Nitric oxide inhibits nitrate reductase activity in wheat leaves

合集下载

呼吸链依赖性纯化线粒体氧化应激活性氧高质荧光测定试剂盒

呼吸链依赖性纯化线粒体氧化应激活性氧高质荧光测定试剂盒
注意事项
1. 本产品为 20 次操作 2. 操作时,须戴手套 3. 孵育时,须避免光照 4. 建议染色完成后,即刻进行荧光分析 5. 本公司提供膜电位依赖性活性氧检测试剂产品 6. 本公司提供系列活性氧检测试剂产品
质量标准
1. 本产品经鉴定性能稳定 2. 本产品经鉴定荧光清晰
产品内容
缓冲液(Reagent A) 选择液(Reagent B) 补充液(Reagent C) 染色液( Reagent D) 产品说明书
毫升 微升 毫升 微升 1份
保存方式
保存在-20℃冰箱里,染色液(Reagent D),严格避免光照; 有:用于染色孵育 (共聚焦)荧光显微镜:用于观察荧光线粒体 荧光分光光度仪或荧光酶标仪:用于测定线粒体荧光强度
技术背景
超氧自由基阴离子(superoxide radical;O2-)、过氧化氢(hydrogen peroxide;H2O2)、羟自由基或氢氧基 (hydroxyl radical;OH-)、过氧化基(peroxyl radical;ROO-)、氢过氧自由基(hydroperoxyl;HOO)、烷 氧自由基(alcoxyl radical)、氮氧基(nitric Oxide;NO-)、过氧亚硝基阴离子(peroxynitrite anion;ONOO-) 次氯酸(hypochlorous acid;HOCl)、半醌自由基(semiquinone radical)、单线态氧气(singlet oxygen)等 细胞内活性氧族(Reactive Oxygen Species;ROS)的产生和增多,将导致细胞衰老或凋亡。氯甲基二氯二 氢荧光素二乙酯(6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester;CM-H2DCFDA)是 取代二氯二氢荧光素二乙酯(2´,7´-dichlorodihydrofluorescin diacetate;DCFH-DA)的升级产品,一种完全 自由通过细胞膜,并在细胞内长期滞留而不易外漏的染色剂。一旦被过氧化氢、羟自由基或氢氧基、过氧 化基、次氯酸等氧化,便产生荧光。据此测定线粒体活性氧族的浓度。三氟甲氧基苯腙羧基氰化物(carbonyl cyanide 4-trifluoromethoxy henylhydrazone;FCCP)使线粒体膜化学离子梯度消失。

人参皂苷治疗骨性关节炎的研究进展

人参皂苷治疗骨性关节炎的研究进展

特产研究163Special Wild Economic Animal and Plant ResearchDOI:10.16720/ki.tcyj.2023.093人参皂苷治疗骨性关节炎的研究进展郭校妍1,张伟东1,张扬1※(吉林大学药学院,吉林长春130021)摘要:人参在防治关节软骨损伤退变及参与体外培养软骨细胞修复关节软骨缺损中具有较好治疗前景。

人参皂苷作为人参的主要药理活性成分,在治疗骨性关节炎的进程中发挥关键作用。

人参皂苷根据不同的结构被分为不同的类型,各类型均含有多种人参皂苷单体成分,其治疗骨性关节炎的机制也各不相同。

本文对不同人参皂苷单体治疗骨性关节炎的研究进行梳理和总结,探讨其治疗骨性关节炎的潜在可能性和作用机制,为后期临床应用提供依据。

关键词:骨性关节炎;人参皂苷;信号通路中图分类号:R285文献标识码:A文章编号:1001-4721(2023)03-0163-06Research Progress of Ginsenosides in the Treatment of OsteoarthritisGUO Xiaoyan1,ZHANG Weidong1,ZHANG Yang1※(School of Pharmaceutical Sciences,Jilin University,Changchun130021,China)Abstract:Ginseng has pharmacological effects such as anti-inflammatory,antioxidant,antidepressant,anti-Alzheimer's and anti-athero-sclerosis.Current studies have found that it has good therapeutic prospects in preventing degeneration of articular cartilage damage and parti-cipating in in vitro culture of chondrocytes to repair articular cartilage defects.Ginsenosides,as the main pharmacological active component of ginseng,also play an important role in the process of treating osteoarthritis.Ginsenosides can be classified into different types because of their different structures,and each type contains a variety of ginsenoside monomer components with different mechanisms for the treatment of osteoarthritis.In this paper,we review the research progress of different ginsenoside monomers in the treatment of osteoarthritis,and ex-plore their potential possibilities and mechanisms for the treatment of osteoarthritis,so as to provide a basis for later clinical application. Key words:osteoarthritis;ginsenosides;signaling pathway骨性关节炎(Osteoarthritis,OA)是一种退行性病变,系由于增龄、肥胖、遗传、劳损、创伤、关节先天性异常和关节畸形等诸多因素引起的关节软骨退化损伤、关节边缘和软骨下骨反应性增生。

