芝罘区数学反比例函数试题 (2)

合集下载

烟台中考数学反比例函数综合经典题

烟台中考数学反比例函数综合经典题

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y= (x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y= 的图象上,∴B点坐标为(,4);(2)解:设A(a,),则C(a,),B(,),∴AB=a﹣ = a,AC= ﹣ = ,∴S△ABC= AB•AC= × × = ,即△ABC的面积不发生变化,其面积为;(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴ = ,即 = ,∴EF= a,由(2)可知BG= a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.2.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.3.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.4.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。

(完整版)初三数学反比例函数单元测试题及答案.docx

(完整版)初三数学反比例函数单元测试题及答案.docx

反比例函数综合检测题一、选择题 (每小题 4 分,共 40 分)1、反比例函数y =n5图象经过点( 2, 3),则 n 的值是().xA 、- 2B 、- 1C 、 0D 、12、若反比例函数 y = k( k ≠ 0)的图象经过点(- 1, 2),则这个函数的图象一定经过点().x1, 2)D 、( 1, 2)A 、( 2,- 1)B 、(-C 、(- 2,- 1)223、已知甲、乙两地相距 s ( km ),汽车从甲地匀速行驶到乙地, 则汽车行驶的时间 t ( h )与行驶速度 v ( km/h )的函数关系图象大致是( )t/ht/h t/ht/hOv/(km/h)Ov/(km/h)Ov/(km/h)Ov/(km/h)A .B .C .D .4、若 y 与 x 成正比例, x 与 z 成反比例,则 y 与 z 之间的关系是().A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定5、一次函数 y = kx - k , y 随 x 的增大而减小,那么反比例函数y = k满足().xA 、当 x > 0 时, y > 0B 、在每个象限内, y 随 x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限6、如图,点 P 是 x 轴正半轴上一个动点,过点P 作 x 轴的垂y 线 PQ 交双曲线 y = 1于点 Q ,连结 OQ ,点 P 沿 x 轴正方向运动时,xRt △ QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量 Qopxm 的某种气体,当改变容积V 时,气体的密度 ρ也随之改变.ρ与 V 在一定范围内满足 ρ =m,它的图象如图所示,则该V气体的质量 m 为( ).A 、 1.4kgB 、5kgC 、 6.4kgD 、7kg8、若 A (- 3, y 1 ),B (- 2, y 2), C (- 1, y 3 )三点都在函数 y =-1的图象上,则 y 1, y 2, y 3 的大小x关系是().A 、 y 1 > y 2> y 3B 、y 1< y 2< y 3C 、 y 1= y 2= y 3D 、 y 1< y 3< y 29、已知反比例函数12m的图象上有 A ( x 1 1 2 21 2 <012,则 my =x,y )、B ( x ,y )两点,当 x< x 时, y< y的取值范围是().A 、 m < 0B 、 m > 0C 、 m <1D 、 m >110、如图,一次函数与反比例函数的图象相交于 A 、 B 两点,则图中使反比例函数的值小于一次函数的值的 x 的取值范围是().A 、 x <- 1B 、 x > 2C 、- 1<x < 0 或 x > 2D 、 x <- 1 或 0< x < 2 二、填空题 (每小题 5 分,共 25 分)11、若反比例函数y =b3和一次函数 y = 3x + b 的图象有两个交点,且有一个交点的纵坐标为6,则 bx= .12、反比例函数 y =( m + 2) x m 2m 的值为-10的图象分布在第二、四象限内,则 .13、如图,点 M 是反比例函数y = a( a ≠ 0)的图象上一点,x过 M 点作 x 轴、 y 轴的平行线,若S 阴影 = 5,则此反比例函数解析式为.14. 如图,直线 y = kx(k > 0)与双曲线 y4 交于 A ( x 1,y 1),xB ( x , y )两点,则 2xy -7xy1 2 = ___________.222115、如图,长方形 AOCB 的两边 OC 、 OA 分别位于 x 轴、 y 轴上,点 B 的坐标为 B (-20, 5), D 是 AB 边上的一点,3将△ ADO 沿直线 OD 翻折,使 A 点恰好落在对角线 OB 上的点 E 处,若点 E 在一反比例函数的图象上,那么该函数的解析式是.三、解答题 (共 60 分)16、( 12 分)如图,已知反比例函数y =-8与一次函数xy = kx + b 的图象交于 A 、 B 两点,且点 A 的横坐标和点 B 的纵坐标都是- 2.求:( 1)一次函数的解析式; ( 2)△ AOB 的面积.17、( 10 分)如图,一次函数 y= ax+ b 的图象与反比例函数y=k的图象交于 M 、N 两点.( 1)求反比例函数与一次函数的解析式;x( 2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.18、( 15 分)如图,已知反比例函数y=k的图象与一次函x数y= ax+b 的图象交于 M ( 2, m)和 N(- 1,- 4)两点.( 1)求这两个函数的解析式;( 2)求△ MON 的面积;( 3)请判断点 P( 4, 1)是否在这个反比例函数的图象上,并说明理由.。

2019-2020学年山东烟台芝罘区九下期末数学试卷

2019-2020学年山东烟台芝罘区九下期末数学试卷

【答案】 12 cm ; 【解析】过点 F 作 F M ∥ AB 交 BC 于 F ,
移项合并得:x2 − x − 2 = 0,
∆ = 1 + 8 = 9, ∴ x = 1 ± 3,
2 解得:x1 = 2,x2 = −1.
【知识点】因式分解法;
15. 如图,在直角坐标系中,每个小方格的边长均为 1, △AOB 与 △COD 是以原点 O 为位似中心的位似图 形,相似比为 1 : 2,点 A,C,D 都在格点上,则点 B 的坐标是 _______ .
11. 如图,直角三角形的直角顶点在坐标原点上,∠OAB =
∴ a2 + 2a + b = (a2 + a) + (a + b) = 2020 − 1 = 2019.
30◦,若点 A 在反比例函数 y = 6 (x > 0) 的图象上,则 x
故选 C.
经过点 B 的反比例函数解析式为 ( )
【知识点】一元二次方程根与系数的关系;
【解析】 a,b 是方程 x2 + x − 2020 = 0 的两个实数根,
由根与系数的关系得:a
+
b
=
1 −1
=
−1,
∵ a 是方程 x2 + x − 2020 = 0 的实数根,
∴ a2 + a − 2020 = 0,
则 DG ∥ CH,
∴ △ODG ∽ △OCH, ∴ DG = OD ,
CH OC ∵ 栏杆从水平位置 AB 绕固定点 O 旋转到位置 DC,
∵ 四边形 ABCD 为矩形,
∴ AB = CD,BC = AD,∠ADC = ∠BCD = 90◦, AD ∥ BC,

【初三数学】烟台市九年级数学下(人教版)第二十六章《反比例函数》单元测试卷(含答案)

【初三数学】烟台市九年级数学下(人教版)第二十六章《反比例函数》单元测试卷(含答案)

人教版九年级数学下第26章 反比例函数单元测试题及答案一、选择题(每小题3分,共30分)1、下列函数中 y 是x 的反比例函数的是( )A 21x y =B xy=8C 52+=x yD 53+=x y2、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、1 3、函数与在同一平面直角坐标系中的图像可能是( )。

