, ∵1a ≥,[]1,e x ∈,∴()0f 'x ≥, 所以()f x 在区间[]1,e 上为单调递增.所以()()()min 111582f x f a a a ⎡⎤==-+=-⇒=⎣⎦, 又因为81a =≥, 所以a 的值为8.(2)(i )∵()()()232111ln 11222g x x x ax a x ax a x x ⎡⎤=+-+-++-⎢⎥⎣⎦()21ln 12x x a x x =-+-,且()g x 的定义域为()0,+∞,∴()()()ln 111ln 1g'x x a x x a x =+-+-=-+. 由()g x 有两个极值点1x ,2x ,等价于方程()ln 10x a x -+=有两个不同实根1x ,2x . 由()ln 10x a x -+=得ln 1xa x+=. 令()ln (0)xh x x x =>, 则21ln ()xh'x x-=,由()0e h'x x =⇒=. 当()0,e x ∈时,()0h'x >,则()h x 在()0,e 上单调递增; 当()e,x ∈+∞时,()0h'x <,则()h x 在()e,+∞上单调递减. 所以,当e x =时,()ln x h x x =取得最大值()max 1e eh =,∵()10h =,∴当()0,1x ∈时,()0h x <,当()1,x ∈+∞时,()0h x >,所以101e a <+<,解得111e a -<<-,所以实数a 的取值范围为11,1e ⎛⎫-- ⎪⎝⎭.(ii )不妨设120x x <<,且()11ln 1x a x =+①,()22ln 1x a x =+②, ①+②得:()()()1212ln 1x x a x x =++③ ②–①得:()()2211ln1x a x x x =+-④ ③÷④得:()12122211ln ln x x x x x x x x +=-,即()12212211ln ln x x x x x x x x +=⋅-, 要证:212e x x >,只需证()12212211ln ln 2x x xx x x x x +=⋅>-.即证:212212121121ln 21x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>⋅=++.令21(1)x t t x =>, 设()()214ln ln 211t F t t t tt -=-=+-++, ()()()221'01t F t t t -=>+.∴()F t 在()1,+∞上单调递增, ∴()()10F t F >=,即()21ln 1t t t->+,∴212e x x >.【名师点睛】本题考查利用导数研究函数的单调性,极值,最值问题,参变分离,数形结合讨论参数范围,构造函数等,比较综合,属于难题.10.【云南省昆明市2019届高三1月复习诊断测试数学】已知函数()ln f x x ax =-,a ∈R .(1)讨论()f x 的单调性;(2)若函数()f x 存在两个零点1x ,2x ,使12ln ln 0x x m +->,求m 的最大值. 【答案】(1)当0a ≤时,()f x 在()0,+∞单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(2)2.【解析】(1)函数()f x 的定义域为()0+∞,,()1=f x a x'-. 当0a ≤时,()0f x '>,()f x 在()0,+∞单调递增; 当0a >时,令()0f x '=,得10x a=>, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<. 所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.综上所述,当0a ≤时,()f x 在()0,+∞单调递增; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减. (2)因为11ln 0x ax -=,22ln 0x ax -=,即11ln x ax =,22ln x ax =.两式相减得()1212ln ln x x a x x -=-,即1212lnx x a x x =-. 由已知12ln ln x x m +>,得()12a x x m +>.因为10x >,20x >,所以12ma x x >+,即121212ln x x m x x x x >-+.不妨设120x x <<,则有()121212lnm x x x x x x -<+. 令12x t x =,则()0,1t ∈,所以()1ln 1m t t t -<+,即()1ln 01m t t t --<+恒成立. 设()()1ln (01)1m t g t t t t -=-<<+.()()()222111t m t g't t t +-+=+.令()()2211h t t m t =+-+,()01h =,()h t 的图象开口向上,对称轴方程为1t m =-, 方程()22110t m t +-+=的判别式()42m m ∆=-.当1m ≤时,()h t 在()0,1单调递增,()()01h t h >=,所以()0,g't >()g t 在()0,1单调递增,所以()()10g t g <=在()0,1恒成立.当12m <≤时,()420m m ∆=-≤,()0h t ≥在()0,1上恒成立,所以()0g't >,()g t 在()0,1单调递增,所以()()10g t g <=在()0,1恒成立.当2m >时,()h t 在()0,1单调递减,因为()01h =,()1420h m =-<, 所以存在()00,1t ∈,使得()00h t =当()00,t t ∈时,()0h t >,()0g't >;当()0,1t t ∈时,()0h t <,()0g't <, 所以()g t 在()00,t 上递增,在()0,1t 上递减. 当()0,1t t ∈时,都有()()10g t g >=, 所以()0g t <在()0,1不恒成立.综上所述,m 的取值范围是(],2-∞,所以m 的最大值为2.【名师点睛】本题考查了函数的单调性的判断和换元构造新函数求其最值的问题,求导后讨论函数的单调性是本题的关键,属于中档题.11.【云南省曲靖市第一中学2019届高三高考复习质量监测三数学】已知函数()1ln 1xf x x+=+.(1)求函数()f x 的单调区间;(2)若()()g x xf x mx =+在区间(0,e ]上的最大值为–3,求m 的值; (3)若x ≥1时,不等式()11kf x x ≥++恒成立,求实数k 的取值范围. 【答案】(1)见解析;(2)3e 1m =--;(3)(],2-∞ 【解析】(1)由题意得函数的()f x 的定义域为()0,+∞.∵()1ln 1xf x x +=+, ∴()2ln xf x x=-',由()0f x '>,得01x <<; 由()0f x '<,得1x >.∴函数()f x 的增区间为()()0,11,+∞,减区间为. (2)由题意得()1ln g x x mx x =+++, ∴()11g x m x=++',(]0,e x ∈, ①当10m +≥,即1m ≥-时,则()0g x '>,()g x 在(]0,e 上是增函数, ∴()()()max e 1e 20g x g m ==++≥,不合题意; ②当10m +<,即1m <-时,则由()0g x '>,得101x m <<-+, 若1e 1m -≥+,则()g x 在(]0,e 上是增函数,由①知不合题意; 若1e 1m -<+,则()g x 在10,1m ⎛⎫- ⎪+⎝⎭上是增函数;在1,e 1m ⎛⎤- ⎥+⎝⎦上为减函数, ∴()max 11ln 311g x g m m ⎛⎫⎛⎫=-=-=- ⎪ ⎪++⎝⎭⎝⎭,∴311e 1em -=<+, 解得3e 1m =--,满足题意. 综上可得3e 1m =--.(3)∵当1x ≥时,()11kf x x ≥++恒成立, ∴()()ln 111ln 1x k x f x x x x ⎡⎤≤+-=+++⎣⎦当1x ≥时恒成立, 令()ln 1ln 1x h x x x x =+++,1x ≥, 则()2ln 0x xh x x'-=>恒成立, ∴()h x 在[)1,+∞上为增函数, ∴()()min 12h x h ==, ∴2k ≤.∴实数k 的取值范围为(],2-∞.【名师点睛】(1)用导数解决函数的问题时,可先根据导函数的符号得到函数的单调性,进而得到函数的极值或最值.对于解析式中含有参数的问题,求解时注意分类讨论的运用.(2)解答恒成立问题时,常用的方法是分离参数法,通过分离参数将问题转化成求具体函数的最值的问题处理,体现了转化思想方法的运用.12.【四川省宜宾市2019届高三第三次诊断性考试数学】已知函数()()e 2,0axf x a x a =-+≠.(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点()1212,x x x x <,求证:12e e 2ax ax +>.【答案】(1)()f x 的增区间是[)0,+∞,减区间是(),0-∞;(2)证明见解析.【解析】(1)对函数求导可得'e e 1ax ax f x a a a =-=-()(),令'0f x =(),得0x = ①当0a >时,若0x >,则e 1ax >,即'0f x >(), 若0x <,则e 1ax <,即'0f x <(). ②当0a <时,若0x >,则e 1ax <,即'0f x >(), 若0x <,则e 1ax >,即'0f x <(). 综上,()f x 的单调递增区间是[0+∞,),单调递减区间是0-∞(,). (2)由(1)知,()f x 有两个零点时,()()01200e 020x x f a <<=-+<,,∴12a >.令11eax t =,22e ax t =,则1122ln ,ln ax t ax t ==∴12t t ,为方程ln 20t t a --=的两个根.令()ln 2g t t t a =--,则12t t ,为()g t 的两个零点,1201t t <<<. ∴()()()()121122g t g t g t g t --=--()()11112ln 22ln 2t t a t t a =------- ()11122ln 2ln t t t =---+,令()()()1111122ln 2ln ,0,1h t t t t t =---+∈,则()()()()()()21111111111112222111'20222t t t t t h t t t t t t t --++--=-++==>---. ∴1h t ()在01(,)上单调递增, ∴110h t h <=()(), ∴1220g t g t --<()(),即122g t g t -<()().∵()11'1t g t t t-=-=, ∴当1t ∈+∞(,)时,g t ()单调递增. ∵12211t t -∈+∞∈+∞()(,),(,),∴122t t -<,∴122t t +>,∴12e e 2ax ax +>.【名师点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了极值点偏移的综合应用,是高考的常考点和难点,属于难题.。

第15题 椭圆、双曲线的标准方程与几何性质--2019年高考数学23题试题分析与考题集训含答案

第15题 椭圆、双曲线的标准方程与几何性质--2019年高考数学23题试题分析与考题集训含答案

第15题 椭圆、双曲线的定义、标准方程与几何性质【考法】本主题考题形式为选择题或填空题,与函数、向量、正余弦定理、数列、不等式等知识结合重点考查椭圆与双曲线的定义、标准方程、几何性质,考查运算求解能力、推理论证能力,难度为基础题或中档题,分值5分.【考前回扣】1.椭圆的定义:把平面内与两定点12,F F 的距离之和等于常数(大于12||F F )的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点之间的距离叫焦距,符号表述为:(122||a F F >).注意:(1)当122||a F F =时,轨迹是线段12F F .(2)当122||a F F <时,轨迹不存在.2.椭圆的几何性质在焦点在y 轴上3.双曲线的定义:把平面内与两定点12,F F 的距离之差的绝对值等于常数(小于12||F F )的点的轨迹叫做双曲线,这两个定点叫双曲线的焦点,两焦点之间的距离叫焦距,符号表述为:(122||a F F <).注意:(1)当122||a F F =时,轨迹是直线12F F 去掉线段12F F .(2)当122||a F F >时,轨迹不存在.4.双曲线的几何性质5. 等轴双曲线: 实轴与虚轴相等的双曲线叫等轴双曲线,,其标准方程为,离心率为y x =±.6.椭圆的通径(过焦点垂直于焦点所在对称轴的直线被椭圆截得的弦叫通径)长度为22b a,是过椭圆焦点的直线被椭圆所截得弦长的最小值.【易错点提醒】1.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a <|F 1F 2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.2.易混淆椭圆的标准方程与双曲线的标准方程,尤其是方程中a ,b ,c 三者之间的关系,导致计算错误.3.已知双曲线的渐近线方程求双曲线的离心率时,易忽视讨论焦点所在坐标轴导致漏解.【考向】考向一 椭圆的定义及其标准方程【解决法宝】1.涉及椭圆上的点到两焦点的距离问题时,要灵活运用椭圆的定义与正余弦定理解题; 2.求解椭圆的标准方程的求法是“先定型,后计算”.所谓“定型”,就是指确定类型,所谓“计算”,就是指利用待定系数法求出方程中的22,b a 的值,最后代入写出椭圆的标准方程.例1【2019届安徽省六安一中模拟(四)】点在椭圆上,的右焦点为,点在圆上,则的最小值为( ) A .B .C .D .【分析】要求的最小值,根据椭圆的定义可以转化为(其中为椭圆的左焦点),即求的最小值,即为圆心与的距离减去半径,进而解决问题。

2019年高考理数母题题源系列(全国Ⅲ专版)(解析版) 椭圆及其性质

2019年高考理数母题题源系列(全国Ⅲ专版)(解析版) 椭圆及其性质

【母题原题1】【2019年高考全国Ⅲ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去), M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【母题原题2】【2017年高考全国Ⅲ卷理数】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 ABCD .13专题 椭圆及其性质【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A .【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法: ①求出a ,c ,代入公式e =ca; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【命题意图】要求掌握椭圆的定义、几何图形、标准方程及简单性质.主要考查考生的数学运算能力及考生对数形结合思想、转化与化归思想的应用.【命题规律】椭圆的定义、标准方程、几何性质一直是高考的命题热点,其中标准方程和几何性质考查比较频繁;直线与椭圆的位置关系常与向量、圆、三角形等知识综合考查,多以解答题的形式出现,难度中等偏上. 【答题模板】1.求椭圆的方程有两种方法(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程. (2)待定系数法.一般步骤如下:第一步,作判断.根据条件判断椭圆的焦点是在x 轴上,还是在y 轴上,或者是两个坐标轴上都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22xa+22yb=1(a>b>0)或22xb+22ya=1(a>b>0).第三步,找关系.根据已知条件,建立关于a,b,c的方程(组)(注意椭圆中固有的等量关系c2=a2–b2).第四步,定结果.解方程组,将解代入所设方程,得所求.注意当椭圆焦点位置不明确时,有两种解决方法:(1)分类讨论;(2)设椭圆方程为2xm+2yn=1(m>0,n>0,m≠n),或Ax2+By2=1(A>0,B>0,且A≠B).2.求椭圆离心率或其范围的方法(1)求出a,b或a,c的值,代入e2=22ca=222–a ba=1–(ba)2直接求;(2)根据条件得到关于a,b,c的齐次等式(不等式),结合b2=a2–c2转化为关于a,c 的齐次等式(不等式),然后将该齐次等式(不等式)两边同时除以a或a2转化为关于e 或e2的方程(不等式),解方程(不等式)即可得e(e的取值范围);(3)通过取特殊值或特殊位置,求出离心率.【知识总结】1.椭圆的几何性质标准方程22xa+22yb=1(a>b>0)22xb+22ya=1(a>b>0)图形几何范围–a≤x≤a,–b≤y≤b.–b≤x≤b,–a≤y≤a.对称性对称轴:x轴、y轴;对称中心:原点.性 质焦点F 1(–c ,0),F 2(c ,0) F 1(0,–c ),F 2(0,c ) 顶点A 1(–a ,0),A 2(a ,0),B 1(0,–b ),B 2(0,b ). A 1(0,–a ),A 2(0,a ),B 1(–b ,0),B 2(b ,0). 轴线段A 1A 2,B 1B 2分别是椭圆的长轴和短轴,长轴长为2a ,短轴长为2b .焦距 |F 1F 2|=2c离心率 e =c a0,1) a ,b ,c 的关系c 2=a 2–b 22.椭圆的通径(过焦点且垂直于长轴的弦)长为22b a,通径是最短的焦点弦.3.若P 是椭圆上一点,F 为椭圆的焦点,则|PF|∈[a –c ,a+c ],即椭圆上的点到焦点的距离的最大值为a+c ,最小值为a –c .4.椭圆的焦点三角形:椭圆上的点P (x 0,y )与两焦点构成的△PF 1F 2叫作焦点三角形.如图所示,设∠F 1PF 2=θ. (1)当P 为短轴端点时,θ最大. (2)12PF F S △=12|PF 1|·|PF 2|·sin θ=b 2·sin 1cos θθ+=b 2tan 2θ=c|y 0|,当|y 0|=b ,即P 为短轴端点时,12PF F S △取最大值,最大值为bc . (3)焦点三角形的周长为2(a+c ). 【方法总结】 1.椭圆定义的应用(1)利用定义确定平面内的动点的轨迹是否为椭圆.(2)利用定义解决与焦点三角形相关的周长、面积及最值问题.利用定义和余弦定理可求得|PF 1|·|PF 2|,进而求得焦点三角形的周长和面积.(3)已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解. 2.椭圆几何性质的应用技巧(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形.(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如,–a ≤x ≤a ,–b ≤y ≤b ,0<e<1,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.1.【西藏拉萨市2019届高三下学期第二次模拟考试数学】设椭圆E 的两焦点分别为1F ,2F ,以1F 为圆心,12F F 为半径的圆与E 交于P ,Q 两点,若12PF F △为直角三角形,则E 的离心率为A B 1C .2D 1【答案】B【解析】如图所示,因为12PF F △为直角三角形,所以1290PF F ∠=︒,所以122,PF c PF ==,则22c a +=,解得1ce a==,故选B .【名师点睛】本题主要考查了椭圆的标准方程及其简单的几何性质的应用,其中解答中合理利用椭圆的定义和离心率的概念求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.【四川省宜宾市2019届高三第三次诊断性考试数学】已知椭圆22221x y a b+=的左右焦点分别为12,F F ,过1F 作倾斜角为45︒的直线与椭圆交于,A B 两点,且112F B AF =u u u r u u u r,则椭圆的离心率= A.3 B.2 C.2D.3【答案】D【解析】椭圆22221x y a b+=的左右焦点分别为12F F 、,过10F c -(,)且斜率为1k =的直线为y x c =+,联立直线与椭圆方程22221x y a b y x c ⎧+=⎪⎨⎪=+⎩,消x 后,化简可得2222222220a b y cb y c b a b +++-=(), 因为直线交椭圆于A ,B ,设1122A x y B x y (,),(,),由韦达定理可得22222121222222,cb c b a b y y y y a b a b -+=-=++, 且112F B AF =u u u r u u u r,可得212y y =-,代入韦达定理表达式可得 2222221122222,2cb c b a b y y a b a b --=--=++,即222222222222cb c b a b a b a b ⎛⎫--= ⎪++⎝⎭, 化简可得229c 2a =,所以3c e a ==,故选D . 【名师点睛】本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,属于难题.3.【四川省雅安市2019届高三第三次诊断考试数学】已知点1(1,0)F -,2(1,0)F ,直线l :2y x =+.若以1F 、2F 为焦点的椭圆C 与直线l 有公共点,则椭圆C 的离心率最大值为A.5B.12CD.2【答案】A【解析】椭圆C:2222x ya b+=1(a>b>0)的左右焦点分别是F1(–1,0),F2(1,0),可得c=1,则222212x ya by x⎧+=⎪⎨⎪=+⎩,可得(a2+b2)x2+4a2x+4a2–a2b2=0,∆=16a4–4(a2+b2)(4a2–a2b2)≥0,可得4a2–(2a2–1)(5–a2)≥0,解得a≥,∴cea=≤=A.【名师点睛】本题考查椭圆的简单性质,直线与椭圆的位置关系的应用,考查计算能力.4.【四川省华文大教育联盟2019届高三第二次质量检测数学】已知椭圆C的方程为()222210x ya ba b+=>>,焦距为2c,直线:4l y x=与椭圆C相交于A,B两点,若2AB c=,则椭圆C的离心率为AB.34C.12D.14【答案】A【解析】设直线与椭圆在第一象限内的交点为(),A x y,则4y x=,由2AB c=,可知OA c==c=,解得3x c=,所以1,33A c c ⎛⎫ ⎪ ⎪⎝⎭,把点A代入椭圆方程得到22221331c c a b ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=, 整理得4281890e e -+=,即()()2243230e e --=, 因01e <<,所以可得2e =,故选A . 【名师点睛】本题考查通过对已知条件的转化,将椭圆上一点的坐标用,,a b c 表示,再代入椭圆方程求出离心率,属于中档题.5.【四川省华文大教育联盟2019届高三第二次质量检测考试数学】如图,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()()12,0,,0,F c F c P -是椭圆C 上一点,O 为坐标原点,若1260F PF ∠=o,且PO =,则椭圆C 的离心率是A.2 BCD .23【答案】C【解析】设12,PF m PF n ==.由椭圆的定义,得2m n a +=,①.在12PF F △中,由余弦定理,得2222cos 60(2)m n mn c +-=︒,②.2-①②得:()2234mn a c =-,③将③代入②,得22224833m n a c +=+. 在1POF V 中,由余弦定理,得2221||2||cos PO c PO c FOP m +-⨯⨯∠=,④在2POF V 中,由余弦定理,得2222||2||cos PO c PO c F OP n +-⨯⨯∠=,⑤④+⑤,得2222222216482||22933a m n PO c c a c +=+=+=+,化简,得2223a c =,故e =,故选C . 【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.【2019年四川省达州市高考数学一诊】已知椭圆22221(0)x y C a b a b+=>>:的左右焦点分别为1F 、2F ,抛物线22224(,0)y cx c a b c ==->与椭圆C 在第一象限的交点为P ,若124cos 5PF F ∠=,则椭圆C 的离心率为 ABC.12D.49-或49+ 【答案】D【解析】作抛物线的准线l ,则直线l 过点1F ,过点P 作PE 垂直于直线l ,垂足为点E , 由抛物线的定义知2PE PF =,易知,PE x ∥轴,则112EPF PF F ∠=∠,2112114cos cos 5PE PF EPF PF F PF PF ∴∠=∠===,设15(0)PF t t =>,则24PF t =,由椭圆定义可知,1229a PFPF t =+=,在12PF F △中,由余弦定理可得222211221212||||2cos PF PF F F PF F F PF F =+-⋅∠,整理得221212||890F F t F F t -+=,解得(124F F t =+或(124F F t =.当(124F F t =时,22c a =当(124F F t =时,离心率为22c e a ==.综上所述,椭圆C .故选D . 【名师点睛】本题考查椭圆的性质,考查抛物线的定义以及余弦定理,考查计算能力与推理能力,属于中等题.7.【四川省成都市成都外国语学校2019届高三3月月考数学】已知椭圆:2221(02)4x y b b+=<<,左、右焦点分别为12,F F ,过1F 的直线l 交椭圆于,A B 两点,若22BF AF +u u u u v u u u u v 的最大值为5,则b 的值是A .1 BC .32D【答案】C【解析】由0<b <2可知,焦点在x 轴上,∵过F 1的直线l 交椭圆于A ,B 两点,则|BF 2|+|AF 2|+|BF 1|+|AF 1|=2a +2a =4a =8,∴|BF 2|+|AF 2|=8–|AB |.当AB 垂直x 轴时|AB |最小,|BF 2|+|AF 2|值最大,此时|AB |=b 2,则5=8–b 2,解得b =故选C .【名师点睛】本题考查直线与圆锥曲线的关系,考查了椭圆的定义,考查椭圆的通径公式,考查计算能力,属于中档题.8.【四川省绵阳市2019届高三第二次(1月)诊断性考试数学】已知椭圆C :221(4)4x y m m m +=>-的右焦点为F ,点A (−2,2)为椭圆C 内一点.若椭圆C 上存在一点P ,使得|PA |+|PF |=8,则m 的取值范围是A.(625⎤+⎦B .[9,25] C.(620⎤+⎦D .[3,5]【答案】A【解析】椭圆C :221(4)4x y m m m +=>-的右焦点F (2,0),左焦点为F '(–2,0),由椭圆的定义可得|PF |+|PF '|,即|PF '|=|PF |,可得|PA |–|PF '|=8–由||PA |–|PF '||≤|AF '|=2,可得–2≤8–,解得35≤≤,所以925m ≤≤,①又A 在椭圆内,所以4414m m +<-,所以8m –16<m (m –4),解得6m <-6m >+,与①取交集得625m +<≤,故选A .【名师点睛】本题考查椭圆的定义和性质的运用,考查转化思想和运算能力,属于中档题.9.【四川省成都市高新区2019届高三上学期“一诊”模拟考试数学】已知椭圆22:1641C x y +=,则下列结论正确的是A .长轴长为12 BC .短轴长为14D.离心率为2【答案】D【解析】由椭圆方程221641x y +=化为标准方程可得22111164x y +=,所以11,,24a b c ===, 长轴为21a =,焦距22c =,短轴122b =,离心率2c e a ==,故选D .【名师点睛】本题考查了椭圆的标准方程及a 、b 、c 的含义,椭圆离心率的求法,属于基础题.10.【四川省棠湖中学2019届高三上学期第二次月考数学】已知F 是椭圆2222:1(0)x y E a b a b+=>>的左焦点,经过原点的直线l 与椭圆E 交于P ,Q 两点,若2PF QF =,且120PFQ ∠=︒,则椭圆E 的离心率为A .13 B .12 CD【答案】C【解析】在PQF △中,设22,PF QF t ==()()1111,,,P x y Q x y --,右焦点E ,由椭圆的对称性,知PFQE 是平行四边形,所以在PEF △中,由余弦定理得222225234EF t t t c =-==,223,,3PF QF a t t a e +====C . 【名师点睛】本题的关键是要看到椭圆的对称性把PQF △,转化到焦点PEF △中,再应用比值及余弦定理,可得离心率.11.【云南省昆明市2019届高三1月复习诊断测试数学】已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,B 为C 的短轴的一个端点,直线1BF 与C 的另一个交点为A ,若2BAF ∆为等腰三角形,则12AF AF = A .13 B .12C .23D .3【答案】A【解析】设|AF 1|=t (t >0),由椭圆的定义可得|AF 2|=2a –t ,由题意可知,|AF 2|>|BF 2|=a ,由于△BAF 2是等腰三角形,则|AB |=|AF 2|,即a +t =2a –t ,所以2at =,所以123,22a a AF AF ==,因此12AF 1AF 3=,故选A . 【名师点睛】本题考查直线与椭圆的综合问题,利用椭圆的定义是解决本题的关键,属于中档题.12.【贵州省贵阳市2019年高三5月适应性考试(二)数学】过椭圆()2222:10x y C a b a b+=>>的左焦点F 的直线过C 的上端点B ,且与椭圆相交于点A ,若3BF FA =u u u v u u u v,则C 的离心率为 A .13 BCD【答案】D【解析】由题意可得()()0,,,0B b F c -,由3BF FA =u u u r u u u r ,得4,33b A c ⎛⎫-- ⎪⎝⎭,点A 在椭圆上,则22224331b c a b ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=,整理可得:222221681,,992c c e e a a ⋅=∴===D . 【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2–c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).13.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知F 是椭圆22221(0)x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,若F 为过AF 的椭圆的弦的三等分点,则椭圆的离心率为A .13 BC .12D .2【答案】B【解析】延长AF 交椭圆于点B ,设椭圆右焦点为F ',连接,AF BF ''.根据题意AF a ==,2AF FB =,所以2a FB =, 根据椭圆定义2BF BF a '+=,所以32a BF '=, 在AFF'△中,由余弦定理得22222224cos 22F A FA F F a c F AF F A FA a ''+--'∠=='⋅, 在AF B '△中,由余弦定理得2221cos 23F A AB BF F AB F A AB ''+-'∠=='⋅,所以22224123a c a -=,解得a ,所以椭圆离心率为3c e a ==,故选B .【名师点睛】本题考查椭圆的定义,几何性质,余弦定理等,属于中档题.14.【贵州省黔东南州2019届高三下学期第一次模拟考试数学】椭圆2x +28y =1的离心率为A .4 B .78C D .18【答案】A【解析】椭圆x 2+28y =1的离心率为4c e a ====故选A .【名师点睛】这个题目考查了已知椭圆的方程求椭圆的离心率的问题,根据222a b c =+可得到相应的参数值,进而得到离心率.15.【贵州省2019届高三11月37该椭圆的离心率为A .13 BC D 【答案】C【解析】∵22a b =3b a =.∴c e a ==3.故选C .【名师点睛】熟练掌握离心率计算公式c e a == 16.【云南省玉溪一中2019届高三下学期第五次调研考试数学】设点P 是椭圆22221(0)x y a b a b+=>>上异于长轴端点上的任意一点,12,F F 分别是其左右焦点,O 为中心,2212||||||3PF PF OP b +=,则此椭圆的离心率为A .12 BC D 【答案】C【解析】设()11,P x y ,则2211112122,,1x y PF a ex PF a ex a b=+=-+=,所以212||PF PF OP +=2222222222222221111111222b x x y a e x x y a y a b a b a a b ⎛⎫-++=++=++=+ ⎪⎝⎭,因此2222222322a b b a b a c e +=⇒=⇒=⇒=C . 17.【云南省昆明市2019届高三高考模拟(第四次统测)数学】己知椭圆E :22221(0)x y a b a b+=>>,直线l 过焦点且倾斜角为4π,以椭圆的长轴为直径的圆截l 所得的弦长等于椭圆的焦距,则椭圆的离心率为A .3 BC D 【答案】D【解析】直线l 的方程为y x c =±,以椭圆的长轴为直径的圆截l 所得的弦为AB ,2AB c =,设OC AB ⊥,垂足为C ,则2OC c ==,在Rt OAC △中,22222222113()22233OA AC OC a AB c a c c a e =+⇒=+⇒=⇒=⇒=,故选D .【名师点睛】本题考查了椭圆的离心率的求法.考查了圆弦长公式,考查了运算能力. 18.【四川省绵阳市2019届高三第二次(1月)诊断性考试数学】已知点P 是椭圆C :2219+=x y 上的一个动点,点Q 是圆E :()2243+-=x y 上的一个动点,则|PQ |的最大值是__________.【答案】【解析】由圆E :x 2+(y –4)2=3可得圆心为E (0,4),又点Q 在圆E 上,∴|PQ |≤|EP |+|EQ |=|EP (当且仅当直线PQ 过点E 时取等号).设P (x 1,y 1)是椭圆C 上的任意一点,则221119+=x y ,即21=x 9219-y .∴|EP |22211(4)=+-=x y 922211119(4)8()272-+-=-++y y y .∵[]111∈-,y ,∴当y 1=–12时,|EP |2取得最大值27,即|PQ|≤= ∴|PQ |的最大值为【名师点睛】本题考查了椭圆的标准方程及其性质的应用、二次函数的单调性,考查了推理能力和计算能力,属于难题.19.【四川省2018届高三春季诊断性测试数学】若椭圆2214x y m+=上一点到两个焦点的距离之和为3m -,则此椭圆的离心率为__________.【解析】当4m <时,由椭圆定义知34m -=,解得7m =,不符合题意,当4m >时,由椭圆定义知3m -=解得9m =,所以33c e a ===,故答案为:3. 【名师点睛】本题由于不知道椭圆的焦点位置,因此必须进行分类讨论,分析椭圆中22,a b 的取值,从而确定c ,计算椭圆的离心率.20.【贵州省贵阳市2019届高三5月适应性考试(二)数学】过椭圆2222:1x y C a b+=()0a b >>的左焦点F 的直线过C 的上端点B ,且与椭圆相交于另一个点A ,若3BF AF =,则C 的离心率为__________.【答案】2【解析】由题意可得()()0,,,0B b F c -,由3BF AF =可得4,33b Ac ⎛⎫-- ⎪⎝⎭,点A 在椭圆上,则22224331b c a b ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=,整理可得:222221681,,992c c e e a a ⋅=∴===【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式cea ;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2–c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).。