维生素B12催化纳米零价铁仿生降解全氟辛磺酸

维生素B12催化纳米零价铁仿生降解全氟辛磺酸

中国环境科学 2020,40(11):4770~4778 China Environmental Science 维生素B12催化纳米零价铁仿生降解全氟辛磺酸杨宁1,李飞1*,杨志敏2,曹威1,苑宝玲1(1.华侨大学土木工程学院,福建厦门 361021;2.华侨大学分析测试中心,福建厦门 361021)摘要:研究了维生素B12(VB12)催化纳米零价铁(nFe0)仿生还原降解工业级全氟辛磺酸(PFOS).结果表明,VB12催化nFe0不仅能够降解支链PFOS,而且也能够同时降解直链PFOS,这是首次报道直链PFOS的仿生还原降解.PFOS降解过程可用准一级动力学模型模拟,且升高温度有利于PFOS的还原降解去除和脱氟.超高效液相色谱-四级杆飞行时间质谱(UPLC-QTOF)定性分析表明,PFOS仿生降解产物包括4种全氟磺酸类(全氟碳链长度为C4 ~ C7)、9种全氟羧酸类(全氟碳链长度为C2 ~ C7、C10、C11和C13)和5种多氟代酸类(即H-全氟己酸、H-全氟庚酸、H-全氟辛酸、H2-全氟辛酸和H-全氟辛磺酸)化合物.全氟磺酸类和全氟羧酸类化合物首次在VB12仿生催化降解PFOS的产物之中检出,其中全氟十一烷酸(C10)、全氟十二烷酸 (C11)和全氟十四烷酸 (C13)等长链化合物第一次在降解PFOS过程中被发现.在降解样中检出的H-全氟烷烃(链长为C2 ~ C7、C10、C11和C13)是否是PFOS 的仿生降解产物,还有待进一步研究确认.关键词:全氟辛磺酸;维生素B12;纳米零价铁;仿生降解;还原脱氟中图分类号:X131.2 文献标识码:A 文章编号:1000-6923(2020)11-4770-09Biomimetic degradation of PFOS catalyzed by vitamin B12 using nanoscale zero-valent iron as reductants. Y ANG Ning1, LI Fei1*, Y ANG Zhi-min2, CAO Wei1, YUAN Bao-ling1 (1.College of Civil Engineering, Huaqiao University, Xiamen 361021, China;2.Analytical and Testing Center of Huaqiao University, Xiamen 361021, China). China Environmental Science, 2020,40(11):4770~4778 Abstract:The reductive degradation of technical perfluorooctanesulfonate (PFOS) were investigated in a biomimetic system consisting of vitamin B12(VB12) as catalyst and nanoscale zero-valent iron (nFe0) as reductants. Both branched and linear PFOS could be degraded simultaneously, and the biomimetic degradation of linear PFOS was first reported. The degradation was well described by a pseudo-first-order kinetic model, and increasing the incubation temperature was favorable for the removal of PFOS and for its defluorination. Three types of PFOS degradation products, including 4 perfluoroalkylsulfonates (perfluorocarbon chain length: C4 ~ C7), 9perfluorocarboxylates (perfluorocarbon chain length: C2 ~ C7, C10, C11, and C13), and 5 polyfluorinated acids (i.e. H-perfluorohexanoate, H-perfluoroheptanoate, H-perfluorooctanoate, H2-perfluorooctanoate, and H-perfluorooctanesulfonate) have been qualitatively determined by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF). For the first time, Perfluoroalkylsulfonates and perfluorocarboxylates were detected among the biomimetic reduction products of PFOS catalyzed by VB12, while some long-chain perfluorocarboxylates, including perfluoroundecanoate (C10), perfluorodocecanoate (C11) and perfluorotetradecanoate (C13), were first reported as the degradation products during decomposition of PFOS. It was unclear whether H-perfluoroalkanes (carbon chain length: C2 ~ C7, C10, C11, and C13) were the biomimetic degradation products of PFOS, and further investigation is warranted.Key words:PFOS;vitamin B12;nanoscale zero-valent iron;biomimetic degradation;reductive defluorination全氟辛磺酸(PFOS)作为全氟化合物(PFCs)的最典型代表之一,被广泛的应用于工业、商业和个人消费品中[1].生态毒理学研究结果表明,PFOS对食物链各个层级生物均具有健康风险,我国地下水中PFOS 等PFCs的污染较为严重,部分地区地下水中PFOS 浓度高达几十至几百ng/L[2-4],远高于美国的饮用水健康限制(PFOS和全氟辛酸总浓度不大于70ng/L).为了修复水环境中PFOS等PFCs污染,降低其环境风险,各国学者开展了各种去除方法的研究[5-6],包括高级氧化/还原[7]、物化吸附[8-10]、离子交换[8]、膜分离[11]和生物[12-13]及非生物降解[14-15]等.然而,目前还没有一种经济有效且具有地下水原位修复应用前景的PFCs去除技术[5-8]:1)物化吸附、膜分离和离子交换等仅仅使PFCs产生了相转移,没有从根本上解决其污染问题;2)高级氧化/还原及其耦合技术虽然能有效去除PFOS等PFCs,但普遍存在运行条件苛刻、处理成本高、处理效果易受环境因素影响收稿日期:2020-03-25基金项目:国家自然科学基金(51878300,51108197,51878301);福建省自然科学基金(2017J01096);泉州市科技计划项目(2018C084R);厦门市科技重大专项(3502Z20191012);华侨大学中青年教师科研提升资助计划(ZQN-YX602);华侨大学研究生科研创新基金资助项目* 责任作者, 副教授,***************.cn11期杨宁等:维生素B12催化纳米零价铁仿生降解全氟辛磺酸 4771等缺点,且难以实现地下水等水环境的原位修复;3)生物降解虽是最具原位修复应用前景的PFCs去除技术,但目前PFOS等PFCs降解脱氟仅限某些菌种的纯培养过程.氟原子半径小(1.47Å)、电负性强(4.0)的特点决定了PFOS等PFCs易受亲核试剂进攻而被还原降解.而维生素B12(VB12)咕啉环中的Co(I)是一种非常强的亲核试剂,可以通过进攻卤碳键加速首个卤素原子的脱除速率[16-18],且VB12可由土壤微生物合成提供[19],从而为其应用到地下水的原位修复提供了可能[15].Ochoa-Herrera等[14]采用VB12催化柠檬酸钛还原降解PFOS,在70℃和pH=9.0时虽然支链PFOS的脱氟率高达71%,但却无法降解直链PFOS.Park等[15]和Liu等[20]分别采用VB12催化柠檬酸钛和纳米零价锌(nZn0)或纳米零价铁钯双金属(Pd0/nFe0),也均不能有效去除PFOS和PFOA等的直链异构体.Lee等[21]采用VB12/柠檬酸钛/纳米零价铜(nCu0)体系却可以还原降解直链PFOA.由此可见,VB12能否仿生催化降解直链PFOS等PFCs尚存在争议.然而PFOS直链异构体的含量虽因污染源不同而有所变化,但一般接近甚至超过50%,若修复技术对直链PFOS无效,则会限制其适用范围[15] .若考虑到Mg-氨基黏土包埋nFe0在1h内即可近似完全去除工业级PFOS(购自Sigma-Aldrich公司,直链PFOS含量约为68%[15])[22],甚至仅使用零价铁颗粒[23]或nFe0[22]即可有效去除PFOA和PFOS等PFCs,则采用VB12催化nFe0则更有可能能够同时还原降解PFOS的支链和直链异构体.本研究利用VB12催化nFe0仿生还原降解工业PFOS,确认直链PFOS的可降解性,并采用超高效液相色谱-四级杆飞行时间质谱(UPLC-QTOF)定性分析其可能的稳态降解产物.1材料与方法1.1 标准试剂全氟辛磺酸钾(PFOS,≥98%)、氢氧化铵水溶液(~25%)、BioXtra级氟化钠(≥99%)及HPLC级甲醇(≥99.9%)、乙腈(≥99.9%)和冰醋酸(≥99.7%)均购自Sigma-Aldrich公司.内标[1,2,3,4-13C4]-PFOS (MPFOS,>99%)购自Wellington公司.nFe0(99.9%, 50nm)和HPLC级醋酸铵(≥99.0%)分别购自阿拉丁公司与Fluka公司.Oasis® WAX固相萃取(SPE)小柱(150mg, 6mL, 30 µm)和EnviCarb分散石墨碳吸附剂(100m2/g, 120/400mesh)分别购自Waters公司和Supelco公司.VB12(氰钴胺, ≥95.0%)和其它AR级无机化合物均购自国药集团.本研究用水均为Milli-Q 水,且在使用前利用高纯氮(99.999%)曝气30min,以尽量避免溶解氧的影响.1.2仿生还原降解PFOS在充满氮气/氢气混合气体(体积分数分别约为95%和5%)的厌氧手套箱(YQX-II,上海新苗)内,将100mL VB12储备液(约2mmol/L)、400mL PFOS储备液(500 µmol/L)和400mL无氧水混匀后,用1mol/L 的氢氧化钠溶液调节pH 9.0左右,用无氧碳酸盐缓冲液(0.1mol/L)精确定容至1.00L,则VB12和PFOS 的浓度均约为200µmol/L.向盛有10mg nFe0的棕色玻璃顶空进样瓶(Agilent, 20mL)内准确移取10.0mL 上述溶液后,用铝箔封口并旋紧瓶盖,最后用Parafilm M®封口膜进一步密封,即为降解样(PFOS+VB12+nFe0).同时,使用无氧水代替PFOS储备液以制备背景控制样(VB12+nFe0),用来监测实验过程中存在的潜在污染;使用无氧水代替VB12储备液以制备nFe0控制样(PFOS+nFe0);不向顶空瓶内添加nFe0以制备VB12控制样(PFOS+VB12);用无氧水代替VB12储备液,且不向顶空瓶内添加nFe0,以制备吸附控制样(仅PFOS),用来监测顶空瓶壁和铝箔等对PFOS的吸附.将所有顶空瓶移出厌氧手套箱后,置于转速设定为90r/min的空气摇床(30℃)或水浴摇床(50℃和70℃)上培养(控制样仅在70℃下培养).所有降解样和控制样均设置3个平行样.1.3样品预处理及仪器分析在每个取样时间点,将顶空瓶移出水浴摇床后迅速打开瓶盖以破坏反应所需的厌氧环境,并置于冰浴内降温.降至室温后,将瓶内的液体移至50mL 聚丙烯(PP)离心管内,在10615×g的相对离心力(RCF)下离心15min(H1850R,湖南湘仪),以测定pH 值和氟离子浓度,然后将上清液移至100mL PP烧杯内.分别依次用10mL 1%醋酸溶液(V/V)和2mL甲醇洗涤顶空瓶3次,并将洗涤液在10615×g的RCF下离心15min后也并入100mL PP烧杯内.按照Li等[24] 的方法依次使用2mL甲醇和10mL 1%醋酸溶液(V/V)对离心管内的残留固体进行3次超声溶剂萃取,4772 中国环境科学 40卷并将萃取液移入上述100mL烧杯内.最终,烧杯内液体的总体积约为82mL.为了去除干扰物质和盐分,使用WAX柱对混合液体进行固相萃取(SPE),并采用EnviCarb分散石墨碳吸附剂对SPE洗脱液进行净化.将500µL净化后SPE洗脱液和500µL Milli-Q 水混合均匀,根据需要再使用1:1甲醇水溶液(V/V)稀释一定倍数后,以进行仪器分析.使用高效液相色谱(Agilent 1260)-三重四级杆质谱(AB SCIE Triple Quad™ 3500, HPLC- MS/MS)定量分析降解体系和各控制样中残留的PFOS[25].色谱柱采用Agilent Poroshell 120EC-C18柱(2.7µm, 2.1mm×100mm),进样量为10µL,流动相采用甲醇和10mmol/L醋酸铵溶液,流速为300µL/min,初始甲醇比例为20%,维持1min后增加至2min时的75%,并在9min时增加至95%,维持5min并在14.01时降至20%,然后保持至18min结束.质谱参数详见文献[25-26].为了定性分析PFOS仿生降解产物,使用Agilent 1290Infinity超高压液相色谱(UPLC)对其进行分离,并采用Dual AJ S ESI电离源将其接至四级杆飞行时间质谱仪(QTOF,Agilent 6545).液相色谱柱采用Agilent ZORBAX Eclipse Plus C18柱(1.8 µm,2.1mm×50mm),进样量为5µL,流动相采用甲醇和醋酸铵溶液(10mmol/L),流速200µL/min.初始甲醇比例为20%,维持1min后增加至2min时的75%,并在6min时增加至95%,维持2min并在8.01时降至20%,然后保持至10min结束.Dual AJ S ESI电离源毛细管电压为-3500V,干燥气温度和流速为320℃和8L/min,鞘气温度和鞘气流速分别为350℃和11L/min,雾化气压力为35psi.QTOF在一级质谱全扫描模式下运行,扫描离子范围m/z = 50 ~ 1000Da.采用氟离子选择电极(Thermo Orion Ion-700)测定氟离子浓度.为了尽量避免VB12和nFe0等组分对测定结果的影响,在电极校准时采用基质匹配的氟离子标准溶液.