4、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则( )A 、x 1>x 2>x 3B 、x 1>x 3>x 2C 、x 3>x 2>x 1D 、x 3>x 1>x 2 5、如图4,A 、C 是函数y=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1, Rt △COD 的面积为S 2,则( )A 、S 1>S 2;B 、S 1<S 2;C 、S 1 =S 2;D 、S 1和S 2的大小关系不能确定6、在反比例函数的图象的每一条曲线上,的增大而增大,则的值可以是( ) A .B .0C .1D .27、如图,正比例函数y=x 与反比例y=的图象相交于A 、C 两点,AB ⊥x轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为( ) A 、1 B 、 C 、2 D 、8、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).1ky x-=y x 都随k 1-A 、m <0B 、m >0C 、m <21 D 、m >21 9、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 10、若反比例函数xy 4-=的图象经过点(a ,-a ),则a 的值为( ) A 、2; B 、±2; C 、-2; D 、±4二、填空题(每小题4分,共40分)11、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 .12、函数22)2(--=ax a y 是反比例函数,则a 的值是13、正比例函数5y x =-人教版数学九年级下册第二十六章 反比例函数 章末专题训练含答案人教版数学九年级下册第二十六章 反比例函数 章末专题训练一、选择题1.某反比例函数的图象过点 ,则此反比例函数解析式为 C A.B.C.D.2.下列式子中,y 是x 的反比例函数的是 D A.B.C.D.3.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( C )A. B.C. D.4.若点A (﹣2,3)在反比例函数y=的图象上,则k 的值是( A )A.﹣6 B.﹣2 C.2 D.65.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图26-2-2所示,则下列说法正确的是( D )图26-2-2A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷6.如图,已知点A在反比例函数上,轴,垂足为点C,且的面积为4,则此反比例函数的表达式为 CA.B.C.D.7.下列关系中,两个量之间为反比例函数关系的是 DA. 正方形的面积S与边长a的关系B. 正方形的周长l与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,长a与宽b之间的关系8. 函数y=-与y=2x的图象没有交点,则k的取值范围是( D )A. k<0B. k<1C. k>0D. k>19.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示.P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是( A )A.0.5米 B.5米 C.1米 D.0.2米10.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)之间满足函数解析式ρ=kV(k为常数,k≠0),其图象如图26-2-4所示,则k的值为( A )图26-2-4A.9 B.-9 C.4 D.-4二、填空题11.若函数的图象经过点,点,写出一个符合条件的函数表达式______ .【答案】12.函数是y关于x的反比例函数,则______.【答案】313.如图,点A,B是双曲线y=上的点,分别经过A,B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=.【答案】414.已知反比例函数y=K/X 的图象经过点(﹣3,﹣1),则k= . 【答案】315.如图,在 中, , ,点C 在OA 上, , 的圆心P 在线段BC 上,且 与边AB ,AO 都相切 若反比例函数的图象经过圆心P ,则 ______ .【答案】三、解答题16.如图,在四边形OABC 中, ,∠ ,点A ,B 的坐标分别为 , ,点D 为AB 上一点,且,双曲线经过点D ,交BC 于点E 求双曲线的解析式; 求四边形ODBE 的面积.解: 作 轴于M ,作 轴于N ,如图, 点A ,B 的坐标分别为 , ,, , , ,∽ ,,即,, , , 点坐标为 ,把 代入得人教版数学九年级下册 第二十六章 反比例函数 单元训练题 含答案人教版数学九年级下册 第二十六章 反比例函数 单元训练题1. 函数y =m (m -1)x是反比例函数,则m 必须满足( )A .m ≠1B .m ≠0或m ≠1C .m ≠0D .m ≠0且m ≠12. 若反比例函数y =m +1x的图象在第一、三象限,则m 的取值范围是( )A .m >-1B .m ≥-1C .m <-1D .m ≤-1 3. 如图所示,直线y =x 与双曲线y =kx (k>0)的一个交点为A ,且OA=2,则k 的值为( )A .1B .2 C. 2 D .2 24.对于反比例函数y =2x ,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象经过原点C .它的图象在第一、三象限D .当x>0时,y 随x 的增大而增大5.已知两点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数y =3x 的图象上,当x 1>x 2>0时,下列正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0D .y 2<y 1<06.若双曲线y =kx 与直线y =2x +1的一个交点的横坐标为-1,则k的值为( )A .-1B .1C .-2D .27.已知过原点的一条直线与反比例函数y =kx (k ≠0)的图象交于A ,B两点,若A 点坐标为(a ,b),则B 点坐标为( )A .(a ,b)B .(b ,a)C .(-b ,-a)D .(-a ,-b) 8.反比例函数y =kx 在第一象限的图象如图所示,则k 的值可能是( )A .1B .2C .3D .49. 如图,已知反比例函数y =kx(x>0),则k 的范围是( )A .1<k<2B .2<k<3C .2<k<4D .2≤k ≤410.如图所示是三个反比例函数y =k 1x ,y =k 2x ,y =k 3x 在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系是( )A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2 11. 反比例函数y =13x的比例系数为_________.12.已知一个函数的图象与y =6x的图象关于y 轴对称,则该函数的表达式为____.13.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系为 ___________.(不考虑x 的取值范围) 14.有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图,当V =2 m 3时,气体的密度是____kg/m 3.15.如图,P 是反比例函数y =kx 的图象上的一点,过点P 分别作x 轴、y 轴的垂线,得图中阴影部分的面积为6,则这个反比例函数的比例系数是____.16.反比例函数y =8x的图象与一次函数y =kx +k 的图象在第一象限交于点B (4,n ),则k =_____,n =_______.17.直线y =ax +b (a >0)与双曲线y =3x相交于A (x 1,y 1),B (x 2,y 2)两点,则x 1y 1+x 2y 2的值为____.18.如图,在反比例函数y =2x(x >0)的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=___________.19. 已知反比例函数y =(2k -3)xk 2-5的图象在所在的象限内,y 随x 的增大而增大,则k =______.20. 直线y =kx +b 过第一、三、四象限,则双曲线y =kbx的图象在第__________象限.21. 下列各式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)x =-25y ;(2)-xy -2=0.22. 在下列函数中,m 为何值时,y 是x 的反比例函数? (1)y =m 2-4x;(2)y =(m +1)xm 2-2.23. 已知点A(x 1,y 1)和点B(x 2,y 2)都在y =6x的图象上,若x 1·x 2=4,求y 1·y 2的值.24. 如图,一次函数y =kx +b 与反比例函数y =6x (x>0)的图象交于A(m ,6),B(3,n)两点.(1) 求一次函数的表达式;(人教版初中数学九年级下册第二十六章《反比例函数》单元测试解析板一、选择题(共10小题,每小题分,共0分) 1.反比例函数y =(k 为非零常数)的图象在其所在象限内,y 的值随x 值的增大而增大,那么函数y = x 的图象经过第几象限( )A . 一、二B . 一、三C.二、三D.二、四2.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)成反比例,其函数图象如图所示,则电流I与电阻R之间的函数关系式为()A.I=B.I=C.I=D.I=3.日常生活中有许多现象应用了反比例函数,下列现象:①购买同一商品,买的越多,花钱越多;②百米赛跑时,用时越短,成绩越好;③把浴盆放满水,水流越大,用时越短;④从网上下载同一文件,网速越快,用时越少.其中符合反比例关系的现象有()A.1个B.2个C.3个D.4个4.下列问题中,两个变量成反比例的是()A.长方形的周长确定,它的长与宽B.长方形的长确定,它的周长与宽C.长方形的面积确定,它的长与宽D.长方形的长确定,它的面积与宽5.)函数y=(a-2)是反比例函数,则a的值是()A.1或-1B.-2C.2D.2或-26.下列函数在每一个象限内y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=D.y=2x7.若反比例函数y=的图象经过点(1,4),则它的图象也一定经过的点是()A.(-1,-4)B.(1,-4)C.(4,-1)D.(-1,4)8.已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限9.一块砖所受的重力为14.7 N,它的长、宽、高分别为20 cm、10 cm、5 cm,将砖平放时对地面的压强是()A.735PaB.753PaC.73.5PaD.75.3Pa10.当三角形的面积一定时,三角形的底和底边上的高是()A.正比例函数B.反比例函数C.一次函数D.二次函数分卷II二、填空题(共10小题,每小题分,共0分)11.如图,点A、B在函数y=(x>0)的图象上,过点A、B分别向x、y轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2=__________.12.我校滨湖校区计划劈出一块面积为100 m2的长方形土地做花圃,请写出这个花圃的长y(m)与宽x(m)的函数关系式_____________________.13.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)14.已知反比例函数y=的图象如下,则k的值可为__________.(写出满足条件的一个k 的值即可)15.某种灯的使用寿命为8 000小时,那么它可使用的天数y与平均每天使用的小时数x之间的函数关系式为________________.16.二氧化碳的密度ρ(kg/m3)关于其体积V(m3)的函数关系式如图所示,那么函数关系式是__________.17.已知反比例函数y=,当y=6时,x=__________.18.新学期开始时,有一批课本要从A城市运到B县城,如果两地路程为500米,车速为每小时x千米,从A城市到B县城所需时间为y小时,那么y与x的函数关系式是__________.19.已知反比例函数y=(b为常数且不为0 )的图象在二、四象限,则一次函数y=x+b的图象不经过第________象限.20.如图,过原点O的直线与反比例函数y=的图象相交于点A(1,3)、B(x,y),则点B的坐标为________________.三、解答题(共8小题,每小题分,共0分)21.已知一个长方体的体积是100 cm3,它的长是y cm,宽是10 cm,高是x cm.(1)写出y与x之间的函数关系式;(2)当x=2 cm时,求y的值.22.画出函数y=的图象.23.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min时,材料温度降为600 ℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作.那么锻造的操作时间有多长?24.如图,点P是双曲线y=第二象限上的点,且P(-2,3),在这条双曲线第二象限上有点Q,且PQO的面积为8,求点Q的坐标.25.已知反比例函数y=(k≠0,k是常数)的图象过点P(-3,5).(1)求此反比例函数的解析式;(2)在函数图象上有两点(a1,b1)和(a2,b2),若a1<a2,试判断b1与b2的大小关系.26.k为何值时,y=(k2+k)是反比例函数.27.如图,Rt ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB =2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.28.下列函数中,哪些表示y是x的反比例函数:(1)y=;(2)y=;(3)xy=6;(4)3x+y=0;(5)x-2y=1;(6)3xy+2=0.答案解析1.【答案】D【解析】∵反比例函数y=(k为非零常数)的图象在其所在象限内,y的值随x值的增大而增大,∴k<0,∴<0,∴函数y=x的图象经过二四象限.故选D.2.【答案】A【解析】设所求函数解析式为I=,∵(4,6)在所求函数解析式上,∴k=4×6=24.故选A.3.【答案】C【解析】①购买同一商品,买的越多,花钱越多是正比例关系,故本小题错误;②百米赛跑时,用时越短,成绩越好是反比例关系,故本小题正确;③把浴盆放满水,水流越大,用时越短是反比例关系,故本小题正确;④从网上下载同一文件,网速越快,用时越少是反比例关系,故本小题正确.故选C.4.【答案】C【解析】A.长方形的周长=2×(长+宽),即长和宽的和为定值,所以根据正比例的概念应该是长和宽成正比例.故本选项错误;B.长方形的周长=2×(长+宽),所以长=周长-宽,即周长的一半长和宽的和为定值,所以根据正比例的概念应该是周长和宽成正比例.故本选项错误;C.长方形的面积=长×宽,即长和宽的乘积为定值,所以根据反比例的概念应该是长和宽成反比例;故本选项正确;D.长方形的面积=长×宽,即长和宽的乘积为定值,所以根据正比例的概念应该是长和宽成正比例;故本选项错误;故选C.5.【答案】A【解析】∵函数y=(a-2)是反比例函数,∴a2-2=-1,a-2≠0.解得a=±1.故选A.6.【答案】D【解析】A.一次函数y=-x+1中k=-1<0,y随着x的增大而减小,不符合题意;B.二次函数y=x2-1的对称轴为x=0,开口向上,当x>0时y随着x的增大而增大,不符合题意;C.反比例函数中k=1>0,在每一象限内y随着x的增大而减小,不符合题意;D.y=2x中k=2>0,y随着x的增大而增大,符合题意,故选D.7.【答案】A【解析】∵反比例函数y=的图象经过点(1,4),∴k=1×4=4,∴y=,∴函数图象上点的横、纵坐标的积是定值4,即xy=4,∴(-1,-4)在函数图象上.故选A.8.【答案】A【解析】设反比例函数解析式为y=(k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选A.9.【答案】A【解析】当砖平放时,与地面的接触面积为20×10=200(cm2)=0.02(m2).所以压强P===735(Pa).故选A.10.【答案】B【解析】由于三角形面积=×底×高,所以面积一定时,底×高=定值,即底和高成反比例.三角形的底×高=三角形面积×2(定值),即三角形的底和高成反比例.故选B.11.【答案】4【解析】∵点A、B在函数y=(x>0)的图象上,∴S1+S=4,S阴影+S2=4.阴影∴S1+S2=4.12.【答案】y=【解析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.由题意,得y关于x的函数解析式是y=.13.【答案】①③④【解析】①当x=-1时,y=2,即图象必经过点(-1,2);②k=-2<0,每一象限内,y随x的增大而增大;③k=-2<0,图象在第二、四象限内;④k=-2<0,每一象限内,y随x的增大而增大,若x>1,则y>-2.故答案为①③④.14.【答案】3(答案不唯一,只要满足k>-2即可)【解析】根据反比例函数的图象经过的象限即可确定k的值.根据题意,可得反比例函数y=的图象在一、三象限,有k+2>0,解得k>-2.故k的值可为大于一2的实数都可以,答案不唯一.15.【答案】y=【解析】它可使用的天数=总寿命÷平均每天使用的小时数,把相关数值代入即可.∵某种灯的使用寿命为8 000小时,∴可使用的天数y与平均每天使用的小时数x之间的函数关系式为y=.16.【答案】ρ=【解析】由题意,得ρ与V成反比例函数的关系,设ρ=,根据图象信息,可得:当ρ=0.5时,V=19.8,∴k=ρV=19.8×0.5=9.9,即可得ρ=.17.【答案】【解析】当y=6时,x==.故答案为.18.【答案】y=(x>0)【解析】根据时间=路程÷速度可以列出关系式,注意时间应大于0.由题意,得y与x的函数关系式y=(x>0).19.【答案】二【解析】∵反比例函数y=(b为常数且不为0)的图象在二、四象限,∴b<0,∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.20.【答案】(-1,-3)【解析】∵点A与B关于原点对称,A(1,3),∴B点的坐标为(-1,-3).故答案是(-1,-3).21.【答案】解(1)由题意,得10xy=100,∴y=(x>0);(2)当x=2 cm时,y==5(cm).【解析】(1)长方体的体积等于=长×宽×高,把相关数值代入即可求解;(2)把x=2代入(1)的函数解析式可得y的值.22.【答案】解列表如下:描点,连线,画出函数图象,如图所示.【解析】找出部分反比例函数图象上点的坐标,列表、描点、连线即可画出反比例函数图象.23.【答案】解(1)停止加热时,设y=,由题意,得600=,解得k=4 800,当y=800时,800=,解得x=6,点B的坐标为(6,800);材料加热时,设y=ax+32,由题意,得800=6a+32,解得a=128,所以,材料加热时,y与x的函数关系式为y=128x+32(0≤x<6),停止加热进行锻造时y与x的函数关系式为y=(x≥6).(2)把y=480代入y=中,10-6=4分钟,所以锻造的操作时间为4分钟.【解析】(1)根据题意,材料煅烧时,温度y与时间x成一次函数关系,煅烧结束时,温度y 与x时间成反比例函数关系,将题中数据代入,用待定系数法可得两个函数的关系式;(2)把y=480代入y=中,求解得出答案即可.24.【答案】解作PN⊥x轴于N,QM⊥x轴于M,如图,把P(-2,3)代入y=,得k=-2×3=-6,所以反比例函数解析式为y=-,∵S PNO=S QOM=×|-6|=3,∴S=S PQO=8,梯形PQMN设Q的坐标为,∴×|-2-t|=8,当×(-2-t)=8,解得t1=(舍去),t2=-6,当×(2+t)=8,解得t1=-(,t2=6(舍去),∴Q点坐标为(-6,1)或.【解析】作PN⊥x轴于N,QM⊥x轴于M,先把P点坐标代入y=,得k=6,则反比例函数解析式为y=-,根据反比例函数y=(k≠0)系数k的几何意义,得S PNO=S QOM=3,所以S梯形PQMN=S PQO=8,设Q的坐标为,利用梯形的面积公式得到×|-2-t|=8,然后解两个方程求出t,再写出满足条件的Q的坐标.25.【答案】解(1)∵将P(-3,5)代入反比例函数y=(k≠0,k是常数),得5=,∴反比例函数表达式为y=-;(2)①当两点(a1,b1)和(a2,b2)在同一个分支上,由反比例人教版初中数学九年级下册第二十六章《反比例函数》单元测试解析板一、选择题(共10小题,每小题分,共0分)1.反比例函数y=(k为非零常数)的图象在其所在象限内,y的值随x值的增大而增大,那么函数y=x的图象经过第几象限()A.一、二B.一、三C.二、三D.二、四2.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)成反比例,其函数图象如图所示,则电流I与电阻R之间的函数关系式为()A.I=B.I=C.I=D.I=3.日常生活中有许多现象应用了反比例函数,下列现象:①购买同一商品,买的越多,花钱越多;②百米赛跑时,用时越短,成绩越好;③把浴盆放满水,水流越大,用时越短;④从网上下载同一文件,网速越快,用时越少.其中符合反比例关系的现象有()A.1个B.2个C.3个D.4个4.下列问题中,两个变量成反比例的是()A.长方形的周长确定,它的长与宽B.长方形的长确定,它的周长与宽C.长方形的面积确定,它的长与宽D.长方形的长确定,它的面积与宽5.)函数y=(a-2)是反比例函数,则a的值是()A.1或-1B.-2C.2D.2或-26.下列函数在每一个象限内y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=D.y=2x7.若反比例函数y=的图象经过点(1,4),则它的图象也一定经过的点是()A.(-1,-4)B.(1,-4)C.(4,-1)D.(-1,4)8.已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限9.一块砖所受的重力为14.7 N,它的长、宽、高分别为20 cm、10 cm、5 cm,将砖平放时对地面的压强是()A.735PaB.753PaC.73.5PaD.75.3Pa10.当三角形的面积一定时,三角形的底和底边上的高是()A.正比例函数B.反比例函数C.一次函数D.二次函数分卷II二、填空题(共10小题,每小题分,共0分)11.如图,点A、B在函数y=(x>0)的图象上,过点A、B分别向x、y轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2=__________.12.我校滨湖校区计划劈出一块面积为100 m2的长方形土地做花圃,请写出这个花圃的长y(m)与宽x(m)的函数关系式_____________________.13.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)14.已知反比例函数y=的图象如下,则k的值可为__________.(写出满足条件的一个k 的值即可)15.某种灯的使用寿命为8 000小时,那么它可使用的天数y与平均每天使用的小时数x之间的函数关系式为________________.16.二氧化碳的密度ρ(kg/m3)关于其体积V(m3)的函数关系式如图所示,那么函数关系式是__________.17.已知反比例函数y=,当y=6时,x=__________.18.新学期开始时,有一批课本要从A城市运到B县城,如果两地路程为500米,车速为每小时x千米,从A城市到B县城所需时间为y小时,那么y与x的函数关系式是__________.19.已知反比例函数y=(b为常数且不为0 )的图象在二、四象限,则一次函数y=x+b的图象不经过第________象限.20.如图,过原点O的直线与反比例函数y=的图象相交于点A(1,3)、B(x,y),则点B的坐标为________________.三、解答题(共8小题,每小题分,共0分)21.已知一个长方体的体积是100 cm3,它的长是y cm,宽是10 cm,高是x cm.(1)写出y与x之间的函数关系式;(2)当x=2 cm时,求y的值.22.画出函数y=的图象.23.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min时,材料温度降为600 ℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作.那么锻造的操作时间有多长?24.如图,点P是双曲线y=第二象限上的点,且P(-2,3),在这条双曲线第二象限上有点Q,且PQO的面积为8,求点Q的坐标.25.已知反比例函数y=(k≠0,k是常数)的图象过点P(-3,5).(1)求此反比例函数的解析式;(2)在函数图象上有两点(a1,b1)和(a2,b2),若a1<a2,试判断b1与b2的大小关系.26.k为何值时,y=(k2+k)是反比例函数.27.如图,Rt ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.28.下列函数中,哪些表示y是x的反比例函数:(1)y=;(2)y=;(3)xy=6;(4)3x+y=0;(5)x-2y=1;(6)3xy+2=0.答案解析1.【答案】D【解析】∵反比例函数y=(k为非零常数)的图象在其所在象限内,y的值随x值的增大而增大,∴k<0,∴<0,∴函数y=x的图象经过二四象限.故选D.2.【答案】A【解析】设所求函数解析式为I=,∵(4,6)在所求函数解析式上,∴k=4×6=24.故选A.3.【答案】C【解析】①购买同一商品,买的越多,花钱越多是正比例关系,故本小题错误;②百米赛跑时,用时越短,成绩越好是反比例关系,故本小题正确;③把浴盆放满水,水流越大,用时越短是反比例关系,故本小题正确;④从网上下载同一文件,网速越快,用时越少是反比例关系,故本小题正确.故选C.4.【答案】C【解析】A.长方形的周长=2×(长+宽),即长和宽的和为定值,所以根据正比例的概念应该是长和宽成正比例.故本选项错误;B.长方形的周长=2×(长+宽),所以长=周长-宽,即周长的一半长和宽的和为定值,所以根据正比例的概念应该是周长和宽成正比例.故本选项错误;C.长方形的面积=长×宽,即长和宽的乘积为定值,所以根据反比例的概念应该是长和宽成反比例;故本选项正确;D.长方形的面积=长×宽,即长和宽的乘积为定值,所以根据正比例的概念应该是长和宽成正比例;故本选项错误;故选C.5.【答案】A【解析】∵函数y=(a-2)是反比例函数,∴a2-2=-1,a-2≠0.解得a=±1.故选A.6.【答案】D【解析】A.一次函数y=-x+1中k=-1<0,y随着x的增大而减小,不符合题意;B.二次函数y=x2-1的对称轴为x=0,开口向上,当x>0时y随着x的增大而增大,不符合题意;C.反比例函数中k=1>0,在每一象限内y随着x的增大而减小,不符合题意;D.y=2x中k=2>0,y随着x的增大而增大,符合题意,故选D.7.【答案】A【解析】∵反比例函数y=的图象经过点(1,4),∴k=1×4=4,∴y=,∴函数图象上点的横、纵坐标的积是定值4,即xy=4,∴(-1,-4)在函数图象上.故选A.8.【答案】A【解析】设反比例函数解析式为y=(k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选A.9.【答案】A【解析】当砖平放时,与地面的接触面积为20×10=200(cm2)=0.02(m2).所以压强P===735(Pa).故选A.10.【答案】B【解析】由于三角形面积=×底×高,所以面积一定时,底×高=定值,即底和高成反比例.三角形的底×高=三角形面积×2(定值),即三角形的底和高成反比例.故选B.11.【答案】4【解析】∵点A、B在函数y=(x>0)的图象上,∴S1+S=4,S阴影+S2=4.阴影∴S1+S2=4.12.【答案】y=【解析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.由题意,得y关于x的函数解析式是y=.13.【答案】①③④【解析】①当x=-1时,y=2,即图象必经过点(-1,2);②k=-2<0,每一象限内,y随x的增大而增大;③k=-2<0,图象在第二、四象限内;④k=-2<0,每一象限内,y随x的增大而增大,若x>1,则y>-2.故答案为①③④.14.【答案】3(答案不唯一,只要满足k>-2即可)【解析】根据反比例函数的图象经过的象限即可确定k的值.根据题意,可得反比例函数y=的图象在一、三象限,有k+2>0,解得k>-2.故k的值可为大于一2的实数都可以,答案不唯一.15.【答案】y=【解析】它可使用的天数=总寿命÷平均每天使用的小时数,把相关数值代入即可.∵某种灯的使用寿命为8 000小时,∴可使用的天数y与平均每天使用的小时数x之间的函数关系式为y=.16.【答案】ρ=【解析】由题意,得ρ与V成反比例函数的关系,设ρ=,根据图象信息,可得:当ρ=0.5时,V=19.8,∴k=ρV=19.8×0.5=9.9,即可得ρ=.17.【答案】【解析】当y=6时,x==.故答案为.18.【答案】y=(x>0)【解析】根据时间=路程÷速度可以列出关系式,注意时间应大于0.由题意,得y与x的函数关系式y=(x>0).19.【答案】二【解析】∵反比例函数y=(b为常数且不为0)的图象在二、四象限,∴b<0,∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.20.【答案】(-1,-3)【解析】∵点A与B关于原点对称,A(1,3),∴B点的坐标为(-1,-3).故答案是(-1,-3).21.【答案】解(1)由题意,得10xy=100,∴y=(x>0);(2)当x=2 cm时,y==5(cm).【解析】(1)长方体的体积等于=长×宽×高,把相关数值代入即可求解;(2)把x=2代入(1)的函数解析式可得y的值.22.【答案】解列表如下:描点,连线,画出函数图象,如图所示.【解析】找出部分反比例函数图象上点的坐标,列表、描点、连线即可画出反比例函数图象.23.【答案】解(1)停止加热时,设y=,由题意,得600=,解得k=4 800,当y=800时,800=,解得x=6,点B的坐标为(6,800);材料加热时,设y=ax+32,由题意,得800=6a+32,解得a=128,所以,材料加热时,y与x的函数关系式为y=128x+32(0≤x<6),停止加热进行锻造时y与x的函数关系式为y=(x≥6).(2)把y=480代入y=中,。