高考数学专题《椭圆》习题含答案解析

高考数学专题《椭圆》习题含答案解析

专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( ) A B C .D .【答案】B 【解析】,选B . 2.(2019·北京高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点(1,)2,且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=22194x y +=235933e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则4y x =由2AB c =,可知OA c ==c =,解得3x =,所以1,33A c c ⎛⎫⎪ ⎪⎝⎭把点A代入椭圆方程得到2222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=, 因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析. 【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =. 则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+,43-, ∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围. 【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b +(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-. 从而()12n FP FP a c a c c -≤+--=. 再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤. 同理,当等差数列递减时,可解得1010d -≤<, 故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+ 【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解 【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,而1AF ==∴10AM MF +≤当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为109.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>点A (2,1)在椭圆C 上,O 是坐标原点. (1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2 【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解. 【详解】(1)由e =得:12c b a =,, 又点(21)A ,在椭圆上, 所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =, 因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-, 与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD = 10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △. 【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解. 【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,所以2224c a b =-=,① 又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>, 由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△. 即12F PF △.1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b +=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1,12⎡⎫⎪⎢⎣⎭B .⎣⎦C .2⎫⎪⎢⎪⎣⎭ D .⎫⎪⎣⎭【答案】C 【分析】练提升若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin baα=求椭圆离心率的范围. 【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 452b a α=≤︒=222a c ≤, ∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎣⎭. 故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠, ∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立, 在2AFF 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF e mnmn mn a+-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤. 故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.【答案】21 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q 为短轴的端点,故离心率πcos 42c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B =,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1)2;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立 对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤故离心率最大值为2当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________.【答案】2. 【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >, 因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c , 根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a , 解得112=+PF a a ,212=-PF a a , 在12F PF ∆中,由余弦定理,可得: 2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a , 整理得2221243=+c a a , 所以22121134+=e e ,又221212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎣⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y ,所以点03⎫⎪⎝⎭H y由λ=HQ PH ,所以λ=HQ PH0⎛⎫=- ⎪⎝⎭HQ x y y ,0,0⎫=⎪⎭PH x又λ=HQ PH ,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x 所以00x y y ==由220014x y +=221=y 则点Q 221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥ 所以234e ≥,则e ≥,又1e < 所以⎫∈⎪⎪⎣⎭e 故答案为:⎫⎪⎪⎣⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得. 【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝⎭【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围. 【详解】22194x y +=的焦点为1(F、2F , 如图所示:A 、B 、C 、D 四点, 此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角, 所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==. 因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝⎭.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y +=的两个焦点,P 是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66 【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值. 【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号, ∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号, ∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y+=, 由已知,得12||||26PF PF a +==,∴12||6||PF PF =-, ∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6 综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l. (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足263MN OP =,求直线n 的斜率. 【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x ,利用根与系数的关系,结合263MN OP =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率 【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b , 所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C ,原点O 到直线0bx cy bc +-=所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++. 因为263MN OP=,所以))2121P x x y y ⎫--⎪⎪⎝⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-, 即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )练真题A.⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可. 【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .2.(2018·全国高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D 【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 3.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 4.(2019·全国高考真题(文))设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M 的坐标为(.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>. (1)证明:3ab ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程. 【详解】(1)c e a ===b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得b > 设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+ 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=, 所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝ 所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y = 所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->, 由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++ ()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-.。

2019版高考数学(文科)(5年高考+3年模拟)考点清单全国卷1地区通用版:10.1 椭圆及其性质 PDF版

2019版高考数学(文科)(5年高考+3年模拟)考点清单全国卷1地区通用版:10.1 椭圆及其性质 PDF版

BF 于 P,则动点 P 的轨迹方程为 x2 y2 A. + = 1 12 11 C. 答案㊀ D x y - =1 3 2
2 2
x2 y2 B. - = 1 36 35 D.
2 2
(㊀ ㊀ )
㊀ ㊀ 1-3㊀ ( 2017 湖北武汉调研,15) 一个椭圆的中心在原点, 焦 点 F 1 ㊁F 2 在 x 轴上,P(2, 3 ) 是椭圆上一点, 且 | PF 1 | , | F 1 F 2 | , | PF 2 | 成等差数列,则椭圆方程为㊀ ㊀ ㊀ ㊀ ㊀ ㊀ . 答案㊀ x2 y2 + =1 8 6
解析㊀ 依题意设椭圆 G 的方程为
所以 a = 6,又 c = 2 5 ,所以 b = 16. 故椭圆 C 的方程为 答案㊀ C x2 y2 + = 1. 36 16
㊀ ㊀ 1-1㊀ ( 2017 河北衡水六调,8 ) 已知 A ( -1,0) , B 是圆 F: x -2x + y 2 -11 = 0( F 为圆心 ) 上一动点, 线段 AB 的垂直平分线交
4.a + c 与 a - c 分别为椭圆上的点到焦点距离的最大值和最 5. 设 P,A,B 是椭圆上不同的三点,其中 A,B 关于原点对称, b2 . a2
短轴 B 1 B 2 = 2b,b 是短半轴的长 | x | ɤ a, | y | ɤ b e= c = a 1- 焦距 F 1 F 2 = 2c,c 是半焦距 | x | ɤb, | y | ɤa
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