此外,部分样品同时使用离子色谱(Metrohm 930Compact IC Flex)测定氟离子浓度.采用这2种方法测得的氟离子浓度一般不存在显著性差异(P>0.05).1.4数据处理采用Microsoft Excel 2016求重复实验的平均值和标准偏差,并在P=0.05显著水平上进行单因素方差分析.采用SigmaPlot 12.5对PFOS仿生降解准一级动力学数据进行拟合.2结果与讨论2.1仿生降解去除PFOSPFOS标准品属于工业级产品,含有多种支链(图1中的峰1和峰2)和直链(图1中的峰3)异构体,其中直链异构体的含量约为68%[15].在本研究中,PFOS浓度由图1中的3个峰面积之和计算得到,因此其去除率为所有异构体的整体表观去除率.PFOS在吸附控制样(仅PFOS, 70℃)中的回收率为96.5%±4.7%~105%±5%(相应的去除率为-5%~ 3.5%,图2),且不存在统计意义上的差异性,这说明玻璃顶空瓶壁对PFOS的不可逆吸附可忽略不计.采用UPLC-QTOF定性分析背景控制样(VB12+nFe0,70℃),则未检出PFOS及其可能的降解产物,这表明在实验过程中不存在潜在污染.由图1可知,降解样(PFOS+ VB12+nFe0)中PFOS支链(峰1和峰2)和直链(峰3)异构体的峰高和峰面积均随着培养时间的增加而降低,考虑到容器壁吸附造成的PFOS损失可以忽略不计(图2),则说明支链和直链PFOS可能均能够被VB12催化nFe0仿生还原降解.这和前人的研究结果并不完全一致,他们认为在由VB12和各种还原剂(包括柠檬酸钛[14,20]、纳米零价金属[15]等)组成的类似仿生体系中,虽然PFOS的支链异构体能够被降解去除,但是由于VB12和其直链异构体无法发生配合反应而不能被还原降解[15,27].目前,导致这种差异性的原因尚不明确,但在研究类似仿生体系还原降解直链PFOA的过程中也存在类似的现象:Lee等[21]认为VB12+纳米零价铜可催化柠檬酸钛还原降解直链PFOA,但Liu 等[20]则认为由于直链PFOA不存在叔碳氟键而不能被VB12催化柠檬酸钛仿生还原降解.PFOS去除率随着培养时间的增加而增加,且升高培养温度可显著增加VB12催化nFe0仿生还原降解PFOS能力(P<0.05,图2),这和前人利用类似的仿生体系降解支链PFOS[14-15]和直链PFOA[21]的研究结果一致.由图2可知,PFOS在50℃和70℃时的最终去除率分别为35.3%±2.8%和53.8%±2.3%,大于其标准品中支链异构体的含量(约为32%),这进一步证明本研究中VB12和nFe0组成的仿生体系能够去除直链PFOS.由图2可知,70℃和pH = 9.0时PFOS在第7d11期杨 宁等:维生素B 12催化纳米零价铁仿生降解全氟辛磺酸 4773的去除率约为36.5%±3.2%,远低于类似条件下支链PFOS [14-15]和支链全氟癸酸(PFMe 2OA)[20]的去除率.Ochoa -Herrera 等[14]和Park 等[15]分别采用VB 12催化柠檬酸钛和nZn 0降解支链PFOS,去除率则分别高达80%和70%以上;而Liu 等[20]采用VB 12催化柠檬酸钛仿生降解PFMe 2OA,7d 时的去除率高达85%.基于密度泛函理论(DFT)的热力学计算结果表明,直链PFOS 比其支链异构体更稳定[27],且直链PFOS 与其支链异构体的降解可能能够形成竞争关系,从而降低了工业级PFOS 的去除率.例如,Park 等[14]在pH=10.4和70℃时采用VB 12催化nFe 0或nZn 0降解工业级PFOS,虽然直链PFOS 无显著性去除,但在第5d 时工业PFOS 的去除率也仅约为20%,甚至低于本研究在相同培养时间的去除率(30.3%,图2).丰度(×105c p s )图1 PFOS HPLC -MS/MS 色谱图随培养时间的变化 Fig.1 The chromatography patterns of PFOS during HPLC -MS/MS analysis at different incubation time图2 PFOS 仿生降解去除率随培养时间变化趋势 Fig.2 Time -dependence of removal rates during biomimeticdegradation of PFOSPFOS 在nFe 0控制样(PFOS+nFe 0,70℃)中回收率为94.1%±5.3%~103%±3%(相应的去除率为-3%~5.9%,图2),且不存在统计意义上的差异性,这表明单独使用nFe 0不能还原降解PFOS,这和Boltevogel 等[28]采用基于DFT 理论计算获得的研究结果相一致,即采用nFe 0和nZn 0还原降解PFOA 等PFCs 虽然在热力学是可行的,但在实际应用中必须投加合适的催化剂.Park 等[29]认为,虽然钯包埋零价铁纳米颗粒能够去除PFOS,但这主要是因为nFe 0生成的Fe 2+/3+和PFOS 发生络合反应,影响了定量结果,而不是还原降解.然而,由nFe 0控制样中PFOS 的去除几乎可以被忽略(图2),本研究所采用的样品预处理方法能够避免这种情况的发生.VB 12控制样(PFOS+VB 12,70℃)中PFOS 的去除率为-4.0%± 4.5%~5.5%±6.1%,且不存在显著性差异,这表明VB 12也无法单独还原降解PFOS.由此可见,仿生体系中PFOS 的去除是nFe 0和VB 12共同作用的结果,这和前人的研究结果一致[14-15].l n (C t/C 0)图3 PFOS 仿生降解准一级动力学拟合曲线 Fig.3 Pseudo -first -order kinetics fitting -curve forbiomimetic degradation of PFOS采用准一级动力学模型能够较好拟合VB 12催化nFe 0仿生还原降解PFOS 的过程.由表1和图3可知,当培养温度由30℃升高至50℃时,PFOS 去除速率系数增加了近1倍,即由0.021d -1增加至0.040d -1,而半衰期则相应的由32.8d 降至18.8d.当温度继续增加至70℃时,PFOS 去除速率系数则又增加了超过50%,至0.065d -1,半衰期则进一步降至10.7d.由此可见,增加反应温度可显著增加VB 12催化nFe 0仿生还原降解PFOS 的去除速率,这和前人利用类似4774 中 国 环 境 科 学 40卷仿生体系还原降解PFOS 和PFOA 等全氟有机酸的研究结果相一致[14-15,21].然而,本研究中PFOS 的去除速率系数却远低于类似体系中其支链异构体去除速率系数值:Ochoa -Herrera 等[14]和Park 等[15]在pH=9.0和70℃时分别采用VB 12催化柠檬酸钛和nFe 0降解支链PFOS,去除速率系数分别达0.576d -1(0.024h -1)和0.37d -1~3.35d -1(其值与支链PFOS 的分子结构有关).导致这种现象的原因可能是在本研究中支链和直链PFOS 被同时去除,而PFOS 直链异构体比其支链异构体更稳定,从而降低了去除速率. 2.2 仿生还原降解PFOS 脱氟由于吸附和络合等也可造成PFOS 等PFCs 的水相去除,故氟离子的生成一直被认为是其被降解的最直接证据[29].表1 PFOS 仿生降解准一级反应动力学模型拟合参数Table 1 Fitting parameters of pseudo -first -order kinetics model for biomimetic degradation of PFOSy 0k obs相关系数温度(℃) 拟合值 SE拟合值 SEt 1/2(d)R 2AdjR 2 SE 30 -0.0411 0.0155 0.0211 0.0028 32.8 0.9341 0.9176 0.0235 50 -0.0674 0.0297 0.0369 0.0054 18.8 0.9220 0.09025 0.0451 70-0.0760 0.0517 0.0645 0.0093 10.7 0.9226 0.9033 0.0785注: In(C t /C 0)=-k obs ⋅t +y 0,其中C t 和C 0分别表示降解时间t 时和初始时PFOS 浓度, µmol/L; k obs 为准一级反应表观速率系数, d -1; t 为反应时间,d;t 1/2为表观半衰期;SE 为标准误差;Adj R 2为调整后的R 2.图4 不同温度下氟离子浓度的变化Fig.4 Time -dependence of fluoride concentrations underdifferent temperatures由图4可知,氟离子浓度随着培养时间的增加而增加,且升高培养温度可显著增加氟离子浓度,这和前人的研究结果相一致[14-15].当温度由30℃升高至70℃时,培养期末氟离子浓度由(81.8±6.2)µmol/L 升至(579±7) µmol/L,即氟离子浓度增加了7倍,远低于类似条件下VB 12催化柠檬酸钛降解工业级PFOS(直链PFOS 含量约为75.4%)时增加的倍数(高达37倍)[14].利用式(1)计算PFOS 的脱氟率:()F100%17C C R C −=× (1)式中:R 表示脱氟率, %;C F 和C 分别表示培养时间为t 时和初始时氟离子浓度,其二者的差值见图4,µmol/L;C 0表示PFOS 的初始浓度,µmol/L.在培养期末,30,50,70℃时PFOS 的脱氟率分别为2.42%、6.55%和17.3%,远低于类似条件下其支链异构体[14-15]和支链PFCAs [20]的脱氟率,但和直链PFOA 的脱氟率类似[21].导致这种差异的原因可能是直链异构体比其支链异构体更稳定,从而更难降解脱氟.由表2可知,当培养温度由30℃升高至70℃时,去除每分子PFOS 所释放的氟离子数有所增加,由1.96±0.20个增加至5.34±1.11个,但均远低于PFOS 分子中含有氟原子数,这说明被去除的PFOS 并没有被完全矿化脱氟,从而生成了大量含氟降解产物.表2 每去除1mol PFOS 所释放的氟离子数 Table 2 Release of fluoride during removal per mol PFOS培养时间 30℃ 50℃ 70℃2h 0.83 2.83 4.27 1d 1.76 3.34 4.11 3d 2.28 3.33 4.98 5d 2.00 3.96 6.35 7d 1.82 3.79 6.87 10d 1.94 3.15 5.46 平均值 1.963.37 5.34 标准偏差 0.20 0.431.11注:因30℃培养时间2h 时的数值显然异常,故计算平均值时已将其排除.由图4可知,所有控制样中氟离子浓度均无显11期杨 宁等:维生素B 12催化纳米零价铁仿生降解全氟辛磺酸 4775著性变化,且彼此之间也不存在显著性差异(P > 0.05),进一步说明PFOS 的还原脱氟是由VB 12和nFe 0共同作用的结果,这和前人利用类似仿生体系还原降解PFOA 和PFOS 等PFCs 的研究结果相一致[14-15,20-21].然而,Arvaniti 等[22]仅采用nFe 0即可有效去除PFOA 等全氟烷基羧酸且生成了氟离子; Liu 等[23]则仅使用零价铁即可实现PFOS 等PFCs高达90%以上的去除,并伴随着氟离子的生成.这显然和本研究中nFe 0控制样的结果不一致,且无法用吸附和络合[29]来解释氟离子的生成.目前,导致这种不一致的原因尚不明确,这有待进一步的研究.2.3 定性分析PFOS 仿生还原降解产物在70℃和pH=9.0的条件下,采用UPLC -QTOF 定性分析培养时间为5d 时的降解样和各控制样中PFOS 及其仿生降解产物,结果如表3和表4所示.由表4可知,在所有添加PFOS 标准品的控制样中,包括nFe 0控制样(PFOS+nFe 0)、VB 12控制样(PFOS+VB 12)和吸附控制样(仅PFOS),均可检出全氟丁磺酸(PFBS)、全氟己磺酸(PFHxS)、全氟庚磺酸(PFHpS)、PFOA 、H -全氟庚酸(H -PFHpA)、H -全氟辛酸(H -PFOA)、H -全氟辛磺酸(H -PFOS)和H -全氟庚烷,但在背景控制样(VB 12+nFe 0)中却均未检出这些化合物.由此可见,上述化合物应该是PFOS 标准品中含有的杂质,尽管标准品的纯度较高(≥98%).本研究中,杂质化合物的生成标准为:其在降解样中的峰面积是其在各控制样中峰面积的至少2倍以上.在第5d 时,降解样(PFOS+VB 12+nFe 0)中直链和支链PFOS 的峰面积均显著降低(表4),这进一步说明直链和支链PFOS 均可以被去除.表3 UPLC -QTOF 定性分析PFOS 仿生降解产物Table 3 Qualitative analysis of biomimetic degradation products of PFOS using UPLC -QTOF非同位素准分子离子 同位素准分子离子PFOS 及不同类别降解产物[M -H]-分子式保留时间 (min) 实测质荷比(Da)丰度 (cps)理论质荷比(Da)DE(×10-6)实测质荷比(Da)丰度 (cps)理论质荷比(Da)DE (×10-6)直链 3.994 498.93121405292-2.07 499.9340120435-1.44 PFOS 支链 C 8F 17O 3S - 3.911 498.9311855313 498.9302-1.82 499.933974437 499.9333-1.32 PFBS (C4) C 4F 9O 3S -3.216 298.943211781 298.9430-0.53 299.9464627 299.9458-1.95 PFPeS (C5) C 5F 11O 3S - 3.365 348.94054074 348.9398-2.01 349.9415368 349.9427 3.36 PFHxS (C6) C 6F 13O 3S - 3.531 398.9374445910 398.9366-1.87 399.940229624 399.9395-1.54 全氟烷基磺酸类PFHpS (C7) C 7F 15O 3S - 3.746 448.9344748124 448.9334-2.10 449.937155095 449.9364-1.43 PFPrA (C2) C 3F 5O 2- 1.346 162.982527428 162.9824-0.78 163.98611019 163.9858-1.81 PFBA (C3) C 4F 7O 2- 2.852 212.979363282 212.9792-0.49 213.98243122 213.9826 1.00 PFPeA (C4) C 5F 9O 2- 3.183 262.9766119906 262.9760-2.13 263.97956533 263.9794-0.49 PFHxA (C5) C 6F 11O 2- 3.365 312.9733121259 312.9728-1.55 313.97647063 313.9762-0.64 PFHpA (C6) C 7F 13O 2- 3.547 362.9701103378 362.9696-1.25 363.97346980 363.9730-1.08 PFOA (C7) C 8F 15O 2- 3.762 412.966822650 412.9664-0.88 413.96961990 413.96980.53 PFUnA (C10) C 11F 21O 2- 4.656 562.95793606 562.9568-1.93 563.96081037 563. 