山东烟台市九年级数学下册第二十六章《反比例函数》经典习题

山东烟台市九年级数学下册第二十六章《反比例函数》经典习题

一、选择题1.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数my x=的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-82.如图,过反比例函数()0ky x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .53.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5y x=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123y y y <<B .312y y y <<C .132y y y <<D .231y y y <<4.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .55.如图,正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式kax x<的解集为( )A .2x <-或2x >B .2x <-或02x <<C .20x -<<或02x <<D .20x -<<或2x >6.如图,ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为( )A .3B .4C .5D .67.反比例函数y =kx的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( ) A .(3,2)B .(﹣3,﹣2)C .(﹣3,2)D .(﹣2,﹣3)8.已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( ) A . B .C.D.9.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.10.下列函数中图象不经过第三象限的是()A.y=﹣3x﹣2 B.y=2xC.y2x+1 D.y=3x+211.若函数5yx=与1y x=+的图像交于点(),A a b,则11a b-的值为()A.15-B.15C.5-D.512.已知反比例函数kyx=的图象过二、四象限,则一次函数y kx k=+的图象大致是()A .B .C .D .13.如图,点A 、C 为反比例函数y=(0)kx x<图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为32时,k 的值为( )A .4B .6C .﹣4D .﹣614.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y <D .若120x x <<,则12y y >15.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题16.若一次函数32y x =-与反比例函数ky x=的图象有两个不同的交点,则k 的取值范围是________.17.在平面直角坐标系中,若直线2y x =-+与反比例函数ky x=的图象有2个公共点,则k 的取值范围是_________.18.如图,已知双曲线()0ky x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.19.如图,一次函数1y k x b =+的图象过点()0,4A ,且与反比例函数()20k y x x=>的图象相交于B 、C 两点,若2BC AB =,则12k k ⋅的值为______.20.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数ky x =(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.21.如图,四边形OABC 和ADEF 均为正方形,反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N ,则正方形ADEF 的边长为___22.如图,△DEF 的三个顶点分别在反比例函数=xy n 与()0,0xy m x m n =>>>的图象上,若DB ⊥x 轴于B 点,FE ⊥x 轴于C 点,若B 为OC 的中点,△DEF 的面积为6,则m 与n 的关系式是____.23.如图,直线y =34-x +6与反比例函数y =kx(k >0)的图象交于点M 、N ,与x 轴、y 轴分别交于点B 、A ,作ME ⊥x 轴于点E ,NF ⊥x 轴于点F ,过点E 、F 分别作EG ∥AB ,FH ∥AB ,分别交y 轴于点G 、H ,ME 交HF 于点K ,若四边形MKFN 和四边形HGEK 的面积和为12,则k 的值为_____.24.如图,已知双曲线(0)ky x x=>经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k =_______.25.若A 、B 两点关于y 轴对称,且点A 在双曲线y =12x上,点B 在直线y =x +6上,设点A 的坐标为(a ,b ),则a bb a+=_____.26.已知矩形ABCD 的顶点A ,B 在反比例函数y =2x的图象上,顶点C ,D 在反比例函数y =6x的图象上,且点A 的横坐标为2,则矩形ABCD 的面积为__________. 三、解答题27.如图(1),点A 是反比例函数4y x=的图象在第一象限内一动点,过A 作AC x ⊥轴于点C ,连接OA 并延长到点B ,过点B 作BD x ⊥轴于点D ,交双曲线于点E ,连结OE .(1)若6OBE S =△,求经过点B 的反比例函数解析式. (2)如图(2),过点B 作BF y ⊥轴于点F ,交双曲线于点G .①延长OA 到点B ,当AB OA =时,请判断FG 与BG 之间的数量关系,并说明理由. ②当AB nOA =时,请直接写出FG 与BG 之间的数量关系.28.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻) (1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.29.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x+b >2k x的解集. 30.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点.(1)求一次函数的解析式; (2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求AOB 的面积.。