《高考真题》专题14 等差数列-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

《高考真题》专题14 等差数列-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.【母题原题2】【2017年高考全国Ⅲ卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A .专题14 等差数列【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【命题意图】主要考查考生的数学运算能力和逻辑推理能力,以及考生对函数与方程思想的应用.要求: 1.熟练掌握等差的通项公式、前n 项和公式. 2.掌握与等差数列有关的数列的求和的常见方法. 3.了解等差数列与一次函数的关系.【命题规律】等差数列是高考的考查热点,主要考查等差数列的基本运算和性质,等差数列的通项公式和前n 项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题. 【答题模板】求数列的通项、求和问题时,第一步:根据题意求通项.注意等差数列通项形如关于n 的一次函数的形式. 第二步:利用函数性质研究数列的性质,例如周期、单调性等. 第三步:利用函嫩、数列的交汇性质来综合求解问题.第四步:查看关键点、易错点及解题规范,例如错位相减去的计算量较大,注意检验. 【知识总结】1.等差数列的常用性质(1)通项公式的推广:a n =a m +(n –m )d (n ,m ∈N *).(2)若{a n }是等差数列,且k+l=m+n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n ;反之,不一定成立. (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }(p ,q ∈N *)也是等差数列.(5)若{a n }是等差数列,则a k ,a k+m ,a k+2m ,…(k ,m ∈N *)组成公差为md 的等差数列. 2.与等差数列各项的和有关的性质(1)若S m =n ,S n =m ,则S m+n =–(m+n );若S m =S n ,则S m+n =0. (2)若{a n }是等差数列,则{n S n}也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12.(3)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m –S m ,S 3m –S 2m 成等差数列.(4)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶–S 奇=nd ,S S 奇偶=1nn a a +; ②若项数为2n –1,则S 偶=(n –1)a n ,S 奇=na n ,S 奇–S 偶=a n ,S S 奇偶=-1nn .(5)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为2-12-1n n S T =nna b . 【方法总结】 (一)等差数列1.等差数列的判定与证明方法有以下四种:(1)定义法:a n+1–a n =d (常数)(n ∈N *)或a n –a n –1=d (n ∈N *,n ≥2)⇔{a n }为等差数列. (2)等差中项法:2a n+1=a n +a n+2(n ∈N *)⇔{a n }为等差数列. (3)通项公式法:a n =an+b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列. (4)前n 项和公式法:S n =an 2+bn (a ,b 为常数)⇔{a n }为等差数列.若要判定一个数列不是等差数列,则只需找出三项a n ,a n+1,a n+2,使得这三项不满足2a n+1=a n +a n+2即可.判断一个数列是否为等差数列时,应该根据已知条件灵活选用不同的方法,一般优先考虑定义法,即先表示出a n +1–a n ,然后验证其是否为一个与n 无关的常数.也可根据已知条件求出一些项,根据求解过程寻找具体的解题思路.注意常数列{a n }的通项公式为a n =a (a 为常数),它是一个首项为a ,公差为0的等差数列.2.等差数列基本运算的常见类型及解题策略:(1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解,或利用等差中项间接求解. 3.求数列前n 项和的最值的方法:(1)通项法:①若a 1>0,d<0,则S n 必有最大值,其n 可用不等式组100n n a a +≥⎧⎨≤⎩,来确定;②若a 1<0,d>0,则S n 必有最小值,其n 可用不等式组100n n a a +≤⎧⎨≥⎩,来确定.(2)二次函数法:等差数列{a n }中,由于S n =na 1+–12n n ()d=2d n 2+(a 1–2d)n ,可用求函数最值的方法来求前n 项和的最值,这里应由n ∈N *及二次函数图象的对称性来确定n 的值. (3)不等式组法:借助S n 最大时,有–11n n nn S S S S +≥⎧⎨≥⎩,(n ≥2,n ∈N *),解此不等式组确定n 的范围,进而确定n 的值和对应S n 的值(即S n 的最值). (二)其他数列1.求数列前n 项和的常用方法 (1)分组求和法分组转化法求和的常见类型①若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.②通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论. (2)裂项相消法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求解:由∴ (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.{}n a d 111nk k k a a =+∑()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭相加2.数列与函数综合(1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(2)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常用解法有助于该类问题的解决. 3.数列与不等式综合与数列有关的不等式的命题常用的方法有:比较法(作差作商)、放缩法、利用函数的单调性、数学归纳法证明,其中利用不等式放缩证明是一个热点,常常出现在高考的压轴题中,是历年命题的热点.利用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩. 4.以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用函数的单调性求解; 5.以数列为背景的不等式证明问题,多与数列求和有关,有时利用放缩法证明.1.【广西桂林市、崇左市2019届高三下学期二模联考数学】在数列{}n a 中,35a =,()120n n a a n ++--=∈N ,若25n S =,则n =A .3B .4C .5D .6【答案】C【解析】因为()120n n a a n ++--=∈N ,所以1=2n n a a +-=d ,所以数列{}n a 是等差数列,121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………()()()12112n n n n S a a a a a a -=++++++……所以()11145 ,1,512252a a n n n na +=⎧⎪∴==⎨-+⋅=⎪⎩.故选C . 【名师点睛】本题主要考查等差数列性质的判定,考查等差数列的通项和前n 项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.【广西桂林市2019届高三4月综合能力检测(一模)数学】等差数列{}n a 中,27a =,623a =,则4a = A .11 B .13 C .15 D .17【答案】C【解析】等差数列{}n a 中,27a =,623a =,62423744,a a d d d =+⇒=+⇒= 根据等差数列的通项公式得到42215.a a d =+=故选C .【名师点睛】这个题目考查了等差数列的概念以及通项公式的应用属于基础题. 3.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】等差数列{}n a 中,若46131520a a a a +++=,则101215a a -的值是A .4B .5C .6D .8【答案】A【解析】∵()461315415220a a a a a a +++=+=,∴41510a a +=, ∴()1012101211555a a a a -=-()891011121215a a a a a a =++++- ()89101115a a a a =+++()41525a a =+4=.故选A . 【名师点睛】本题考查等差数列中下标和性质的应用,解题的关键是进行适当的变形,以得到能运用性质的形式.本题也可转化为等差数列的首项和公差后进行求解,属于基础题.4.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研考试数学】设n S 为等差数列{}n a 的前n 项和,若21016a a +=,714S =,则{}n a 的公差为A .1B .3C .6D .2【答案】B【解析】方法一:设等差数列{}n a 的公差为d , 因为1777()142a a S +==,得174a a +=①, 因为21016a a +=,所以11116a a +=②,②–①得,11712a a -=,即412d =,所以3d =,故选B .方法二:设等差数列{}n a 的公差为d ,因为21016a a +=,714S =,所以112101672114a d a d +=⎧⎨+=⎩,解得173a d =-⎧⎨=⎩,故选B .【名师点睛】本题主要考查了等差数列基本量求解,属于基础题.等差数列基本量求解的通法是方程组法,利用等差数列的通项公式、求和公式将条件转化为关于1a 和d 的方程组,进而求解;另外也可以运用性质法,即利用等差数列的相关性质公式以及通项公式、求和公式直接求出基本量.5.【四川省峨眉山市2019届高三高考适应性考试数学】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A .66 B .132 C .–66 D .–132【答案】D【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-, 又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D .【名师点睛】本题考查等差数列的性质及求和公式,考查方程思想,是基础题.6.【四川省百校2019年高三模拟冲刺卷数学】已知等差数列{}n a 的前n 项和为n S ,且728S =,则4a = A .4 B .7 C .8 D .14【答案】A 【解析】()177477282a a S a +===,故44a =,故选A .【名师点睛】本题考查等差数列求和及基本性质,熟记求和公式及性质,准确计算是关键,是基础题. 7.【四川省内江市2019届高三第三次模拟考试数学】已知等差数列{}n a 的前n 项和为n S ,且86a =,828S =,则其公差为A .47 B .57 C .47-D .57-【答案】B【解析】设等差数列{}n a 的公差为d ,由86a =,828S =,则1176878282a d a d +=⎧⎪⎨⨯+=⎪⎩,解得57d =,故选B .【名师点睛】本题主要考查了等差数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.8.【四川省雅安市2019届高三第三次诊断考试数学】已知等差数列{}n a ,12018a =-,其前n 项和为n S ,20192018120192018S S -=,则2019S = A .0 B .1 C .2018 D .2019【答案】A【解析】设等差数列{}n a 的公差为d ,则()112n n n S na d -=+, 所以2019110092019S a d =+,20181201720182S a d =+,代入20192018120192018S S -=,得2d =. 所以()20192019201820192018202S ⨯=⨯-+⨯=.故选A . 【名师点睛】本题主要考查了等差数列前n 项和公式,考查方程思想及计算能力,属于中档题.9.【重庆市南开中学2019届高三第三次教学质量检测考试数学】等差数列{}n a 的前7项和为28,108a =,则7a = A .6B .7【答案】A【解析】由题得11717672822,2,,26623398a d a d a a d ⨯⎧+⨯=⎪∴==∴=+⨯=⎨⎪+=⎩.故选A . 【名师点睛】本题主要考查等差数列的通项的基本量的计算,考查等差数列的前n 项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.【贵州省贵阳市2019届高三2月适应性考试(一)数学】已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=–8,则公差d = A .6 B .6- C .2- D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=–8,∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6,∴a 5=–2,a 6=4,∴d =a 6–a 5=6,故选A . 【名师点睛】本题考查等差数列的通项公式,考查方程的构造及解法,是基础的计算题. 11.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】在等差数列{}n a 中,若35791155a a a a a ++++=,33S =,则5a 等于A .9B .7C .6D .5【答案】B【解析】因为35791155a a a a a ++++=,所以5a 7=55,所以711a =, 因为33S =,所以21a =,所以公差7225a a d -==,所以5237a a d =+=.故选B . 【名师点睛】本题考查等差数列的第5项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.12.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】在等差数列{}n a 中,若357911355,3a a a a a s ++++==,则5a 等于A .5B .6【答案】C【解析】在等差数列{}n a 中,因为35791155a a a a a ++++=,所以7755511a a =⇒=, 又33S =,123223331a a a a a ∴++=⇒=⇒=,又因为7252a a d d =+⇒=,5237a a d ∴=+=,故选C .【名师点睛】本题考查了等差数列的性质.13.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】在数列{}n a 中,已知121n n n n a a a a +++-=-,10101a =,则该数列前2019项的和2019S =A .2019B .2020C .4038D .4040【答案】A 【解析】121n n n n a a a a +++-=-,122n n n a a a ++∴=+,{}n a ∴为等差数列,10101a =,()1201910102019201920192201922a a a S +⨯∴===.【名师点睛】本题考查等差中项,等差数列的基本性质,属于简单题.14.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】在等差数列{}n a 中,已知10101a =,则该数列前2019项的和2019S = A .2018 B .2019 C .4036 D .4038【答案】B【解析】由题得2019S =1201910102019)201920192a a a +==(.故选B . 【名师点睛】本题主要考查等差数列的前n 项和,考查等差中项的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.【贵州省2019年普通高等学校招生适应性考试数学】等差数列{}n a 中,2a 与4a 是方程2430x x -+=的两根,则12345a a a a a ++++=A .6B .8C .10D .12【答案】C【解析】∵2a 与4a 是方程2430x x -+=的两根,∴2a +4a =4=1a +532a a =, 则1234510a a a a a ++++=.故选C .【名师点睛】本题考查了等差数列的性质、一元二次方程的根与系数的关系,属于基础题. 16.【贵州省遵义市绥阳中学2019届高三模拟卷(二)数学】若等差数列{}n a 的前n 项和为258,2,8n S a a S +=-=,则n S =A .22n n -B .27n n -C .251n n ++D .27n n -+【答案】B【解析】令()11n a a n d =+-,则1114287882a d a d a d +++=-⎧⎪⎨⨯+=⎪⎩162a d =-⎧⇒⎨=⎩ 所以()216272n n n S n n n ⨯-=-⨯+⨯=-,故选B . 【名师点睛】本题考查等差数列基本量的计算,关键在于能够将已知条件转化为关于基本量的方程,属于基础题.17.【贵州省遵义市绥阳中学2019届高三模拟卷(一)数学】已知等差数列{}n a 的前n 项和分别为n S ,912162a a =+,24a =,若数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和为1011,则k =A .11B .10C .9D .8【答案】B【解析】设等差数列{}n a 的公差为d ,则()11118116,24,a d a d a d ⎧+=++⎪⎨⎪+=⎩解得12a d ==.()21222n n n S n n n-∴=+⨯=+,()111111nS n n n n ∴==-++, 1211111111110112231111k S S S k k k ⎛⎫⎛⎫⎛⎫∴+++=-+-++-=-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,10k =.故选B . 【名师点睛】本题考查等差数列的通项公式与前n 项和公式,考查裂项相消法,考查计算能力与推理能力,属于中档题.18.【云南省昆明市2019届高三高考模拟(第四次统测)数学】已知等差数列{}n a 的前n 项和为n S ,721S =,则4a = A .0 B .2 C .3 D .6【答案】C【解析】因为{}n a 是等差数列,所以1717744217)2(6263S a a a a a a ++=⇒=⇒=⇒==,故本题选C .【名师点睛】本题考查了等差数列前n 项和公式和等差数列的性质.考查了运算能力. 19.【云南省保山市2019年普通高中毕业生市级统一检测数学】已知等差数列{}n a 满足711a =,2810a a +=,则11=SA .176B .88C .44D .22【答案】B【解析】因为数列{}n a 是等差数列,由2810a a +=,得55a =,又711a =, 则()()111571*********a a a a S ++===,故选B .【名师点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.20.【西藏拉萨市2019届高三第三次模拟考试数学】记n S 为等差数列{}n a 的前n 项和,若11a =,34222S a S =+,则8a =A .8B .9C .16D .15【答案】D【解析】由题意,因为11a =,34222S a S =+, 即111322(3)2(3)22a d a d a d ⨯⨯+=+++,解得2d =, 所以81717215a a d =+=+⨯=,故选D .【名师点睛】本题主要考查了等差数列的通项公式,以及前n 项和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.21.【西藏拉萨市2019届高三下学期第二次模拟考试数学】已知等差数列{}n a 的前n 项和2n S n bn c =++,等比数列{}n b 的前n 项和3nn T d =+,则向量(,)c d =a 的模为A .1 BCD .无法确定【答案】A【解析】等差数列{}n a 前n 项和()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,即常数项为0的二次式, 而根据已知2n S n bn c =++,故可得0c =,等比数列{}n b 的前n 项()1111111n n n b q b bT q qq q-==----, 而根据已知3nn T d =+,可得11111b d q b q⎧=⎪-⎪⎨⎪-=⎪-⎩,即1d =-,因此向量()0,1=-a ,则1=a ,故选A .【名师点睛】本题考查等差数列和等比数列求和公式的性质,属于中档题.22.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】在等差数列{}n a 中,1516a a +=,则5S = A .80 B .40 C .31 D .31-【答案】B【解析】在等差数列{}n a 中,1516a a +=,()51555164022S a a ∴=+=⨯=,故选B . 【名师点睛】本题考查等差数列的前n 项和的求法,是基础题,解题时要注意等差数列的性质的合理运用.23.【西藏拉萨市2019届高三下学期第二次模拟考试数学】等差数列{}n a 的前n 项和为n S ,且859a a -=,8566S S -=,则33a =A .82B .97C .100D .115【答案】C【解析】因为等差数列{}n a 的前n 项和为n S ,且859a a -=,所以39d =,解得3d =, 又由8566S S -=,所以11875483536622a a ⨯⨯+⨯--⨯=,解得14a =, 所以331324323100a a d =+=+⨯=,故选C .【名师点睛】本题主要考查了等差数列的通项公式,以及等差数列的求和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.24.【四川省凉山州2019届高中毕业班第二次诊断性检测数学】已知等差数列{}n a 的前n 项和为n S ,116m S -=,25m S =,11a =(2m ≥,且m ∈N ),则m 的值是A .4B .5C .6D .7【答案】B【解析】∵等差数列{}n a 的前n 项和为n S ,116m S -=,25m S =, ∴19m m m a S S -=-=,又25m S =,11a =,∴()15252m m a a m S m +===,∴5m =,故选B .【名师点睛】本题考查等差数列前n 项和公式,考查前n 项和与通项的关系,考查计算能力.25.【四川省内江市2019届高三第一次模拟考试数学】记n S 为等差数列{}n a 的前n 项和,若33a =,621S =,则数列{}n a 的公差为 A .1 B .–1 C .2 D .–2【答案】A【解析】∵S n 为等差数列{a n }的前n 项和,a 3=3,S 6=21,∴316123656212a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,解得a 1=1,d =1.∴数列{a n }的公差为1.故选A . 【名师点睛】本题考查数列的公差的求法,考查等差数列的前n 项和公式等基础知识,考查运算求解能力,是基础题.26.【四川省成都市2019届高三毕业班第一次诊断性检测数学】设n S 为等差数列的前n 项和,且3652a a a +=+,则7S =A .28B .14C .7D .2【答案】B【解析】因为563542a a a a a +=+=+,所以42a =,177477142a a S a +=⨯==,故选B . 【名师点睛】本题主要考查等差数列的性质、等差数列的前n 项和公式,属于中档题.求解等差数列有关问题时,要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.27.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知等差数列{}n a 的前n 项和为n S ,若57a =,则9S =__________. 【答案】63【解析】因为57a =,所以()199599632a a S a +===.故答案为:63. 【名师点睛】本题主要考查等差数列的前n 项和,以及等差数列的性质,熟记公式即可,属于基础题型. 28.【广西南宁市2019届高三毕业班第一次适应性测试数学】已知数列{}n a 的前n 项和为n S ,若211n n n n a a a a +++-=-,12a =,38a =,则4S =__________.【答案】26【解析】因为211n n n n a a a a +++-=-,所以数列{}n a 为等差数列,设公差为d ,则8232d -==,所以443423262S ⨯=⨯+⨯=.故答案为:26. 【名师点睛】本题主要考查了等差数列的定义及求和公式的应用,属于基础题.29.【四川省南充市高三2019届第二次高考适应性考试高三数学】设等差数列{}n a 满足:127a a +=,136a a -=-,则5a =__________.【答案】14【解析】∵等差数列{a n }满足:a 1+a 2=7,a 1–a 3=–6.∴1111726a a d a a d ++=⎧⎨--=-⎩,解得a 1=2,d =3,∴5a =a 1+4d =2+4×3=14.故答案为:14. 【名师点睛】本题考查等差数列的通项公式,考查等差数列的性质等基础知识,属于基础题. 30.【四川省内江、眉山等六市2019届高三第二次诊断性考试数学】中国古代数学专家(九章算术)中有这样一题:今有男子善走,日增等里,九日走1260里,第一日,第四日,第七日所走之和为390里,则该男子的第三日走的里数为__________. 【答案】120【解析】由题意,男子每天走的里数符合等差数列,设这个等差数列为{}n a ,其公差为d ,前n 项和为n S .根据题意可知,91471260,390S a a a =++=,法一:()199********,1402a a S a a +===∴=,147443390,130a a a a a ++==∴=, 5410d a a ∴=-=,34120a a d ∴=-=.故答案为:120.法二:91471260390S a a a =⎧⎨++=⎩,11119891260236390a d a a d a d ⨯⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩, 所以312120a a d =+=.故答案为:120.【名师点睛】本题考查文字描述转化数学语言的能力,等差数列求和和通项以及基本性质,属于简单题.。

《高考真题》2019年高考化学母题题源系列专题15 元素及其化合物知识的综合应用 (解析版)

《高考真题》2019年高考化学母题题源系列专题15 元素及其化合物知识的综合应用 (解析版)

专题15 元素及其化合物知识的综合应用【母题来源】2019年高考江苏卷【母题题文】N 2O 、NO 和NO 2等氮氧化物是空气污染物,含有氮氧化物的尾气需处理后才能排放。

(1)N 2O 的处理。

N 2O 是硝酸生产中氨催化氧化的副产物,用特种催化剂能使N 2O 分解。

NH 3与O 2在加热和催化剂作用下生成N 2O 的化学方程式为 。

(2)NO 和NO 2的处理。

已除去N 2O 的硝酸尾气可用NaOH 溶液吸收,主要反应为NO+NO 2+2OH −22NO -+H 2O2NO 2+2OH −2NO -+3NO -+H 2O ①下列措施能提高尾气中NO 和NO 2去除率的有 (填字母)。

A .加快通入尾气的速率B .采用气、液逆流的方式吸收尾气C .吸收尾气过程中定期补加适量NaOH 溶液②吸收后的溶液经浓缩、结晶、过滤,得到NaNO 2晶体,该晶体中的主要杂质是 (填化学式);吸收后排放的尾气中含量较高的氮氧化物是 (填化学式)。

(3)NO 的氧化吸收。

用NaClO 溶液吸收硝酸尾气,可提高尾气中NO 的去除率。

其他条件相同,NO 转化为3NO -的转化率随NaClO 溶液初始pH (用稀盐酸调节)的变化如图所示。

①在酸性NaClO 溶液中,HClO 氧化NO 生成Cl −和3NO -,其离子方程式为 。

②NaClO 溶液的初始pH 越小,NO 转化率越高。

其原因是 。

【参考答案】(1)2NH 3+2O 2N 2O+3H 2O(2)①BC ②NaNO3NONO +5H+(3)①3HClO+2NO+H2O3Cl−+23②溶液pH越小,溶液中HClO的浓度越大,氧化NO的能力越强【试题解析】(1)NH3与O2在加热和催化剂作用下发生氧化还原反应生成N2O,根据得失电子守恒和原子守恒可知反应有水生成,配平化学方程式为:2NH3+2O2N2O+3H2O。

(2)①A、加快通入尾气的速率,不能提高尾气中NO和NO2的去除率,不符合题意;B、采用气、液逆流的方式吸收尾气,可使气液充分接触,能提高尾气中NO和NO2的去除率,符合题意;C、定期补充适量的NaOH溶液可增大反应物浓度,能提高尾气中NO和NO2的去除率,符合题意。