9602-1.08 PFDoA (C11) C 12F 23O 2- 4.987 612.955271739 612.9537-2.47 613.95828791 613.9570-1.93 全氟羧酸类PFTA (C13)C 14F 27O 2- 5.649 712.9490180653 712.9473-2.38 713.951625088 713.9506-1.63 H -PFHxA C 6HF 10O 2- 2.852 294.982421399 294.9822-0.63 295.98601449 295.9856-1.29 H -PFHpA C 7HF 12O 2- 3.183 344.979536154 344.9790-1.34 345.98302827 345.9824-1.60 H -PFOA C 8HF 14O 2- 3.365 394.976240547 394.9758-0.93 395.97943545 395.9792-0.52 H 2-PFOA C 8H 2F 13O 2-2.852 376.98573404 376.9853-1.04 377.9892491 377.9886-1.52 多氟代酸类H -PFOS C 8HF 16O 3S - 3.531 480.93977240480.9396-0.09 481.9434797 481.9427-1.54 五氟乙烷 C 2F 5-1.346 118.992664471 118.9926-0.38 119.99601438 119.9959-0.65 七氟丙烷 C 3F 7-2.860 168.9896227202 168.9894-1.45 169.99297137 169.9927-0.82 九氟丁烷C 4F 9- 3.183 218.9867342610 218.9862-2.24 219.989513539 219.9895-1.07 十一氟戊烷 C 5F 11- 3.365 268.9836298312 269.9830-2.12 269.986614399 269.9863-1.06 H -全氟己烷 C 6F 13- 3.547 318.9803186007 318.9798-1.69 319.983811391 319.9831-2.06 H -全氟庚烷 C 7F 15- 3.762 368.976825040 368.9766-0.65 369.98101741 369.9800-2.85 H -全氟癸烷 C 10F 21- 4.639 518.96805783 518.9670-1.80 519.9723723 519.9704-3.80 H -全氟十一烷 C 11F 23- 4.987 568.965135938 568.9638-2.24 569.96894395 569.9672-2.97 H -全氟烷烃类H -全氟十三烷C 13F 27- 5.649 668.958763398 668.9574-1.95 669.96218483 669.9608-1.88注:括号内的数据表示该化合物的全氟碳链长度;DE 为差异误差.4776 中 国 环 境 科 学 40卷按照上述标准,VB 12催化nFe 0还原降解PFOS 可生成全氟磺酸类(PFSAs,4种)、全氟羧酸类(PFCAs,9种)、多氟代酸类(5种)和H -全氟烷烃类(9种)降解产物,共27种含氟化合物(表3和表4).PFSAs 类和PFCAs 类化合物首次在VB 12仿生催化降解PFOS 的产物之中检出,其中全氟十一烷酸(PFUnA, C10)、全氟十二烷酸(PFDoA,C11)和全氟十四烷酸(PFTA,C13)等比PFOS 全氟链长(C8)更长的降解产物更是第一次在降解PFOS 过程中被发现.PFSAs 类降解产物共4种,分别为PFBS (C4)、全氟戊磺酸(PFPeS, C5)、PFHxS (C6)和PFHpS (C7),其全氟碳链长度均小于PFOS (C8),说明VB 12催化nFe 0仿生还原降解PFOS 过程中,可将其全氟碳链缩短1 ~ 4个CF 2基团.然而,在PFOS 的高级氧化或高级还原降解过程中一般只生成1~2种短链PFSAs 类(多为PFBS 和/或PFHxS)降解产物[30-32],甚至不生成这类化合物[33-36].由此可见,高级氧化或高级还原降解过程中,PFOS 可能优先断裂C -S 键而非缩短全氟链长.因此,本研究中PFOS 的仿生降解途径可能和其高级氧化或高级还原降解途径有所不同.表4 PFOS 及其降解产物在降解样和各控制样中的峰面积Table 4 Peak areas of PFOS and its potential degradation products in decomposition sample and various controlsPFOS+VB 12+nFe 0 PFOS+ nFe 0 PFOS+VB 12 PFOS PFOS 及不同类别降解产物 [M -H]-分子式理论质荷 比 (Da)RT (min)峰面积RT (min)峰面积RT (min)峰面积RT (min)峰面积L -PFOS C 8F 17O 3S - 498.9302 3.994 36858858 3.992 55322902 3.994 54316291 3.994 54129681PFOSBr -PFOS3.911 124509233.909 20525976 3.911 19943914 3.911 21015759PFBS C 4F 9O 3S - 298.9430 3.216 754693.215 25705 3.216 26558 3.216 24889PFPeS C 5F 11O 3S -348.9396 3.365 16617 n.d.n.d.n.d.PFHxS C 6F 13O 3S -398.9366 3.531 27860698 3.532 245173 3.531 261540 3.531 298152全氟烷基磺酸类PFHpS C 7F 15O 3S - 448.9334 3.746 9151074 3.746 3166174 3.745 3148917 3.745 3156105PFPrA C 3F 5O 2- 162.9824 1.346 273356n.d. n.d. n.d. PFBA C 4F 7O 2- 212.9792 2.852 442147n.d. n.d. n.d. PFPeA C 5F 9O 2- 262.9760 3.183 632009n.d. n.d. n.d. PFHxA C 6F 11O 2- 312.9728 3.365 739715n.d. n.d. n.d. PFHpA C 7F 13O 2- 362.9696 3.547 629274n.d. n.d. n.d. PFOA C 8F 15O 2- 412.9664 3.762 121523 3.760 25714 3.762 27818 3.762 28191PFUnA C 11F 21O 2- 562.9568 4.656 17659 n.d. n.d. n.d. PFDoA C 12F 23O 2- 612.9537 4.987 444779n.d. n.d. n.d. 全氟羧酸类PFTA C 14F 27O 2- 712.9473 5.649 1112423n.d. n.d. n.d. H -PFHxA C 6HF 10O 2- 294.9822 2.852 128774n.d.n.d.n.d.H -PFHpA C 7HF 12O 2- 344.9790 3.183 301636 3.181 112472 3.182 127405 3.182 121122H -PFOA C 8HF 14O 2- 394.9758 3.365 249260 3.362 95173 3.365 98256 3.364 101191H 2-PFOA C 8H 2F 13O 2- 376.9853 2.852 23992 n.d. n.d.n.d.多氟代酸类H -PFOS C 8HF 16O 3S - 480.9396 3.531 45597 3.532 189903.531 20040 3.531 19847五氟乙烷 C 2F 5- 118.9926 1.346 716624n.d. n.d. n.d. 七氟丙烷 C 3F 7- 168.9894 2.852 *******n.d. n.d. n.d. 九氟丁烷C 4F 9- 218.9862 3.183 1805399n.d. n.d. n.d. 十一氟戊烷 C 5F 11- 269.9830 3.365 88474 n.d. n.d. n.d. H -全氟己烷 C 6F 13- 318.9798 3.547 1126594n.d. n.d. n.d. H -全氟庚烷 C 7F 15- 368.9766 3.762 172203 3.760 36438 3.762 38419 3.762 36947H -全氟癸烷 C 10F 21- 518.9670 4.639 31251 n.d. n.d. n.d. H -全氟十一烷 C 11F 23- 568.9638 4.987 226060n.d. n.d. n.d. 多氟代烷 烃类H -全氟十三烷C 13F 27- 668.9574 5.649 397320n.d.n.d.n.d.注:RT 为保留时间; 峰面积为在理论质荷比(m/z )差异误差(DE)为±15×10-6内提取的色谱峰面积;n.d.为未检出.全氟羧酸类降解产物共有9种,全氟碳链短于PFOS 的有6种,分别为五氟丙酸(PFPrA, C2)、全氟丁酸(PFBA, C3)、全氟戊酸(PFPeA, C4)、全氟己酸(PFHxA, C5)、全氟庚酸(PFHpA, C6)和PFOA (C7),而全氟链长大于PFOS 的有3种,分别为PFUnA (C10)、PFDoA (C11)和PFTA (C13).短链PFCAs 的生成途径可能类似于PFOS 的高级氧化或高级还原,即首先断裂C -S 键,生成全氟烷基自由基后,通过不11期杨宁等:维生素B12催化纳米零价铁仿生降解全氟辛磺酸 4777断水解并缩短链长而生成各种短链PFCAs[33-37].目前长链PFCAs类降解产物的生成途径尚不明确,后期可能需要使用同位素标记PFOS进行进一步的研究确认.多氟代酸类降解产物共有5种,分别为H-全氟己酸(H-PFHxA)、H-PFHpA、H-PFOA、H2-全氟辛酸(H2-PFOA)和H-PFOS.其中,H-PFOS的生成途径可能类似于支链PFOS仿生还原降解[15]或高级还原降解[38],但其他多氟代酸的生成途径尚不明确.由表3和表4可知,在降解样(PFOS+VB12+nFe0)中检出的9种H-全氟烷烃均满足降解产物的判定标准,并且Yamamoto等[39]也将其认定为PFOS光降解产物,但是H-全氟烷烃可能并不是仿生还原降解PFOS的产物.首先,H-全氟烷烃极难溶于水,特别是其短链同系物(如五氟乙烷)更是具有较高的挥发性,理论上其不应该在水相检出.其次,PFCAs类降解产物在电喷雾电离源(ESI)内的电离过程中,可能发生脱羧反应而生成H-全氟烷烃.所有PFCAs降解产物的保留时间和其脱羧后H-全氟烷烃的保留时间几乎完全相同,这说明检出H-全氟烷烃可能是PFCAs 降解产物的脱羧产物.由此可见,H-全氟烷烃是否是仿生催化降解PFOS的产物还无法确定,这有待进一步的研究.3结论3.1VB12催化nFe0可同时还原降解PFOS的直链和支链异构体,还原降解过程符合准一级动力学模型.3.2升高温度有利于提高PFOS的仿生还原降解去除率,且可提高其还原脱氟率.3.3VB12催化nFe0仿生还原降解PFOS,可生成PFSAs类(包括PFBS、PFPeS、PFHxS和PFHpS)、PFCAs类(包括PFPrA、PFBA、PFPeA、PFHxA、PFHpA、PFOA、PFUnA、PFDoA和PFTA)和多氟代酸类(即H-PFHxA、H-PFHpA、H-PFOA、H2-PFOA和H-PFOS)降解产物.PFSAs类和PFCAs 类化合物首次作为VB12仿生催化降解PFOS的产物而被报道,其中PFUnA (C10)、PFDoA (C11)和PFTA (C13)等比PFOS全氟链长(C8)更长的降解产物更是第一次在降解PFOS过程中被发现.3.4虽然在降解样中可检出H-全氟烷烃类化合物,但目前还不确定其是PFOS的仿生降解产物,还是PFCAs类降解产物在ESI电离源电离过程中的脱羧产物,这有待进一步的研究.参考文献:[1] Kissa E. Fluorinated surfactants and repellents [M]. New York: MarcelDekker Inc, 2001.[2] Li B, Hu L, Yang Y, et al. Contamination profiles and health risks ofPFASs in groundwater of the Maozhou River basin [J]. Environmental Pollution, 2020,260:113996.[3] Bao J, Yu W, Liu Y, et al. Perfluoroalkyl substances in groundwaterand home-produced vegetables and eggs around a fluorochemical industrial park in China [J]. Ecotoxicology and Environmental Safety, 2019,171:199-205.[4] Liu Y, Ma L, Yang Q, et al. Occurrence and spatial distribution ofperfluorinated compounds in groundwater receiving reclaimed water through river bank infiltration [J]. Chemosphere, 2018,211:1203- 1211.[5] Ji B, K ang P, Wei T, et al. Challenges of aqueous per- andpolyfluoroalkyl substances (PFASs) and their foreseeable removal strategies [J]. Chemosphere, 2020,250:126316.[6] Ateia M, Maroli A, Tharayil N, et al. The overlooked short- andultrashort-chain poly- and perfluorinated substances: A review [J].Chemosphere, 2019,220:866-882.[7] Trojanowicz M, Bojanowska-Czajka A, Bartosiewicz I, et al.Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)-A review of recent advances [J]. Chemical Engineering Journal, 2018, 336:170-199.[8] Ross I, Mcdonough J, Miles J, et al. A review of emergingtechnologies for remediation of PFASs [J]. Remediation Journal, 2018,28(2):101-126.[9] Zhang Y, Zhi Y, Liu J, et al. Sorption of perfluoroalkyl acids to freshand aged nanoscale zerovalent iron particles [J]. Environmental Science & Technology, 2018,52(11):6300-6308.[10] Xiao X, Ulrich B A, Chen B, et al. Sorption of poly- andperfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon [J]. Environmental Science & Technology, 2017,51(11):6342-6351. [11] Wang J, Wang L, Xu C, et al. Perfluorooctane sulfonate andperfluorobutane sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular organic foulants [J]. Chemical Engineering Journal, 2018,332:787-797.[12] Chetverikov S P, Sharipov D A, Korshunova T Y, et al. Degradationof perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida2.4-D [J]. Applied Biochemistry and Microbiology, 2017,53(5):533-538.[13] Huang S, Jaffé P R. Defluorination of perfluorooctanoic acid (PFOA)and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6 [J]. Environmental Science & Technology, 2019,53(19):11410- 11419.4778 中国环境科学 40卷[14] Ochoa-Herrera V, Sierra-Alvarez R, Somogyi A, et al. Reductivedefluorination of perfluorooctane sulfonate [J]. Environmental Science & Technology, 2008,42(9):3260-3264.[15] Park S, de Perre C, Lee L S. Alternate reductants with VB12totransform C8and C6perfluoroalkyl sulfonates: Limitations and insights into isomer-specific transformation rates, products and pathways [J].Environmental Science & Technology, 2017,51(23):13869-13877. [16] 李 飞,陈轶丹,杨志敏,等. 8:2氟调聚醇(8:2FTOH)厌氧生物降解特性 [J]. 中国环境科学, 2016,36(11):3295-3303.Li F, Chen Y D, Yang Z M, et al. Anaerobic biodegradation of 8:2fluorotelomer alcohol (8:2FTOH) [J]. China Environmental Science, 2016,36(11):3295-3303[17] Assaf-Anld N, Hayes K F, M V T. Reductive dechlorination of carbontetrachloride by cobalamin(II) in the presence of dithiothreitol: Mechanistic study, effect of redox potential and pH [J]. Environmental Science & Technology, 1994,28(2):246-252.[18] Costentin C, Robert M, Savéant J. Does catalysis of reductivedechlorination of tetra- and trichloroethylenes by vitamin B12and corrinoid-based dehalogenases follow an electron transfer mechanism?[J]. Journal of American Chemical Society, 2005,127(35):12154- 12155.[19] Lochhead A G, Thexton R H. Vitamin B12as a growth factor for soilbacteria [J]. Nature, 1951,167(4260):1034.[20] Liu J, Van Hoomissen D J, Liu T, et al. Reductive defluorination ofbranched per- and polyfluoroalkyl substances with cobalt complex catalysts [J]. Environmental Science & Technology Letters, 2018, 5(5):289-294.[21] Lee Y, Chen Y, Chen M, et al. Reductive defluorination ofperfluorooctanoic acid by titanium(III) citrate with vitamin B12and copper nanoparticles [J]. Journal of Hazardous Materials, 2017,340: 336-343.[22] Arvaniti O S, Hwang Y, Andersen H R,et al. Reductive degradationof perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron [J]. Chemical Engineering Journal, 2015, 262:133-139.[23] Liu Y, Ptacek C J, Baldwin R J, et al. Application of zero-valent ironcoupled with biochar for removal of perfluoroalkyl carboxylic and sulfonic acids from water under ambient environmental conditions [J].Science of The Total Environment, 2020,719:137372.[24] Li F, Zhang C, Qu Y, et al. Method development for analysis of short-and long-chain perfluorinated acids in solid matrices [J]. International Journal of Environmental Analytical Chemistry, 2011,91(12):1117- 1134.[25] Li F, Fang X, Zhou Z, et al. Adsorption of perfluorinated acids ontosoils: Kinetics, isotherms, and influences of soil properties [J]. Science of The Total Environment, 2019,649:504-514.[26] Li F, Su Q, Zhou Z, et al. Anaerobic biodegradation of8:2fluorotelomer alcohol in anaerobic activated sludge: Metabolic products and pathways [J]. Chemosphere, 2018,200:124-132. [27] Torres F J, Ochoa-Herrera V, Blowers P, et al. Ab initio study of thestructural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers [J].Chemosphere, 2009,76(8):1143-1149.[28] Blotevogel J, Giraud R J, Borch T. Reductive defluorination ofperfluorooctanoic acid by zero-valent iron and zinc: A DFT-based kinetic model [J]. Chemical Engineering Journal, 2018,335:248-254. [29] Park S, Zenobio J E, Lee L S. Perfluorooctane sulfonate (PFOS)removal with Pd0/nFe0nanoparticles: Adsorption or aqueous Fe-complexation, not transformation? [J]. Journal of Hazardous Materials, 2018,342:20-28.[30] Singh R K, Fernando S, Baygi S F, et al. Breakdown products fromperfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process [J]. Environmental Science & Technology, 2019,53(5):2731-2738.[31] Sun Z, Zhang C, Xing L, et al. UV/nitrilotriacetic acid process as anovel strategy for efficient photoreductive degradation of perfluorooctanesulfonate [J]. Environmental Science & Technology, 2018,52(5):2953-2962.[32] Sun Z, Zhang C, Chen P, et al. Impact of humic acid on thephotoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/iodide process [J]. Water Research, 2017,127:50-58.[33] Kim T, Yu S, Choi Y, et al. Profiling the decomposition products ofperfluorooctane sulfonate (PFOS) irradiated using an electron beam [J].Science of The Total Environment, 2018,631-632:1295-1303.[34] K im T, Lee S, K im H Y, et al. Decomposition of perfluorooctanesulfonate (PFOS) using a hybrid process with electron beam and chemical oxidants [J]. Chemical Engineering Journal, 2019,361:1363- 1370.[35] Gu Y, Liu T, Wang H, et al. Hydrated electron based decomposition ofperfluorooctane sulfonate (PFOS) in the VUV/sulfite system [J].Science of The Total Environment, 2017,607-608:541-548.[36] Gu Y, Dong W, Luo C, et al. Efficient reductive decomposition ofperfluorooctanesulfonate in a high photon flux UV/sulfite system [J].Environmental Science & Technology, 2016,50(19):10554-10561. [37] Sun M, Zhou H, Xu B, et al. Distribution of perfluorinated compoundsin drinking water treatment plant and reductive degradation by UV/SO32- process [J]. Environmental Science and Pollution Research, 2018,25(8):7443-7453.[38] Jin L, Zhang P. Photochemical decomposition of perfluorooctanesulfonate (PFOS) in an anoxic alkaline solution by 185nm vacuum ultraviolet [J]. Chemical Engineering Journal, 2015,280:241-247. [39] Yamamoto T, Noma Y, Sakai S, et al. Photodegradation ofperfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol [J]. Environmental Science & Technology, 2007,41(16): 5660-5665.作者简介:杨宁(1996-),女,安徽宣城人,华侨大学硕士研究生,主要研究方向为持久性有机污染物控制.。