【单元练】山东烟台市九年级数学下册第二十六章《反比例函数》经典习题

【单元练】山东烟台市九年级数学下册第二十六章《反比例函数》经典习题

一、选择题1.在反比例函数13m y x -=图象上有两点()11,A x y ,()22,B x y ,120x x <<,12y y <,则m 的取值范围是( ) A .13m > B .13m < C .13m ≥ D .13m ≤A 解析:A【分析】 根据反比例函数的图象与性质,可得该反比例函数图象的两个分支分别位于第二、四象限,从而可确定1-3m 的取值,进而求出m 的取值范围.【详解】解:∵120x x <<时,12y y <,∴反比例函数图象位于第二、四象限,∴1-3m <0,解得:13m >, 故选:A .【点睛】此题主要考查了反比例函数的图象与性质,熟练掌握相关性质是解答此题的关键. 2.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=k x(x >0)的图象上,若AB=2,则k 的值为( )A .4B .2C .2D 2A解析:A【解析】 【分析】作BD ⊥AC 于D ,如图,先利用等腰直角三角形的性质得到22,2,再利用AC ⊥x 轴得到C 2,2),然后根据反比例函数图象上点的坐标特征计算k 的值.【详解】作BD ⊥AC 于D ,如图,∵△ABC 为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC ⊥x 轴,∴C (2,22),把C (2,22)代入y=k x得k=2×22=4, 故选A .【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k 是解题的关键. 3.已知反比例函数ab y x =,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( ) A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根C 解析:C【分析】先根据反比例函数的性质得到0ab <,再利用根的判别式进行判断.【详解】解:因为反比例函数ab y x =,当x >0时,y 随x 的增大而增大, 所以0ab <,所以△440ab =->,所以方程有两个实数根,再根据120b x x a=<, 故方程有一个正根和一个负根.故选C .4.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<B 解析:B【分析】 先根据反比例函数2y x=-的系数20-<判断出函数图象在二、四象限,在每个象限内,y 随x 的增大而增大,再根据120x x <<,30x >,判断出1y 、2y 、3y 的大小.【详解】 解:反比例函数2y x=-中,20k =-<, ∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵120x x <<,30x >30y ,210y y >>,∴312y y y <<,故选:B .【点睛】本题考查了二次函数图象上点的坐标特征.用到的知识点为:k 0<时,反比例函数k y x=图象的分支在二、四象限,在第四象限的函数值总小于在第二象限的函数值;在同一象限内,y 随x 的增大而增大.5.下列函数中图象不经过第三象限的是( )A .y =﹣3x ﹣2B .y =xC .y x +1D .y =3x +2C 解析:C【分析】由一次函数的性质和反比例函数的性质分析即可得到答案.【详解】∵一次函数y =﹣3x ﹣2中,k=-3<0,b=-2<0∴一次函数y =﹣3x ﹣2的图象经过第三象限,故选项A 不符合题意;∵反比例函数y0,∴反比例函数y =x的图象的一支在第三象限,故选项B 不符合题意; ∵一次函数yx +1中,0,b=1>0∴一次函数yx +1的图象经过第一、二、四象限,不经过第三象限,故选项C 符合题意;∵一次函数y =3x +2中,k=3>0,b=2>0,∴一次函数y =3x +2的图象经过第一、二、三象限,故选项D 不符合题意.故选:C .【点睛】此题主要考查了一次函数和反比例函数的图象和性质,熟记两类函数的各种性质是解题的关键.6.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数1k y x =(x>0) 的图像上,顶点B 在反比例函数2k y x=(x>0)的图像上,点C 在x 轴的正半轴上.若平行四边形OABC 的面积为8,则k 2-k 1的值为( )A .4B .8C .12D .16B解析:B【分析】 根据A ,B 分别在1k y x =和2k y x =的图象上且A ,B 的纵坐标相同设点的坐标,再根据平行四边形OABC 的面积为8建立等量关系从而求解.【详解】 解:∵A ,B 分别在1k y x =和2k y x =的图象上,且A ,B 的纵坐标相同 ∴设1211,,,k k m k A m B m k m ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴2118OABC k m k S m k m ⎛⎫=-=⎪⎝⎭四 化简得:218k k -=故答案选:B【点睛】本题考查反比例图象与四边形结合,难度正常,根据解析式设点的坐标并表示线段长度是解题关键.7.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,顶点B 在第一象限,AB=1.将线段OA 绕点O 按逆时针方向旋转600得到线段OP ,连接AP ,反比例函数y=k x过P 、B 两点,则k 的值为( )A .23B .233C .43D 43D 解析:D【分析】本题先设A 点坐标(x ,0),则点B (x ,1),由等边三角性质可知P (12x 3)代入函数表达式即可求出结果.【详解】由题意设A 点坐标(x ,0),则点B (x ,1),将点B 代入函数式得k=x ,又由题意将线段OA 绕点O 按逆时针方向旋转60°得到线段OP ,∴OP=OA ,则△AOP 为等边三角形,∴由等边三角形性质设点P (12k 3),把点P 3=12kk , ∴312⨯2312k ⨯, ∵k 0≠,∴43,即选D . 【点睛】此题考查反比例函数,等边三角形性质,解题关键是找出点P 坐标,即运用等边三角形性质解题.8.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小B 解析:B【分析】反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内. 9.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .C 解析:C【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键. 10.如图直线y 1=x+1与双曲线y 2=k x交于A (2,m )、B (﹣3,n )两点.则当y 1>y 2时,x 的取值范围是( )A .x >﹣3或0<x <2B .﹣3<x <0或x >2C .x <﹣3或0<x <2D .﹣3<x <2B解析:B【分析】 当y 1>y 2时,x 的取值范围就是y 1的图象落在y 2图象的上方时对应的x 的取值范围.【详解】根据图象可得当y 1>y 2时,x 的取值范围是:﹣3<x <0或x >2.故选:B .【点睛】本题考查了反比例函数与一次函数图象的交点问题,“数形结合”是解题的关键.二、填空题11.已知点(,7)M a 在反比例函数21y x=的图象上,则a=______.3【分析】把点代入反比例函数解析式求解即可【详解】解:∵点在反比例函数的图象上∴解得故答案为:3【点睛】本题考查反比例函数上点的坐标特征掌握反比例函数上点的坐标特征是解题的关键解析:3【分析】把点(,7)M a 代入反比例函数解析式,求解即可.【详解】解:∵点(,7)M a 在反比例函数21y x=的图象上, ∴217a=,解得3a =, 故答案为:3.【点睛】 本题考查反比例函数上点的坐标特征,掌握反比例函数上点的坐标特征是解题的关键. 12.函数25(1)n y n x -=+是反比例函数,且图象位于第二、四象限内,则n =____.-2【分析】根据反比例函数的定义与性质解答即可【详解】根据反比函数的解析式y=(k≠0)故可知n+1≠0即n≠-1且n2-5=-1解得n=±2然后根据函数的图像在第二四三象限可知n+1<0解得n<-解析:-2.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=k x (k≠0),故可知n+1≠0,即n≠-1, 且n 2-5=-1,解得n =±2,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-2.故答案为:-2【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键.13.已知()221a y a x -=-是反比例函数,则a =________________.【分析】根据反比例函数的定义列出方程不等式即可求解【详解】解:∵是反比例函数∴且∴且∴故答案是:【点睛】本题考查了反比例函数的定义解方程解不等式等知识点能根据反比例函数的定义正确列出方程和不等式是解解析:1-【分析】根据反比例函数的定义列出方程、不等式即可求解.【详解】解:∵()221ay a x -=-是反比例函数 ∴221a -=-且10a -≠ ∴1a =±且1a ≠∴1a =-.故答案是:1-【点睛】本题考查了反比例函数的定义、解方程、解不等式等知识点,能根据反比例函数的定义正确列出方程和不等式是解题的关键.14.如图,一次函数y 1=ax+b 与反比例函数2k y x=的图像交于A(1,4)、B(4,1)两点,若使y 1>y 2,则x 的取值范围是___________.x <0或1<x <4【分析】根据图形找出一次函数图象在反比例函数图象上方的x 的取值范围即可【详解】解:根据图形当x <0或1<x <4时一次函数图象在反比例函数图象上方y1>y2故答案为:x <0或1<x <解析:x <0或1<x <4【分析】根据图形,找出一次函数图象在反比例函数图象上方的x 的取值范围即可.【详解】解:根据图形,当x <0或1<x <4时,一次函数图象在反比例函数图象上方,y 1>y 2. 故答案为:x <0或1<x <4.【点睛】本题考查了反比例函数一次函数的交点问题,要注意y 轴左边的部分,一次函数图象在第二象限,反比例函数图象在第三象限,这也是本题容易忽视而导致出错的地方. 15.如图,过x 轴正半轴上任意一点P 作x 轴的垂线,分别与反比例函数24y x =和12y x =的图象交于点A 和点B .若点C 是y 轴上任意一点,则ABC 的面积为______________.1【分析】设线段OP=x则可求出APBP再根据三角形的面积公式得出△ABC的面积=AB×OP代入数值计算即可【详解】解:设线段OP=x则PB=AP=∵AB=AP-BP=-=∴S△ABC=AB×OP=解析:1【分析】设线段OP=x,则可求出AP、BP,再根据三角形的面积公式得出△ABC的面积=12AB×OP,代入数值计算即可.【详解】解:设线段OP=x,则PB=2x,AP=4x,∵AB=AP-BP=4x-2x=2x,∴S△ABC=12AB×OP=12×2x×x=1.故答案为:1.【点睛】此题考查反比例函数的k的几何意义,三角形的面积公式,解题的关键是表示出线段OP、BP、AP的长度,难度一般.16.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__.﹣1<k <1【分析】根据函数值的大小关系判别函数的图象位置根据位置判定比例系数的大小再解不等式【详解】因为A (x1y1)B (x2y2)为函数图象上的两点且x1<0<x2y1>y2所以函数图象分支在二 解析:﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2, 所以函数图象分支在二、四象限所以k 2-1<0解得﹣1<k <1故答案为:﹣1<k <1【点睛】考核知识点:反比例函数的图象.数形结合,熟记反比例函数的性质是关键. 17.已知点(,)P a b 为直线2y x =-与双曲线1y x=-的交点,则11b a -的值等于__________.-2【分析】将点P 分别代入两函数解析式得到:b=a-2b=-进而得到a-b=2ab=-1将其代入求值即可【详解】∵点P (ab )为直线y=x-2与双曲线的交点∴b=a-2b=-∴a-b=2ab=-1∴解析:-2【分析】将点P 分别代入两函数解析式得到:b=a-2,b=-1a ,进而得到a-b=2,ab=-1.将其代入求值即可.【详解】∵点P (a ,b )为直线y=x-2与双曲线1y x=-的交点, ∴b=a-2,b=-1a , ∴a-b=2,ab=-1. ∴11b a-=2-1a b ab -==-2. 故答案是:-2.【点睛】 此题考查反比例函数与一次函数的交点,解题关键是得到a-b=2,ab=-1.18.如图,已知反比例函数y =k x(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.【分析】先根据点A 的坐标求出反比例函数的解析式然后求出点的坐标由点B 在直线上设出点B 的坐标为(aa )从而利用平行四边形的性质可得到的坐标因为在反比例函数图象上将点代入反比例函数解析式中即可求出a 的值 解析:13,13)【分析】先根据点A 的坐标求出反比例函数的解析式,然后求出点A '的坐标,由点B 在直线上,设出点B 的坐标为(a,a ),从而利用平行四边形的性质可得到B '的坐标,因为B '在反比例函数图象上,将点B '代入反比例函数解析式中即可求出a 的值,从而可确定点B 的坐标.【详解】∵反比例函数y =k x (x >0)过点A (1,4), ∴k =1×4=4,∴反比例函数解析式为:y =4x. ∵点A '(4,b )在反比例函数的图象上,∴4b =4,解得:b =1,∴A '(4,1).∵点B 在直线y =x 上,∴设B 点坐标为:(a ,a ).∵点A (1,4),A '(4,1),∴A 点向下平移3个单位,再向右平移3个单位,即可得到A '点.∵四边形AA 'B 'B 是平行四边形,∴B 点向下平移3个单位,再向右平移3个单位,即可得到B '点(a +3,a ﹣3).∵点B '在反比例函数的图象上,∴(a +3)(a ﹣3)=4,解得:13a =或13a =-舍去),故B 点坐标为:13,13).故答案为:.【点睛】本题主要考查反比例函数与几何综合,掌握待定系数法,平行四边形的性质,点的平移规律和一元二次方程的解法是解题的关键.19.若A、B两点关于y轴对称,且点A在双曲线y=12x上,点B在直线y=x+6上,设点A的坐标为(a,b),则a bb a+=_____.70【分析】根据点关于y轴对称的特点写出B点坐标再把两点坐标分别代入所求关系式即可解答【详解】解:根据点A在双曲线y=上得到2ab=1即ab=根据AB两点关于y轴对称得到点B(﹣ab)根据点B在直线解析:70【分析】根据点关于y轴对称的特点写出B点坐标,再把两点坐标分别代入所求关系式即可解答.【详解】解:根据点A在双曲线y=12x上,得到2ab=1,即ab=12,根据A、B两点关于y轴对称,得到点B(﹣a,b).根据点B在直线y=x+6上,得到a+b=6,∴22a b a bb a ab+ +==2()2 a b abab+-=21 62212-⨯=361 1 2-=70.故答案为:70.【点睛】此题考查了反比例函数、一次函数图象上点的坐标特征,能够根据解析式求得点的坐标之间的关系式;熟悉两个点关于y轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数;能够把要求的代数式变成和或积的形式.20.已知矩形ABCD的顶点A,B在反比例函数y=2x的图象上,顶点C,D在反比例函数y=6x的图象上,且点A的横坐标为2,则矩形ABCD的面积为__________.2或8【分析】根据矩形ABCD的顶点AB在反比例函数y=的图象上顶点CD在反比例函y =图象上且点A的横坐标为2得点A的纵坐标为1进而可得点CD的坐标即可求解【详解】解:根据题意得A(21)所以B(1解析:2或8【分析】根据矩形ABCD的顶点A,B在反比例函数y=2x的图象上,顶点C,D在反比例函y=6x图象上,且点A的横坐标为2,得点A的纵坐标为1,进而可得点C、D的坐标,即可求解.【详解】解:根据题意,得A(2,1),所以B(1,2)当矩形在第一象限时,C(2,3),D(3,2)所以矩形ABCD的面积为2;当点C、D在第三象限时,C(-2,-3)、D(-3,-2)所以矩形ABCD的面积为8.故答案为2或8.【点睛】本题考查了反比例函数系数k的几何意义,解决本题的关键是分两种情况求矩形面积.三、解答题21.如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数kyx(k≠0,x>0)的图象相交于A(1,5),B(m,1)两点,与x轴,y轴分别交于点C,D,连接OA,OB.(1)求反比例函数k y x=(k≠0,x >0)和一次函数y =ax+b (a≠0)的表达式; (2)求△AOB 的面积. 解析:(1)5y x =,6y x =-+;(2)12 【分析】(1)将点A (1,5)代入k y x=(k≠0,x >0),得到k 的值及反比例函数解析式;再将将点B (m ,1)代入反比例函数,得点B 坐标;将点A (1,5),B (5,1)代入y =ax+b ,通过求解二元一次方程组,即可得到答案;(2)结合一次函数6y x =-+,得点D 坐标;再由△AOB 的面积=△BOD 的面积-△AOD 的面积,经计算即可得到答案.【详解】(1)将点A (1,5)代入k y x=(k≠0,x >0) 得:51k =解得:k =5 ∴反比例函数的表达式为:5y x =将点B (m ,1)代入5y x=得:m =5∴点B (5,1)将点A (1,5),B (5,1)代入y =ax+b 得551a b a b +=⎧⎨+=⎩解得:16a b =-⎧⎨=⎩∴一次函数表达式为:6y x =-+;(2)由一次函数6y x =-+可知:D (0,6)∴△AOB 的面积=△BOD 的面积-△AOD 的面积1165611222=⨯⨯-⨯⨯=. 【点睛】本题考查了反比例函数、一次函数、二元一次方程组的知识;解题的关键是熟练掌握反比例函数、一次函数、二元一次方程组的性质,从而完成求解.22.已知反比例函数k 1y x-=(k 为常数,k≠1). (1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围. 解析:(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k -=⨯,解得:3k =;(2)因为反比例函数k 1y x-=, 在这个函数图象的每一分支上,y 随x 的增大而减小,所以10k ->,解得:1k >.【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy k =.也考查了反比例函数的性质.23.如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (﹣2,0),与反比例函数y =a x在第一象限内的图象交于点B (2,n ),连结BO ,若S △AOB =4. (1)求该反比例函数y =a x的表达式和直线AB :y =kx+b 对应的函数表达式; (2)观察在第一象限内的图象,直接写出不等式kx+b <a x 的解集.解析:(1)y=8x,y=x+2;(2)0<x<2.【分析】(1)根据S△AOB求出n的值,然后将B点坐标带入即可求得反比例函数解析式,利用待定系数法,代入A、B点坐标即可求得直线AB的解析式;(2)观察函数图像,直线AB在BC段时在反比例函数的下方,因此根据B、C的横坐标即可求解.【详解】(1)由A(﹣2,0),得OA=2;∵点B(2,n)在第一象限内,S△AOB=4,∴12OA•n=4;∴n=4;∴点B的坐标是(2,4);∵该反比例函数的解析式为y=ax(a≠0),将点B的坐标代入,得4=12 a,∴a=8;∴反比例函数的解析式为y=8x,∵直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得2024k bk b-+=⎧⎨+=⎩,解得12kb=⎧⎨=⎩,∴直线AB的解析式为y=x+2;(2)由于B点坐标为(2,4),可知不等式kx+b<ax的解集为:0<x<2.故答案为(1)y=8x,y=x+2;(2)0<x<2.【点睛】本题考查了反比例函数的性质,待定系数法求函数解析式,和一次函数于反比例函数综合,正确的识别示意图是本题的关键.24.如图,一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x >0)的图象上,顶点B 在函数y 2=2k x(x >0)的图象上,∠ABO=30°,求12k k 的值.解析:13【分析】设AC=a ,则OA=2a ,OC=3a ,根据直角三角形30°角的性质和勾股定理分别计算点A 和B 的坐标,写出A 和B 两点的坐标,代入解析式求出k 1和k 2的值,即可求12k k 的值. 【详解】 设AB 与x 轴交点为点CRt △AOB 中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB ⊥OC ,∴∠ACO=90°,∴∠AOC=30°,设AC=a ,则OA=2a ,22OA AC 3, ∴3,a),∵A 在函数y 1=1k x(x >0)的图象上,∴k 1=3a×a=3a 2, Rt △BOC 中,OB=2OC=23a ,∴BC=22OB OC -=3a ,∴B (3a ,-3a ),∵B 在函数y 2=2k x(x >0)的图象上, ∴k 2=-3a×3a=-33a 2,∴12k k =223a 33a -=-13, 故答案为:-13. 【点睛】本题考查了反比例函数图象上点的坐标特征.直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A .B 两点的坐标是本题的关键. 25.已知x 1,x 2,x 3是y =1x图象上三个点的横坐标,且满足x 3>x 2>x 1>0.请比较11x +21x 与32x 的大小,并说明理由.解析:123112+>x x x ,理由见解析 【分析】先判断11x +21x 与32x 的大小,然后根据函数图象和题意,即可得到11x +21x 与32x 的大小关系.【详解】解:11x +21x >32x , 理由:∵x 1,x 2,x 3是y =11x 图象上三个点的横坐标,且满足x 3>x 2>x 1>0, ∴11x >31x ,21x >31x ,∴11x +21x >31x +31x 即11x +21x >32x . 【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是明确题意,利用数形结合的思想解答.26.如图,点A 在双曲线23y x=(x >0)上,点B 在双曲线k y x =(x >0)上(点B 在点A 的右侧),且AB ∥x 轴,若四边形OABC 是菱形,且∠AOC =60°.(1)求k 的值;(2)求菱形OABC 的面积.解析:(1)632)23a .【分析】(1)首先根据点A 在双曲线3y x =(x >0)上,设A 点坐标为(a ,3a ),再利用含30°直角三角形的性质算出OA=2a ,再利用菱形的性质进而得到B 点坐标,即可求出k 的值;(2)先求出菱形OABC 的高,再根据菱形的面积公式求菱形OABC 的面积.【详解】解:(1)解:因为点A 在双曲线23y =x >0)上,设A 点坐标为(a ,23a ), 因为四边形OABC 是菱形,且∠AOC=60°,所以OA=2a ,可得B 点坐标为(3a 23), 可得:23=3 故答案为:3(2)由 (1)得OA=2a ,而∠AOC=60°,∴菱形OABC 的高h=2a·sin60°=2a·32 =3a , ∴222323OABC S a h a a a =⋅=⋅=菱形 .【点睛】本题考查了待定系数法求反比例函数及菱形的面积,关键是根据菱形的性质求出B 点坐标,即可算出反比例函数解析式.27.如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数k y x =图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数k y x =的图象没有公共点.解析:(1)6y x =;(2)(2,3),(3,2)--;(3)25y x =-+(答案不唯一) 【分析】(1)将x=2代入一次函数,求出其中一个交点是(2,3),再代入反比例函数k y x =即可解答;(2)先求出平移后的一次函数表达式,联立两个函数解析式得到一元二次方程260x x --=即可解答;(3)设一次函数为y=ax+b (a≠0),根据题意得到b=5,联立一次函数与反比例函数解析式,得到2560ax x +-=,若无公共点,则方程无解,利用根的判别式得到25240a ∆=+<,求出a 的取值范围,再在范围内任取一个a 的值即可.【详解】解:(1)∵一次函数1y x =+的图象与反比例函数k y x=的图象的一个交点的横坐标是2,∴当2x =时,3y =,∴其中一个交点是(2,3).∴236k =⨯=.∴反比例函数的表达式是6y x=. (2)∵一次函数1y x =+的图象向下平移2个单位,∴平移后的表达式是1y x =-. 联立6y x=及1y x =-,可得一元二次方程260x x --=, 解得12x =-,23x =.∴平移后的图象与反比例函数图象的交点坐标为(2,3),(3,2)--(3)设一次函数为y=ax+b (a≠0),∵经过点(0,5),则b=5,∴y=ax+5,联立y=ax+5以及6y x=可得:2560ax x +-=, 若一次函数图象与反比例函数图象无交点, 则25240a ∆=+<,解得:2524a <-, ∴25y x =-+(答案不唯一).【点睛】本题考查了一次函数与反比例函数图象交点问题以及函数图象平移问题,解题的关键是熟悉函数图象上点的特征,第(3)问需要先确定a 的取值范围.28.如图,已知一次函数y =x+2的图象与x 轴、y 轴分别交于点A ,B 两点,且与反比例函数y =m x的图象在第一象限交于点C ,CD ⊥x 轴于点D ,且OA =OD . (1)求点A 的坐标和m 的值; (2)点P 是反比例函数y =m x在第一象限的图象上的动点,若S △CDP =2,求点P 的坐标.解析:(1)(-2,0);8 (2)(1,8)或(3,83) 【分析】(1)根据待定系数法就可以求出函数的解析式;(2)1||2CDP P C S CD x x =⨯⨯-△,即可求解. 【详解】解:(1)对于一次函数2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为(2,0)-、(0,2), OA OD =,故点(2,0)D ,则点C 的横坐标为2,当2x =时,24y x =+=,故点(2,4)C ,将点C 的坐标代入反比例函数表达式得:42m =, 解得:8m =,故点A 的坐标为(2,0)-,8m =;(2)1142222CDP P C P S CD x x x =⨯⨯-=⨯⨯-=, 解得:3P x =或1,故点P 的坐标为(1,8)或8(3,)3.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.。

