电磁感应中的动力学和能量问题计算题专练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的动力学和能量问题(计算题专练)
1、如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
(1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少?
(2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大?
(3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少?
解析(1)m1、m2运动过程中,以整体法有
m1g sin θ-μm2g=(m1+m2)a
a=2 m/s2
以m2为研究对象有F T-μm2g=m2a(或以m1为研究对象有m1g sin θ-F T=m1a)
F T=2.4 N
(2)线框进入磁场恰好做匀速直线运动,以整体法有
m1g sin θ-μm2g-B2L2v
R
=0
v=1 m/s
ab到MN前线框做匀加速运动,有
v2=2ax
x=0.25 m
(3)线框从开始运动到cd边恰离开磁场边界PQ时:
m1g sin θ(x+d+L)-μm2g(x+d+L)=1
2
(m1+m2)v21+Q
解得:Q=0.4 J
所以Q ab=1
4
Q=0.1 J
答案(1)2.4 N (2)0.25 m (3)0.1 J
2、如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状
态时速率为v,此时整个电路消耗的电功率为重力功率的3
4
.已知
重力加速度为g,导轨电阻不计,求:
(1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab
中的电流强度I;
(2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少?
(3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导
体棒ab 横截面的电荷量为q ,求这段距离是多少?
解析 (1)回路中的总电阻为:R 总=3
2
R
当导体棒ab 以速度v 匀速下滑时棒中的感应电动势为:E =BLv
此时棒中的感应电流为:I =
E R 总
此时回路的总电功率为:P 电=I 2
R 总 此时重力的功率为:P 重=mgv sin θ
根据题给条件有:P 电=3
4
P 重,解得:I =
mgv sin θ
2R
B =
32L mgR sin θ
2v
(2)设导体棒ab 与导轨间的滑动摩擦力大小为F f ,根据能量守恒定律可知:1
4mgv sin θ=F f v
解得:F f =1
4
mg sin θ
导体棒ab 减少的重力势能等于增加的动能、回路中产生的焦耳热以及克服摩擦力做功的和
mg sin θ·x =1
2mv 2+Q +F f ·x
解得:Q =34mg sin θ·x -1
2
mv 2
(3)S 断开后,回路中的总电阻为:R 总′=2R
设这一过程经历的时间为Δt ,这一过程回路中的平均感应电动势为E ,通过导体棒ab 的平
均感应电流为I ,导体棒ab 下滑的距离为s ,则:E =ΔΦΔt =BLs
Δt ,I =E R 总′=BLs 2R Δt
得:q =I Δt =BLs
2R
解得:s =
4q
3
2vR
mg sin θ
3、如图所示,固定的光滑平行金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.质量为m 、电阻为r 的导体棒与一端固定的弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v 0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k ,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R 的电流I 的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;
(3)导体棒最终静止时弹簧的弹性势能为E p ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q .
答案 (1)BLv 0R +r ,电流方向为b →a (2)g sin θ-B 2L 2v m (R +r ) (3)R R +r [12mv 20+(mg sin θ)2
k -E p ]
解析 (1)初始时刻,导体棒产生的感应电动势E 1=BLv 0