鼠抗人内皮抑素单克隆抗体[发明专利]

鼠抗人内皮抑素单克隆抗体[发明专利]

专利名称:鼠抗人内皮抑素单克隆抗体
专利类型:发明专利
发明人:胡林达,王嬿,朱曦,高之桢,刘大涛,姚义强申请号:CN02112101.X
申请日:20020618
公开号:CN1465595A
公开日:
20040107
专利内容由知识产权出版社提供
摘要:本发明属生物技术领域。

本发明公开了一种鼠抗人内皮抑素单克隆抗体,该抗体能与人内皮抑素起免疫反应,具有良好的特异性、较高的灵敏度和稳定性。

本发明的抗体对内皮抑素作为抗癌药物的开发,可以提供质控,并能做成有效的试剂,有较广的应用价值。

本发明提供了制备方法。

申请人:上海信谊药业有限公司
地址:201206 上海市浦东新金桥路905号
国籍:CN
代理机构:上海新天专利代理有限公司
代理人:王巍
更多信息请下载全文后查看。

N-乙酰半胱氨酸和VitE对砷致小鼠脂质过氧化损伤的保护作用研究的开题报告

N-乙酰半胱氨酸和VitE对砷致小鼠脂质过氧化损伤的保护作用研究的开题报告

N-乙酰半胱氨酸和VitE对砷致小鼠脂质过氧化损伤
的保护作用研究的开题报告
砷是一种普遍存在于环境中的有毒物质,长期暴露于砷的环境中会
导致多种人体疾病,包括脂质过氧化损伤。

N-乙酰半胱氨酸和VitE都被
证明具有保护细胞免受氧化应激损伤的作用,但它们是否能够减轻砷致
小鼠脂质过氧化损伤还需要研究。

本研究旨在探究N-乙酰半胱氨酸和VitE对砷致小鼠脂质过氧化损伤的保护作用,并分析其机制。

具体研究方法包括:选取健康雄性小鼠,
将其随机分为4组,分别为对照组、砷中毒组、N-乙酰半胱氨酸组、VitE 组;对砷中毒组、N-乙酰半胱氨酸组、VitE组进行处理;进行生化检测,包括测定血清总胆固醇、三酰甘油、高密度脂蛋白胆固醇、低密度脂蛋
白胆固醇等指标;采用光镜、电镜观察小鼠肝脏变化并进行统计学分析。

预期结果为:砷中毒组小鼠血清总胆固醇、三酰甘油、低密度脂蛋
白胆固醇水平明显增高,高密度脂蛋白胆固醇水平明显降低,细胞脂质
过氧化产物含量明显增加;N-乙酰半胱氨酸组和VitE组小鼠脂质过氧化
损伤明显减轻,相关指标均有明显改善;电镜下小鼠肝脏细胞结构有改善。

本研究有助于深入了解N-乙酰半胱氨酸和VitE对砷致小鼠脂质过氧化损伤保护作用的机制,为人类防控砷污染提供科学依据。

吲哚菁绿活性脂琥珀酰亚胺活化酯,...

吲哚菁绿活性脂琥珀酰亚胺活化酯,...

吲哚菁绿活性脂琥珀酰亚胺活化酯,...ICG-OSu,cas:1622335-40-3,ICG NHS esterICG-OSu,CAS:1622335-40-3英文名称:ICG-NHS,ICG-NHS ester,ICG-OSu中文名称:吲哚菁绿-琥珀酰亚胺酯,吲哚菁绿-活性酯CAS 号:1622335-40-3分子式:C49H53N3O7S分子量:828.03产品简介:ICG-NHS酯是一种具有具代表性的NHS酯标记胺反应基团的产物。

由于它对一级胺(-NH2)具有快速、高特异性的反应,能在短时间内标记含胺(-NH2)的蛋白质、抗体和胺修饰的寡核苷酸。

ICG偶联产品简介:(1)ICG-COOH(2)Amino-reactive ICG-OSu derivatives (labeling the amine groups)ICG-OSu是非常有效的结合亲核试剂,特别是与各种生物分子底物(抗体、蛋白质、肽和酶等)和含有氨基官能团小分子结合,实现荧光标记。

(3)ICG-Maleimide (labeling the thiol groups of cysteine residues)马来酰亚胺基团(Maleimide)特异性结合来自各种各种生物分子底物(抗体、蛋白质、肽和酶等)和小分子上的半胱氨酸的硫醇基团,实现特异性的荧光标记。

(4)ICG-Azide (labeling easily through click reaction)ICG Azide可用于铜催化的点击反应,与各种生物分子底物(抗体、蛋白质、肽和酶等)和带有炔基的小分子反应,实现特异性的荧光标记。