芝罘区实验中学九年级数学上册第六章反比例函数1反比例函数教学案无答案新版北师大版4

芝罘区实验中学九年级数学上册第六章反比例函数1反比例函数教学案无答案新版北师大版4

6.1反比例函数【教学目标】 知识与技能记住反比例函数的概念,会求比例系数,能够列出实际问题中的反比例函数关系. 过程与方法1.从现实情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

2.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。

情感、态度与价值观感受反比例函数是刻画世界数量关系的一种有效模型,函数与生活息息相关。

【教学重难点】教学重点:理解和领会反比例函数的概念 教学难点:领悟反比例函数的概念 【导学过程】【创设情景,引入新课】问题提出:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时, (1)你能用含有R 的代数式表示I 吗?(3)变量I 是R 的函数吗?为什么? 学生小组合作讨论。

【自主探究】京沪高铁(全程约为1318km ),全程所用的时间t(h)随速度v(km/h)的变化而变化 (1)完成下表:随着速度在逐渐增加,所用的时间发生怎样的变化?. (2)你能用含有v 的代数式表示t 吗? (3)速度v 是时间t 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。

【课堂探究】做一做1、 个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。

那么变量y 是变量x 的函数吗?为什么?学生先独立思考,再进行全班交流。

2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么?(2)根据函数表达式完成上表。

【当堂训练】 1.xky =(k ≠0)叫__________函数.,x 的取值范围是__________; 2.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;3.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ______; 4.如果函数222-+=k k kx y 是反比例函数,那么k =________,此函数的解析式是________;5、若()2311mm y m x++=+是反比例函数,求m 的值.6、已知y 与x 成反比例,当x=3时,y=7,求当y=2时,x 的值.7、已知函数ky x=(k ≠0)过点()1,3-,求函数解析式23.3.3 相似三角形的性质会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.重点1.相似三角形中的对应线段比值的推导.2.相似多边形的周长比、面积比与相似比关系的推导.3.运用相似三角形的性质解决实际问题.难点相似三角形性质的灵活运用,相似三角形周长比、面积比与相似比关系的推导及运用.一、情境引入复习:1.判定两个三角形相似的简便方法有哪些?2.在△ABC与△A′B′C′中,AB=10 cm,AC=6 cm,BC=8 cm,A′B′=5 cm,A′C′=3 cm,B′C′=4 cm,这两个三角形相似吗?说明理由.如果相似,它们的相似比是多少?二、探究新知教师结合上述第2题,引导学生探究:上述两个三角形是相似的,它们对应边的比就是相似比,△ABC∽△A′B′C′,相似比为ACA′C′=2.相似的两个三角形,它们的对应角相等,对应边会成比例,除此之处,还会得出什么结果呢?一个三角形内有三条主要线段——高线、中线、角平分线,如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系.同学们画出上述的两个三角形,作对应边BC和B′C′边上的高,用刻度尺量一量AD与A′D′的长,ADA′D′等于多少呢?与它们的相似比相等吗?得出结论:相似三角形对应高的比等于相似比.我们能否用推理的方法来说明这个结论呢?△ABD和△A′B′D′都是直角三角形,且∠B=∠B′.∴△ABD∽△A′B′D′,∴ADA′D′=ABA′B′=k.接下来,教师再提出问题让学生归纳,并引导学生通过演绎推理来证明.思考:相似三角形面积的比与相似比有什么关系?S △ABCS △A ′B ′C ′=12AD·BC 12A′D′·B′C′=AD A′D′·BC B′C′=k 2归纳:相似三角形面积的比等于相似比的平方.同学们用上面类似的方法得出:相似三角形对应边上的中线的比等于相似比;相似三角形对应角平分线的比等于相似比;相似三角形的周长之比等于相似比.教师展示例1,引导学生分析,学生独立完成,小组内交流.例1 如图,梯形ABCD 的对角线交于点O ,DC AB =23,已知S △DOC =4,求S △AOB ,S △AOD .三、练习巩固教师展示课件,可由学生自由完成,教师点名上台展示,教师点评.1.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(图形)的示意图.已知桌面的直径为1.2 m ,桌面距离地面为1 m ,若灯泡距离地面3 m ,则地面上阴影部分的面积为________.【教学说明】运用相似三角形对应高的比等于相似比是解决本题的关键.2.如图,在△ABC 中,BC =24 cm ,高AD =12 cm ,矩形EFGH 的两个顶点E ,F 在BC 上,另两个顶点G ,H 分别在AC ,AB 上,且EF∶EH=4∶3,求EF ,EH 的长.四、小结与作业 小结1.相似三角形对应角相等,对应边成比例.2.相似三角形对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.布置作业从教材相应练习和“习题23.3”中选取.本课时从复习已经学习过的相似三角形的性质入手,提出问题继续探究相似三角形的有关性质,通过动手测量,猜想出结论,并加以证明,加深对知识的理解,提高学生分析、归纳、表达、逻辑推理等能力,并通过对知识方法的总结,培养反思问题的习惯,形成理性思维.第3课时拱桥问题和运动中的抛物线学习目标:1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。

烟台九年级备战中考数学反比例函数解答题压轴题提高专题练习

烟台九年级备战中考数学反比例函数解答题压轴题提高专题练习

烟台九年级备战中考数学反比例函数解答题压轴题提高专题练习一、反比例函数1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.3.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A(﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.【答案】(1)解:当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y= 中,3= ,解得:k=﹣3,∴反比例函数的表达式为y=﹣(2)解:当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0)(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.4.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).(1)点C的坐标________;(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,使得S△PEF= S△CEF,求点P的坐标.【答案】(1)(3,0)(2)解:∵AB=CD=3,OB=1,∴A的坐标为(1,3),又C(3,0),设直线AC的解析式为y=ax+b,则,解得:,∴直线AC的解析式为y=﹣ x+ .∵点E(2,m)在直线AC上,∴m=﹣ ×2+ = ,∴点E(2,).∵反比例函数y= 的图象经过点E,∴k=2× =3,∴反比例函数的解析式为y=(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).在y= 中,当x=3时,y=1,∴F(3,1).过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.设直线EF的解析式为y=a'x+b',∴,解得,∴y=﹣ x+ .设直线PM的解析式为y=﹣ x+c,代入M(3,﹣0.5),得:c=1,∴y=﹣ x+1.当x=1时,y=0.5,∴点P(1,0.5).同理可得点P(1,3.5).∴点P坐标为(1,0.5)或(1,3.5).【解析】【解答】解:(1)∵D(3,3),∴OC=3,∴C(3,0).故答案为(3,0);【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.5.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.6.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.7.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【答案】(1)①当x=4时,∴点B的坐标是(4,1)当y=2时,由得得x=2∴点A的坐标是(2,2)设直线AB的函数表达式为∴解得∴直线AB的函数表达式为②四边形ABCD为菱形,理由如下:如图,由①得点B(4,1),点D(4,5)∵点P为线段BD的中点∴点P的坐标为(4,3)当y=3时,由得,由得,∴PA= ,PC=∴PA=PC而PB=PD∴四边形ABCD为平行四边形又∵BD⊥AC∴四边形ABCD是菱形(2)四边形ABCD能成为正方形当四边形ABCD时正方形时,PA=PB=PC=PD(设为t,t≠0),当x=4时,∴点B的坐标是(4,)则点A的坐标是(4-t,)∴,化简得t=∴点D的纵坐标为则点D的坐标为(4,)所以,整理得m+n=32【解析】【分析】(1)①分别求出点A,B的坐标,运用待定系数法即可求出直线AB的表达示;②由特殊的四边形可知,对角线互相垂直的是菱形和正方形,则可猜测这个四边形是菱形或是正方形,先证明其为菱形先,则需要证明四边形ABCD是平行四边形,运用“对角线互相平分的四边形是平行四边形”的判定定理证明会更好些;再判断对角线是否相等,若不相等则不是正方形;(2)要使m,n有具体联系,根据A,B,C,D分别在两个函数图象,且由正方形的性质,可用只含m的代数式表示出点D或点C的坐标代入y= ,即可得到只关于m和n的等式.8.如图,直线 y=kx与双曲线 =-交于A、B两点,点C为第三象限内一点.(1)若点A的坐标为(a,3),求a的值;(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.【答案】(1)解:把(a,3)代入 =-,得,解得a=-2;(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO≌△OEC,又k=-,由y=- x和y=-解得,,所以A点坐标为(-2,3),由△ADO≌△OEC得,CE=OD=3,EO=DA=2,所以C(-3,-2);(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO∽△OEC,∴,∵∠ACO= ∠ACB=30°,∠AOC=90°,∴,∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=- n,OD=- m,∴A( n,- m),代入y=-中,得mn=18.【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A 点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出,根据锐角三角函数的定义,及特殊锐角三角函数值得出,C的坐标为(m,n),故CE=-m,OE=-n,AD=- n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.9.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.(1)求直线AB的表达式;(2)求的值.【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,∴点A(1,6),点B(-3,-2),将点A、B代入直线,得,解得,∴直线AB的表达式为:(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,则∠AMO=∠BNO=90°,AM=1,BN=3,∴AM//BN,∴△ACM∽△BCN,∴【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.10.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.11.在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(-2,4),B(-2,-2),C(4,-2),D(4,4).(1)填空:正方形的面积为________;当双曲线 (k≠0)与正方形ABCD有四个交点时,k的取值范围是________.(2)已知抛物线L: (a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线(k≠0)与边DC交于点N.①点Q(m,-m2-2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别求运动过程中点Q在最高位置和最低位置时的坐标.②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求的值.③求证:抛物线L与直线的交点M始终位于轴下方.【答案】(1)36;0<k<4或-8<k<0(2)解:①由题意可知,,当m=-1,最大=4,在运动过程中点Q在最高位置时的坐标为(-1,4)当m<-1时,随m的增大而增大,当m=-2时,最小=3,当m>-1时,随m的增大而减小,当m=4时,最小=-21,3>-21,∴最小=-21,点Q在最低位置时的坐标(4,-21)∴在运动过程中点Q在最高位置时的坐标为(-1,4),最低位置时的坐标为(4,-21)②将点B(-2,-2)代入双曲线得,∴k=4,∴反比例函数解析式为N点横坐标x=4,代入得,∴N(4,1)由顶点P(m,n)在边BC上,∴,BP= ,CP=E点横坐标x=-2,F点横坐标x=4,分别代入抛物线可得E ,F ,∴BE= ,CF= ,∴,又∵AE=NF,点F在点N下方,∴化简得,∴③由题意得,M ,,∵二次函数对称轴为m=1,,∴当m=1时,取得最小值为,当或4时,最大为,当m=4时,抛物线L为,E点横坐标为-2,代入抛物线得,∴EF点横坐标为x=4,代入抛物线得,∴∵E点在AB边上,且此时不与B重合,∴,解得∴,∴当时,抛物线L为同理可得E ,F∵F在CD边上,且此时不与C重合∴,解得,∴,∴综上,抛物线L与直线x=1的交点始终位于x轴的下方.【解析】【解答】(1)解:由点A(-2,4),B(-2,-2)可知正方形的边长为6,∴正方形面积为36;当反比例函数在一、三象限时,若经过B(-2,-2)则,若经过D(4,4),则,根据图像特征,要有4个交点,则0<k<4;当反比例函数在二、四象限时,若经过A(-2,4)则,若经过C(4,-2)则,根据图像特征,要有4个交点,则-8<k<0,综上,k的取值范围是0<k<4或-8<k<0.【分析】(1)由坐标求出正方形的边长,即可求出面积,讨论反比例函数在一、三象限和二、四象限时,利用数形结合求出k的范围;(2)①由题意可知,,分,和分别讨论Q点符合条件的坐标;②将点B(-2,-2)代入双曲线,可求k=4和N(4,1),再表示出点 E 和 F ,可推出BE= ,CF= ,,再根据AE=NF可推出,进而可求的值;③由题意得,M ,,当m=1时,最小为,当或4时,最大为,再分别讨论当m=4时,根据E点不与B点重合,列出不等式可得,当时, F点不与C点重合列出不等式可得,即可得证.12.如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=________时,PQ∥AB(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB 能否垂直?若能,求出相应的t值;若不能,请说明理由.能垂直,理由如下:延长QE交AC于点D,∵将△PQC翻折,得到△EPQ,∴△QCP≌△QEP,∴∠C=∠QEP=90°,若PE⊥AB,则QD∥AB,∴△CQD∽△CBA,∴,∴,∴QD=2.5t,∵QC=QE=2t∴DE=0.5t∵∠A=∠EDP,∠C=∠DEP=90°,∴△ABC∽△DPE,∴∴,解得:,综上可知:当t= 时,PE⊥AB【答案】(1)2.4(2)解:∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB 向B点以2厘米/秒的速度匀速移动,∴PC=AC-AP=6-t,CQ=2t,∴S△CPQ= CP•CQ= =5,∴t2-6t+5=0解得t1=1,t2=5(不合题意,舍去)∴当t=1秒时,△PCQ的面积等于5cm2(3)解:【解析】【解答】解:(1) ∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q 从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴PC=AC-AP=6-t,CQ=2t,当PQ∥AB时,∴△PQC∽△ABC,∴PC:AC=CQ:BC,∴(6-t):6=2t:8∴t=2.4∴当t=2.4时,PQ∥AB【分析】(1)根据题意可得PC=AC-AP=6-t,CQ=2t,根据平行线可得△PQC∽△ABC,利用相似三角形对应边成比例可得PC:AC=CQ:BC,即得(6-t):6=2t:8,求出t值即可;(2)由S△CPQ=CP•CQ =5,据此建立方程,求出t值即可;(3)延长QE交AC于点D,根据折叠可得△QCP≌△QEP,若PE⊥AB,则QD∥AB,可得△CQD∽△CBA,利用相似三角形的对应边成比例,求出DE=0.5t,根据两角分别相等可证△ABC∽△DPE,利用相似三角形对应边成比例,据此求出t 值即可.。