2019年高考文数母题题源系列(全国Ⅲ专版)(解析版) 双曲线及其性质

2019年高考文数母题题源系列(全国Ⅲ专版)(解析版) 双曲线及其性质

【母题原题1】【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又3OP OF ===,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△, 故选B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设()00,P x y ,由=OP OF ,再结合双曲线方程可解出0y ,利用三角形面积公式可求出结果.【母题原题2】【2018年高考全国Ⅲ卷文数】已知双曲线2222:1(0,0)x y C a b a b-=>>的离(4,0)到C 的渐近线的距离为A B .2C D .【答案】D【解析】c e a ===Q 1b a ∴=,所以双曲线C 的渐近线方程为0x y ±=,所以点(4,0)到渐近线的距离d ==,故选D . 【名师点睛】本题主要考查双曲线的性质、点到直线的距离公式,考查考生的运算求解能力、化归与转化能力、逻辑思维能力,考查的数学核心素养是逻辑推理、数学运算、直观想象.熟记结论:若双曲线22221(0,0)x y a b a b-=>>是等轴双曲线,则a =b ,离心率e ,渐近线方程为y =±x ,且两条渐近线互相垂直.【母题原题3】【2017年高考全国Ⅲ卷文数】双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a =___________. 【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 【名师点睛】1.已知双曲线方程22221(0,0)x y a b a b -=>>求渐近线:22220x y by x a b a-=⇒=±. 2.已知渐近线y mx =设双曲线的标准方程为222m x y λ-=.3.双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【命题意图】高考对双曲线内容的考查以基础知识为主,重点考查双曲线的几何性质、方程思想及运算能力.2019年高考题考查了以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题. 【命题规律】主要考查双曲线的定义、标准方程和几何性质,其中离心率和渐近线问题是高考考查的重点,以选择题和填空题为主,难度中等. 【答题模板】1.求双曲线的离心率的值或范围一般考虑如下三步:第一步:将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式; 第二步:利用222b c a +=和ce a=转化为关于e 的方程或不等式; 第三步:通过解方程或不等式求得离心率的值或取值范围. 2.其他问题:(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c –a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为22b a;异支的弦中最短的为实轴,其长为2a .(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=2tan2b θ,其中θ为∠F 1PF 2.(5)若P 是双曲线22x a22y b -=1(a>0,b>0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a . 【方法总结】1.双曲线定义的应用策略(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题.(3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a<|F1F2|;③焦点所在坐标轴的位置.2.求双曲线的标准方程的方法(1)定义法根据双曲线的定义确定a2,b2的值,再结合焦点位置,求出双曲线方程,常用的关系有:①c2=a2+b2;②双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a.求轨迹方程时,满足条件:|PF1|–|PF2|=2a(0<2a<|F1F2|)的双曲线为双曲线的一支,应注意合理取舍.(2)待定系数法一般步骤为①判断:根据已知条件,确定双曲线的焦点是在x轴上,还是在y轴上,还是两个坐标轴都有可能;②设:根据①中的判断结果,设出所需的未知数或者标准方程;③列:根据题意,列出关于a,b,c的方程或者方程组;④解:求解得到方程.常见设法有①与双曲线22xa–22yb=1共渐近线的双曲线方程可设为22xa–22yb=λ(λ≠0);②若双曲线的渐近线方程为y=±bax,则双曲线方程可设为22xa–22yb=λ(λ≠0);③若双曲线过两个已知点,则双曲线方程可设为2xm+2yn=1(mn<0);④与双曲线22xa–22yb=1共焦点的双曲线方程可设为22xa k-–22yb k+=1(–b2<k<a2);⑤与椭圆22xa+22yb=1(a>b>0)有共同焦点的双曲线方程可设为22xaλ-+22ybλ-=1(b2<λ<a2).注意:当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是如果已知中心在原点,但不能确定焦点的具体位置,可以设双曲线的方程为mx 2+ny 2=1(mn <0). 3.求双曲线离心率的值(1)直接求出c a ,,求解e :已知标准方程或a ,c 易求时,可利用离心率公式e =c a求解;(2)变用公式,整体求e :如利用e,e=; 4.双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.已知渐近线方程时,可得b a 的值,于是e 2=22c a =222a b a +=1+2()b a,因此可求出离心率e 的值;而已知离心率的值,也可求出渐近线的方程,即b a的坐标轴不确定时,上述两类问题都有两个解.1.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知双曲线222:1(0)3x y C a a -=>的一个焦点为(2,0),则双曲线C 的渐近线方程为A .y x =± B.y = C.y = D .2y x =±【答案】C【解析】因为双曲线222:1(0)3x y C a a -=>的一个焦点为(2,0),所以234a +=,故21a =,因此双曲线的方程为2213y x -=,所以其渐近线方程为y =.故选C .【名师点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的性质即可,属于基础题型.2.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知双曲线22221(0,0)x y a b a b -=>>的左、右焦点为1F 、2F ,双曲线上的点P 满足121243PF PF F F +≥u u u v u u u u v u u u u v恒成立,则双曲线的离心率的取值范围是 A .312e <≤ B .32e ≥C .413e <≤D .43e ≥【答案】C【解析】∵OP 是12F PF △的边12F F 上的中线,∴122PF PF PO+=u u u v u u u u v u u u v. ∵121243PF PF F F u u u v u u u u v u u u u v +≥,∴1283PO F F ≥u u u v u u u u v ,当且仅当12,,F P F 三点共线时等号成立. 又PO a ≥u u u v ,122F F c =u u u u v ,∴86a c ≥,∴43c e a =≤,又1e >,∴413e <≤.故离心率的取值范围为41,3⎛⎤⎥⎝⎦.故选C . 【名师点睛】解答本题时注意两点:一是注意数形结合在解题中的应用,特别是由题意得到PO a ≥u u u v;二是根据题意得到,,a b c 间的关系,再根据离心率的定义求解,属于基础题.3.【四川省华文大教育联盟2019届高三第二次质量检测考试数学】已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,过点2F 作x 轴的垂线,与双曲线的渐近线在第一象限的交点为P ,线段2PF 的中点M ,则此双曲线的渐近线方程为 A .2y x =± B .12y x =±C .4y x =±D .14y x =±【答案】A【解析】由题意知,双曲线的渐近线方程为b y x a =±,易求点P 的坐标为,bc c a ⎛⎫ ⎪⎝⎭,中点M 的坐标为,2bc c a ⎛⎫ ⎪⎝⎭,∵2222)2bc OM c a ⎛⎫=+= ⎪⎝⎭,∴224a b =,即2b a =.故选A .【名师点睛】本题考查双曲线的方程与简单的几何性质,考查计算能力与转化能力,属于基础题.4.【四川省棠湖中学2019届高三高考适应性考试数学】已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为340x y +=,则该双曲线的离心率是A .53 B .54C .43或53D .53或54【答案】D【解析】33404x y y x +=⇒=-,当焦点位于横轴时,2239416b b a a =⇒=,而222c a b =+,所以22295164c a c e a a -=⇒==;当焦点位于纵轴时,22222222416165,,3993b bc a c c a b e a a a a -=⇒==+⇒=⇒==故选D .【名师点睛】本题考查了通过双曲线的渐近线方程求离心率问题,解题的关键是对焦点的位置进行分类.5.【四川省棠湖中学2019届高三高考适应性考试数学】已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为12,F F ,抛物线()220=>y px p 与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且12sin 7PF F ∠=,则双曲线C 的离心率为A B 或3C .2D .2或3【答案】D【解析】不妨设P 在第一象限且()00,P x y ,则1,02p F ⎛⎫- ⎪⎝⎭,2,02p F ⎛⎫⎪⎝⎭, 过P 作直线2px =-(抛物线的准线)的垂线,垂足为E , 则112F PE PF F ∠=∠,故112sin sin F PE PF F ∠=∠=, 因1F PE △为直角三角形,故可设,2p E ⎛⎫- ⎪⎝⎭,()0P x , 且25PE PF k ==,17PF k =,所以02052242p x k k px ⎧+=⎪⎨⎪=⎩,解得043p k x k =⎧⎨=⎩或062p k x k =⎧⎨=⎩, 若043p k x k =⎧⎨=⎩,则124F F k =,22752ke k k ==-; 若062p k x k =⎧⎨=⎩,则126F F k =,33752ke k k ==-. 综上可得,选D .【名师点睛】离心率的计算关键在于构建,,a b c 的一个等量关系,构建时可依据圆锥曲线的几何性质来转化,有两个转化的角度:(1)利用圆锥曲线的定义转化为与另一个焦点;(2)利用圆锥曲线的统一定义把问题转化为与曲线上的点到相应准线的距离.6.【四川省成都七中2019届高三5月高考模拟测试数学】已知双曲线1C :22142-=x y ,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,则双曲线2C 的离心率为 A .3 B .2 CD .1【答案】A【解析】由题意,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,设双曲线2C 的方程为22(0)24y x λλ-=>,则双曲线2C =A . 【名师点睛】本题主要考查了双曲线的离心率的求解,其中解答中根据双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,得出双曲线2C 的方程的形式,再根据离心率的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.【四川省华文大教育联盟2019届高三第二次质量检测数学】已知双曲线的左、右焦点分别为()1,0F c -,()2,0F c ,过点2F 作x 轴的垂线,与双曲线的渐近线在第一象限内的交点为P ,线段2PF 的中点M ,则双曲线的渐近线方程为 A .2y x =± B .12y x =±C .4y x =±D .14y x =±【答案】A【解析】设双曲线的渐近线方程为()0,0by x a b a=±>>, 根据题意可知P 点坐标,bc c a ⎛⎫ ⎪⎝⎭,M 为2PF 中点,所以可得,2bc M c a ⎛⎫⎪⎝⎭, 所以222222bc OM c c a ⎛⎫=+= ⎪⎝⎭,所以224a b =,即2b a =, 所以双曲线的渐近线方程为2y x =±,故选A .【名师点睛】本题考查通过双曲线中,线段的几何关系求双曲线渐近线方程,属于简单题.8.【四川省雅安市2019届高三第三次诊断考试数学】双曲线2212x y -=的离心率为A BC D .2【答案】D【解析】由双曲线的方程2212x y -=可得:222,1a b ==,所以2223c a b =+=,所以c e a ===.故选D . 【名师点睛】本题主要考查了双曲线的简单性质,考查计算能力,属于基础题.9.【四川省内江市2019届高三第三次模拟考试数学】双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为34y x =,则该双曲线的离心率为 A .43 B .53C .54D .2【答案】C【解析】双曲线()2222100x y a b a b -=>>,的一条渐近线方程为34y x =,可得34b a =,即222916c a a -=,解得e 22516=,e 54=.故选C . 【名师点睛】本题考查双曲线的简单性质的应用,涉及双曲线的渐近线方程,离心率等知识,考查计算能力.10.【四川省双流中学2019届高三第一次模拟考试数学】已知M 为双曲线2222:1(0,0)x y C a b a b-=>>的右支上一点,,A F 分别为双曲线C 的左顶点和右焦点,线段FA 的垂直平分线过点M ,60MFA ∠=︒,则双曲线C 的离心率为A B .2 C .3 D .4【答案】D【解析】设双曲线另一个焦点为F ',如下图所示.因为线段FA 的垂直平分线过点M ,60MFA ∠=︒,所以MFA △是等边三角形,边长为a c +,M 为双曲线2222:1(0,0)x y C a b a b-=>>的右支上一点,所以有23MF MF a MF a c -=⇒='+',在MFF '△中,由余弦定理可得:'2222cos60MF MF FF MF FF ︒=+-'⋅', 即22430a ac c +-=,解得4a c =,即4ca=,双曲线的离心率为4,故选D . 【名师点睛】本题考查了双曲线的定义、离心率,考查了转化思想、数形结合思想.11.【四川省宜宾市2019届高三第三次诊断性考试数学】已知双曲线22213x y a -=的左右焦点分别为12,F F ,以它的一个焦点为圆心,半径为a 的圆恰好与双曲线的两条渐近线分别切于,A B 两点,则四边形12F AF B 的面积为 A .3 B .4 C .5 D .6【答案】D【解析】因为双曲线22213x y a -=的左右焦点分别为()()12,0,0F c F c -,,双曲线的渐近线方程为y x a=±0ay -=, 以它的一个焦点为圆心,半径为a 的圆恰好与双曲线的两条渐近线分别切于A ,B 两点,根据焦点到渐近线的距离及双曲线中a b c 、、的关系,可得223a c a ==+⎪⎩,解得a c ==,进而可求得切点A ⎝⎭,则四边形12F AF B的面积为121212262F AF B F AF S S ==⨯⨯=.故选D . 【名师点睛】本题考查双曲线的简单性质以及圆与双曲线的位置关系的应用,考查转化思想以及计算能力,属于中档题.12.【四川省成都市外国语学校2019届高三一诊模拟考试数学】过双曲线C :22221x y a b-=的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为A .221124x y -=B .22179x y -=C .22188x y -=D .221412x y -=【答案】D【解析】∵以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点), ∴半径4R c ==,则圆的标准方程为()22416x y -+=,(),0A a ,by a b a=⋅=,即(),B a b ,则()22416a b -+=,即2281616a a b -++=,即280c a -=,即816a =,则2a =,216412b =-=,则双曲线C 的方程为221412x y -=,故选D .【名师点睛】本题主要考查双曲线方程的求解,根据圆的性质先求出半径4c =是解决本题的关键.属于简单题.13.【四川省成都市2019届高三毕业班第二次诊断性检测数学】已知双曲线()222:10y C x b b-=>的焦距为4,则双曲线C 的渐近线方程为A.y = B .2y x =±C .3y x =± D.y =【答案】D【解析】双曲线C :()22210y x b b-=>的焦距为4,则2c =4,即c =2,∵1+b 2=c 2=4,∴b =C 的渐近线方程为y =x ,故选D . 【名师点睛】本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.14.【四川省2019届高三联合诊断数学】已知双曲线()222:103x y C a a -=>的右焦点为F ,则点F 到C 的渐近线的距离为 A .3 BC .a D【答案】B【解析】因为双曲线()222:103x y C a a -=>的右焦点为()0F c ,,渐近线y x =, 所以点F到渐近线y x a ===B .【名师点睛】本题主要考查利用双曲线的方程求焦点坐标与渐近线方程,以及点到直线距离公式的应用,属于基础题.若双曲线方程为22221x y a b-=,则渐近线方程为b y x a =±. 15.【四川省广安、眉山、内江、遂宁2019届高三第一次诊断性考试数学】若双曲线221x y m-=的一条渐近线为20x y -=,则实数m = A .2 B .4 C .6 D .8【答案】B【解析】∵双曲线的方程为221x y m-=,∴双曲线的渐近线方程为yx ,又∵一条渐近线方程为y =12x ,∴m =4.故选B . 【名师点睛】本题给出双曲线的方程和一条渐近线方程,求参数m 的值,属于基础题. 16.【四川省高2019届高三第一次诊断性测试数学】中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆()2221x y -+=都相切,则双曲线C 的离心率是 A .2B .2CD【答案】A【解析】设双曲线C 的渐近线方程为y =kx,∴k =±,得双曲线的一条渐近线的方程为y =x 、y 轴上两种情况讨论: ①当焦点在x轴上时有:b c e a a ===②当焦点在y轴上时有:2a c e b a ==.∴求得双曲线的离心率2或3.故选A . 【名师点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.17.【贵州省遵义航天高级中学2019届高三第十一模(最后一卷)数学】设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上一点,若1290F PF ︒∠=,c =2,213PF F S =△,则双曲线的两条渐近线的夹角为A .5πB .4π C .π6D .π3【答案】D【解析】由题意可得22121216132PF PF PF PF ⎧+=⎪⎨=⎪⎩,可得212)4PF PF -=(, 可得1222PF PF a -==,可得a =1,b =所以双曲线的渐近线方程为y =,可得双曲线的渐近线的夹角为π3,故选D . 【名师点睛】本题主要考察双曲线的性质及渐近线的方程,熟练掌握其性质是解题的关键.18.【贵州省凯里市第一中学2019届高三下学期模拟考试数学】已知抛物线2y =的焦点为双曲线2221(0)x y a a-=>的一个焦点,那么双曲线的渐近线方程是A.y x = B.y =C.2y x =± D.y =【答案】C【解析】抛物线2y =的焦点为),所以双曲线中c =,由双曲线方程2221x y a-=,222+=a b c,所以a =因此双曲线的渐近线方程为2y x =±,故选C . 【名师点睛】本题考查抛物线的焦点,根据焦点求双曲线的方程和渐近线方程,属于简单题.19.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知A 为双曲线22221(0,0)x y a b a b-=>>的右顶点,P 为双曲线右支上一点,若点P 关于双曲线中心O 的对称点Q 满足AP k ⨯14AQ k =,则双曲线的离心率为 A1 BCD1【答案】B【解析】设(,),(,),P x y Q x y --∵AP k ⨯14AQ k =, ∴222000014y y y y y x a x a x a x a x a -----⋅=⋅==----+-, ∵22221x y a b -=,∴22222=()b y x a a-,∴222222()14b x a ax a -=-, ∴a =2b ,∴222244()a b c a ==-,∴2254a c =,∴e =B . 20.【云南省昆明市2019届高三高考模拟(第四次统测)数学】已知双曲线C 的一个焦点坐标为0),渐近线方程为2y x =±,则C 的方程是 A .2212y x -=B .2212x y -=C .2212y x -=D .2212x y -=【答案】B【解析】因为双曲线C的一个焦点坐标为),所以c =,又因为双曲线C的渐近线方程为2y x =±,所以有2b a=a ⇒=,c =而c =1a b ==,因此双曲线方程为2212xy -=,故选B .【名师点睛】本题考查了求双曲线的标准方程,考查了解方程、运算能力.21.【云南省2019届高三第一次毕业生复习统一检测数学】双曲线M 的焦点是1F ,2F ,若双曲线M 上存在点P ,使12PF F △是有一个内角为23π的等腰三角形,则M 的离心率是A 1B 1C .12 D .12【答案】C【解析】不妨设P 在第一象限,由于12PF F △是有一个内角为23π的等腰三角形,故()2P c ,代入双曲线方程得2222431c c a b-=,化简得4224480c a c a -+=,42810e e -+=,解得222e +=,故e =C . 【名师点睛】本小题主要考查双曲线离心率的求法,考查等腰三角形的知识,属于基础题.22.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】已知椭圆22221x y a b+=左右焦点分别为12,F F ,双曲线22221x y m n -=的一条渐近线交椭圆于点P ,且满足12PF PF ⊥,已知椭圆的离心率为134e =,则双曲线的离心率2e =ABC D .2【答案】B【解析】椭圆22221x y a b+=左右焦点分别为12,F F ,椭圆的离心率为134e =,不妨令4,3a c ==,则b =,所以椭圆方程为:221167x y +=,双曲线22221x y m n-=的一条渐近线交椭圆于点P ,且满足12PF PF ⊥,可设(),,0,0P s t s t >>,可得()13,PF s t =---u u u r ,()23,PF s t =--u u u u r,则222291167s t s t ⎧+=⎪⎨+=⎪⎩,解得22329499s t ⎧=⎪⎪⎨⎪=⎪⎩, 代入双曲线方程渐近线方程n y x m =±,可得224932n m =,双曲线的离心率为:28e ===.故选B . 【名师点睛】本题考查椭圆的简单性质以及双曲线的简单性质的应用,利用垂直关系和点在椭圆上建立方程组,求得双曲线,a b 之间满足的关系是解题关键. 23.【广西柳州市2019届高三毕业班1月模拟考试高三数学】已知双曲线()2222100x y C a b a b-=>>:,的离心率为2,左焦点为1F,点()0Q (c 为半焦距).P 是双曲线C 的右支上的动点,且1PF PQ +的最小值为6.则双曲线C 的方程为___________.【答案】2213y x -=【解析】设双曲线右焦点为2F ,则122PF PF a -=,所以122PF PQ a PF PQ +=++,而2PF PQ +的最小值为22QF c ==,所以1PF PQ +最小值为226a c +=,又2c a =,解得12a c ==,,于是23b =,故双曲线方程为2213y x -=. 【点睛】本题考查了双曲线的方程,双曲线的定义,及双曲线的离心率,考查了计算能力,属于中档题.24.【西藏拉萨市2019届高三第三次模拟考试数学】已知双曲线C :()222210,0x y a b a b -=>>的左、右焦点为1F 、2F ,过1F 的直线l 与C 的一条渐近线在第一象限相交于A 点,若21AF AF ⊥,则该双曲线的离心率为___________. 【答案】3【解析】∵21AF AF ⊥,∴12AF F △是直角三角形,又O 是12F F 中点,∴AO c =,又A 在双曲线渐近线上,∴(,)A a b ,∴12tan AF F ∠=b ac =+, 变形可得:22230c ac a --=,()(3)0c a c a +-=,∴3c a =,3ce a==.故答案为:3.【点睛】本题考查双曲线的几何性质,解题关键是掌握双曲线的性质:即过双曲线22221x y a b-=(0,0)a b >>的右顶点A 作x 轴垂线,交渐近线于点P ,则OP c =,AP b =.。

椭圆、双曲线的几何性质-2019年高考数学母题题源系列(浙江专版)(解析版)

椭圆、双曲线的几何性质-2019年高考数学母题题源系列(浙江专版)(解析版)

专题02 椭圆、双曲线的几何性质【母题来源一】【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ,所以双曲线的离心率ce a== 故选C .【名师点睛】(1)本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.(2)双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【母题来源二】【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(,0),,0)B .(−2,0),(2,0)C .(0,),(0D .(0,−2),(0,2)【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =, 所以焦点坐标为(2,0)±, 故选B .【母题来源三】【2017年高考浙江卷】已知椭圆22194x y +=的离心率是A .3B .3C .23D .59【答案】B【解析】椭圆22194x y +=的离心率e ==故选B .【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.【命题意图】本类题主要考查椭圆与双曲线的定义、标准方程及简单性质,难度较小,意在考查考生的运算求解能力,分析问题、解决问题的能力以及数形结合思想. 【命题规律】1.椭圆问题一般以选择题或填空题的形式考查,主要以椭圆的标准方程和离心率为主,注意椭圆的定义和解三角形知识的结合,利用数形结合思想以及题中隐含的相等关系或不等关系列方程或者不等式,进而求离心率的取值或取值范围.2.双曲线问题一般以选择题或填空题的形式考查,主要以双曲线的标准方程、离心率和渐近线方程为主. 【答题模板】1.求椭圆的方程有两种方法(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.注意:用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且. 2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两种方法: (1)求出a ,c ,代入公式ce a=. (2)只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 或e 2的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.求双曲线的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择双曲线的标准方程;也可以利用双曲线的定义及焦点位置或点的坐标确定双曲线的标准方程. 4.求双曲线的离心率主要的方法方法1:根据条件分别求出a 与c ,然后利用ce a=计算求得离心率; 方法2:根据已知条件建立关于,,a b c 的等量关系式或不等关系式,由此得到方程或不等式,通过解方程或不等式求解离心率的值或取值范围.5.渐近线是双曲线特有的特征,双曲线的渐近线方程可以根据双曲线的标准方程求解,将双曲线标准方程中右边的1换为0,可得到渐近线方程为22220x y a b -=或22220y x a b-=,即b y x a =±或a y x b =±.【方法总结】1.椭圆定义的集合语言:1212{|||2,2||}P M MF MF a a F F =+=>往往是解决计算问题的关键. 椭圆上的一点与两焦点所构成的三角形称为焦点三角形. 解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.以椭圆22221(0)x y a b a b+=>>上一点00(),P x y 0(0)y ≠和焦点F 1 (-c ,0),F 2 (c ,0)为顶点的12PF F △中,若12F PF θ∠=,注意以下公式的灵活运用: (1)12||2PF PF a +=;(2)222121242||||cos ||||c PF PF PF PF θ⋅=+-;(3)12121·sin 2||||PF F S PF PF θ=△. 2.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解. 3.与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形.理解顶点、焦点、长轴、短轴等椭圆的基本量之间的关系,深挖出它们之间的联系,求解自然就不难了. 4.双曲线的定义平面内,到两个定点12,F F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹叫做双曲线, 这两个定点叫做双曲线的焦点,两个定点之间的距离叫做双曲线的焦距,记做122F F c =. 定义式:12122(02)PF PF a a F F -=<<. 要注意,常数小于两定点之间的距离. 5.双曲线的标准方程:焦点在x 轴上,22221(0,0)x ya b a b-=>>;焦点在y 轴上,22221(0,0)y x a b a b-=>>.说明:要注意根据焦点的位置选择双曲线的标准方程,知道,,a b c 之间的大小关系和等量关系:222,0,0c a b c a c b -=>>>>.6.双曲线的图形及其简单几何性质 (1)图形焦点在x 轴上 焦点在y 轴上(2)几何性质7.与双曲线有关的必记结论 (1)焦点到渐近线的距离为b .(2)与双曲线22221(0,0)x y a b a b -=>>有共同渐近线的双曲线方程可设为2222(0)x y a b λλ-=≠.(3)若双曲线的渐近线方程为n y x m =±,则双曲线方程可设为2222(0,0,0)x y m n m n λλ-=>>≠或2222(0,0,0)m n x m y n λλ-=>>≠.(4)与双曲线22221x y a b -=(a >0,b >0)共焦点的双曲线方程可设为22221(0,0,x y a b a k b k -=>>-+22)b k a <-<.(5)过两个已知点的双曲线的标准方程可设为()2210mx ny mn +=<.(6)与椭圆22221x y a b +=(a >b >0)有共同焦点的双曲线方程可设为22221(0,x y a b a b λλ+=>>--22)b a λ<<.1.【浙江省三校2019年5月份第二次联考】双曲线2214y x -=的焦距是A B .CD .【答案】D【分析】该双曲线的焦点在y 轴,利用222c a b =+可求得双曲线的焦距.【解析】双曲线22221y x a b-=的焦距为22c ===故选D .【名师点睛】在双曲线中222c a b =+,在椭圆中222c a b =-,要注意区别并判断焦点在x 轴上还是在y 轴上.2.【浙江省温州市2019届高三2月高考适应性测试】双曲线2221y x -=的一个顶点坐标是A .(2,0)B .(-2,0)C .(0)D .(0,2) 【答案】D【分析】先将双曲线方程化为标准方程,即可得到顶点坐标.【解析】双曲线2221y x -=化为标准方程为22112y x -=,∴2a =12,且实轴在y轴上,∴顶点坐标是(0±,), 故选D .【名师点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,比较基础.3.【浙江省湖州三校2019年普通高等学校招生全国统一考试】双曲线2214x y -=的一个焦点到一条渐近线的距离是 A .1 B .2 C .4D【答案】A【分析】根据双曲线的焦点到渐近线的距离等于虚轴长一半,即得结果. 【解析】因为双曲线的焦点到渐近线的距离等于虚轴长一半,所以双曲线2214x y -=的一个焦点到一条渐近线的距离是1.故选A .【名师点睛】本题考查双曲线的焦点与渐近线,考查基本分析求解能力,属基本题.4.【浙江省2019年高考模拟训练卷数学三】已知双曲线2222:1x y C a a-=,则C 的离心率是A.2BC .2D【答案】B【分析】由题意知双曲线为等轴双曲线,由此可得双曲线C 的离心率.【解析】∵双曲线C 的方程为2222:1x y C a a-=,∴双曲线C 为等轴双曲线,∴双曲线C的离心率e =故选B .【名师点睛】本题考查了等轴双曲线的特点,考查了双曲线的性质,属于基础题.5.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】若双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为x y 2=,则其离心率为 AB .3C .2D .3【答案】B【解析】双曲线22221x y a b-=的一条渐近线方程为y =,所以2=a b ,即222b a =,而222a b c +=,所以223cc a c e a=⇒=⇒==, 故选B .【名师点睛】(1)本题考查了双曲线的渐近线方程、离心率、a ,b ,c 三者之间的关系. (2)求双曲线的离心率一般有两种方法:①由条件寻找a ,c 满足的等式或不等式,一般利用双曲线中a ,b ,c 的关系222c a b =+将双曲线的离心率公式变形,即c e a ===,注意区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中222a b c =+,而在双曲线中222c a b =+.②根据条件列含a ,c 的齐次方程,利用双曲线的离心率公式ce a=转化为含e 或2e 的方程,求解可得,注意根据双曲线离心率的范围1()e ∈+∞,对解进行取舍.(3)求解双曲线的离心率的范围,一般是根据条件,结合222c a b =+和ce a=,得到关于e 的不等式,求解即得.注意区分双曲线离心率的范围,()1e ∈+∞,椭圆离心率的范围1()0,e ∈.另外,在建立关于e 的不等式时,注意双曲线上的点到焦点的距离的最值的应用.6.【浙江省浙南名校联盟2019届高三上学期期末联考】双曲线222=2x y -的焦点坐标为A .(1,0)±B .(0)C .(0,1)±D .(0,【答案】B【分析】由双曲的标准方程求出22,a b ,进而可求出2c ,然后即可求出焦点坐标.【解析】由2222x y -=可得222,1a b ==,焦点在x 轴上,所以2223c a b =+=,因此c =所以焦点坐标为(0); 故选B .【名师点睛】本题主要考查双曲线的简单性质和标准方程,由标准方程可求出22,a b ,并确定焦点位置,从而可得结果,属于基础题型.7.【内蒙古呼伦贝尔市2019届高三模拟统一考试(一)数学试题】已知双曲线C :22221(0,0)x y a b a b-=>>的焦距为2c ,焦点到双曲线C 的渐近线的距离为2,则双曲线的渐近线方程为A .y =B .y =C .y x =±D .2y x =±【答案】A【解析】双曲线C :22221(0,0)x y a b a b -=>>的焦点(,0)c 到渐近线0bx ay +=的距离为2c ,可得=,故2b c =,b a =C 的渐近线方程为y =.故选A .【名师点睛】(1)本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.(2)对于双曲线的渐近线,有下面两种考查方式: ①已知双曲线的方程求其渐近线方程;②给出双曲线的渐近线方程求双曲线方程,由渐近线方程可确定a ,b 的关系,结合已知条件可解.8.【浙江省嘉兴市2019届高三第一学期期末检测】双曲线22143y x -=的离心率是A .12 B C .54D .53【答案】B【分析】根据双曲线方程得到参数a ,b ,c 的值,进而得到离心率.【解析】双曲线22143y x -=.2,c a b c e a =====. 故选B .【名师点睛】这个题目考查了双曲线的方程的应用,属于基础题.9.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试】已知椭圆22221x y a b+=(0)a b >>的离心率为3,椭圆上一点P 到两焦点距离之和为12,则椭圆短轴长为 A .8 B .6 C .5D .4【答案】A【解析】由题可得离心率c e a ==,椭圆上一点P 到两焦点距离之和为12,即212a =,可得6a =,c =,4b ∴==, 则椭圆的短轴长为28b =. 故选A .【名师点睛】本题考查椭圆的定义、简单几何性质的应用,属于基础题.解答本题时,利用椭圆的定义以及离心率,求出,a c ,然后求解椭圆短轴长即可.10.【东北三省三校(辽宁省实验中学、东北师大附中、哈师大附中)2019届高三第三次模拟考试数学试题】已知双曲线()222210,0x y a b a b-=>>的离心率为2,则其渐近线方程为A .3y x =±B .2y x =±C .y x =±D .y =【答案】D【解析】由22220x y a b-=得b y x a =±,即为双曲线的渐近线方程.∵双曲线的离心率为2,∴2c a a ===,解得b a =∴双曲线的渐近线方程为y =. 故选D .【名师点睛】解题时注意两点:一是如何根据双曲线的标准方程求出渐近线的方程;二是要根据离心率得到ba=11.【浙江省2019届高考模拟卷一】已知P 是双曲线2222:1(0,0)x y C a b a b-=>>渐近线上的点,则双曲线C 的离心率是A .2 BCD 【答案】A【分析】由P 在双曲线C 的渐近线上,得b a =e =【解析】因为双曲线2222:1(0,0)x y C a b a b-=>>的渐近线方程为b y x a =±,点P 在渐近线上,所以b a =C 的离心率2e ==. 故选A .【名师点睛】本题考查了双曲线的离心率求法,也考查了渐近线方程的应用,属于基础题.12.【陕西省彬州市2018-2019学年上学期高2019届高三年级第一次教学质量监测试卷】已知双曲线22221(0)x y b a a b-=>>的中心为O ,其右顶点、右焦点分别是,A F ,若OF OA ≤,则双曲线的离心率的取值范围是A .)+∞B .C .D .【答案】C【解析】由题意,双曲线22221x y a b-=的中心为O ,其右顶点、右焦点分别是,A F ,若OF OA ≤,即cc e a≤⇒=≤,又由0b a >>,则c e a ===>所以双曲线的离心率的取值范围是, 故选C .【名师点睛】本题主要考查了双曲线的标准方程和简单的几何性质的应用,其中解答中熟记双曲线的标准方程和简单的几何性质,合理计算是解答的关键,同时注意0b a >>对双曲线的离心率的影响是解答的一个易错点,着重考查了推理与运算能力,属于中档试题.13.【新疆乌鲁木齐市2019届高三第二次诊断性测试】已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C【分析】利用椭圆的性质,根据4AB =,12F F =c =,22 4b a=,求解a ,b 然后推出椭圆方程.【解析】椭圆2222 10x y a b a b+=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =可得c =,22 4b a =,222c a b =-,解得3a =,b ,所以所求椭圆方程为22196x y +=,故选C .14.【浙江省重点中学2019届高三12月期末热身联考】已知双曲线2221y x a-=的一条渐近线方程为y =,则该双曲线的离心率是A .3BC .2D .3【答案】D【分析】利用双曲线的渐近线方程求出a ,然后求解双曲线的离心率即可.【解析】双曲2221y x a-=的渐近线方程为y ax =±,由题可知a =2224c a b =+=,即2c =,所以双曲线的离心率c e a ===, 故选D .【名师点睛】本题考查双曲线的简单性质的应用,考查计算能力. 15.【2018年11月浙江省学考】渐近线方程为43y x =±的双曲线方程是 A .221169x y -=B .221916x y -=C .22134x y -=D .22143x y -=【答案】B【分析】根据双曲线的渐近线方程公式,即可求出正确的结果. 【解析】选项A 的渐近线方程为34y x =±,不符合题意; 选项B 的渐近线方程为43y x =±,符合题意;选项C 的渐近线为=3y x ±,不符合题意;选项D 的渐近线方程为2y x =±,不符合题意. 故选B .【名师点睛】本题主要考查了双曲线的集合性质,求出双曲线的渐近线方程是求解本题的关键,属于基础题.16.【浙江省温州九校2019届高三第一次联考】已知双曲线22:1169y x C -=,则双曲线C 的焦点坐标为A .(5,0)±B .(0)C .(0,5)±D .(0,【答案】C【分析】根据双曲线的方程和性质即可得到结论.【解析】由方程22:1169y x C -=表示双曲线,焦点坐标在y 轴上,可知216a =,29b =,则22225c a b =+=,即5c =, 故双曲线的焦点坐标为(0,5)±, 故选C .【名师点睛】本题主要考查双曲线的性质和方程,根据a ,b ,c 之间的关系是解决本题的关键.17.【浙江省“七彩阳光”联盟2019届高三期初联考】双曲线221x y a-=的一条渐近线方程为3y x =,则正实数a 的值为 A .9B .3C.13D.19【答案】D【分析】求出双曲线的渐近线方程,即可得到结果.【解析】双曲线221xya-=的渐近线方程为y=,3=,解得19a=,故选D.18.【内蒙古2019届高三高考一模】以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为A B1-C D【答案】B【分析】设椭圆的两个焦点为1F,2F,圆与椭圆交于A,B,C,D四个不同的点,设122F F c=,则1DF c=,2DF=.由椭圆的定义知122||||a DF DF c=+=+,根据离心率的公式可求得答案.【解析】设椭圆的两个焦点为1F,2F,圆与椭圆交于A,B,C,D四个不同的点,设122F F c=,则1DF c=,2DF=,根据椭圆的定义可得122||||a DF DF c=++,所以1cea===,故选B.19.【浙江省金华十校2019届第二学期高考模拟】双曲线2214yx-=的渐近线方程是______________,离心率为______________.【答案】2y x =±2【分析】由2204y x -=能求出其渐近线方程,再由2a =,c =【解析】由2204y x -=得双曲线2214y x -=的渐近线方程是2y x =±,因为2a =,c =2214y x -=的离心率e =【名师点睛】本题考查双曲线的性质和应用,解题时要注意公式的合理运用,属于基础题. 20.【重庆市第一中学2019届高三上学期期中考试】已知F 1,F 2分别是椭圆C :x 2a 2+y 29=1(a >3)的左、右焦点,P 为椭圆C 上一点,且∠F 1PF 2=120°,则|PF 1|⋅|PF 2|=______________. 【答案】36【分析】根据椭圆的定义知|PF 1|+|PF 2|=2a ,c =√a 2−9,再由余弦定理可得(2c)2=4a 2−36=|PF 1|2+|PF 2||2−2|PF 1||PF 2|cos120°=(|PF 1|+|PF 2|)2−|PF 1||PF 2|,即可解出答案. 【解析】由椭圆定义可知|PF 1|+|PF 2|=2a ,且|F 1F 2|=2c =2√a 2−9, 根据余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2−2|PF 1||PF 2|cos120°, 所以4(a 2−9)=4a 2−2|PF 1||PF 2|+|PF 1||PF 2|=4a 2−|PF 1||PF 2|, 解得|PF 1||PF 2|=36.。