(5)ICG-DBCO (labeling easily through copper-free click reaction)DBCO是一种受约束的炔烃,它在无铜的点击反应中与叠氮化物反应,其可以连接在各种生物分子底物(抗体、蛋白质、肽和酶等)或小分子上,实现特异性的荧光标记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Research articleNitric oxide inhibits nitrate reductase activity in wheat leavesEliana Paola Rosales,María Florencia Iannone,María Daniela Groppa,María Patricia Benavides *Departamento de Química Biológica,Facultad de Farmacia y Bioquímica,Universidad de Buenos Aires,Junín 956,1113Buenos Aires,Argentinaa r t i c l e i n f oArticle history:Received 30August 2010Accepted 20October 2010Available online 31October 2010Keywords:Nitrate reductase Nitric oxideNitrogen metabolism NitratesTriticum aestivum La b s t r a c tNitrate reductase (NR),a committed enzyme in nitrate assimilation,is involved in the generation of nitric oxide (NO)in plants.In wheat leaf segments exposed to sodium nitroprusside (SNP)or S -nitrosoglutathione (GSNO),NR activity was signi ficantly reduced to different degrees between 3and 21h,whereas its activity was partially recovered when the NO scavenger cPTIO was used.At 21h,NR activity decreased from 38%with 10m M SNP to 91%with 500m M SNP,respect to the C values.S -nitrosoglutathione reduced NR activity between 18%and 26%only at 3h.When added directly to the incubation solution,NR activity was quickly and strongly inhibited more than 90%by 10or 50m M SNP,whereas 10m M GSNO reduced the enzyme activity an average of 50%,at 30min of incubation.L -NAME and D -arginine (nitric oxide synthase (NOS)inhibitors)increased NR activity by 14%and 52%respectively,at 21h of exposure,leading us to suppose that endogenous NOS-dependent NO formation could also be modulating NR activity.NR protein expression was not affected by 10or 100m M SNP at 3or 21h of incubation,whereas nitration of tyrosines was not detected in the NR protein.Nitrates,which content increased along the time in the tissues,could be exerting a role in this regulation.Ó2010Elsevier Masson SAS.All rights reserved.1.IntroductionHigher plants acquire the majority of their nitrogen from the environment by nitrate assimilation.Nitrate reductase (NR)(EC 1.7.1.1)catalyses the transfer of two electrons from NAD(P)H to nitrate to produce nitrite,which is further reduced to NH 4þby nitrite reductase (NiR,EC 1.7.2.1).Studies in bacteria,fungi,and higher plants have shown that NR expression is highly regulated [1].In plants,nitrate is the primary factor regulating NR activity [2].In addition to nitrate,NR activity is also regulated by a number of other factors,including light,growth,hormones,and reduced nitrogen metabolites [3,4].Moreover,in higher plants,NR is rapidly inactivated/activated by phosphorylation/dephosphorylation,respectively,in response to different environmental stimuli and treatments [5].Sugars,cytosolic acidi fication and anaerobiosis are factors all known to activate NR in both leaves and roots [5,6].One reason for the large interest in NR regulation is the high toxicity of nitrite,that when is produced in excess,could be released to thesurroundings and,in the form of the undissociated HNO 2,pene-trates biomembranes rather easily,particularly in roots (Botrel et al.,1996[7]).Under most conditions,nitrite does not accumulate because,generally,the activity of NiR in plants is much higher than that of NR,which can avoid nitrite accumulation to toxic levels.However,when nitrite does accumulate,it was demonstrated that NR catalyzes one electron reduction of nitrite to form nitric oxide (NO),using NAD(P)H as an electron donor [8e 10],constituting an alternative physiological function for NR in plants.This activity is different from the plastidic nitrite reducing activity catalysed by NiR,which reduces nitrite to ammonium using six electrons [10].The production of NO by plants was described as early as 1979by Klepper [11]in herbicide-treated soybeans.It has long been known that,in soybean,a so-called constitutive bispeci fic NAD(P)H:NR can catalyse the production of NO from nitrate during “in vivo ”NR assays [12].In roots,NO production from nitrate mediated by NR [13]and nitrite:NO reductase (Ni:NOR,[14])has signi ficant importance.Although NR is the only protein whose NO-producing activity has been con firmed in plants up to now [8,15,16]),several other still not completely identi fied pathways have been described as contributors to NO formation in plants,as the inducible NO synthase,NOS [3,17,18].However,the only postulated plant NOS has recently been shown not to be a nitric oxide synthase,but a chloroplastic GTPase involved in proper ribosome assembly [19].Nitric oxide may act as a gaseous signaling compound involved in communication from organ to organ or from plant to plant.In the last few years,a plethora of data have demonstrated that NO participatesAbbreviations:NR,nitrate reductase;NO,nitric oxide;SNP,sodium nitroprus-side;NiR,nitrite reductase;GSNO,S -nitrosoglutathione.*Corresponding author.Cátedra de Química Biológica Vegetal,Facultad de Farmacia y Bioquímica,UBA,Junín 956(1113)Ciudad de Buenos Aires,Argentina.Tel.:þ541149648237;fax:þ541145083645.E-mail addresses:eliprosales@ (E.P.Rosales),m fiannone@ffyb.uba.ar (M.F.Iannone),mgroppa@ffyb.uba.ar (M.D.Groppa),mbenavi@ffyb.uba.ar (M.P.Benavides).Contents lists available at ScienceDirectPlant Physiology and Biochemistryjournal h omepage:www.elsevier.co m/locate/plaphy0981-9428/$e see front matter Ó2010Elsevier Masson SAS.All rights reserved.doi:10.1016/j.plaphy.2010.10.009Plant Physiology and Biochemistry 49(2011)124e 130in plant responses to both biotic and abiotic stresses and is involved in processes such as germination,ethylene production,senescence and stomatal closure[18,20],and in cadmium-induced root growth inhibition[21].Despite the involvement of NR in NO production is indubitable and has been extensively documented,studies regarding the role of NO in regulating NR activity and protein expression are still very scarce.This work focuses mainly on the role of NO on NR activity and expression in wheat plants.We hypothesized that NO could play an important role in regulating NR activity in plants,thus contrib-uting largely to N assimilation and use,and providing new insights into the complex regulation of N metabolism.2.Materials and methods2.1.ChemicalsNADH,SNP,cPTIO,L-NAME,GSH,NaNO2,casein,PVP were from Sigma Chemical Company(Saint Louis,MO).All chemicals were of analytical grade.2.2.Plant material and treatmentsWheat seeds(Triticum aestivum L.,provided by Buck Co.)were germinated and grown at26/20 C(day and night),with a16-h photoperiod underfluorescent white light(175m mol m2s)ina controlled environment growth chamber.Plants were daily watered with a nutrient solution[22].By the end of the light period, leaf segments(8mm length)from12d-old plants were placed in flasks containing as NO donors,25ml of either10,100or500m M sodium nitroprusside(SNP,Na2[Fe(CN)5NO])or10,100or500m M ofS-nitrosoglutathione(GSNO)in distilled water and incubated during 3or21h in a rotatory shaker under continuous illumination.GSNO must be freshly synthesized right before the experiments,so it was prepared immediately before use,using equimolar amounts of GSH and NaNO2to obtain10,100and500m M GSNO.During the prepa-ration,the mixture was protected from light.Incubations for6and9h were also done but only for SNP.Controls were incubated in distilled water.When indicated,the NO scavenger cPTIO(2-(4-carbox-yphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide,100m M), L-NAME(NG e monomethyl-L-arginine,100m M),or D-arg(2mM), were added to the incubation medium.Potassium cyanide was used as a control in the incubation medium at3or21h of exposure or when measuring NR activity in tubes using crude extracts,consid-ering that cyanide is part of the SNP molecule but it has been described as NR inhibitor.The concentrations used in this study were selected after preliminary experiments.2.3.Determination of NR activityNR activity was measured according to Yaneva et al.[23]and Savidov et al.[24].Wheat leaf segments were homogenized in a medium containing5mM EDTA,5mM GSH,1%(w/v)casein,PVP and50mM HEPES pH7.5and centrifuged15min at17000g.The assay mixture contained:200m mol KNO3,0.2m mol NADH and 100m L of the homogenate.After incubation at30 C for20min,the reaction wasfinished by the addition of50m L1M zinc acetate.The mixture was centrifuged5min at7600g and the supernatant was used to determine nitrite production by reading the absorbance at 540nm after the addition of1%sulphanylamide in1.5M HCl and 0.01%N-(1-Naphthyl)-ethylenediammonium dichloride.When NR activity was measured directly in the reaction tubes, wheat leaf segments of control treatment were homogenized to make a crude homogenate and used for the assays.SNP,at afinal concentration of10or50m M,GSNO at afinal concentration of5or 10m M,and KCN at afinal concentration of10or30m M,were added directly to the reaction tubes,and the reaction mixtures were incubated under continuous illumination.NR activity was deter-mined at3,10,20and30min after SNP,GSNO or KCN addition.Nitrites are themselves competitive inhibitor of NR,so NO2Àcontent in leaves was measured immediately after SNP addition.It was verified that NO2Àlevels were not significantly different from the control without SNP or GSNO addition.After SNP was dissolved in the incubation medium,pH was measured to check that it was not lower than4.5,which can also affect the activity of the enzyme.2.4.Western blot analysis of NR expression and of total nitrotyrosinesLeaves were homogenized and extracted with50mM HEPES e KOH pH7.5,1mM EDTA,10mM FAD,1mM DTT,1%(w/v) insoluble PVP,5mM ascorbate and protease inhibitor cocktail (Sigma).The extract was centrifuged at17000g for15min at4 C and the protein concentration in the supernatant was determined according to Bradford[25].Proteins were separated on a10%SDS-PAGE in Mini PROTEAN III equipment(Bio-Rad),as described by Laemmli[26].Following electrophoresis at4e8 C,proteins were transferred to PVDF membrane(GE Healthcare,Amersham Hybond P).After that,membranes were blocked with3%(w/v)BSA dissolved in PBS,incubated overnight with the primary antibody dissolved in blocking buffer(1/5000for anti-NR and1/1000for anti-nitrotyrosine),and washed several times with PBS.Immunode-tection of NR was carried out using a rabbit serum antibody raised against NR from Arabidopsis(kindly provided by Dr.Steven Huber, Department of Plant Biology,University of Illinois).Mouse anti-nitrotyrosine IgG(Chemicon International)was used as the primary monoclonal antibody to detect nitrotyrosines.In both cases,bands were revealed using a goat anti-rabbit IgG peroxidase conjugated secondary antibody(Dako Cytomation),and3,30-diaminobenzidine (DAB)was used as substrate for the staining procedure.2.5.Immunoprecipitation and Western blot analysisof nitrotyrosines in NRThe protein homogenate(100m g)was separated by affinity chromatography.Antibodies anti-NR were linked to cyanogen bromide activated Sepharose4%agarose matrix(100mg)from Sigma e Aldrich(St Luis,USA).Samples were incubated overnight at 4 C with an excess of anti-NR-agarose resin and then centrifuged for5min at10.000g.Resin beads were washed3times with Tris-buffered saline(TBS),with pellets re-suspended in100mM glycine e HCl(50m l,pH2.5).After centrifugation,the pellets were discarded,with the pH of the supernatants adjusted to6.8with 0.5M Tris e HCl buffer(5m L,pH8.8)and used for immunodetection of the nitrotyrosine residues.NR was separated by10%(w/v) SDS e PAGE.After electrotransfer of the proteins to PVDF membranes,the nitrotyrosine residues were detected using anti-nitrotyrosine primary antibody(Santa Cruz Biotechnology,Inc)and goat anti-mouse IgG horseradish peroxidase conjugate(Santa Cruz Biotechnology,Inc),with DAB as substrate.Membranes were pho-tographed with a Fotodyn equipment and analyzed with GelPro software.2.6.Measurement of nitrates contentWheat leaf segments were dried at85 C until constant weight. The dried material(25mg)was grounded to powder and incubated in10ml of distilled water during2.5h.Nitrate was measured colorimetrically after a reaction with salicylic acid[27].E.P.Rosales et al./Plant Physiology and Biochemistry49(2011)124e1301252.7.StatisticsAll determinations were performed from three independent experiments.Analytical measurements were done three times for all parameters in each experiment,with a minimum of three replicates.Differences among treatments were analyzed by one-way ANOVA,taking.P<0.05as significant according to Tukey’s multiple range test.3.Results3.1.Nitric oxide from SNP or GSNO inhibited NR activityConsidering that in plants,NR is one of the NO-former enzymes, it was possible that this important gaseous molecule was involved in the regulation of the NR activity or protein expression.To char-acterize the effect of NO on wheat leaves,either SNP or GSNO were selected as NO donors.SNP is a suitable compound for long-term treatments(such as21h)since its stability is higher than that ofother known NO releasing compounds[28].Nitrate reductase activity was measured at3,6,9and21h,using10,100and500m M of SNP.As it is shown in Fig.1A,all SNP concentrations significantly decreased NR activity at all incubation times,and the reduction in NR activity was dependent on SNP concentration.At10m M,SNP-derived NO decreased NR activity by45%,on average,at all incu-bation times.At21h,NR activity decreased from38%to91%of the control,with either10or500m M SNP,respectively.The enzyme activity was almost not detected between6and9h of incubation with500m M SNP(Fig.1A).The NO scavenger cPTIO,was used to trap the SNP-released NO, only at6h of incubation with10m M SNP,to confirm that NO was involved in the inhibition of NR activity(Fig.2).When used alone, cPTIO did not produced any effect,but used simultaneously with 10m M SNP(which decreased NR activity to43%of the C),both100 and200m M cPTIO recovered the enzyme activity to76%and82%of the initial value,respectively(Fig.2),demonstrating that the greater part of the observed effect was due to NO.Another NO donor,GSNO,was used to verify that NO was the compound involved in the inhibition of NR enzymatic activity.The effect GSNO was assayed only at3and21h of exposure.At3h,this NO donor decreased NR activity18%when was used at10or100m M and26%at500m M.However,at21h,not only no inhibition was observed but a moderate increase of27%of the enzyme activity was detected with the highest GSNO concentration(Fig.3).In water solution,SNP decomposes into NO,NO2Àand FeðCNÞ4À6. Cyanide is a well known inhibitor of many enzymes including nitrate reductase,so we used KCN to test if CNÀmodified NR activity instead of NO.Fe(CN)64-was not used because it acts as an electron acceptor that disrupt the normal electron transport in the enzymatic reaction catalyzed by NR[29].Potassium cyanide decreased the enzyme activity22%and13%at3and21h,respec-tively,suggesting that a minor part of the inhibition exerted by SNP was due to cyanide.(Fig.3).It was verified that NO2Àlevels were not significantly different from the control when their levels were measured immediately after SNP addition(data not shown).3.2.“In vitro”NR activity is reduced by NOTo study the direct effect of NO on NR activity,an in vitro measurement of NR activity was carried out using crude wheat leaf homogenate and adding directly SNP at afinal concentration of10 or50m M into the reaction solution.As it is shown in Fig.4,NRA BCFig.1.A):NR activity in wheat leaf segments treated with increasing SNP concentrations at3,6,9and16h of exposure,as described in Materials and Methods.NR activity is expressed as percentage of the control.Values are the means of three different experiments with three replicated measurements,and bars indicate SEM.*Significant differences at (P<0.05)according to Tukey’s multiple range test.(B):Western blot analysis showing NR protein expression in wheat leaf segments exposed to10and100m M SNP for3and21h. The experiment was repeated three times and a representative image is presented.(C):Relative amount of proteins in B,considering control homogenates as100au.Fig.2.NR activity of wheat leaf segments treated with SNP(10m M)and/or the NOscavenger cPTIO(100m M and200m M)during6h.NR activity is expressed aspercentage of the control.Values are the means of three different experiments withthree replicated measurements,and bars indicate SEM.