(常考题)北师大版初中数学九年级数学上册第六单元《反比例函数》测试题(有答案解析)(2)

(常考题)北师大版初中数学九年级数学上册第六单元《反比例函数》测试题(有答案解析)(2)

一、选择题1.如图,在平面直角坐标系中,菱形ABCO 的顶点O 在坐标原点,且与反比例函数y=k x的图象相交于A(m ,32),C 两点,已知点B (22,22),则k 的值为( )A .-6B .-62C .-12D .-122【答案】A 【分析】根据菱形的性质、平行线的性质和全等三角形的判定与性质可以求得点A 的坐标,然后根据点A 在反比例函数图象上,即可求k 的值; 【详解】作AE ⊥x 轴交x 轴于点E ,作CF ⊥x 轴交x 轴于点F ,作BD ∥x 轴交AE 于点D ,AB 与y 轴交点记为M ;∵四边形AOCB 是菱形, ∴AB ∥CO ,AB=CO , ∴∠ABO=∠COB , 又∵BD ∥x 轴, ∴∠DBO=∠FOB , ∴∠ABD=∠COF , ∵AD ⊥BD ,CF ⊥OF , ∴∠ADB=∠CFO=90°, 在△ADB 和△CFO 中,⎧⎪⎨⎪⎩∠ABD=∠COF ∠ADB=∠CFO AB=CO ,∴△ADB ≌△CFO (AAS ), ∴AD=CF ,∵A(m,,B(∴, ∴,∵四边形AOCB 是菱形, ∴∠AOB=∠COB , ∵B(), ∴∠BOF=∠BOM=45°, ∵AE ∥y 轴, ∴∠EAO=∠AOM , ∴∠AOM=∠COF , ∴∠EAO=∠COF , ∵AE ⊥x ,CF ⊥x 轴, ∴∠AEO=∠CFO , 在△AEO 和△OFC 中,OAE COF AEO OFC OA OC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△AEO ≌△OFC (AAS ), ∴,∴点A 的坐标为(, ∵点A 在反比例函数图象上,∴=,解得:k=-6, 故选:A . 【点睛】本题考查了反比例函数的图象和性质、菱形的性质、解题本题的关键是明确题意,利用数形结合的思想解答;2.已知()11,A x y ,()22,B x y ,()33,C x y 是反比例函数4y x=-图象上的三个点,且1230x x x <<<,那么1y ,2y ,3y 的大小关系是( )A .321y y y >>B .123y y y >>C .132y y y >>D .231y y y >>【答案】C 【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据1230x x x <<<,则可以判断出1y ,2y ,3y 的大小关系; 【详解】∵ 反比例函数4y x=-中k=-4<0, ∴ 此函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大, ∴ (1x ,1y )在第二象限,(2x ,2y ),(3x ,3y )在第四象限, ∴ 10y > ,2y <3y <0,即 1y >3y >2y , 故选:C . 【点睛】本题考查了反比例函数图象上点的特征特点,熟知反比例函数图象上各点的特征一定适合此函数解析式是解题的关键;3.若点()12,A y -,()21,B y -,()31,C y 在反比例函数6y x=-的图象上,则下列结论正确的是( ) A .123y y y >> B .312y y y >>C .213y y y >>D .231y y y >>【答案】C 【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点A 和点B 的纵坐标的大小即可. 【详解】解:∵反比例函数的比例系数为-6, ∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点A 、B 在第二象限,点C 在第四象限, ∴y 3最小,∵-1>-2,y 随x 的增大而增大, ∴y 2>y 1, ∴y 2>y 1>y 3. 故选:C . 【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y 随x 的增大而增大.4.如图,边长为10的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点,(28),F AF x x EC y =≤≤=.则在下面函数图象中,大致能反映y 与x 之闻函数关系的是( )A .B .C .D .【答案】C 【分析】通过相似三角形EFBEDC 的对应边成比例列出比例式101010x y y-=-,从而得到y 与x 之间函数关系式,从而推知该函数图象. 【详解】解:根据题意知,10BF x =-,10BE y =-, ∵四边形ABCD 是正方形,//AD BC 则EFB EDC ,∴BF BEDC EC=,即101010x y y -=- 所以100y x=()28x ≤≤,该函数图象是位于第一象限的双曲线的一部分. A 、D 的图象都是直线的一部分,B 的图象是抛物线的一部分,C 的图象是双曲线的一部分. 故选:C . 【点睛】本题考查了动点问题的函数图象,熟悉相关性质是解题的关键.5.如图,反比例函数y=kx(k 为常数,k≠0)的图象经过点A ,过点A 作AB ⊥x 轴,垂足为B .若△AOB 的面积为2,则k 的值为( )A .2B .-2C .4D .-4【答案】C 【分析】根据AB ⊥x 轴,垂足为B .若△AOB 的面积为2,得到22k =,解之即可得到答案.【详解】∵AB ⊥x 轴,垂足为B .若△AOB 的面积为2, ∴22k =,∴k=±4,∵反比例函数图象在第一象限, ∴k=4, 故选:C . 【点睛】此题考查反比例函数比例系数k 的几何意义,掌握此类问题的解题方法是解题的关键.6.反比例函数1y x=-的图象上有两点()111,P x y ,()222,P x y ,若120x x <<,则下列结论正确的是( ) A .110y y << B .120y y <<C .120y y >>D .120y y >>【答案】D 【分析】由反比例函数的解析式可知xy=-1,故x 与y 异号,于是可判断出y 1、y 2的正负,从而得到问题的答案. 【详解】 解:∵1y x=-, ∴xy=-1. ∴x 、y 异号. ∵x 1<0<x 2, ∴y 1>0>y 2. 故选:D . 【点睛】本题主要考查了反比例函数图象上点的坐标特点,确定出y 1、y 2的正负是解题的关键.7.在平面直角坐标系中,点()2,1A -,()3,2B ,()6,C m 分别在三个不同的象限,若反比例函数()0ky k x=≠的图象经过其中两点,则m 的值为( )A .13- B .1C .13-或1D .不能确定【答案】A 【分析】由()2,1A -,()3,2B知其在第一和第二象限,所以反比例函数不能经过A 、B 两点,只能经过A 、C 两点或B 、C 两点;先利用()2,1A -或()3,2B 求出k ,再据反比例函数经过()6,C m 点求得m 的值,注意A 、C 两点(或B 、C 两点)不能在同一象限.【详解】 解:分三种情况:第一种情况,由()2,1A -,()3,2B一个在第二象限,一个在第一象限,而反比例函数图象不能同时经过第一、二象限,故此情况无解; 第二种情况,当反比函数()0ky k x=≠经过A 、C 两点时, 把由()2,1A -代入到()0ky k x=≠得k =-2 ∴此时反比例函数的关系式为2y x-= 把()6,C m 代入2y x -=得m =13-, ∴16,3C ⎛⎫- ⎪⎝⎭,其在第四象限和()2,1A -不在同一象限. ∴m =13-;第三种情况,当反比函数()0ky k x=≠经过B 、C 两点时, 把()3,2B代入到()0k y k x=≠得k =6 ∴此时反比例函数的关系式为6y x= 把()6,C m 代入6y x=得m =1, ∴()6,1C ,其在第一象限和()3,2B 在同一象限.不合题意.故此情况下,无解. 综上所述m=13-. 故选:A . 【点睛】此题考查反比例函数的图象和性质,熟悉图象的意义和分情况讨论是关键.8.如图,在平面直角坐标系内,正方形OABC 的顶点A ,B 在第一象限内,且点A ,B 在反比例函数()ky k 0x=≠的图象上,点C 在第四象限内.其中,点A 的纵坐标为4,则k 的值为( )A .434B .454C .838D .858【答案】D 【分析】作AE ⊥x 轴于E ,BF ∥x 轴,交AE 于F ,根据图象上点的坐标特征得出A (4k,4),证得△AOE ≌△BAF (AAS ),得出OE=AF ,AE=BF ,即可得到B(44k +,44k-),根据系数k 的几何意义得到k=4444k k ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭解得即可. 【详解】解:作AE ⊥x 轴于E ,BF//x 轴,交AE 于F , ∵∠OAE+∠BAF =90°=∠OAE+∠AOE , ∴∠BAF =∠AOE , 在△AOE 和△BAF 中,AOE BAFAEO BFA 90OA AB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△AOE ≌△BAF (AAS ), ∴OE =AF ,AE =BF , ∵点A ,B 在反比例函数y =kx(k≠0)的图象上,点A 的纵坐标为4, ∴A (4k,4), ∴ B(44k +,44k -),∴k =4444k k ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭, 解得k =﹣8±85(负数舍去), ∴k =85﹣8, 故选择:D ..【点睛】本题考查了正方形的性质,全等三角形的性质与判定,反比例函数的图象与性质,关键是构造全等三角形.9.若双曲线5m y x-=在每一个象限内,y 随x 的增大而减小,则m 的取值范围是( ) A .5m < B .5m ≥ C .5m > D .5m ≠【答案】C 【分析】根据反比例函数的性质可解. 【详解】 解:∵双曲线5m y x-=在每一个象限内,y 随x 的增大而减小, ∴50m ->, 解得5m >, 故选:C . 【点睛】本题考查了反比例函数的性质,掌握反比例函数ky x=,当k >0,双曲线的两支分别位于第一、三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、四象限,在每一象限内y 随x 的增大而增大.10.如图,双曲线ky x=经过点(2,4)A 与点(4,)B m ,则AOB 的面积为( )A.3 B.4 C.5 D.6【答案】D【分析】过A、B分别作x轴的垂线,垂足分别为C、D,把点A(2,4)代入双曲线kyx=确定k的值,再把点B(4,m)代入双曲线kyx=,确定点B的坐标,根据S△AOB=S△AOC+S梯形ABDC−S△BOD和三角形的面积公式与梯形的面积公式进行计算即可.【详解】过A、B分别作x轴的垂线,垂足分别为C、D,如图,∵双曲线kyx=经过点A(2,4),∴k=2×4=8,而点B(4,m)在8yx=上,∴4m=8,解得m=2,即B点坐标为(4,2),∴S△AOB=S△AOC+S梯形ABDC-S△BOD=12OC•AC+12×(AC+BD)×CD−12OD×BD=12×2×4+1 2×(4+2)×(4−2)−12×4×2=4+6-4=6.故选:D.【点睛】本题考查了点在图象上,点的横纵坐标满足图象的解析式;也考查了利用坐标表示线段的长以及利用规则的几何图形的面积的和差计算不规则的图形面积.11.蓄电池的电压为定值.使用此电源时,用电器的电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过9A ,那么用电器的可变电阻应控制在( )范围内.A .4ΩR ≥B .4ΩR ≤C .9ΩR ≥D .9ΩR ≤【答案】A 【分析】根据函数的图象即可得到结论. 【详解】解:由物理知识可知:I=U R, 由图象可知点(9,4)在反比例函数的图象上, 当I≤9时,由R≥4, 故选:A . 【点睛】本题考查反比例函数的图象,能够读懂反比例函数的图象是解决问题的关键.12.如图,函数11y x =+与函数22y x=的图象相交于点(,2)M m ,(,1)N n -.若12y y >,则x 的取值范围是( )A .2x <-或01x <<B .2x <-或1x >C .20x -<<或01x <<D .20x -<<或1x >【答案】D【分析】 根据图象可知函数11y x =+与函数22y x=的图象相交于点M 、N ,若 12y y >,即观察直线图象在反比例函数图象之上的x 的取值范围.【详解】 解:将M 、N 点坐标分别代入11y x =+,求得:m=1,n=-2∴M(1,2),N(-2,-1)如图所示,可知直线图象在反比例函数图象之上的x 的取值范围为20x -<<或1x >,故选:D .【点睛】本题主要考查了反比例函数图象与一次函数图象的交点问题,能利用数形结合求出不等式的解集是解答此题的关键.二、填空题13.如图,点A 在双曲线2(0)y x x=-<上,连接OA ,作OB OA ⊥,交双曲线(0)k y k x=>于点B ,若2OB OA =,则k 的值为_________.14.如图,点A 在反比例函数(0,0)k y k x x =>>的图象上,AB x ⊥轴于点B ,点C 在x 轴负半轴上,且:2:1CO OB =.若ABC 的面积为9,则k 的值为________.15.如图,直线y =12x +4与x 轴、y 轴交于A 、B 两点,AC ⊥AB ,交双曲线()0k y x x =<于C 点,且BC 交x 轴于M 点,BM =2CM ,则k =_____.16.已知反比例函数1m y x-=的图象具有下列特征:在每一象限内,y 的值随x 值的增大而减小,则m 的取值范围是__________. 17.在反比例函数k y x=的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1< x 2<0,y 1> y 2写出一个符合条件的函数表达式________________.18.双曲线2y x=-经过点A(-1,1y ),B(2,2y ),则1y ________2y (填“>”,“<”或“=”). 19.如图所示,点A 、B 在反比例函数y =k x (k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为______.20.如图,已知反比例函数k y x=(x >0)与正比例函数y =x (x ≥0)的图象,点A(1,5),点A′(5,1)与点B′均在反比例函数的图象上,点B 在直线y =x 上,四边形AA′B′B 是平行四边形,则B 点的坐标为________.三、解答题21.已知:12y y y =+,1y 与1x +成正比例,2y 与x 成反比例.当1x =时,7y =;当3x =时,4y =.求y 与x 的函数解析式.22.如图,反比例函数k y x=的图象与一次函数y ax b =+的图象交于点A ,B ,点B 的纵坐标是1-,过点A 作AC x ⊥轴于点C ,且1OC =,AOC △的面积为1.(1)求反比例函数和一次函数表达式;(2)若点D 是反比例函数图象上一点,且到点A ,C 的距离相等,求点D 的坐标. 23.如图,A 是反比例函数k y x=图象上一点,过点A 作AB y ⊥轴于点B ,点C 在x 轴上,ABC ∆的面积为2.(1)求反比例函数的解析式;(2)己知OB BA =,点(),1P m 在该反比例函数的图象上,点Q 是x 轴上一动点,若QA QP +最小,求点Q 的坐标.24.如图,一次函数y x b =-+的图象与x 轴交于A 点,与y 轴交于B 点,与反比例函数k y x=的图象交于点(1,5)E 和点F .(1)求k ,b 的值以及点F 的坐标;(2)求EOF △的面积;(3)请根据函数图象直接写出反比例函数值大于一次函数值时x 的范围.25.