专题10椭圆及其性质-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)

专题10椭圆及其性质-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)

专题 10椭圆及其性质【母题根源一】 【 2019 年高考全国Ⅰ卷理数】已知椭圆 C 的焦点为 F 1( 1,0) ,F 2( 1,0) ,过 F 2 的直线与 C交于 A ,B 两点.若 | AF 2 |2| F 2B |, | AB | | BF 1 |,则 C 的方程为A. x 2 y21B . x 2y 2 123 2 x 2 y 2 1D .x 2 y 2 1C .3544【答案】 B【分析】法一:如图,由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .在 △ AF 1 B 中,由余弦定理的推论得 cos F 1AB 4n 2 9n 2 9n 21 .2 2n 3n3在 △ AF 1 F 2 中,由余弦定理得4n 2 4n22 2n 2n14 ,解得 n3 .322a4n 22a 2c2 31 2 ,x 2 y 2 3 , a3 , b所求椭圆方程为 1,应选 B .32法二:由已知可设F 2 B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n ,AF 1 2a AF 22n .在 △ AF 1 F 2 和 △ BF 1F 2 中,由余弦定理得4n 2 42 2n 2 cos AF 2 F 1 4n 2,n 24 2 n 2 cos BF 2 F 1 9n 2又 AF 2F 1 , BF 2 F 1 互补, cos AF 2 F 1 cos BF 2F 1 0 ,两式消去 cos AF F , cosBF F ,得 3n 26 11n 2,解得n3 .2 12 122a 4n 2 3 , a3 , b 2 a 2 c 2312,x 2 y 2∴所求椭圆方程为1 .32应选 B .【名师点睛】本题考察椭圆标准方程及其简单性质,考察数形联合思想、转变与化归的能力,很好地落实了直观想象、逻辑推理等数学修养.【命题企图】经过考察椭圆的标准方程和简单几何性质,考察数形联合思想的运用和运算求解能力.【命题规律】一般以选择题或填空题的形式考察,题目有必定的难度,主要考察椭圆的标准方程和离心率,注意椭圆的定义和解三角形知识的联合,利用数形联合思想以及题中隐含的相等关系或不等关系进行求解.【答题模板】待定系数法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断 .依据条件判断椭圆的焦点在x 轴上,仍是在 y 轴上,仍是两个坐标轴都有可能(这时需要分类议论) .2 22 2第二步,设方程 .依据上述判断设方程为x y 1(a b 0) 或yx 1(a b0) .a 2b 2a 2b 2第三步,找关系 .依据已知条件,成立对于a, b, c 的方程组(注意椭圆中固有的等式关系c2a 2-b 2 ) .第四步,得椭圆方程 .解方程组,将解代入所设方程,即为所求.【方法总结】1.求椭圆的方程有两种方法:(1)定义法 .依据椭圆的定义,确立 a2 ,b2的值,联合焦点地点可写出椭圆方程.(2)待定系数法确立参数的值,进而获得椭圆的方程.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不可以确立焦点的地点时,可进行分类议论或把椭圆的方程设为mx2ny2=1(m 0, n 0且 m n) .2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两种方法:( 1)求出 a,c,代入公式e c求解 . a( 2)只要要依据一个条件获得对于a, b, c 的齐次式,联合b2 a2- c2转变为a,c的齐次式,而后等式(不等式)两边分别除以 a 或 a2转变为对于 e 或 e2的方程(不等式),解方程(不等式)即可得 e(e 的取值范围) .1.【山东省聊城市2019 届高三三模】若方程4x2ky24k 表示焦点在y 轴上的椭圆,则实数k 的取值范围为A .k 4B .k 4C.k 4 D .0 k 4【答案】 D【分析】由题得x2 y2k 1 ,4因为方程 4x2 ky2 4k 表示焦点在y轴上的椭圆,因此 0 k 4 .应选 D.【名师点睛】本题主要考察椭圆的标准方程,意在考察学生对该知识的理解掌握水平易剖析推理能力.2.【安徽省定远中学 2019 届高三全国高考猜题展望卷一数学】已知椭圆 C :x2y2 1(a 0) , F1, F2分别为椭圆 C 的左、右焦点, P 为椭圆 C 上任一点,若 PF 1PF 2 4 2 ,则 F 1F 2A . 4B .23C . 2D . 3【答案】 A【分析】依据题意,得 a 22 , b 24 ,因此有 c a 242 ,因此 F 1 F 24 .应选 A .【名师点睛】本题主要考察椭圆的方程及定义,明确方程中a, b,c 的关系是求解的要点 .3.【广东省东莞市 2019 届高三第二学期高考冲刺试题(最后一卷)】已知椭圆 C :x 2y 2 1 a 2 ,直a 24线 l : y x 2 过 C 的一个焦点,则 C 的离心率为A .1B .123C .2 D .22 23【答案】 C【分析】椭圆 C :x 2y 2 1 a2 ,直线 l : y x2过椭圆 C 的一个焦点,可得 c 2 ,a 24则 a b2c2c 2 22 2 ,因此椭圆的离心率为: e2 2.a2应选 C .【名师点睛】本题考察椭圆的简单性质的应用,属于基础题.4.【广东省深圳市深圳外国语学校x 2 y 2 2019 届高三第二学期第一次热身考试数学】已知椭圆b 2a 2 1(ab 0) 的离心率为5 ,椭圆上一点 P 到两焦点的距离之和为 12,则椭圆的短轴长为 3A . 8B . 6C . 5D .4【答案】 A【分析】椭圆x2y2 1 a b 0 的离心率: e c 5 ,a2 b2 a 3椭圆上一点P 到两焦点的距离之和为12 ,即:2a 12,可得: a 6 ,c 2 5 ,b a2 c2 36 20 4,则椭圆的短轴长为2b8 .应选 A.【名师点睛】本题考察椭圆的定义、简单几何性质的应用,属于基础题.5.【河南名校结盟2019 届高三放学期x2 y21(a b 0) F1,F2,2 月联考】椭圆2b2的左、右焦点分别为a上极点为 A ,若△AF1F2的面积为 3 ,且F1 AF2 4 AF1 F2,则椭圆的方程为A. x2 y2 1 B. x2 y2 13 3 2C. x2 y2 1 D. x2 y2 14 4 3【答案】 C【分析】在△ AF F 中,AF1 AF2 , F1 AF2 4 AF1 F2,则AF1F2 30 ,因此b 3 ,1 2 c 3 又△ AF1F2的面积为3,即 S bc 3 ,解得 b 1,c 3 ,则 a b2 c2 2 ,2因此椭圆的方程为xy2 1 . 4应选 C.【名师点睛】本题主要考察了椭圆标准方程的求解,此中解答中熟记椭圆的标准方程及其简单的几何性质,合理应用是解答的要点,侧重考察了推理与运算能力.6.【广东省深圳市高级中学2019 届高三适应性考试 ( 6 月)数学】在平面直角坐标系xOy 中,已知点 A, F分别为椭圆 C :x 2y 2O 的直线交椭圆 C 于 P,Q 两点,22 1(ab 0) 的右极点和右焦点,过坐标原点ab线段 AP 的中点为 M ,若 Q, F , M 三点共线,则椭圆C 的离心率为A .1B .233C . 8D . 3 或 832 3【答案】 A【分析】如图,设 P x 0 , y 0 , Q x 0 , y 0 ,又 A( a,0), F ( c,0) ,M x 0a , y 0,22Q, F, M 三点共线,∴kMFk QF ,y 0y 0 02,c x 0x 0 ac2即y 0y 0,x 0 x 0 ac 2cc x 0 x 0 a2c ,a 3c ,则椭圆 C 的离心率为c 1 .e3a应选 A .【名师点睛】本题主要考察椭圆的简单性质以及椭圆的离心率,属于中档题.离心率的求解在圆锥曲线的考察中是一个要点也是难点, 一般求离心率有以下两种状况:①直接求出a, c,进而求出 e;②结构a, c的齐次式,求出 e .7.【山西省 2019 届高三考前适应性训练二(二模) 】椭圆 C :x 2y 2 1 ab0 的右焦点为 F ,过 Fa 2b 2作 x 轴的垂线交椭圆 C 于 A , B 两点,若 △ OAB 是直角三角形 ( O 为坐标原点 ),则 C 的离心率为A . 52B .3 1C .5 1D .3 122【答案】 C【分析】过 Fc,0 作 x 轴的垂线交椭圆 C 于 A, B 两点,故 A c,b 2, B c, b 2 ,aa因为三角形 OAB 是直角三角形, 故OA OB ,即OA OB0 ,也即 c, b 2c, b2c2b 40 ,aa a 2化简得 c 4 3a 2 c 2 a 4 0 ,即 e 4 3e 2 1 0 ,解得 e235, e5 1 .22应选 C .【名师点睛】本题主要考察直线与椭圆的交点,考察椭圆离心率的计算,考察化归与转变的数学思想方法,属于常考题 .8.【安徽省皖南八校 2019 届高三第三次联考数学】 已知 F 是椭圆 C :x 2y 21的右焦点, P 为椭圆 C 上32一点, A(1,2 2) ,则 PAPF 的最大值为A . 4 2B . 4 2C . 43D . 4 3【答案】 D【分析】设椭圆的左焦点为F ′,则 |PF |+|PF ′|=2 3 ,又 F′(﹣ 1,02(222 3,), |AF′|( 1 1) 2)∴|PA|+|PF|=2 3 +|PA|﹣ |PF ′|,易知 ||PA|﹣ |PF ′||AF≤|′|,∴当 P 在线段 AF ′的延伸线上时,|PA|﹣ |PF ′|最大,为 |AF ′|,2 3∴|PA|+|PF|的最大值为 2 3 2 3 4 3 .应选 D.【名师点睛】本题考察椭圆的标准方程以及椭圆的定义的应用,波及三角形两边之差小于第三边的几何知识,考察了数形联合思想,属于中档题.9.【河北省唐山市第一中学2019 届高三放学期冲刺(二)】已知椭圆的左、右焦点分别为,,过的直线交椭圆于,两点,若的最大值为5,则的值为A.1B.C.D.【答案】 C【分析】由0< b< 2 可知,焦点在x 轴上,∴ a=2 ,∵过 F 1的直线 l 交椭圆于A,B 两点,∴ |BF2|+|AF2|+|BF 1|+|AF 1|= 2a+2a= 4a=8,∴|BF 2|+|AF 2|=8﹣ |AB |.当 AB 垂直 x 轴时 |AB|最小,则 |BF 2|+|AF 2|的值最大,此时 |AB |= b2,∴ 5= 8﹣b2,解得.应选 C.【名师点睛】本题考察了直线与圆锥曲线的关系,考察了椭圆的定义,解答本题的要点是明确过椭圆焦点的弦中通径长最短,是中档题.10.【山东省临沂市x2 y21 a b 0 的左、右焦点2019 年一般高考模拟考试(三模)数学】若椭圆b2a2分别为 F , F ,离心率为1,过F 的直线交椭圆于 A ,B两点,△ ABF 的周长为8,则该椭圆的短1 2 2 12轴长为 __________.【答案】 2 3【分析】因为△ ABF1的周长为8,因此 | F1A| |F1B| | F2A| | F2 B | 4a 8, a 2 ,因为离心率为1,因此c1 ,c 1 a 1 ,2 a 2 2由a2 b2 c2,解得 b 3 ,则该椭圆的短轴长为2 3 .故答案为 2 3.【名师点睛】本题主要考察椭圆的定义以及椭圆的离心率,意在考察对基础知识的掌握与灵巧应用,属于基础题 .11.【安徽省江南十校2019 届高三 3 月综合素质检测数学】已知椭圆:的左、右焦点分别为、,以为圆心作半径为 1 的圆,为椭圆上一点,为圆上一点,则的取值范围为______.【答案】【分析】由椭圆方程可知:,由椭圆定义得:,,又且,,故答案为.【名师点睛】本题考察利用椭圆定义求解最值问题,要点在于可以经过定义将问题转变为三角形的三边关系,确立当三点共线的时候获得最值.12.【江西省九江市2019 届第一次高考模拟一致考试数学】如图,中心在座标原点,焦点分别在轴和轴上的椭圆都过点,且椭圆的离心率相等,以椭圆的四个焦点为极点的四边形的面积为,则椭圆的标准方程为__________ .【答案】x 2 y 2412【分析】由题意可设椭圆C 1: x 2 y 21 ,a 2 2C 2: y 2 x 21( a > 2 , 0< b < 2 ),2 b 2由a 22 2 b 2a 2,得 ab = 2,2由 2?2 ,可得( a 2﹣ 2)( 2﹣ b 2)= 2, 解得 a =2, b = 1,故椭圆 C 1:x 2y 21.42故答案为x 2 y 241.2【名师点睛】本题考察椭圆的方程和性质,考察了离心率公式,考察运算求解能力,注意运用方程的思想解题.13.【江西省南昌市江西师范大学隶属中学2019 届高三三模数学】已知椭圆x 2 y 21 a b 0 的左、a 2b 2右焦点分别为F 1 , F 2 ,点 P 在椭圆上,且 PF 2 垂直于 x 轴,若直线 PF 1 的斜率为3,则该椭圆的离心3率为 __________ .【答案】3 3x2y2【分析】依据题意,如图,椭圆a2b2 1 a b 0 的左、右焦点分别为3,则 tan PF1 F2 PF2 3,线 PF1的斜率为F1 F2 33则有PF2 2 3c,则 PF1 PF2 |2 F1 F2 |2 43 c,3 3故2a PF1 PF2 2 3c,进而椭圆的离心率 e c 3 ,a 3故答案为 3 .3【名师点睛】本题考察椭圆的几何性质,要点是作出图形,联合直线的斜率剖析F1 , F2,则F1F22c,直PF2的值.。

椭圆(讲)-2019年高考数学(理)---精校解析 Word版

椭圆(讲)-2019年高考数学(理)---精校解析 Word版

年上海卷】设是椭圆上的动点,则B D.,是椭圆2a=2..【变式二】【山东省威海市2018届二模】已知椭圆左右焦点分别为的直线两点,则的最大值为()A. B. C. D.【答案】D已知椭圆的左焦点为,过点作倾斜角为的直线与圆,则椭圆的标准方程为(C【答案】B由左焦点为,可得,即作倾斜角为的直线的方程为到直线的距离由直线与圆相交的弦长为,,解得,定点,是圆上的一动点,线段的垂直平分线交半径点,则点的轨迹C【答案】B,.,离心率等于+【答案】B届高三上开学】直线,则该椭圆的离心率为(B D【答案】:的右焦点为短轴的一个端点为:交椭圆于,两点,若,点与直线,则椭圆的离心率的取值范围是(B C D【答案】B为椭圆的左焦点,连接根据椭圆的对称性可得四边形,到直线的距离不小于,,椭圆的离心率的取值范围是,故选的右焦点为,过的直线与两点,点.与轴垂直时,求直线的方程;为坐标原点,证明:的方程为或. (2),l的方程为x=1.由已知可得,点的坐标为或的方程为或.轴重合时,.当.的方程为,,则.由.将代入得所以,..,故MA,MB的倾斜角互补,所以.综上,.年全国卷Ⅲ理】已知斜率为的直线与椭圆交于两点,线段.)证明:)设为的右焦点,为.证明:,,成等差数列,并求该数或.代入①得所以l的方程为,代入C的方程,并整理得.,代入②解得.所以该数列的公差为或.【变式二】【2017江苏,在平面直角坐标系2222:1(x yE aa b=(,且原点到直线的距离为?若存在,联立方程..,,解得.的方程为,易求得。