*Significant differences at(P<0.05)according to Tukey’s multiple range test.E.P.Rosales et al./Plant Physiology and Biochemistry49(2011)124e130126activity was immediately and signi ficantly reduced by the presence of SNP,reaching only 5%of the C activity at 10min of incubation with the highest SNP concentration.The other NO donor,GSNO,signi ficantly reduced NR activity an average of 50%when used at 10m M (Fig.4).No signi ficant differences in the enzyme activity were observed respect to the controls when KCN 10and 30m M was used instead of SNP (Fig.4),possibly due to the short time of the reaction.The level of NO 2Àin the tissues was almost undetectable when measured immediately after SNP addition (data not shown),thus con firming that NO released from SNP or GSNO (and not nitrites)were responsible for the observed inhibition of NR activity.3.3.Effect of NO on the NR protein expressionTaking into account that NR activity was reduced by NO,we decided to test if this decay was accompanied by a decrease in the NR protein content.The analysis demonstrated that NR expressionwas not signi ficantly affected after 3or 21h of incubation,with either 10or 100m M SNP (Fig.1B and C),suggesting that a post-transcriptional effect of NO on the NR protein could be responsible for the reduction in the protein activity.3.4.NO effect on nitrative modi fications in wheat leaves proteins Another reason for the inhibition of NR activity could be the nitration of tyrosines in the protein,produced by an increased formation of peroxynitrite (ONOO À)after the reaction of SNP-derived NO with O 2e .This protein modi fication was evaluated by Western blot,using a mouse monoclonal anti-nitrotyrosine anti-body.First,the content of nitrotyrosines was measured in total proteins,using samples from control,10and 100m M SNP-treated wheat leaves.A slight increase was observed in the content of nitrotyrosines in either 10or 100m M SNP-exposed wheat leaves at 3h compared to controls,whereas a more clear increase was detected at 21h,particularly in the band corresponding to 53kD band (Fig.5).In order to check if NR itself was modi fied by tyrosine nitration,the protein was inmunopuri fied and inmunodetected by Western blot using the NR antibody.However,nitrotyrosines were not detected in the puri fied NR,either from controls or NO-treated samples (data not shown).3.5.L -NAME and D -arg effects on NR activityWith the aim to study how NR could be affected by the endogenous NOS-dependent NO,we used 100m M L -NAME and 2mM D -arg (inhibitors of NOS enzyme)to measure NR activity.The enzyme activity increased between 41%and 52%over the controls,at 3and 21h respectively,when D -arg was used,whereas when L -NAME was used,NR activity increased by 14%only at 21h of exposure.The results suggested that endogenous NOS-dependent NO could also be participating in the modulation NR activity (Fig.6).3.6.Effects of NO on NO 3ÀcontentAs a result of the inhibitory effect displayed by NO on NR activity,it was presumed that low rates of nitrate assimilationwereFig.3.NR activity in wheat leaf segments exposed to 10,100or 500m M GSNO,at 3and 21h of exposure.GSNO was prepared as described in Material and Methods.The effect of 0.5m M KCN is also presented.NR activity is expressed as percentage of the control.Values are the means of three different experiments with three replicated measure-ments,and bars indicate SEM.*Signi ficant differences at (P <0.05)according to Tukey ’s multiple rangetest.Fig.4.NR activity measured in the reaction solution up to 30m,after the direct addition of 10or 50m M SNP,5or 10m M GSNO and 10or 30m M KCN,according to the description in Materials and methods .NR activity is expressed as percentage of the control.Values are the means of three different experiments with three replicated measurements,and bars indicate SEM.*Signi ficant differences at (P <0.05)according to Tukey ’s multiple rangetest.Fig.5.Analysis of nitrotyrosines in segments of wheat leaves,incubated for 3or 21h in the presence of 10or 100m M SNP.Nitration of protein tyrosines in homogenates of wheat leaves was evaluated by semi-quantitative Western blottting,using a mono-clonal anti-nitrotyrosine antibody.The experiment was repeated four times and a representative picture is shown.E.P.Rosales et al./Plant Physiology and Biochemistry 49(2011)124e 130127achieved,altering the nitrate uptake and leading to a rapid increase of the leaf nitrate pool.Nitrate content increased an average of 31%both at 16h or 21h of exposure with 100m M SNP (Fig.7).At shorter times (3e 9h),no signi ficant differences were observed.The highest SNP concentration (500m M)was used only at 21h,producing an increase of 42%in the NO 3Àcontent of the leaf segments.4.DiscussionIt has long been recognised that NR,besides its role in NO 3Àreduction to form nitrite,catalyse the NAD(P)H-dependent reduc-tion of nitrite to NO [13].Nitrate reductase is an enzyme highly regulated by nitrogen availability or light and dark transitions,at many levels,like gene expression that contributes to control NR protein levels,and,reversible protein phosphorylation,that provides a more rapid regulation [2].The results presented here demonstrate that NR activity is negatively modulated by NO released from SNP or GSNO,results that are opposite to those found by Du et al.[30]using roots from Chinese pakchoi cabbage (Brassica chinensis L.),who reported thatNR activity was signi ficantly enhanced by the addition of the NO donors SNP (up to 40m M)and diethylamine NONOate (up to 100m M).These authors also found that NR protein content was not affected by the SNP treatment and suggested that the stimulating effect of NO on NR activity might be due to an enhancement of electron transfer from haem to nitrate through activating the haem and molybdenum centres in the NR [30].The same NO donors also stimulated NR activity of tomato roots fed with 0.5mM nitrate,whereas the opposite occurred with the roots fed with 5mM nitrate,suggesting that NO mediates the NR activity in plant roots depending on the level of nitrate supply [31].In general,NO donors are applied as pharmacological tools in the understanding that most,if not all,of their biological effects are mediated by NO.Sodium nitroprusside and GSNO are among the NO donors commonly used,whereas phenyl-tetramethyl-imidazoline-oxyl-oxides (PTIOs)are used as NO-trapping agents [32].In our experimental system using wheat leaf segments,the NO-donor SNP produced a quick and evident inhibition of NR activity,both in the “in vivo ”experiments or when SNP or GSNO was added directly to the reaction solutions (Figs.1and 4).This rapid and massive decay should be attributed to a direct interaction of NO with a protein residue more than a post-transcriptional or post-translational regulation,consid-ering that the NR protein content was not modi fied and nitration of tyrosine residues of the protein was not detected in our experimental conditions,irrespective of NO level (Fig.1B and C).Jin et al.[31]reported that the protein concentration of the NR enzyme in tomato roots was not affected by SNP treatment,irrespective of nitrate pre-treatment.One could suppose that NO could participates in the regulation of the phosphorylation event and/or,by this way,in the regulation of NR activity.S-nitrosylation reactions mediated by nitrosonium (NO þ,a product of NO oxidation),which reacts with a cysteine thiolate to form an S-nitrosothiol,should not be discarded among the regulatory mechanisms of NR activity [33].GSNO is considered to represent a functionally relevant signal-ling molecule which might act both as NO reservoir and NO donor [34].In physiological buffers,many S-nitrosothiols undergo rela-tively rapid decomposition to yield the corresponding disul fide and NO [32].This compound produced a moderate inhibition of NR at 3h of incubation,but this effect disappeared at 21h,probably due to the kinetic of NO release from GSNO.Surprisingly,500m M GSNO increased NR activity by 27%at 21h.This result was unexpected and could be due to the above mentioned kinetic of the reaction or to GSNO decomposition in the presence of metal ions like Cu 2þ,GSH or ascorbic acid that could be present in the tissues [35].The incubation of wheat leaf discs with L -NAME and D -arg produced an increase of NR activity (Fig.6)which led us to suppose that NOS-dependent NO could also be participating in the modu-lation of the enzyme activity in wheat leaves.The NOS inhibitor D -arg increased signi ficantly NR activity at both times of incubation,but L -NAME scarcely affected NR activity (only 14%at 21h).There is abundant evidence from the plant science literature that argues for the presence of both nitrite reduction and arginine-dependent NO-formation pathways.However,the identity of the players and the importance of each biosynthetic pathway as a function of the physiological process remain unclear [36].In PEG-treated Arabi-dopsis roots,Kolbert et al.[37]showed that neither NR nor NOS were involved in the early generation of NO,while the accumulation of NO at longer times was mediated by an NR-associated pathway.On the other hand,Zhao et al.[38]reported that cold acclimation stimulated NR activity and induced up-regulation of NIA1gene expression but in contrast,it reduced the quantity of NOA1/RIF1protein and inhibited NO synthase (NOS)activity.Although there is ample evidence showing that nitrate is the most important factor controlling NR mRNA synthesis [4],it appears to have no direct effects on the NRphosphorylation/Fig.6.NR activity of wheat leaf segments,at 3and 21h,after the addition of 2mM D -arg or 100m M L -NAME.NR activity is expressed as percentage of the control.Values are the means of three different experiments with three replicated measurements,and bars indicate SEM.*Signi ficant differences at (P <0.05)according to Tukey ’s multiple rangetest.Fig.7.Nitrate content of wheat leaf segments treated with 100m M SNP for 6,9,16and 21h,and with 500m M SNP only at 21h.Results are expressed as percentage of the control.Values are the means of three different experiments with three replicated measurements,and bars indicate SEM.*Signi ficant differences at (P <0.05)according to Tukey ’s multiple range test.E.P.Rosales et al./Plant Physiology and Biochemistry 49(2011)124e 130128dephosphorylation state(or activation state)nor to be directly involved in the modulation of NR activity[4,39].In wheat leaves, nitrate content significantly increased at21h of incubation with SNP,indicating that the substrate for NR activity was present in amounts enough to be not a limiting factor for NR activity.More-over,nitrate could regulate NOS-dependent NO formation,as it was shown both in tomato[31]and maize roots treated with different levels of nitrate[40].Hence,while nitrate itself appears not to be directly involved in the modulation of NR activity,an indirect effect might be expected through the alteration of endogenous NO level [2,31].In wheat leaf segments,the cytosolic level of nitrates increased but NR activity decreased,along with SNP-derived NO increase in the incubation medium.The increase in NO3Àin the cytosol could be due to an efflux from nitrates that previously exist in the mitochondria or chloroplasts,as occurred in Nicotiana ben-thamiana where a rapid NO3Àefflux was shown to be essential for NO production by NR and the subsequent defense responses induced by elicitin[41].Besides,an oxidation of SNP-derived NO by an enzymatic or non-enzymatic mechanism in an aerobic envi-ronment that could be leading to an increase in the cytosolic NO3Àlevels should not be discarded[42].Tyrosine nitration of proteins(leading to3-nitrotyrosine)is a widely used marker of peroxynitrite(ONOOÀ)produced from the reaction of nitric oxide with O2e[43].The content of nitrotyrosine in proteins showed an increase in soybean axes from SNP-exposed seeds in a dose-dependent manner[44].This effect could not be detected in NR from wheat leaf segments in our experimental conditions.Graziano and Lamattina[45]speculated that there are likely other molecules,as H2O2,that act in the pathway upstream or downstream from the site of NO action,or in concert with NO,for what oxidative modifications of the wheat NR protein mediated by reactive oxygen species should not be discarded as a possible reason for the decreased activity.The regulatory mechanism exerted by NO on NR activity has been scarcely described previously.The results presented in this work clearly suggest that NR activity is negatively regulated by NO released either from SNP or GSNO in wheat leaf segments,in a dose and time-dependent manner and without affecting the protein content.The fact that though nitrates were accumulated in the tissues NR activity was inhibited shows that the role of NO in the N metabolism has undoubtedly importance and needs further investigation.Therefore,it should be clue to determine whether the change in the concentration of substrate NO/NO3Àwas affecting NR activity,which component of the nitrate reductase system was affected by NO and which is the precise mechanism involved in such regulation.AcknowledgementsThis work was supported by the University of Buenos Aires (Project B017).M.D.Groppa and M.P.Benavides are researchers of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).E.P.Rosales and M.F.Iannone have fellowships from CONICET.We thank Dr.Steven Huber,University of Illinois,for providing the NR antibody.References[1]U.S.Lea,M.T.Leydecker,I.Quillere,C.Meyer,C.Lillo,Posttranslational regu-lation of nitrate reductase strongly affects the levels of free amino acids and nitrate,whereas transcriptional regulation has only minor influence,Plant Physiol.140(2006)1085e1094.[2]W.M.Kaiser,H.Weiner,S.C.Huber,Nitrate reductase in higher plants:a casestudy for transduction of environmental stimuli into control of catalytic activity,Physiol.Plant105(1999)385e390.[3]N.M.Crawford,Mechanisms for nitric oxide synthesis in plants,J.Exp.Bot.57(2006)471e478.[4]W.M.Kaiser,H.Weiner, A.Kandlbinder, C.B.Tsai,P.Rockel,M.Sonoda,E.Planchet,Modulation of nitrate reductase:some new insights,an unusualcase and a potentially important side reaction,J.Exp.Bot.53(2002) 875e882.[5] C.Lillo,U.S.Lea,M.T.Leydecker, C.Meyer,Mutation of the regulatoryphosphorylation site of tobacco nitrate reductase results in constitutive activation of the enzyme in vivo and nitrite accumulation,Plant J.35(2003) 566e573.[6]W.M.Kaiser,S.C.Huber,Post-translational regulation of nitrate reductase:mechanism,physiological relevance and environmental triggers,J.Exp.Bot.52(2001)1981e1989.[7] A.Botrel, C.Magné,W.M.Kaiser,Nitrate reduction,nitrite reduction andammonium assimilation in barley roots in response to anoxia,Plant Physiol.Biochem.34(1996)45e652.[8]H.Yamasaki,Y.Sakihama,S.Takahashi,An alternative pathway for nitricoxide production in plants:new features for an old enzyme,Trends Plant Sci.4(1999)128e129.[9]P.Rockel,F.Strube,A.Rockel,J.Wildt,W.M.Kaiser,Regulation of nitrite oxide(NO)production by plant nitrate reductase in vivo and in vitro,J.Exp.Bot.53 (2002)103e110.[10] C.Meyer,U.S.Lea,F.Provan,W.M.Kaiser,C.Lillo,Is nitrate reductase a majorplayer in the plant NO(nitric oxide)game?Photosyn.Res.83(2005)181e189.[11]L.Klepper,Nitric oxide(NO)and nitrogen dioxide(NO2)emissions fromherbicide treated soybean plants,Atmos.Environ.13(1979)537e542. [12]J.V.Dean,J.E.Harper,The conversion of nitrite to nitrogen oxide(s)by theconstitutive NAD(P)H-nitrate reductase enzyme from soybean,Plant Physiol.88(1988)389e395.[13]H.Yamasaki,Y.Sakihama,Simultaneous production of nitric oxide and per-oxonitrite by plant nitrite reductase:in vitro evidence for the NR-dependent formation of reactive nitrogen species,FEBS Lett.468(2000)89e92.[14] C.Stöhr,F.Strube,G.Marx,W.R.Ullrich,P.Rockel,A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite,Planta212(2001)835e841.[15] F.J.Corpas,J.B.Barroso,A.Carreras,M.Quirós,A.M.León,M.C.Romero Puertas,F.J.Esteban,R.Valderrama,J.M.Palma,L.M.Sandalio,M.Gómez,L.A.del Río,Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants,Plant Physiol.136(2004)2722e2733.[16]H.Yamasaki,M.F.Cohen,NO signal at the crossroads:polyamine-inducednitric oxide synthesis in plants?Trends Plant Sci.11(2006)522e524. [17] F.Q.Guo,M.Okamoto,N.M.Crawford,Identification of a plant nitric oxidsynthase gene involved in hormonal signalling,Science302(2003)100e103.[18]S.Neill,R.Barros,J.Bright,R.Desikan,J.Hancock,J.Harrison,P.Morris,D.Riberio,I.Wilson,Nitric oxide,stomatal closure and abiotic stress,J.Exp.Bot.59(2008)165e178.[19]M.Moreau,G.I.Lee,Y.Wang,B.R.Crane, D.F.Klessig,AtNOS/AtNOA1isa functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase,J.Biol.Chem.283(2008)32957e32967.[20]mattina, C.Garcia-Mata,M.Graziano,G.Pagnussat,Nitric oxide:theversatility of an extensive signal molecule,Annu.Rev.Plant Biol.54(2003) 109e136.[21]M.D.Groppa,E.P.Rosales,M.F.Iannone,M.P.Benavides,Nitric oxide,poly-amines and Cd-induced phytotoxicity in wheat roots,Phytochemistry69 (2008)2609e2615.[22] D.R.Hoagland, D.I.Arnon,The water culture method for growing plantswithout soil,California Agric.Exp.Stat.Univ.Calif.Berkeley Circ.4(1950)347.[23]I.A.Yaneva,G.W.Hoffmann,R.Tischner,Nitrate reductase from winter wheatleaves is activated at low temperature via protein dephosphorylation,Physiol.Plant114(2002)65e72.[24]N.A.Savidov,N.P.Lovov,C.Sagic,S.H.Lips,Molybdenum cofactor biosynthesisin two barley(Hordeum vulgare L.)genotypes as affected by nitrate in the tissue and in the growth medium,Plant Sci.122(1997)51e59.[25]M.M.Bradford,A rapid and sensitive method for the quantitation of micro-gram quantities of protein utilising the principle of protein-dye binding,Anal.Biochem.72(1976)248e254.[26]emmli,Cleavage of structural proteins during the assembly of the headof bacteriophage T4,Nature227(1970)680e685.[27] D.A.Cataldo,M.Haroon,L.E.Schrader,V.L.Young,Rapid colorimetric deter-mination of nitrate in plant tissue by nitration of salicylic acid,Comm.Soil Sci.Plant Anal.6(1975)71e80.[28]J.Floryszak-Wieczorek,czarek,M.Arasimowicz,A.Ciszewski,Do nitricoxide donors mimic endogenous NO-related response in plants?Planta224 (2006)1363e1372.[29]W.H.Campbell,Nitrate reductase:structure,function and regulation.Bridgingthe gap between biochemistry and physiology,Annu.Rev.Plant Physiol.Plant Mol.Biol.50(1999)277e303.[30]S.Du,Y.Zhang,X.Y.Lin,Y.Wang,C.X.Tang,Regulation of nitrate reductase bynitric oxide in Chinese cabbage pakchoi(Brassica chinensis L.),Plant Cell Environ.31(2008)195e204.[31] C.W.Jin,S.T.Du,Y.S.Zhang,X.Y.Lin,C.X.Tang,Differential regulatory role ofnitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum),Ann.Bot.104(2009)9e17.[32]M.Feelisch,The use of nitric oxide donors in pharmacological studies,Nau-nyn-Schmiedeberg’s Arch Pharmacol.358(1998)113e122.[33] B.M.Gaston,D.J.Carver,A.Doctor,L.A.Palmer,S-nitrosylation signaling in cellbiology,Mol.Interv.3(2003)253e263.E.P.Rosales et al./Plant Physiology and Biochemistry49(2011)124e130129。

相关文档
最新文档