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于A (1.2),B (n ,-1)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是5,求点P的坐标.26.如图,反比例函数myx=的图象与一次函数y kx b=+的图象交于,A B两点,点A的坐标为(2,6),点B的坐标为(,1)n.(1)求反比例函数与一次函数的表达式;(2)直线AB与y轴交于点P,点E为y轴上一个动点,若5AEBS=,求点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.8【分析】过点A 作轴过点B 作轴利用相似三角形的性质求解即可;【详解】过点A 作轴过点B 作轴∵∴∴∵∴∴∵A 在上设∴∵∴∴∴B 的坐标为将点B 的坐标代入则;故答案是8【点睛】本题主要考查了反比例函数的应用解析:8【分析】过点A 作AE x ⊥轴,过点B 作BF x ⊥轴,利用相似三角形的性质求解即可;【详解】过点A 作AE x ⊥轴,过点B 作BF x ⊥轴,∵OB OA ⊥,∴90AOB ∠=︒,∴2390∠+∠=︒,∵1290∠+∠=︒,∴13∠=∠,∴AEO OFB ,∵A 在2(0)y x x =-<上,设()1112,<0A x x x ⎛⎫- ⎪⎝⎭, ∴1OE x =,12AE x -=,∵2OB OA =,∴12EO AE AO FB OF OB ===, ∴11222FB EO x x ===-,112422OF AE x x -===-,∴B 的坐标为114,2x x ⎛⎫-- ⎪⎝⎭, 将点B 的坐标代入(0)k y k x =>, 则()11428k x x =-⨯-=;故答案是8.【点睛】本题主要考查了反比例函数的应用,准确计算是解题的关键.14.6【分析】首先确定△AOB 的面积然后根据反比例函数的比例系数的几何意义确定k 的值即可【详解】解:连接AO ∵CO :OB=2:1∴OB=BC ∴S △AOB=S △ABC=×9=3∴|k|=2S △AOB=6∵解析:6【分析】首先确定△AOB 的面积,然后根据反比例函数的比例系数的几何意义确定k 的值即可.【详解】解:连接AO ,∵CO :OB=2:1,∴OB=13BC ,∴S△AOB=13S△ABC=13×9=3,∴|k|=2S△AOB=6,∵反比例函数的图象位于第一象限∴k=6,故答案为:6.【点睛】本题考查了反比例函数的比例系数的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|;解题的关键是能够确定△AOB的面积.15.14【分析】作CD⊥OA于D先确定A点坐标为(﹣80)B点坐标为(04)得到OB=4OA=8易证得Rt△BMO∽Rt△CMD则而BM=2CMOB=4则可计算出CD=2然后再证明Rt△BAO∽Rt△A解析:14【分析】作CD⊥OA于D,先确定A点坐标为(﹣8,0),B点坐标为(0,4),得到OB=4,OA=8,易证得Rt△BMO∽Rt△CMD,则OB BMCD MC=,而BM=2CM,OB=4,则可计算出CD=2,然后再证明Rt△BAO∽Rt△ACD,利用相似比可计算出AD,于是可确定C点坐标,然后把C点坐标代入反比例函数解析式中即可得到k的值.【详解】解:作CD⊥OA于D,如图,把x=0代入y=12x+4得y=4,把y=0代入y=12x+4得12x+4=0,解得x=﹣8,∴B点坐标为(0,4),A点坐标为(﹣8,0),即OB=4,OA=8,∵CD⊥OA,∴∠CDM=∠BOM=90°,而∠CMD=∠BMO,∴Rt△BMO∽Rt△CMD,∴OB BMCD MC=,而BM =2CM ,OB =4,∴CD =2,∵AC ⊥AB ,∴∠BAO +∠CAD =90°,而∠CAD +∠ACD =90°,∴∠BAO =∠ACD ,∴Rt △BAO ∽Rt △ACD , ∴OB OA AD CD =,即482AD =, ∴AD =1,∴OD =OA ﹣DA =8﹣1=7,∴C 点坐标为(﹣7,﹣2), 把C (﹣7,﹣2)代入y =k x得k =14. 故答案为14.【点睛】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征;熟练运用相似比进行几何计算. 16.【分析】根据反比例函数的增减性判断出m-1的符号再求出m 的取值范围即可【详解】解:∵反比例函数的图象在所在象限内y 的值随x 值的增大而减小∴m-1>0解得m >1故填:m >1【点睛】本题考查的是反比例函解析:1m【分析】根据反比例函数的增减性判断出m-1的符号,再求出m 的取值范围即可.【详解】解:∵反比例函数1m y x-=的图象在所在象限内,y 的值随x 值的增大而减小, ∴m-1>0,解得m >1.故填:m >1.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 17.(答案不唯一)【分析】根据反比例函数的性质得出k 的符号据此解答即可【详解】解:∵x1<x2<0y1>y2∴反比例函数在其中一分支上呈下降趋势∴此函数图象的两个分支分别在第一三象限∴k >0∴函数表达式 解析:2y x=(答案不唯一) 【分析】根据反比例函数的性质得出k 的符号,据此解答即可.【详解】解:∵x 1<x 2<0,y 1>y 2,∴反比例函数k y x=在其中一分支上呈下降趋势, ∴此函数图象的两个分支分别在第一、三象限,∴k >0. ∴函数表达式可以是2y x =(答案不唯一). 故答案是:2y x=(答案不唯一). 【点睛】本题考查的是反比例函数的增减性,熟知反比例函数性质是解答此题的关键. 18.【分析】把点AB 的坐标代入函数解析式求出比较大小即可【详解】解:把点AB 的坐标代入函数解析式得∴>故答案为:>【点睛】本题考查了根据函数解析式比较函数值的大小本题也可以画出函数图象描点借助图象比较函 解析:>【分析】把点A 、B 的坐标代入函数解析式求出1y ,2y ,比较大小即可.【详解】解:把点A 、B 的坐标代入函数解析式2y x=-得 122y =x 1=2=---,222y ==1x 1=---, ∴1y >2y .故答案为:>【点睛】本题考查了根据函数解析式比较函数值的大小,本题也可以画出函数图象,描点,借助图象比较函数值的大小.19.4【分析】设OM 的长度为a 利用反比例函数解析式表示出AM 的长度再求出OC 的长度然后利用三角形的面积公式列式计算恰好只剩下k 然后计算即可得解【详解】设∵点A 在反比例函数的图象上∴∵∴∴∴故答案为:4【 解析:4【分析】设OM 的长度为a ,利用反比例函数解析式表示出AM 的长度,再求出OC 的长度,然后利用三角形的面积公式列式计算恰好只剩下k ,然后计算即可得解.【详解】设OM a =,∵点A 在反比例函数k y x =的图象上, ∴k AM a=, ∵OM MN NC ==,∴3OC a =, ∴11336222AOC k S OC AM a k a =⋅=⋅⋅==, ∴4k =.故答案为:4.【点睛】本题综合考查了反比例函数与三角形的面积,根据反比例函数的特点,用OM 的长度表示出AM 、OC 的长度,相乘恰好只剩下k 是解题的关键,本题设计巧妙,是不错的好题. 20.()【分析】利用平行四边形的性质设出B 点坐标根据平移规律进而表示出B′点坐标即可代入反比例函数解析式得出答案【详解】解:∵反比例函数(x >0)点A (15)∴k=1×5=5∴反比例函数解析式为:∵点B解析:【分析】利用平行四边形的性质设出B 点坐标,根据平移规律进而表示出B′点坐标,即可代入反比例函数解析式得出答案.【详解】解:∵反比例函数k y x =(x >0),点A (1,5), ∴k=1×5=5,∴反比例函数解析式为:5y x=, ∵点B 在直线y=x 上,∴设B 点坐标为:(a ,a ),∵点A (1,5),A′(5,1),∴A 点向下平移4个单位,再向右平移4个单位,即可得到A′点,∵四边形AA′B′B 是平行四边形,∴B 点向下平移4个单位,再向右平移4个单位,即可得到B′点(a+4,a-4), ∵点B′在反比例函数的图象上,∴(a+4)(a-4)=5,解得:故B).【点睛】此题主要考查了反比例函数性质以及平行四边形的性质、平移的性质等知识,根据题意表示出B′点坐标是解题关键.三、解答题21.y =12(x +1)+6x【分析】根据正比例与反比例的定义设出y 与x 之间的函数关系式,然后利用待定系数法求函数解析式计算即可得解【详解】解:(1)设y 1=k 1(x +1)(k 1≠0),y 2=2k x (k 2≠0), ∴y =k 1(x +1)+ 2k x. ∵当x =1时,y =7.当x =3时,y =4, ∴122127433k k k k +=⎧⎪⎨+=⎪⎩, ∴12126k k ⎧=⎪⎨⎪=⎩,∴y 关于x 的函数解析式是:y =12(x +1)+6x ; 【点睛】此题主要考查了待定系数法求函数解析式,关键是掌握待定系数法求函数解析式的方法,熟练准确计算.22.(1)2y x =,1y x =+;(2)D 点坐标为()2,1 【分析】(1)先求点A 的坐标,再确定反比例函数解析式,利用反比例函数解析式求B 点坐标,利用“两点法”求一次函数解析式;(2)根据中点坐标公式可求点D 的纵坐标,再根据反比例函数图象上点的坐标特征即可求解.【详解】(1)解:∵1OC =,1AOC S =△ ∴112OC AC ⋅=,2AC = ∴()1,2A把()1,2A 代入k y x =得:21k =则2k = ∴2y x= ∵B 点的纵坐标是1- ∴21x -=解得:2x =- ∴()2,1B --把()1,2A ,()2,1B --代入y ax b =+212a b a b =+⎧⎨-=-+⎩解得:11a b =⎧⎨=⎩所以得:1y x =+(2)解:∵点D 到A ,C 的距离相等∴点D 的纵坐标为1把1y =代入2y x=得2x =. ∴D 点坐标为()2,1【点睛】本题考查了反比例函数与一次函数的交点问题.关键是由已知条件求交点坐标,根据交点坐标求反比例函数、一次函数的解析式.23.(1)4y x =;(2)Q 的坐标为10,03⎛⎫ ⎪⎝⎭【分析】(1)连接AO ,根据同底等高面积相等得出△ABO 的面积为2,得k 的值,从而可得结论;(2)求出点P 的坐标,作点P 关于x 轴的对称点P ',得P '为(4,)1-,连接'AP ,交x 轴为点Q ,此时AQ PQ +最小,求出'AP 的解析式,从而可求出点Q 的坐标.【详解】解:(1)连接AO ,且AB ⊥y 轴∴AB//x 轴,且△ABC 和△ABO 均以AB 为底,高相等,∴2ABC ABO S S ∆∆==,1122ABO S AB BO k ∆=⋅= ∴4k =∴反比例函数的解析式为4y x =; (2)∵OB BA =∴2OB BA ==∴(0,2),(2,2)B A ,且点P 的坐标为(,1)m∴14m ⨯=∴4m =∴点P 的坐标为(4,1)作点P 关于x 轴的对称点P '∴P '为(4,)1-连接'AP ,交x 轴为点Q ,此时AQ PQ +最小,设'AP 的解析式为y kx b =+∴1422k b k b -=+⎧⎨=+⎩∴325k b ⎧=-⎪⎨⎪=⎩ ∴352y x =-+又∵Q 在x 轴上∴0y = ∴3052x =-+ ∴103x = ∴点Q 的坐标为10(,0)3 【点睛】本题考查了反比例函数和一次函数图象的交点问题,反比例函数系数的几何意义,反比例函数图象上点的坐标特征,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,三角形的面积是12|k|. 24.(1)6b =,5k =,(5,1);(2)12;(3)01x <<或5x >.【分析】(1)将(1,5)E 分别代入y x b =-+和k y x=,解得6b =,5k =,联立方程组得65y x y x =-+⎧⎪⎨=⎪⎩,解得15x y =⎧⎨=⎩或51x y =⎧⎨=⎩即可; (2)由直线6y x =-+的图象与x 轴交于A 点,与y 轴交于B 点,利用割补法求EOF AOB AOF BOE S S S S =--△△△△即可;(3)反比例函数值大于一次函数值即56x x>-+的解集,可知反比例函数在一次函数图像的上方,在交点E 的左侧与y 轴的右侧,或F 点的右侧即可.【详解】 解:(1)将(1,5)E 分别代入y x b =-+和k y x =∴51b =-+,51k =解得6b =,5k = 由题意,联立方程组得65y x y x =-+⎧⎪⎨=⎪⎩, 解得15x y =⎧⎨=⎩或51x y =⎧⎨=⎩, F ∴点坐标为(5,1);(2)直线6y x =-+的图象与x 轴交于A 点,与y 轴交于B 点,(6,0)A ∴,(0,6)B .EOF AOB AOF BOE S S S S ∴=--△△△△111666161222=⨯⨯-⨯⨯-⨯⨯18612=-=; (3)反比例函数值大于一次函数值即56x x>-+的解集, ∴反比例函数在一次函数图像的上方,在交点E 的左侧与y 轴的右侧,或F 点的右侧,所以反比例函数值大于一次函数值时x 的范围01x <<或5x >.【点睛】本题考查一次函数,反比例函数的解析式,利用图像解不等式,掌握一次函数,反比例函数的解析式求法,利用图像解不等式方法是解题关键.25.(1)y=x+1,2y x =;(2)P (4,0)或(-6,0) 【分析】(1)先根据点A 坐标求出反比例函数解析式,再求出点B 的坐标,继而根据点A 、B 坐标可得直线解析式;(2)先根据直线解析式求出点C 的坐标,再设P (m ,0),知PC=|-1-m|,根据三角形面积公式列方程求出m 的值即可得出答案.【详解】解:(1)将点A (1,2)代入m y x =,得:m=2, ∴2y x=, 当y=-1时,x=-2,∴B (-2,-1),将A (1,2)、B (-2,-1)代入y=kx+b ,得:221k b k b +=⎧⎨-+=-⎩, 解得11k b =⎧⎨=⎩, ∴y=x+1;∴一次函数解析式为y=x+1,反比例函数解析式为y=2x; (2)在y=x+1中,当y=0时,x+1=0,解得x=-1,∴C (-1,0),设P (m ,0),则PC=|-1-m|,∵S △ACP =12×2PC=5, ∴|-1-m|=5,解得m=4或m=-6,∴点P 的坐标为(4,0)或(-6,0).【点睛】本题主要考查反比例函数与一次函数的交点问题,解题的关键是掌握待定系数法求函数解析式及两点间的距离公式、三角形的面积问题.26.(1)12y x =,172y x =-+;(2)E 的坐标为(0,6)或(0,8). 【分析】(1)把点A 的坐标代入y=m x,求出反比例函数的解析式,把点B 的坐标代入y=12x ,得出n 的值,得出点B 的坐标,再把A 、B 的坐标代入直线y=kx+b ,求出k 、b 的值,从而得出一次函数的解析式;(2)设直线AB 与y 轴的交点为P ,点E 的坐标为(0,m ),连接AE ,BE ,求出点P 的坐标(0,7),得出PE=|m-7|,根据S △AEB =S △BEP -S △AEP =5,求出m 的值,从而得出点E 的坐标.【详解】解:()1把点(2,6)A 代入m y x =,得12m =. 则反比例函数的表达式为12y x =. 把点(,1)B n 代入12y x=,得12n =. 则点B 的坐标为(12,1).由直线y kx b =+过点()()2,6,12,1A B ,得2621k b k b +=⎧⎨+=⎩解得127k b ⎧=-⎪⎨⎪=⎩ 则一次函数的表达式为172y x =-+ ()2如图,设直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m ),连接AE ,BE , 则点P 的坐标为(0,7)∴PE=|m-7|∵S△AEB=S△PEB-S△PEA=5∴12×|m-7|×12-12×|m-7|×2=5.∴12×|m-7|×(12-2)=5∴|m-7|=1.∴m1=6,m2=8∴点E的坐标为(0,6)或(0,8)【点睛】本题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.。