专题05 等比数列-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

专题05 等比数列-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16 B .8 C .4 D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,联立等比数列的通项公式和前n 项和公式构成方程组,可以知其三求其二,属于基础题.【母题原题2】【2018年高考全国Ⅲ卷理数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =.【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.专题05 等比数列(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.【母题原题3】【2017年高考全国Ⅲ卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【命题意图】1.熟练掌握等比数列的通项公式、前n 项和公式.2.掌握与等比数列有关的数列求和的常见方法.3.了解等比数列与指数函数的关系.【命题规律】从近三年高考情况来看,本讲是高考的考查热点,主要考查等比数列的基本运算和性质,等比数列的通项公式和前n 项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题. 【答题模板】求数列的通项、求和问题时,第一步:根据题意求通项.注意等比数列通项形如指数函数的形式. 第二步:利用函数性质研究数列的性质,例如周期、单调性等. 第三步:利用函嫩、数列的交汇性质来综合求解问题.第四步:查看关键点、易错点及解题规范,例如错位相减去的计算量较大,注意检验. 【方法总结】1.等比数列的判定与证明常用方法如下: (1)定义法.1n n a a +=q (q 为常数且q ≠0)或-1n n aa =q (q 为常数且q ≠0,n ≥2)⇔{a n }为等比数列; (2)等比中项法.21n a +=a n ·a n+2(a n ≠0,n ∈N *)⇔{a n }为等比数列;(3)通项公式法.a n =a 1q n –1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列;(4)前n 项和公式法.若S n 表示数列{a n }的前n 项和,且S n =–aq n +a (a ≠0,q ≠0,q ≠1),则数列{a n }是公比为q 的等比数列.由a n+1=qa n ,q ≠0,并不能断言{a n }为等比数列,还要验证a 1≠0.证明一个数列{a n }不是等比数列,只需要说明前三项满足22a ≠a 1·a 3,或者存在一个正整数m ,使得21m a +≠a m ·a m+2即可.2.等比数列的基本运算方法:(1)通项法:等比数列由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列的相关问题,一般给出两个条件就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题. 例如:①若已知n ,a n ,S n ,先验证q=1是否成立,若q ≠1,可以通过列方程组-111,(1-),1-n n n n a a q a q S q ⎧=⎪⎨=⎪⎩求出关键量a 1和q ,问题可迎刃而解.②若已知数列{a n }中的两项a n 和a m ,可以利用等比数列的通项公式,得到方程组-11-11,,n n m ma a q a a q ⎧=⎨=⎩两式相除可先求出q ,然后代入其中一式求得a 1,进一步求得S n .另外,还可以利用公式a n =a m ·q n –m 直接求得q ,可减少运算量.(3)对称设元法:一般地,若连续奇数个项成等比数列,则可设该数列为…,xq,x ,xq ,…;若连续偶数个项成等比数列,则可设该数列为…,3x q ,x q,xq ,xq 3,…(注意:此时公比q 2>0,并不适合所有情况).这样既可减少未知量的个数,也使得解方程较为方便. 3.错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求解,一般是在等式的两边同乘以等比数列{b n }的公比,然后作差求解.若{b n }的公比为参数(字母),则应对公比分等于1和不等于1两种情况讨论.1.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若23a =,524a =-,则1a =A .23 B .23- C .32-D .32【答案】C 【解析】因为3528a q a ==-,所以2q =-,从而132a =-.故选C . 【名师点睛】本题考查了等比数列的基本量运算,属于基础题.2.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若22a =,554a =-,则1a = A .23B .23-C .32-D .32【答案】B 【解析】因为35227a q a ==-,所以3q =-,从而2123a a q ==-.故选B . 【名师点睛】本题主要考查了等比数列的基本量运算,属于基础题.3.【四川省成都市外国语学校2019届高三一诊模拟考试数学】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为A .10B .11C .12D .13【答案】C【解析】∵正项等比数列{}n a 中,512a =,()26753a a a q q +=+=,∴26q q +=. ∵0q >,解得,2q =或3q =-(舍),∴1132a =,∵()1231122132 (1232)n nn a a a a --++++==-,∴()1221123232n n nn -->⨯.整理得,()1152n n n ⎛⎫>-- ⎪⎝⎭,∴112n <≤,经检验12n =满足题意,故选C .【名师点睛】本题主要考查了等比数列的通项公式及求和公式,等比数列的性质等知识的简单综合应用,属于中档试题.4.【四川省巴中市2019届高三零诊考试数学】记n S 为等比数列{a n }的前n 项和,已知S 2=2,S 3=–6.则{a n }的通项公式为A .(2)nn a =- B .2nn a =- C .(3)nn a =-D .3nn a =-【答案】A【解析】根据题意,设等比数列{}n a 的首项为1a ,公比为q ,又由22S =,36S =-,则有()()1211216a q a q q ⎧+=⎪⎨++=-⎪⎩,解得12a =-,2q =-,则()2nn a =-,故选A . 【名师点睛】本题考查等比数列中基本量的计算,属于简单题.5.【四川省南充市高三2019届第二次高考适应性考试高三数学】已知等比数列{}n a 中的各项都是正数,且1321,,22a a a 成等差数列,则101189a a a a +=+ A.1+B.1C.3+D.3-【答案】C【解析】因为等比数列{a n }中的各项都是正数,设公比为q ,得q >0, 且1321,,22a a a 成等差数列,可得3122a a a =+,即a 1q 2=a 1+2a 1q , 因为10a ≠,得q 2–2q –1=0,解得q =或q =1(舍),则101189a a a a +=+()28989q a a a a +=+q 2=C . 【名师点睛】本题考查等比数列的通项公式和等差数列的中项性质,考查方程思想和运算能力,属于基础题.6.【四川省攀枝花市2019届高三第二次统一考试数学】已知等比数列{}n a 的各项均为正数,且13a ,312a ,22a 成等差数列,则64a a = A .1 B .3 C .6 D .9【答案】D【解析】设各项都是正数的等比数列{a n }的公比为q ,(q >0) 由题意可得2312a ⨯=13a +22a ,即q 2–2q –3=0, 解得q =–1(舍去),或q =3,故64a a =q 2=9.故选D .【名师点睛】本题考查等差中项的应用和等比数列的通项公式,求出公比是解决问题的关键,属于基础题.7.【四川省成都石室中学2019届高三第二次模拟考试数学】设等比数列{}n a 的前n 项和为n S ,公比为q .若639S S =,562S =,则1a =A .3 BC D .2【答案】D【解析】等比数列{a n }中,若S 6=9S 3,则q ≠±1, 若S 6=9S 3,则()()631111911a q a q qq--=⨯--,解可得q 3=8,则q =2,又由S 5=62,则有S 5=()5111a q q--=31a 1=62,解得a 1=2,故选D .【名师点睛】本题考查等比数列的前n 项和公式的应用,属于基础题.8.【四川省宜宾市2019届高三第二次诊断性考试数学】等比数列{}n a 的各项均为正数,已知向量()45,a a =a ,()76,a a =b ,且4⋅=a b ,则2122210log log log a a a ++⋯+=A .12B .10C .5D .22log 5+【答案】C【解析】()45,a a =a ,()76,a a =b ,且4⋅=a b ,∴47a a +56a a =4, 由等比数列的性质可得:110a a =…=47a a =56a a =2, 则2122210log log log a a a +++=log 2(12a a •10a )=()5521102log log 25a a ==.故选C .【名师点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题.9.【贵州省贵阳市2019届高三2月适应性考试(一)数学】等比数列{a n }的前n 项和S n =a •2n +1(n ∈N *),其中a 是常数,则a =A .2-B .1-C .1D .2【答案】B【解析】n =1时,a 1=S 1=2a +1.n ≥2时,a n =S n –S n –1=a •2n +1–(a •2n –1+1),化为a n =a •2n –1, 对于上式n =1时也成立, ∴2a +1=a ,解得a =–1.故选B .【名师点睛】本题考查了等比数列的通项公式、方程的解法,考查了推理能力与计算能力,属于中档题. 10.【河南省新乡市2019届高三第三次模拟测试数学】已知等比数列{}n a 的前n 项和为n S ,且55S =,1030S =,则15S =A .90B .125C .155D .180【答案】C【解析】因为等比数列{}n a 的前n 项和为n S , 所以51051510,,S S S S S --成等比数列,因为5105,30S S ==,所以105151025,255125S S S S -=-=⨯=, 故1512530155.S =+=故选C .【名师点睛】本题考查了等比数列的性质,若等比数列{}n a 的前n 项和为n S ,则232,,n n n n nS S S S S --也成等比数列,这是解题的关键,属于较为基础题.11.【甘肃、青海、宁夏2019届高三上学期期末联考数学】设等比数列{}n a 的前n 项和为n S ,若122a a -=,236a a -=,则4S =A .–60B .–40C .20D .40【答案】B【解析】设等比数列的公比为q ,由12232,6a a a a -=-=,可得1121126a a q a q a q -=⎧⎨-=⎩,解得131q a =⎧⎨=-⎩, 故()441134013S -⨯-==--,故选B .【名师点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题. 12.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评数学】在等比数列{}n a 中,131a a +=,5791120a a a a +++=,则1a =A .16B .13C .2D .4【答案】B【解析】因为()45713a a a a q +=+=q 4,()891113a a a a q +=+,所以q 8+q 4=20,所以q 4=4或q 4=–5(舍),所以q 2=2,13a a +211a a q =+=13a =1,所以1a 13=. 故选B .【点睛】本题考查了等比数列的通项公式,考查等比数列的性质,要求熟练掌握等比数列的性质的应用,比较基础.13.【湖南省益阳市桃江县第一中学2019届高三5月模拟考试数学】已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S = A .10 B .7 C .8 D .4【答案】C【解析】由题意得13123321231322111124a a a a a S a a a a a a a +++++=+===,38S ∴=,故选C . 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.14.【江西省临川一中2019届高三年级考前模拟考试数学】已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为A .1B .1或12CD.±【答案】C【解析】因为2474S S =,所以()()()124234344a a S S a a +=-=+, 故234q =,因为{}n a 为正项等比数列,故0q >,所以q =C . 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q m n p q ∈+=+N ,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S --为等比数列(0n S ≠)且公比为nq .15.【山东省临沂市2019年普通高考模拟考试(三模)数学】已知等比数列{}n a 中,37a =,前三项之和321S =,则公比q 的值为A .1B .12-C .1或12-D .112-或【答案】C【解析】等比数列{}n a 中,37a =,前三项之和321S =, 若1q =,37a =,33721S =⨯=,符合题意;若1q ≠,则()213171211a q a q q⎧=⎪-⎨=⎪-⎩,解得12q =-,即公比q 的值为1或12-,故选C .【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题.等比数列基本量的运算是等比11数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知三求二”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.16.【安徽省江淮十校2019届高三年级5月考前最后一卷数学】已知等比数列{}n a 的公比12q =-,该数列前9项的乘积为1,则1a = A .8 B .16C .32D .64【答案】B 【解析】由已知1291a a a =,又2192837465a a a a a a a a a ====,所以951a =,即51a =,所以41112a ⎛⎫-= ⎪⎝⎭,116a =,故选B . 【点睛】本题主要考查等比数列的性质以及等比数列的基本量计算,熟记等比数列的性质与通项公式即可,属于常考题型.17.【山西省2019届高三高考考前适应性训练(三)数学】已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则8T = A .1024 B .2048 C .4096 D .8192【答案】C【解析】设等比数列{}n a 的公比为q ,由29T T =得761a =,故61a =,即511a q =.又2121512a a a q ==,所以91512q =,故12q =,所以36312832424096a T T a q ⎛⎫===== ⎪⎝⎭.故选C .【点睛】本题考查等比数列的性质、等比数列的通项公式,考查计算化简的能力,属中档题.。

2019年高考数学解析几何部分知识考查分析

2019年高考数学解析几何部分知识考查分析

第 1 页 共 7 页2019年全国高考数学解析几何知识考查分析一、椭圆及其性质1.(2019年北京理)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b = 2.(2019年全国Ⅰ理)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y +=3.(2019年全国Ⅰ文)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=4.(2019年全国Ⅲ文理)设1F ,2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若△12MF F 为等腰三角形,则M 的坐标为 .5.(2019年浙江)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是 . 6.(2019年上海春)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P …,则1F P 与2F Q 的夹角范围为 .二、双曲线及其性质1.(2019年北京文)已知双曲线2221(0)x y a a-=>,则(a = )AB .4C .2D .122.(2019年江苏)在平面直角坐标系xOy 中,若双曲线2221(0)yx b b-=>经过点(3,4),则该双曲线的渐近线方程是 . 3.(2019年浙江)渐进线方程为0x y ±=的双曲线的离心率是( )AB .1 CD .24.(2019年全国Ⅰ理)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B =,则C 的离心率为 .5.(2019年全国Ⅰ文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( )第 2 页 共 7 页A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒6.(2019年全国Ⅲ理)双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O为坐标原点,若||||PO PF =,则PFO ∆的面积为( )ABC.D.7.(2019年全国Ⅲ文)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为()A .32B .52C .72D .92三、抛物线及其性质1. (2019年上海秋)过24y x =的焦点F 并垂直于x 轴的直线分别与24y x =交于A B 、,A 在B 上方,M 为抛物线上一点,OM OA λ=+()2OB λ-,则λ=______.四、解析几何综合1.(2019年全国Ⅱ文理)若抛物线22(0)y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则(p = ) A .2 B .3 C .4 D .82.(2019年全国Ⅱ文理)设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若||||PQ OF =,则C 的离心率为( )ABC .2 D3.(2019年天津文理)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||(A B O F O =为原点),则双曲线的离心率为( )ABC .2 D4.(2019年北京理)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )第 3 页 共 7 页A .①B .②C .①②D .①②③5.(2019年上海春)以1(a ,0),2(a ,0)为圆心的两圆均过(1,0),与y 轴正半轴分别交于1(y ,0),2(y ,0),且满足120lny lny +=,则点1211(,)a a 的轨迹是( )A .直线B .圆C .椭圆D .双曲线五、直线与圆1.(2019年浙江)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切与点(2,1)A --,则m = ,r = . 2.(2019年全国Ⅰ文)已知点A ,B 关于坐标原点O 对称,||4AB =,M 过点A ,B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M 的半径;(2)是否存在定点P ,使得当A 运动时,||||MA MP -为定值?并说明理由. 3.(2019年江苏)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥(AB AB 是圆O 的直径),规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA ,规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和(BD C 、D 为垂足),测得10AB =,6AC =,12BD =(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点间的距离.六、直线与椭圆的位置关系1.(2019年全国Ⅱ理)已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G .()i 证明:PQG ∆是直角三角形; ()ii 求PQG ∆面积的最大值.2.(2019年全国Ⅱ文)已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;第 4 页 共 7 页(2)如果存在点P ,使得12PF PF ⊥,且△12F PF 的面积等于16,求b 的值和a 的取值范围.3.(2019年北京文)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P 、Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若||||2OM ON =,求证:直线l 经过定点. 4.(2019年天津文)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||(OA OB O =为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP .求椭圆的方程.5.(2019年天津理)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4.(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||(ON OF O =为原点),且OP MN ⊥,求直线PB 的斜率. 6.(2019年上海秋)已知椭圆22184x y +=,12,F F 为左、右焦点,直线l 过2F 交椭圆于A 、B 两点.(1)若AB 垂直于x 轴时,求AB ;(2)当190F AB ∠=时,A 在x 轴上方时,求,A B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使MN F AB F S S 11△△=,若存在,求出直线l 的方程;若不存在,请说明理由.7.(2019年江苏)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为1(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,1与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结1AF 并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结1DF .已知152DF =.(1)求椭圆C 的标准方程; (2)求点E 的坐标.第 5 页 共 7 页七、直线与双曲线的位置关系与其他知识综合,以小题形式出现。

【2019版课标版】高考数学文科精品课件§9.3椭圆及其性质.pdf

【2019版课标版】高考数学文科精品课件§9.3椭圆及其性质.pdf

解析
(1) 设 F(c,0),

1 + 1 = 3??,
|????||????| |????|

1+1= 3?? ,
?? ?? ??(?-??)
可得
a2-c 2=3c 2,
又 a2-c 2=b2=3, 所以 c2=1, 因此 a2=4.
所以 , 椭圆的方程为
??2+?2?=1.
43
(2) 设直线 l 的斜率为 k(k ≠ 0),
75??2 , 由四边形
PQNM的面积为
75??2 27??2
3c, 得
-
=3c, 整理得
c2=2c, 又由 c>0, 得
2 48
2
32
32
32 32
c=2.
?2? ?2? 所以 , 椭圆的方程为 + =1.
16 12
五年高考
考点一 椭圆的定义及其标准方程
1.(2015
广东 ,8,5
分)
已知椭圆
??2 25
3
C 的方程为 ( )
A. ?2?+??2=1
32
B. ?2?+y2=1
3
C. ??2+??2=1
12 8
D. ??2+??2=1
12 4
答案 A 3.(2014 辽宁 ,15,5 分) 已知椭圆 C:??2+??2=1, 点 M与 C 的焦点不重合 . 若 M关于 C 的焦点的对称点分别为
94
A,B, 线段 MN的中点在 C 上 , 则
+????22
=1(m>0)
的左焦点为
3
C.4
D.9

2019版高考数学(理科)(5年高考+3年模拟)B版(北京专用)课件 §10.1 椭圆及其性质

2019版高考数学(理科)(5年高考+3年模拟)B版(北京专用)课件 §10.1 椭圆及其性质

的借鉴作用.
B组
统一命题、省(区、市)卷题组
2
x + y =1(a>b>0)的左、右焦点,A是C的左顶点, 1.(2018课标全国Ⅱ,12,5分)已知F1,F2是椭圆C: a2
2
b2
3的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为 点P在过A且斜率为
(
2 A. 3
答案 3 -1;2
解析 本题考查椭圆与双曲线的几何性质.
解法一:如图是一个正六边形,A,B,C,D是双曲线N的两条渐近线与椭圆M的四个交点,F1,F2为椭 圆M的两个焦点.
∵直线AC是双曲线N的一条渐近线,且其方程为y= x3 ,
k 2 ( 3k ) 2 n = .设m=k,则n= k,则双曲线N的离心率e2= =2. ∴ 3 3

c a
2 2

x0
2 2 又 +2 =4, y0 x0
所以|AB|2=(x0-t)2+(y0-2)2
2 y0 +(y -2)2 = 0 x0 x 0
4 y0 +4= 2+ 4 x0 + 2(4 x0 )+4 2 + 2 + = y0 x0 x0
2
2
连接F1C,在正六边形ABF2CDF1中,可得∠F1CF2=90°,∠CF1F2=30°.
m
k
3c=2a,∴椭 设椭圆的焦距为2c,则|CF2|=c,|CF1|= c,3 再由椭圆的定义得|CF1|+|CF2|=2a,即( +1)
圆M的离心率e1= = = = -1.
c a
2( 3 1) 2 3 3 1 ( 3 1)( 3 1)

高考 专题02 椭圆、双曲线的几何性质-2019年高考数学母题题源系列(浙江专版)(解析版)

高考 专题02 椭圆、双曲线的几何性质-2019年高考数学母题题源系列(浙江专版)(解析版)

的1换为 0 ,可得到渐近线方程为
x2 a2
y2 b2
0或
y2 a2
x2 b2
0 ,即
y
b a
x或
y
a b
x.
【方法总结】
1.椭圆定义的集合语言: P {M || MF1 MF2 | 2a, 2a | F1F2 |}往往是解决计算问题的关键.
椭圆上的一点与两焦点所构成的三角形称为焦点三角形.
注意:用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把
椭圆的方程设为 mx2 ny2=1(m 0,n 0且m n) .
2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两种方法:
(1)求出 a,c,代入公式 e c . a
置或点的坐标确定双曲线的标准方程.
4.求双曲线的离心率主要的方法
方法 1:根据条件分别求出 a 与 c ,然后利用 e c 计算求得离心率; a
方法 2:根据已知条件建立关于 a, b, c 的等量关系式或不等关系式,由此得到方程或不等式,通过解方程或不等
式求解离心率的值或取值范围.
5.渐近线是双曲线特有的特征,双曲线的渐近线方程可以根据双曲线的标准方程求解,将双曲线标准方程中右边
根据 a, b, c 的关系消掉 b 得到 a, c 的关系式,建立关于 a, b, c 的方程或不等式,要充分利用椭圆和双曲线的几何性
质、点的坐标的范围等.
【命题意图】 本类题主要考查椭圆与双曲线的定义、标准方程及简单性质,难度较小,意在考查考生的运算求解能力,分析问题、 解决问题的能力以及数形结合思想. 【命题规律】 1.椭圆问题一般以选择题或填空题的形式考查,主要以椭圆的标准方程和离心率为主,程.根据上述判断设方程为

高考数学考点专项突破 椭圆的性质与应用(含解析)

高考数学考点专项突破 椭圆的性质与应用(含解析)

学习资料椭圆的性质与应用一、单选题1、(2019年高考北京卷理数)已知椭圆22221x ya b+=(a>b>0)的离心率为12,则()A.a2=2b2B.3a 2=4b 2C.a=2b D.3a=4b【答案】B【解析】椭圆的离心率2221,2ce c a ba===-,化简得2234a b=,故选B。

2、(北京师范大学附属实验中学2019—2020学年高三第一学期12月月考)△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是( )A.B.(y≠0)C.D.(y≠0)【答案】D【解析】所以定点的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,选D。

3、(2019年高考全国Ⅱ卷理数)若抛物线y2=2px(p>0)的焦点是椭圆2231x yp p+=的一个焦点,则p=( ) A.2 B.3C.4 D.8【答案】D【解析】因为抛物线22(0)y px p=>的焦点(,0)2p是椭圆2231x yp p+=的一个焦点,所以23()2pp p-=,解得8p=,故选D.4、(河北省衡水中学2019届高三第一次摸底考试)已知椭圆和直线,若过的左焦点和下顶点的直线与平行,则椭圆的离心率为( ) A . B . C . D . 【答案】A【解析】直线的斜率为,过的左焦点和下顶点的直线与平行,所以,又,所以,故选A 。

5、(河北省衡水中学2018届高三第十次模拟考试数学(理)试题)如图,设椭圆E : 22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F , B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12 B .23 C .13 D .14【答案】C【解析】如图,设AC 中点为M ,连接OM,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==,即c c a -=12可得e=c a =13.故答案为: 13. 6、(2018年高考全国Ⅱ理数)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以212||2||PF F F c ==,由AP2tan PAF ∠=所以2sin PAF ∠=,2cos PAF ∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2225sin()3c a c PAF ==+-∠, 所以4a c =,14e =,故选D . 7、(2019年高考全国Ⅰ卷理数)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y += C .22143x y +=D .22154x y += 【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得3n =.22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .8、(2020届河北省衡水中学高三上学期五调考试)已知1F ,2F 为椭圆()222210x y a b a b+=>>的两个焦点,B 为椭圆短轴的一个端点,2121214BF BF F F ⋅≥,则椭圆的离心率的取值范围为( ) A .1(0,]2B .2(0,]2C .3(0,3D .1(,1)2【答案】C【解析】由椭圆定义可知:12BF BF a ==,12OF OF c ==,则1sin cOBF e a∠==, 所以22121cos 12sin 12F BF OBF e ∠=-∠=-,因为2121214BF BF F F ⋅≥,即222(12)e a c -≥,22(12)e e -≥,即213e ≤。

2019年高考理数母题题源系列(全国Ⅲ专版)(解析版) 不等式选讲

2019年高考理数母题题源系列(全国Ⅲ专版)(解析版) 不等式选讲

【母题原题1】【2019年高考全国Ⅲ卷理数】设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 【答案】(1)43;(2)见解析. 【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.专题不等式选讲由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.【名师点睛】两个问都是考查柯西不等式,属于柯西不等式的常见题型. 【母题原题2】【2018年高考全国Ⅲ卷理数】设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求a b +的最小值.【答案】(1)见解析;(2)最小值为5.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为5.【名师点睛】本题主要考查函数图像的画法,考查由不等式求参数的范围,属于中档题. 【母题原题3】【2017年高考全国Ⅲ卷理数】已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【答案】(1){}1x x ≥;(2)54⎛⎤∞ ⎥⎝⎦-,【解析】(1)()31211232,x f x x ,x ,x -<-⎧⎪=--≤≤⎨⎪>⎩,当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >. 所以()1f x ≥的解集为{}1x x ≥.(2)由()2f x x x m ≥-+得212m x x x x ≤+---+,而2223551212244x x x x x x x x x ⎛⎫+---+≤++--+=-+≤ ⎪⎝⎭-,且当32x =时,25124x x x x +---+=. 故m 的取值范围为54⎛⎤∞ ⎥⎝⎦-,.【名师点睛】绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.柯西不等式的几种不同形式,理解它们的几何意义,并会证明;了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.主要考查考生的数学运算能力,以及对分类讨论思想和数形结合思想的应用.【命题规律】主要考查绝对值不等式的求解、恒成立问题、存在性问题以及不等式的证明,多以解答题的形式呈现,难度中等,分值10分. 【知识总结】 1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a=b 时,等号成立.定理2:(基本不等式)如果a ,b>0,那么2a b+,当且仅当a=b 时,等号成立. 即两个正数的算术平均不小于(大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么3a b c ++a=b=c 时,等号成立. 即三个正数的算术平均不小于它们的几何平均.推广:对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即12…n a a a n+++a 1=a 2=…=a n 时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a 与|x|>a 的解集:不等式a>0 a=0 a<0 |x|<a{–a<x<a} ⌀⌀|x|>a{x|x>a或x<–a} {x|x≠0且x∈R}R(2)|ax+b|≤c和|ax+b|≥c型不等式的解法:①若c>0,则|ax+b|≤c等价于–c≤ax+b≤c,|ax+b|≥c等价于ax+b≥c或ax+b≤–c,然后根据a,b的值解出即可;②若c<0,则|ax+b|≤c的解集为⌀,|ax+b|≥c的解集为R.(3)|x–a|+|x–b|≥c(或≤c)(c>0),|x–a|–|x–b|≤c(或≥c)(c>0)型不等式的解法:零点分区间法零点分区间法的一般步骤为:①令每个绝对值符号内的代数式为零,并求出相应的根;②将这些根按从小到大排序,并把实数集分成若干个区间;③由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集即可得到原不等式的解集.几何法(利用|x–a|的几何意义)由于|x–a|+|x–b|与|x–a|–|x–b|分别表示数轴上与x对应的点到与a,b对应的点的距离之和与距离之差,因此对形如|x–a|+|x–b|≤c (c>0)或|x–a|–|x–b|≥c(c>0)的不等式,利用绝对值的几何意义求解更直观.数形结合法通过构造函数,利用函数的图象求解,体现函数与方程的思想,正确求出函数的零点并画出函数图象是解题的关键.注意:分区间讨论时,一是不要把分成的区间的端点遗漏;二是原不等式的解集是若干个不等式解集的并集,而不是交集.(4)|f(x)|>g(x),|f(x)|<g(x)(g(x)>0)型不等式的解法:①|f(x)|>g(x)⇔f(x)>g(x)或f(x)<–g(x);②|f(x)|<g(x)⇔–g(x)<f(x)<g(x).3.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a–c|≤|a–b|+|b–c|,当且仅当(a–b)(b–c)≥0时,等号成立.上述定理还可以推广到以下两个不等式:(1)|a1+a2+…+a n|≤|a1|+|a2|+…+|a n|;(2)||a|–|b||≤|a±b|≤|a|+|b|.4.证明不等式的基本方法(1)比较法①作差法:要证明a>b,只需证a–b>0.②作商法:要证明a>b,b>0,只要证ab>1.(2)综合法从已知条件、不等式的性质和基本不等式等出发,通过逻辑推理,推导出所要证明的结论.(3)分析法从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.(4)反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立.(5)放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.5.柯西不等式(1)二维形式的柯西不等式定理1:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc 时,等号成立.(2)柯西不等式的向量形式定理2:设α,β是两个向量,则|α·β|≤|α|·|β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.(3)二维形式的三角不等式定理3:设x 1,y 1,x 2,y 2∈R . (4)一般形式的柯西不等式定理:设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(21a +22a +…+2n a )·(21b +22b +…+2n b )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i=1,2,…,n )或存在一个数k ,使得a i =kb i (i=1,2,…,n )时,等号成立. 【方法总结】1.解绝对值不等式的常用方法(1)基本性质法:对a ∈R +,|x|<a ⇔–a<x<a ,|x|>a ⇔x<–a 或x>a . (2)平方法:两边平方去掉绝对值符号.(3)零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值问题转化为数轴上两点的距离问题求解.(5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.2.含绝对值不等式的恒成立问题的常见类型及其解法(1)分离参数法:运用“f (x )≤a ⇔f (x )max ≤a ,f (x )≥a ⇔f (x )min ≥a ”可解决恒成立问题中的参数范围问题.求最值的思路:①利用基本不等式和不等式的相关性质解决;②将函数解析式用分段函数形式表示,作出函数图象,求得最值;③利用性质“||a|–|b||≤|a±b|≤|a|+|b|”求最值. (2)更换主元法:求解含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法:在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可更直观解决问题.注意:不等式的解集为R 是指不等式恒成立问题,而不等式的解集为⌀的对立面也是不等式恒成立问题,如f (x )>m 的解集为⌀,则f (x )≤m 恒成立. 3.不等式能成立问题(1)在区间D 上存在实数x 使不等式f (x )>A 成立,等价于在区间D 上f (x )max >A ; (2)在区间D 上存在实数x 使不等式f (x )<B 成立,等价于在区间D 上f (x )min <B . 4.不等式恰成立问题(1)不等式f (x )>A 在区间D 上恰成立,等价于不等式f (x )>A 的解集为D ; (2)不等式f (x )<B 在区间D 上恰成立,等价于不等式f (x )<B 的解集为D . 5.证明不等式的常用方法有比较法、综合法、分析法.如果已知条件与待证结论直接联系不明显,可考虑用分析法;如果待证命题是否定性命题、唯一性命题或以“至少”“至多”等方式给出的,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法.在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明,用换元法证明不等式时,要注意新元的取值范围.证明不等式常用的思路:利用基本不等式、绝对值三角不等式、绝对值的含义将问题转化为函数问题求解.6.利用基本不等式、柯西不等式求最值的方法(1)在运用基本不等式求函数的最大(小)值时,常需要对函数式作“添、裂、配、凑”变形,使其完全满足基本不等式要求的“正、定、等”三个条件.(2)在应用柯西不等式求最大值时,要注意等号成立的条件,柯西不等式在排列上规律明显,具有简洁、对称的美感,运用柯西不等式求解时,按照“一看、二构造、三判断、四运用”可快速求解此类问题.1.【广西桂林市、崇左市2019届高三下学期二模联考数学】已知函数()2f x x a x =-+,其中0a >.(1)当1a =时,求不等式()2f x ≥的解集;(2)若关于x 的不等式()()222f x a f x +-≤恒成立,求实数a 的取值范围. 【答案】(1)[)1,+∞;(2)10,2⎛⎤ ⎥⎝⎦.【解析】(1)当1a =时,()31,11,1x x f x x x -≥⎧=⎨+<⎩.当1x ≥时,由()23121f x x x ≥⇒-≥⇒≥, 当1x <时,由()2121f x x x ≥⇒+≥⇒≥不成立.综上所述,当1a =时,不等式()2f x ≥的解集为[)1,+∞. (2)记()()()22=h x f x a f x =+-2x x a a --+,则()0,04,04,x h x x x a ax a ≤⎧⎪=<<⎨⎪≥⎩,∴()()max |22|4f x a f x a +-=. 依题意得42a ≤,∴12a ≤. 所以实数a 的取值范围为10,2⎛⎤ ⎥⎝⎦.【名师点睛】本题主要考查分类讨论法解绝对值不等式,考查绝对值不等式的恒成立的问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知函数()|3|2f x x =+-.(1)解不等式()||<1f x x -;(2)若x ∃∈R ,使得()|21|f x x b ≥-+成立,求实数b 的取值范围. 【答案】(1){}|0x x <;(2)32⎛⎤-∞ ⎥⎝⎦,.【解析】(1)由()1f x x <-,可得321x x +-<-, 当1x ≥时,321x x +-<-不成立,当31x -<<时,321x x +-<-,∴30x -<<, 当3x ≤-时,321x x ---<-,51-<成立, ∴不等式()1f x x <-的解集为{}|0x x <. (2)依题意,3212x x b +---≥,令()6,3132123,3212,2x x g x x x x x x x ⎧⎪-≤-⎪⎪=+---=-<<⎨⎪⎪-+≥⎪⎩,易知()max 1322g x g ⎛⎫==⎪⎝⎭,则有32b ≥,即实数b 的取值范围是32⎛⎤-∞ ⎥⎝⎦,. 【名师点睛】本题主要考查含绝对值不等式,熟记分类讨论的思想即可求解,属于常考题型.3.【广西南宁市2019届高三毕业班第一次适应性测试数学】已知函数f (x )=|ax ﹣1|﹣|2x +a |的图象如图所示. (1)求a 的值;(2)设g (x )=f (x 12+)+f (x ﹣1),g (x )的最大值为t ,若正数m ,n 满足m +n =t ,证明:49256m n +≥.【答案】(1)2a =;(2)见解析.【解析】(1)由()01f =-,得11a -=-,即2a =±. 由()13f -=,得123a a +--=,所以2a =. (2)由(1)知()2122f x x x =--+,所以()()1123232g x f x f x x x ⎛⎫=++-=--+ ⎪⎝⎭36,2334,2236,2x x x x ⎧≤-⎪⎪⎪=--<≤⎨⎪⎪->⎪⎩,显然()g x 的最大值为6,即6t =. 因为6(0,0)m n m n +=>>,所以()491491491366n m m n m n m n m n ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭.因为4912n m m n +≥=(当且仅当125m =,185n =时取等号), 所以()49125131266m n +≥⨯+=. 【名师点睛】本题主要考查了绝对值函数性质的研究,基本不等式的应用,属于中档题. 4.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】(1)如果关于x 的不等式15x x m ++-≤无解,求实数m 的取值范围;(2)若,a b 为不相等的正数,求证:0a b b a a b a b ->.【答案】(1)(),6-∞;(2)见解析.【解析】(1)令15y x x =++-=24,16,1524,5x x x x x -+≤-⎧⎪-<<⎨⎪-≥⎩,则当1x ≤-时,6y ≥;当15x -<<时,6y =;当5x ≥时,6y ≥,综上可得6y ≥,即156x x ++-≥. 故要使不等式15x x m ++-≤的解集是空集,则有6m <,所以实数m 的取值范围为(),6-∞.(2)由,a b 为不相等的正数,得要证0a b b a a b a b ->,即证a b b a a b a b >,只需证1a b b a a b -->,整理得1a ba b -⎛⎫> ⎪⎝⎭,①当a b >时,0,1a a b b ->>,可得1a ba b -⎛⎫> ⎪⎝⎭,②当a b <时,0,01a a b b -<<<,可得1a ba b -⎛⎫> ⎪⎝⎭,综上可得当,a b 均为正数时1a ba b -⎛⎫> ⎪⎝⎭,从而0a b b a a b a b ->成立.【名师点睛】(1)解得第一问的关键在于转化,即转化为函数15y x x =++-的图象与直线y m =无公共点,结合函数的最小值及图象易得答案.(2)证明不等式时,要根据不等式的特点选择合适的方法进行证明,常用的方法有综合法、分析法、放缩法等.5.【四川省巴中市2019届高三零诊考试数学】已知函数f (x )=|x –a |+|x |.(1)当a =2时,解不等式f (x )≥3的解集;(2)若存在x ∈R ,使得f (x )<3成立,求实数a 的取值范围.【答案】(1){x |x ≤–12或x ≥52};(2)(–3,3). 【解析】(1)由()f x x a x =-+,2a =时,不等式()3f x ≥为23x x -+≥, 等价于0223x x <⎧⎨-+≥⎩,解得12x ≤-; 或0223x ≤≤⎧⎨≥⎩,解得x ∈∅; 或2223x x ≥⎧⎨-≥⎩,解得52x ≥; 所以不等式()3f x ≥的解集是{12x x ≤-或52x ⎫≥⎬⎭. (2)若存在x ∈R ,使得()3f x <成立,则()min 3f x <,①当0a >时,()2,0,02,a x x f x a x a x a x a -<⎧⎪=≤<⎨⎪-≥⎩,()min f x a ∴=,即3a <,a ∴的取值范围是0<<3a ;②当0a =时,()2f x x =,()()min 003f x f ∴==<,0a ∴=符合题意;③当0a <时,()2,,02,0a x x a f x a a x x a x -<⎧⎪=-≤<⎨⎪-≥⎩,()min 3f x a ∴=-<,即3a >-,a ∴的取值范围是33a -<<;综上,实数a 的取值范围是()3,3-.【名师点睛】本题考查绝对值不等式的解法,含参数绝对值函数的分类讨论,属于中档题.6.【广西南宁市、玉林市、贵港市等2019届高三毕业班摸底考试数学】已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.【答案】(1){}311x x <<;(2)9a >. 【解析】(1)由题意,()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,∴931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩, 解不等式得所求解集为{}311x x <<.(2)依题意,求()f x 的最小值即可, ()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩的最小值为9,∴9a >.【名师点睛】求解含参数的不等式存在性问题需要过两关:第一关是转化关,先把存在性问题转化为求最值问题;不等式的解集为R 是指不等式的恒成立问题,而不等式的解集为∅的对立面也是不等式的恒成立问题,此两类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min . 第二关是求最值关,求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法. 7.【贵州省遵义市绥阳中学2019届高三模拟(二)数学】已知函数()3()f x x a x x =-++∈R .(1)当2a =时,求()5f x x ≥-的解集;(2)若()7f x ≥对任意[3,)x ∈+∞恒成立,求实数a 的取值范围.【答案】(1)R ;(2)(,2][4,)-∞+∞U .【解析】(1)当2a =时,不等式()5f x x ≥-为235x x x -++≥-.当3x <-时,4235,3x x x x ---≥-≤,解得3x <-; 当32x -≤≤时,235,10x x x x -++≥-≤,解得32x -≤≤;当2x >时,235,6x x x x -++≥-≥-,解得2x >.综上,所求不等式的解集为R .(2)据题意,得37x a x -++≥对任意[)3,x ∈+∞成立, 40x a x ∴-+-≥对任意[)3,x ∈+∞成立.当4x ≥时,a ∈R ;当34x ≤<时,4x a x -≥-,∴2222168x ax a x x -+≥-+,∴()()()4424a a a x +-≥-若4a =,分析知,满足题设;若4a >,则42a x +≥,∴48,4a a +≥≥,4a ∴>满足题设;若4a <,则42a x +≤,∴46,2a a +≤≤综上,所求实数a 的取值范围是][(),24,-∞+∞U .【名师点睛】本题主要考查了含绝对值不等式的求解,以及含绝对值不等式的恒成立问题,其中解答中合理分类讨论去掉绝对值,转化为等价不等式求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.8.【四川省名校联盟2019届高考模拟信息卷(一)数学】已知函数()2f x x a a =-+,()1g x x =+.(1)当1a =时,解不等式()()3f x g x -≤;(2)当x ∈R 时,()()4f x g x +≥恒成立,求实数a 的取值范围.【答案】(1)1,2⎡⎫-+∞⎪⎢⎣⎭;(2)[)1,+∞. 【解析】(1)当1a =时,不等式()()3f x g x -≤,等价于111x x --+≤; 当1x ≤-时,不等式化为()()111x x --++≤,即21≤,解集为∅;当11x -<<时,不等式化为()()111x x ---+≤,解得112x -≤<; 当1x ≥时,不等式化为()()111x x --+≤,即21-≤,解得1x ≥; 综上,不等式的解集为1,2⎡⎫-+∞⎪⎢⎣⎭. (2)当x ∈R 时,()()2112f x g x x a a x x a x a +=-+++≥---+12a a =++,()()4f x g x +≥等价于124a a ++≥,若1a <-,则()124a a -++≥,∴a ∈∅;若1a ≥-,则124a a ++≥,∴1a ≥.综上,实数a 的取值范围为[)1,+∞.【名师点睛】本题考查了绝对值不等式的解法,函数恒成立问题,体现了转化、分类讨论的数学思想.9.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】已知函数()=413f x x x -+--.(1)求不等式()4f x ≤的解集;(2)若函数1-=ax y 的图象与()f x 的图像有公共点,求a 的取值范围.【答案】(1){|16}x x -≤≤;(2)1(,2)[,)4-∞-+∞U .【解析】(1)由题意()4f x ≤即是417x x -+-≤,由绝对值的几何意义可得解集为{|16}x x -≤≤.(2)()22,10,1428,4x x f x x x x -≤⎧⎪=<<⎨⎪-≥⎩,所以a 的取值范围是1(,2)[,)4-∞-+∞U .【名师点睛】本题考查含绝对值的函数,求参数范围要先去函数绝对值,是常考题型. 10.【四川省宜宾市2019届高三第三次诊断性考试数学】设函数()()2241,f x x x g x x m x m=+-+=++-,其中0m ≠. (1)解不等式()4f x ≤; (2)设()(),f x g x 的值域分别为,A B ,若A B ⊆,求实数m 的取值范围.【答案】(1)713⎡⎤⎢⎥⎣⎦,;(2)][2,11,2⎡⎤--⎣⎦U . 【解析】(1)()33,25,2x x f x x x -≥⎧=⎨-+<⎩, 由4f x ≤()得,2334x x ≥-≤⎧⎨⎩或254x x <-+≤⎧⎨⎩,解得713x ≤≤, ∴4f x ≤()的解集为713⎡⎤⎢⎥⎣⎦,. (2)()33,25,2x x f x x x -≥⎧=⎨-+<⎩,根据函数的单调性得[3A =+∞,), ()()222g x x m x x m x m m m m ⎛⎫=++-≥+--=+ ⎪⎝⎭,当x =–m 时取等号, ∴B =2m m ⎡⎫++∞⎪⎢⎣⎭,时,A ⊆B , ∴23m m+≤,即23m m +≤, ∴2||320m m -+≤,化简得12m ≤≤,∴m 的取值范围[–2,–1]∪[1,2].【名师点睛】本题考查了绝对值不等式的解法,根据集合的关系求参数的取值范围,属中档题.11.【四川省百校2019届高三模拟冲刺卷文科数学】设函数()31,f x x x x =++-∈R ,不等式()6f x ≤的解集为M .(1)求M ;(2)当x M ∈时,()1f x a x ≥-恒成立,求正数a 的取值范围.【答案】(1){}|4 2 M x x =-≤≤;(2)(]0,1 【解析】(1)()()()()223,31431,221,x x f x x x x x x ⎧--<-⎪=++-=-≤≤⎨⎪+>⎩ 当3x <-时,226x --≤,解得43x -≤<-;当31x -≤≤时,46≤,可得31x -≤≤;当1x >时,226x +≤,解得12x <≤.综上,不等式()6f x ≤的解集{}|4 2 M x x =-≤≤.(2)当43x -≤≤-时,()1f x a x ≥-等价于()22a x a -≥+,得01a <≤, 当31x -≤≤时,()1f x a x ≥-等价于40ax a -+≥,得01a <≤,当12x <≤时,()1f x a x ≥-等价于()220a x a ---≤得06a <≤,综上,实数a 的取值范围为(]0,1.【名师点睛】本题考查了含有绝对值的不等式恒成立应用问题,也考查了分类讨论思想与集合的应用问题,是中档题.12.【四川省双流中学2019届高三第一次模拟考试数学】已知函数()13f x x x =-+-的最小值为m .(1)求m 的值并指出此时x 的取值集合:(2)求不等式()4f x ≤的解集.【答案】(1)2m =,{}|1 3 x x ≤≤;(2){}|0 4 x x ≤≤.【解析】(1)设()(),01,0,(3,0)P x A B ,13x x -+-的几何意义是P 点到,A B 两点距离之和,由平面几何知识可知:当P 点在线段AB 上时,13x x -+-有最小值,且最小值为2,即2m =,此时[]1,3x ∈,所以x 的取值集合为{}|1 3 x x ≤≤;(2)当3x ≥时,()13244434f x x x x x x =-+-=-≤⇒≤∴≤≤; 当13x <<时,()132413f x x x x =-+-=≤⇒<<;当1x ≤时,()13244001f x x x x x x =-+-=-+≤⇒≥⇒≤≤,综上所述 不等式()4f x ≤的解集为{}|0 4 x x ≤≤,【名师点睛】本题考查了利用绝对值的几何意义求函数的最小值问题,以及用零点法求绝对值不等式问题,考查了分类讨论思想、数形结合思想.13.【四川省内江市2019届高三第三次模拟考试数学】已知函数()(0,0)f x x a x b a b =-++>>.(1)当1a =,2b =时,解不等式()5f x x <+;(2)若()f x 的值域为[)2,+∞,证明:1111311a ab b +++≥++. 【答案】(1){|24}x x -<<;(2)见证明.【解析】(1)当1a =,2b =时,()125f x x x x =-++<+,①当2x <-时,不等式可化为215x x --<+,即2x >-,无解,②当21x -≤≤时,不等式可化为35x <+,即2x >-,得21x -<≤,③当1x >时,不等式可化为215x x +<+,即4x <,得14x <<,综上,不等式的解集为{|24}x x -<<.(2)()f x x a x b a b =-++≥+,∵()f x 的值域为[)2,+∞,0a >,0b >,∴2a b +=,故114a b +++=, ∴1112a b a b a b a b ++⎛⎫+=+ ⎪⎝⎭()11222222b a a b ⎛⎫=++≥+= ⎪⎝⎭,111111111411a b a b a b a b ++++++⎛⎫+=+ ⎪++++⎝⎭1112411b a a b ++⎛⎫=++ ⎪++⎝⎭()12214≥+=. ∴1111311a ab b +++≥++. 【名师点睛】本题考查了解绝对值不等式问题,考查基本不等式的性质以及分类讨论思想,转化思想,是一道中档题.14.【四川省攀枝花市2019届高三下学期第三次统考数学】设函数()|1|3||f x x x a =++-.(1)当1a =时,解不等式()22f x x ≤+;(2)若关于x 的不等式()4|22|f x x a ≥+-恒成立,求实数a 的取值范围.【答案】(1)1,22⎡⎤⎢⎥⎣⎦;(2)(,5][3,)-∞-+∞U . 【解析】(1)()|1|3||22f x x x a x =++-≤+, 可转化为14222x x x ≥⎧⎨-≤+⎩或114222x x x -<<⎧⎨-≤+⎩或12422x x x ≤-⎧⎨-≤+⎩, 解得12x ≤≤或112x ≤<或无解, 所以不等式的解集为1,22⎡⎤⎢⎥⎣⎦. (2)依题意,问题等价于关于x 的不等式|1|||4x x a ++-≥恒成立,即min (|1|||)4x x a ++-≥,又|1||||1||1|x x a x x a a ++-≥+-+=+,当(1)()0x x a +-≤时取等号. 所以|1|4a +≥,解得3a ≥或5a ≤-,所以实数a 的取值范围是(,5][3,)-∞-+∞U .【名师点睛】解绝对值不等式的基本方法有零点分段讨论法、图像法(或几何法)、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图像法(或几何法)求解时注意图像的正确刻画. 15.【四川省成都市外国语学校2019届高三一诊模拟考试数学】已知函数()22f x x x a =-++,a ∈R .(1)当1a =时,解不等式()5f x ≥;(2)若存在0x 满足00()23f x x +-<,求a 的取值范围.【答案】(1)4(,][2,)3-∞-+∞U ;(2)(7,1)--.【解析】(1)当1a =时,2215x x -++≥,由()5f x ≥得4(,][2,)3-∞-+∞U .当2x ≥时,不等式等价于2215x x -++≥,解得2x ≥,所以2x ≥; 当122x -<<时,不等式等价于2215x x -++≥,即2x ≥,所以此时不等式无解; 当12x ≤-时,不等式等价于2215x x ---≥,解得43x ≤-,所以43x ≤-. 所以原不等式的解集为()2222f x x x x a +-=-++.(2)()2422244x x a x a x a =-++≥+--=+43a +<.因为原命题等价于()221f x x x =-++, 所以43a +<,所以71a -<<-,即实数a 的取值范围为(7,1)--.【名师点睛】本题主要考查不等式的求解,根据绝对值不等式的解法,利用分类讨论的数学思想进行讨论是解决本题的关键,属于中档题.。