山东省烟台市芝罘区2021-2022学年八年级下学期期末数学试题

山东省烟台市芝罘区2021-2022学年八年级下学期期末数学试题


A. 3 2
B. 2
3
C. 5 2
3.用配方法解方程 x2 2x 1 0 时,原方程变形为( )
D. 1 3
D. 5 3
A. x 12 0
B. x 12 1
C. x 12 2
D. x 12 3
4.如图, AD∥BE ∥CF ,若 AB 2 , AC 5 , EF 4 ,则 DE 的长度是( )

A.有两个相等的实数根
B.有两个不相等的异号实数根
C.有两个不相等的同号实数根
D.没有实数根
10.某品牌的饮水机接通电源就进入自动程序:开机加热到水温 100℃,停止加热,水
温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至 30℃,
饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若水温为 30℃时接通
进行直播销售,如果按每件 60 元销售,每天可卖出 20 件.通过市场调查发现,每件小
商品售价每降低 5 元,日销售量增加 10 件.若日利润保持不变商家想尽快销售完该款
商品,求每件的定价以及此时的日销售量.
26.如图,一次函数
y
k1x
b k1
0
与反比例函数
y
k2 x
k2
0
的图象交于点
A4, 1 和点 Ba,3 .
值的变化而变化的一组数据如表格所示.
R … 2 3 4 6 12 …
I (A) … 24 16 12 8 4 … 请解答下列问题: (1)这个蓄电池的电压值是______. (2)请在下面的坐标系中,通过描点画出电流 I 和电阻 R 之间的关系图象,并直接写出 I 和 R 之间的函数关系式;
试卷第 4 页,共 6 页

芝罘区数学反比例函数选择填空题附答案.docx

芝罘区数学反比例函数选择填空题附答案.docx

反比例函数单元测试一、选择题n 4- 5 K 反比例函数y=—上图彖经过点(2, 3),则n 的值是( ).xA 、-2B 、-1C 、0D 、1 2、若反比例函数y =±(kHO )的图象经过点(一1,2),则这个函数的图象一定经过点( ). A^ (2, — 1) B 、(一一,2) C 、(一2, —1) D 、(一,2)2 23、(双柏县)已知甲、乙两地相距$ (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间f(h )与行驶速度v (km/h )的函数关系图象大致是()5、一次函数y=kx —k, y 随x 的增大而减小,那么反比例函数『=土满足().xC 、图象分布在第一、三象限D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y=丄于点Q ,连结0Q,点P 沿x 轴正方向运动时,xRtZXQOP 的面积( ).A 、逐渐增人B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气休,当改变容积V 时,气体的密度Q 也随之改变.Q 与V 在一定范围内满足Q =巴,它的图彖如图所示,贝燧V气体的质量m 为( ).A 、1.4kg Bx 5kg C 、6.4kg D 、7kg 8、若A (-3, yi ),B (-2, y 2),C (一1, y 3)三点都在函数y=—丄的图彖上,则旳,Xy2,y3的大小关系是( )• A 、yi>y2>y3 B 、yi<y 2<y3 C^ yi=y2=y3 D 、yi<y 3<y 29、已知反比例函数丫=—— 的图象上有A (xi ,yj 、B (X2,y 2)两点,当xj<x 2<0时,4^若y 与x 成正比例,x 与z 成反比例,贝!J y 与z 之间的关系是( A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 A 、当 x>0 时,y>0B 、在每个象限内,y 随x 的增大而减小 ). D 、无法确定yi<y2,则m的取值范围是()・A、m<0B、m>0C、m< —D、m> —2 210、如图,一次两数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()•A、x< — 1 x>2C、一lVxVO 或x>2D、xV — l 或0 VxV2二、填空题1 1.某种灯的使用寿命为1000小时,它的可使用天数y与平均每天使用的小时数兀Z间的函数关系式为______________________ .k12、已知反比例函数y二一的图象分布在第二、四象限,则在一次函数y二d + b中,y随兀的增大而 ________________ 填“增人”或“减小”或“不变”).b — 313、若反比例函数y=—和一次函数y=3x+b的图彖有两个交点,且有一个交点的纵他x标为6,则b= __________ .914、反比例函数y= ___________________________________ 的图彖分布在第二、四象限内,则m的值为 ___________________________________________ .15、有一面积为S的梯形,其上底是下底长的丄,若下底长为x,高为y,则y Lx的函数关系是_______________ .16、如图,点M是反比例函数y=±(aHO)的图象上一点,兀过M点作x轴、y轴的平行线,若S阴彫=5,贝IJ此反比例函数解析式为_______________ •217、使函数y= (2m2-7m-9) x m~9m+,9是反比例函数,且图象在每个象限内y随x的增大而减小,则可列方程(不等式组)为 __________________ .18. ________________________________________________________________过双曲线(kHO)上任意一点引X轴和y轴的垂线,所得长方形的面积为__________________ X419.如图,直线y =kx(k>0)与双|11|线y =—交于A (x P力),xB(X2,y2)两点,则2xiy2—7x2yi= __________ .20、如图,长方形AOCB的两边OC、OA分别位于x轴、20y轴上,点B的坐标为B (—〒,5), D是AB边上的一点,将AADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是 .参考答案一、选择题1、D;2^ A;3、C;6、C7、D;B;二、填空题10001 1 . y = ------------ ;12、减小;13、5 ;5— 9m +19 = 一1=一一;< ;18.2nr一7加一9>04、B;5、D;9、D;10、D.14、-3 ;15、y ——;16、y2xIkl;19、20;1220> y=——•X。

芝罘区初三数学试卷真题

芝罘区初三数学试卷真题

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √16B. √-9C. √4 + √-4D. √-4 + √42. 若方程 2x - 3 = 5 的解为 x,则 x + 1 的值为()A. 2B. 3C. 4D. 53. 在等腰三角形ABC中,AB=AC,若底边BC的长度为6cm,则顶角A的度数为()A. 30°B. 45°C. 60°D. 90°4. 下列函数中,是反比例函数的是()A. y = x^2 + 1B. y = 2x - 3C. y = 3/xD. y = 2x + 35. 若 a、b、c 是等差数列,且 a + b + c = 15,a + c = 9,则 b 的值为()A. 3B. 4C. 5D. 66. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (4,3)D. (3,4)7. 若二次函数y=ax^2+bx+c的图像开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 08. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a:b:c=2:3:4,则角B 的度数为()A. 30°B. 45°C. 60°D. 90°9. 下列各组数中,成等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 3, 6, 9, 12, 15D. 4, 7, 10, 13, 1610. 若平行四边形ABCD的面积为24平方厘米,对角线AC和BD的交点为E,则三角形AED的面积为()A. 12B. 24C. 36D. 48二、填空题(每题5分,共50分)1. 若 a = -2,b = 3,则 a^2 - b^2 的值为 _______。

烟台中考数学二轮 反比例函数 专项培优易错试卷

烟台中考数学二轮 反比例函数 专项培优易错试卷

烟台中考数学二轮反比例函数专项培优易错试卷一、反比例函数1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ,把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+ ),∵△PCA和△PDB面积相等,∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.2.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.3.如图,点P( +1,﹣1)在双曲线y= (x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.【答案】(1)解:点P(,)在双曲线上,将x= ,y= 代入解析式可得:k=2;(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,∵四边形ABCD是正方形,∴AB=AD=BC,∠CBA=90°,∴∠FBC+∠OBA=90°,∵∠CFB=∠BOA=90°,∴∠FCB+∠FBC=90°,∴∠FBC=∠OAB,在△CFB和△AOB中,,∴△CFB≌△AOB(AAS),同理可得:△BOA≌△AED≌△CFB,∴CF=OB=AE=b,BF=OA=DE=a,设A(a,0),B(0,b),则D(a+b,a)C(b,a+b),可得:b(a+b)=2,a(a+b)=2,解得:a=b=1.所以点C的坐标为:(1,2).【解析】【分析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.4.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3,).(1)求反比例函数的表达式和m的值;(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.【答案】(1)解:∵反比例函数y= (k≠0)在第一象限内的图象经过点E(3,),∴k=3× =2,∴反比例函数的表达式为y= .又∵点D(m,2)在反比例函数y= 的图象上,∴2m=2,解得:m=1(2)解:设OG=x,则CG=OC﹣OG=2﹣x,∵点D(1,2),∴CD=1.在Rt△CDG中,∠DCG=90°,CG=2﹣x,CD=1,DG=OG=x,∴CD2+CG2=DG2,即1+(2﹣x)2=x2,解得:x= ,∴点G(0,).过点F作FH⊥CB于点H,如图所示.由折叠的特性可知:∠GDF=∠GOF=90°,OG=DG,OF=DF.∵∠CGD+∠CDG=90°,∠CDG+∠HDF=90°,∴∠CGD=∠HDF,∵∠DCG=∠FHD=90°,∴△GCD∽△DHF,∴=2,∴DF=2GD= ,∴点F的坐标为(,0).设折痕FG所在直线的函数关系式为y=ax+b,∴有,解得:.∴折痕FG所在直线的函数关系式为y=﹣x+【解析】【分析】(1)由点E的坐标利用反比例函数图象上点的坐标特征即可求出k值,再由点B在反比例函数图象上,代入即可求出m值;(2)设OG=x,利用勾股定理即可得出关于x的一元二次方程,解方程即可求出x值,从而得出点G的坐标.再过点F作FH⊥CB于点H,由此可得出△GCD∽△DHF,根据相似三角形的性质即可求出线段DF的长度,从而得出点F的坐标,结合点G、F的坐标利用待定系数法即可求出结论.5.如图,一次函数的图象与反比例函数的图象交于第一象限C,D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)求△DOC的面积.(3)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.【答案】(1)解:将C(1,4)代入反比例函数解析式可得:k=4,则反比例函数解析式为:,将D(4,m)代入反比例函数解析式可得:m=1(2)解:根据点C和点D的坐标得出一次函数的解析式为:y=-x+5则点A的坐标为(0,5),点B的坐标为(5,0)∴S△DOC=5×5÷2-5×1÷2-5×1÷2=7.5(3)解:双曲线上存在点P(2,2),使得S△POC=S△POD,理由如下:∵C点坐标为:(1,4),D点坐标为:(4,1),∴OD=OC=,∴当点P在∠COD的平分线上时,∠COP=∠POD,又OP=OP,∴△POC≌△POD,∴S△POC=S△POD.∵C点坐标为:(1,4),D点坐标为:(4,1),可得∠COB=∠DOA,又∵这个点是∠COD的平分线与双曲线的y=交点,∴∠BOP=∠POA,∴P点横纵坐标坐标相等,即xy=4,x2=4,∴x=±2,∵x>0,∴x=2,y=2,故P点坐标为(2,2),使得△POC和△POD的面积相等利用点CD关于直线y=x对称,P(2,2)或P(−2,−2).答:存在,P(2,2)或P(-2,-2)【解析】【分析】(1)观察图像,根据点C的坐标可求出函数解析式及m的值。

反比例函数综合测试题(含答案)

反比例函数综合测试题(含答案)

反比例函数综合测试题(含答案)反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数x k y =的图象上,下列各点也在该函数图象上的是( ).A A. (3,- 2) B. (- 2,- 3) C. (2,3) D. (3,2)2. 反比例函数(0)k y k x=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数x y 2-=与x y 2=的图象的交点个数为( ). D A. 3个 B. 2个 C. 1个 D. 0个4. 如图1,点A 是y 轴正半轴上的一个定点,点B 是反比例函数y = 2 x (x > 0)图象上的一个动点,当点B 的纵坐标逐渐减小时,△OAB 的面积将( ). AA B .逐渐减小 C .不变 D125. (2009年恩施市)如图2,一张正方形的纸片,为( ).A6. 已知点A (x 1,y 1),B (x 2,y 2)是反比例函数x k y =(k > 0)的图象上的两点,若x 1 < 0 < x 2,则( ).A A. y 1 < 0 < y 2 B. y 2 < 0 < y 1 C. y 1 < y 2 < 0 D. y 2 < y 1 < 07. 如图3,反比例函数3y x =的图象与一次函数y =x + 2的图象交于A ,B 的面积是( ).C A. 2 B. 3 C. 4图4A B C D例函数()20y x x =≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数x k y =(k ≠ 0)的图象上.(1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.16.(8分)已知图8中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. 若该函数的图象与正比例函数y = 2x 的图象在第一象内限的交于点A ,过点A 作x 轴的垂线,垂足为点B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.17.(8分)如图9,点P 的坐标为322⎛⎫ ⎪⎝⎭,,过点P 作x轴的平行线交y 轴于点A ,交反比例函数k y x =(x >0)于点点N ,作PM ⊥ AN0)的图象于点M ,连接AM . 若PN (1)k 的值. (2)△APM 的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y (mg)与燃烧时间x (min)成正比例;燃烧后,y 与x 成反比例(如图10所示). 现测得药物10 min 燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x的解看成函数y = 2 x- 1的图象与函数y = 3 - x的图象交点的横坐标.如图11,已画出反比例函数1y在第一象限内的x图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x =的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD .(1)如图12,若点A ,B 在反比例函数k y x =的图象的同一分支上,试证明: ①A E D KC F B KSS =四边形四边形;②A N B M =.(2)若点A B ,分别在反比例函数k y x =的图象的不同分支上,如图13,则AN与BM还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题1. A.2. B.3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9.6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15.三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0).∵S △OAB = 4,∴12m • 2m = 4.解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8.∴反比例函数的解析式为8y x =.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32.∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫⎪⎝⎭,代入k y x =中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =.∴93322M P =-=. ∴12332A P MS=⨯⨯=△.18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)k y k x=≠.根据题意,得2810k =,280k=. ∴此阶段函数关系式为80y x =(x ≥ 10).(3)当y < 1.6时,80 1.6x <. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6. 提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x =与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x⊥轴,A E y ⊥轴,∴四边形A E O C 为矩形.B F x⊥轴,B D y ⊥轴,∴四边形B D O F 为矩形.A C x⊥轴,B D y ⊥轴,∴四边形A E D K D O C K C F B K,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O FS S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C F B K BD O F D O C K S S S =-矩形矩形矩形,∴A E D K C F B KS S =矩形矩形.②由(1)知,A E D K C F B K SS =矩形矩形.∴AK D K B K C K =.∴AK BKCK DK=.90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D ∥.A C y∥轴,∴四边形A C D N 是平行四边形.∴A N C D=.同理可得B M C D =.A N B M ∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形,又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形.∴A K D K B K C K =.∴CK DKAK BK=.K K∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y∥轴,∴四边形A N D C 是平行四边形.∴A N C D=.同理B M C D =.∴A N B M=【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档