2019版高考数学精选地区10.1 椭圆及其性质

2019版高考数学精选地区10.1 椭圆及其性质

∴ c2 = 2 ,∴e= c = 6 .
a2 3
a3
方法技巧 椭圆离心率的求法:
(1)定义法:根据条件求出a,c,直接利用公式e= c 求解.
a
(2)方程法:根据已知条件建立关于a,b,c的齐次式,然后转化为关于e的方程求解.注意要根据e的
范围取舍方程的解.
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
A. x2 + y2 =1 32
B. x2 +y2=1 3
C. x2 + y2 =1 12 8
D. x2 + y2 =1 12 4
答案 A 由题意及椭圆的定义知4a=4 3 ,则a= 3 ,又 c = c = 3 ,∴c=1,∴b2=2,∴C的方程为 a 33
x2 + y2 =1,选A.
32
2019年7月10日
点到直线的距离公式求得△OPQ边PQ上的高,从而表示出△OPQ的面积,利用换元法和基本
不等式即可得到当面积取得最大值时k的值,从而得直线l的方程.
解题关键 对于第(2)问,正确选择参数,表示出△OPQ的面积,进而巧妙利用换元法分析最值 是解题的关键.
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
a4
解题关键 通过解三角形得到a与c的等量关系是解题的关键.
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
8
2.(2017课标Ⅲ,10,5分)已知椭圆C: ax22 + by22 =1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为
直径的圆与直线bx-ay+2ab=0相切,则C的离心率为 ( )
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【母题原题1】【2019年高考全国Ⅲ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去), M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【母题原题2】【2017年高考全国Ⅲ卷理数】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .13专题15 椭圆及其性质【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A .【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =ca; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【命题意图】要求掌握椭圆的定义、几何图形、标准方程及简单性质.主要考查考生的数学运算能力及考生对数形结合思想、转化与化归思想的应用.【命题规律】椭圆的定义、标准方程、几何性质一直是高考的命题热点,其中标准方程和几何性质考查比较频繁;直线与椭圆的位置关系常与向量、圆、三角形等知识综合考查,多以解答题的形式出现,难度中等偏上. 【答题模板】1.求椭圆的方程有两种方法(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程. (2)待定系数法.一般步骤如下:第一步,作判断.根据条件判断椭圆的焦点是在x 轴上,还是在y 轴上,或者是两个坐标轴上都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22xa+22yb=1(a>b>0)或22xb+22ya=1(a>b>0).第三步,找关系.根据已知条件,建立关于a,b,c的方程(组)(注意椭圆中固有的等量关系c2=a2–b2).第四步,定结果.解方程组,将解代入所设方程,得所求.注意当椭圆焦点位置不明确时,有两种解决方法:(1)分类讨论;(2)设椭圆方程为2xm+2yn=1(m>0,n>0,m≠n),或Ax2+By2=1(A>0,B>0,且A≠B).2.求椭圆离心率或其范围的方法(1)求出a,b或a,c的值,代入e2=22ca=222–a ba=1–(ba)2直接求;(2)根据条件得到关于a,b,c的齐次等式(不等式),结合b2=a2–c2转化为关于a,c的齐次等式(不等式),然后将该齐次等式(不等式)两边同时除以a或a2转化为关于e或e2的方程(不等式),解方程(不等式)即可得e(e的取值范围);(3)通过取特殊值或特殊位置,求出离心率.【知识总结】1.椭圆的几何性质标准方程22xa+22yb=1(a>b>0)22xb+22ya=1(a>b>0)图形几何性质范围–a≤x≤a,–b≤y≤b.–b≤x≤b,–a≤y≤a.对称性对称轴:x轴、y轴;对称中心:原点.焦点F1(–c,0),F2(c,0)F1(0,–c),F2(0,c)顶点A1(–a,0),A2(a,0),B1(0,–b),B2(0,b).A1(0,–a),A2(0,a),B1(–b,0),B2(b,0).轴线段A 1A 2,B 1B 2分别是椭圆的长轴和短轴,长轴长为2a ,短轴长为2b .焦距 |F 1F 2|=2c离心率e =c a 0,1) a ,b ,c 的关系 c 2=a 2–b 22.椭圆的通径(过焦点且垂直于长轴的弦)长为22b a,通径是最短的焦点弦.3.若P 是椭圆上一点,F 为椭圆的焦点,则|PF|∈[a –c ,a+c ],即椭圆上的点到焦点的距离的最大值为a+c ,最小值为a –c .4.椭圆的焦点三角形:椭圆上的点P (x 0,y )与两焦点构成的△PF 1F 2叫作焦点三角形.如图所示,设∠F 1PF 2=θ. (1)当P 为短轴端点时,θ最大. (2)12PF F S △=12|PF 1|·|PF 2|·sin θ=b 2·sin 1cos θθ+=b 2tan 2θ=c|y 0|,当|y 0|=b ,即P 为短轴端点时,12PF F S △取最大值,最大值为bc .(3)焦点三角形的周长为2(a+c ). 【方法总结】 1.椭圆定义的应用(1)利用定义确定平面内的动点的轨迹是否为椭圆.(2)利用定义解决与焦点三角形相关的周长、面积及最值问题.利用定义和余弦定理可求得|PF 1|·|PF 2|,进而求得焦点三角形的周长和面积.(3)已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解. 2.椭圆几何性质的应用技巧(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形. (2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如,–a ≤x ≤a ,–b ≤y ≤b ,0<e<1,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.1.【西藏拉萨市2019届高三下学期第二次模拟考试数学】设椭圆E 的两焦点分别为1F ,2F ,以1F 为圆心,12F F 为半径的圆与E 交于P ,Q 两点,若12PF F △为直角三角形,则E 的离心率为A B 1C .2D 1【答案】B【解析】如图所示,因为12PF F △为直角三角形,所以1290PF F ∠=︒,所以122,PF c PF ==,则22c a +=,解得1ce a==,故选B .【名师点睛】本题主要考查了椭圆的标准方程及其简单的几何性质的应用,其中解答中合理利用椭圆的定义和离心率的概念求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.【四川省宜宾市2019届高三第三次诊断性考试数学】已知椭圆22221x y a b+=的左右焦点分别为12,F F ,过1F 作倾斜角为45︒的直线与椭圆交于,A B 两点,且112F B AF =u u u r u u u r,则椭圆的离心率=A BC .2D .3【答案】D【解析】椭圆22221x y a b+=的左右焦点分别为12F F 、,过10F c -(,)且斜率为1k =的直线为y x c =+, 联立直线与椭圆方程22221x y a b y x c ⎧+=⎪⎨⎪=+⎩,消x 后,化简可得2222222220a b y cb y c b a b +++-=(), 因为直线交椭圆于A ,B ,设1122A x y B x y (,),(,),由韦达定理可得22222121222222,cb c b a b y y y y a b a b-+=-=++, 且112F B AF =u u u r u u u r,可得212y y =-,代入韦达定理表达式可得 2222221122222,2cb c b a b y y a b a b --=--=++,即222222222222cb c b a b a b a b ⎛⎫--= ⎪++⎝⎭, 化简可得229c 2a =,所以c e a ==D . 【名师点睛】本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,属于难题.3.【四川省雅安市2019届高三第三次诊断考试数学】已知点1(1,0)F -,2(1,0)F ,直线l :2y x =+.若以1F 、2F 为焦点的椭圆C 与直线l 有公共点,则椭圆C 的离心率最大值为AB .12 CD【答案】A【解析】椭圆C :2222x y a b+=1(a >b >0)的左右焦点分别是F 1(–1,0),F 2(1,0),可得c =1,则222212x y a b y x ⎧+=⎪⎨⎪=+⎩,可得(a 2+b 2)x 2+4a 2x +4a 2–a 2b 2=0,∆=16a4–4(a2+b2)(4a2–a2b2)≥0,可得4a2–(2a2–1)(5–a2)≥0,解得a≥,∴cea=≤=A.【名师点睛】本题考查椭圆的简单性质,直线与椭圆的位置关系的应用,考查计算能力.4.【四川省华文大教育联盟2019届高三第二次质量检测数学】已知椭圆C的方程为()222210x ya ba b+=>>,焦距为2c,直线:4l y x=与椭圆C相交于A,B两点,若2AB c=,则椭圆C的离心率为AB.34C.12D.14【答案】A【解析】设直线与椭圆在第一象限内的交点为(),A x y,则y x=,由2AB c=,可知OA c==c=,解得3x=,所以1,3A c⎫⎪⎪⎝⎭,把点A代入椭圆方程得到22221331c ca b⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e-+=,即()()2243230e e--=,因01e<<,所以可得e=A.【名师点睛】本题考查通过对已知条件的转化,将椭圆上一点的坐标用,,a b c表示,再代入椭圆方程求出离心率,属于中档题.5.【四川省华文大教育联盟2019届高三第二次质量检测考试数学】如图,已知椭圆()2222:10x yC a ba b+=>>的左、右焦点分别为()()12,0,,0,F c F c P-是椭圆C上一点,O为坐标原点,若1260F PF ∠=o,且PO =,则椭圆C 的离心率是A .2 BC .3D .23【答案】C【解析】设12,PF m PF n ==.由椭圆的定义,得2m n a +=,①.在12PF F △中,由余弦定理,得2222cos 60(2)m n mn c +-=︒,②.2-①②得:()2234mn a c =-,③将③代入②,得22224833m n a c +=+. 在1POF V 中,由余弦定理,得2221||2||cos PO c PO c FOP m +-⨯⨯∠=,④ 在2POF V 中,由余弦定理,得2222||2||cos PO c PO c F OP n +-⨯⨯∠=,⑤④+⑤,得2222222216482||22933a m n PO c c a c +=+=+=+,化简,得2223a c =,故e =,故选C . 【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.【2019年四川省达州市高考数学一诊】已知椭圆22221(0)x y C a b a b+=>>:的左右焦点分别为1F 、2F ,抛物线22224(,0)y cx c a b c ==->与椭圆C 在第一象限的交点为P ,若124cos 5PF F ∠=,则椭圆C 的离心率为ABCD【答案】D【解析】作抛物线的准线l ,则直线l 过点1F ,过点P 作PE 垂直于直线l ,垂足为点E , 由抛物线的定义知2PE PF =,易知,PE x ∥轴,则112EPF PF F ∠=∠,2112114cos cos 5PE PF EPF PF F PF PF ∴∠=∠===,设15(0)PF t t =>,则24PF t =,由椭圆定义可知,1229a PF PF t =+=, 在12PF F △中,由余弦定理可得222211221212||||2cos PF PF F F PF F F PF F =+-⋅∠, 整理得221212||890F F t F F t -+=,解得(124F F t =+或(124F F t =.当(124F F t =时,22c a =;当(124F F t =时,离心率为2429c e a ==. 综上所述,椭圆C.故选D . 【名师点睛】本题考查椭圆的性质,考查抛物线的定义以及余弦定理,考查计算能力与推理能力,属于中等题.7.【四川省成都市成都外国语学校2019届高三3月月考数学】已知椭圆:2221(02)4x y b b+=<<,左、右焦点分别为12,F F ,过1F 的直线l 交椭圆于,A B 两点,若22BF AF +u u u u v u u u u v的最大值为5,则b 的值是A .1 BC .32D【答案】C【解析】由0<b <2可知,焦点在x 轴上,∵过F 1的直线l 交椭圆于A ,B 两点,则|BF 2|+|AF 2|+|BF 1|+|AF 1|=2a +2a =4a =8,∴|BF 2|+|AF 2|=8–|AB |.当AB 垂直x 轴时|AB |最小,|BF 2|+|AF 2|值最大,此时|AB |=b 2,则5=8–b 2,解得b =C . 【名师点睛】本题考查直线与圆锥曲线的关系,考查了椭圆的定义,考查椭圆的通径公式,考查计算能力,属于中档题.8.【四川省绵阳市2019届高三第二次(1月)诊断性考试数学】已知椭圆C :221(4)4x y m m m +=>-的右焦点为F ,点A (−2,2)为椭圆C 内一点.若椭圆C 上存在一点P ,使得|PA |+|PF |=8,则m 的取值范围是A .(625⎤+⎦B .[9,25]C .(620⎤+⎦D .[3,5]【答案】A【解析】椭圆C :221(4)4x y m m m +=>-的右焦点F (2,0),左焦点为F '(–2,0),由椭圆的定义可得=|PF |+|PF '|,即|PF '|=–|PF |,可得|PA |–|PF '|=8–,由||PA |–|PF '||≤|AF '|=2,可得–2≤8–≤2,解得35≤≤,所以925m ≤≤,①又A 在椭圆内,所以4414m m +<-,所以8m –16<m (m –4),解得6m <-6m >+与①取交集得625m +<≤,故选A .【名师点睛】本题考查椭圆的定义和性质的运用,考查转化思想和运算能力,属于中档题.9.【四川省成都市高新区2019届高三上学期“一诊”模拟考试数学】已知椭圆22:1641C x y +=,则下列结论正确的是A .长轴长为12 BC .短轴长为14D【答案】D【解析】由椭圆方程221641x y +=化为标准方程可得22111164x y +=,所以11,,24a b c ===, 长轴为21a =,焦距22c =,短轴122b =,离心率2c e a ==,故选D .【名师点睛】本题考查了椭圆的标准方程及a 、b 、c 的含义,椭圆离心率的求法,属于基础题.10.【四川省棠湖中学2019届高三上学期第二次月考数学】已知F 是椭圆2222:1(0)x y E a b a b+=>>的左焦点,经过原点的直线l 与椭圆E 交于P ,Q 两点,若2PF QF =,且120PFQ ∠=︒,则椭圆E 的离心率为 A .13B .12C.3D.2【答案】C【解析】在PQF △中,设22,PF QF t ==()()1111,,,P x y Q x y --,右焦点E ,由椭圆的对称性,知PFQE 是平行四边形,所以在PEF △中,由余弦定理得222225234EF t t t c =-==,223,,3PF QF a t t a e +====C . 【名师点睛】本题的关键是要看到椭圆的对称性把PQF △,转化到焦点PEF △中,再应用比值及余弦定理,可得离心率.11.【云南省昆明市2019届高三1月复习诊断测试数学】已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,B 为C 的短轴的一个端点,直线1BF 与C 的另一个交点为A ,若2BAF ∆为等腰三角形,则12AF AF =A .13B .12C .23D .3【答案】A【解析】设|AF 1|=t (t >0),由椭圆的定义可得|AF 2|=2a –t ,由题意可知,|AF 2|>|BF 2|=a , 由于△BAF 2是等腰三角形,则|AB |=|AF 2|,即a +t =2a –t ,所以2at =,所以123,22a a AF AF ==,因此12AF 1AF 3=,故选A . 【名师点睛】本题考查直线与椭圆的综合问题,利用椭圆的定义是解决本题的关键,属于中档题.12.【贵州省贵阳市2019年高三5月适应性考试(二)数学】过椭圆()2222:10x y C a b a b+=>>的左焦点F 的直线过C 的上端点B ,且与椭圆相交于点A ,若3BF FA =u u u v u u u v,则C 的离心率为A .13 BCD【答案】D【解析】由题意可得()()0,,,0B b F c -,由3BF FA =u u u r u u u r,得4,33b A c ⎛⎫-- ⎪⎝⎭,点A 在椭圆上,则22224331b c a b ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=,整理可得:222221681,,992c c e e a a ⋅=∴===故选D . 【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2–c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).13.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知F 是椭圆22221(0)x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,若F 为过AF 的椭圆的弦的三等分点,则椭圆的离心率为A .13 BC .12D 【答案】B【解析】延长AF 交椭圆于点B ,设椭圆右焦点为F ',连接,AF BF ''.根据题意AF a ==,2AF FB =,所以2a FB =, 根据椭圆定义2BF BF a '+=,所以32a BF '=, 在AFF'△中,由余弦定理得22222224cos 22F A FA F F a c F AF F A FA a ''+--'∠=='⋅, 在AF B '△中,由余弦定理得2221cos 23F A AB BF F AB F A AB ''+-'∠=='⋅,所以22224123a c a -=,解得a =,所以椭圆离心率为c e a ==,故选B .【名师点睛】本题考查椭圆的定义,几何性质,余弦定理等,属于中档题.14.【贵州省黔东南州2019届高三下学期第一次模拟考试数学】椭圆2x +28y =1的离心率为A B .78C D .18【答案】A【解析】椭圆x 2+28y =1的离心率为c e a ====故选A . 【名师点睛】这个题目考查了已知椭圆的方程求椭圆的离心率的问题,根据222a b c =+可得到相应的参数值,进而得到离心率.15.【贵州省2019届高三11月37为A .13 BC .3D .3【答案】C【解析】∵22a b =b a =c e a ==.故选C .【名师点睛】熟练掌握离心率计算公式c e a == 16.【云南省玉溪一中2019届高三下学期第五次调研考试数学】设点P 是椭圆22221(0)x y a b a b+=>>上异于长轴端点上的任意一点,12,F F 分别是其左右焦点,O 为中心,2212||||||3PF PF OP b +=,则此椭圆的离心率为A .12 BC .2D .4【答案】C【解析】设()11,P x y ,则2211112122,,1x y PF a ex PF a ex a b=+=-+=,所以212||PF PF OP +=2222222222222221111111222b x x y a e x x y a y a b a b a a b ⎛⎫-++=++=++=+ ⎪⎝⎭,因此2222222322a b b a b a c e +=⇒=⇒=⇒=C . 17.【云南省昆明市2019届高三高考模拟(第四次统测)数学】己知椭圆E :22221(0)x y a b a b+=>>,直线l 过焦点且倾斜角为4π,以椭圆的长轴为直径的圆截l 所得的弦长等于椭圆的焦距,则椭圆的离心率为A .3 BC .3D .3【答案】D【解析】直线l 的方程为y x c =±,以椭圆的长轴为直径的圆截l 所得的弦为AB ,2AB c =,设OC AB ⊥,垂足为C ,则2OC c ==,在Rt OAC △中,22222222113()222OA AC OC a AB c a c c e =+⇒=+⇒=⇒=⇒=D . 【名师点睛】本题考查了椭圆的离心率的求法.考查了圆弦长公式,考查了运算能力.18.【四川省绵阳市2019届高三第二次(1月)诊断性考试数学】已知点P 是椭圆C :2219+=x y 上的一个动点,点Q 是圆E :()2243+-=x y 上的一个动点,则|PQ |的最大值是__________.【答案】【解析】由圆E :x 2+(y –4)2=3可得圆心为E (0,4),又点Q 在圆E 上,∴|PQ |≤|EP |+|EQ |=|EP (当且仅当直线PQ 过点E 时取等号).设P (x 1,y 1)是椭圆C 上的任意一点,则221119+=x y ,即21=x 9219-y .∴|EP |22211(4)=+-=x y 922211119(4)8()272-+-=-++y y y .∵[]111∈-,y ,∴当y 1=–12时,|EP |2取得最大值27,即|PQ|≤= ∴|PQ |的最大值为【名师点睛】本题考查了椭圆的标准方程及其性质的应用、二次函数的单调性,考查了推理能力和计算能力,属于难题.19.【四川省2018届高三春季诊断性测试数学】若椭圆2214x y m+=上一点到两个焦点的距离之和为3m -,则此椭圆的离心率为__________.【解析】当4m <时,由椭圆定义知34m -=,解得7m =,不符合题意,当4m >时,由椭圆定义知3m -=9m =,所以c e a ===【名师点睛】本题由于不知道椭圆的焦点位置,因此必须进行分类讨论,分析椭圆中22,a b 的取值,从而确定c ,计算椭圆的离心率.20.【贵州省贵阳市2019届高三5月适应性考试(二)数学】过椭圆2222:1x y C a b+=()0a b >>的左焦点F 的直线过C 的上端点B ,且与椭圆相交于另一个点A ,若3BF AF =,则C 的离心率为__________.【答案】2【解析】由题意可得()()0,,,0B b F c -,由3BF AF =可得4,33b A c ⎛⎫-- ⎪⎝⎭,点A 在椭圆上,则22224331b c a b ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=,整理可得:222221681,,992c c e e a a ⋅=∴===.【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式cea ;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2–c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).。

相关文档
最新文档