佛大数学建模课后复习5
福建师范大学“数学与应用数学”《数学建模》23秋期末试题库含答案
福建师范大学“数学与应用数学”《数学建模》23秋期末试题库含答案第1卷一.综合考核(共20题)1.分析检验一般有()。
A.量纲一致性检验B.参数的讨论C.假设合理性检验2.数学建模中常遇到微分方程的建立问题。
()A.正确B.错误3.4.将所有可能提供选择的变量都放入模型中,不加剔除叫做淘汰法。
()A.错误B.正确5.我们研究染色体模型是为了预防遗传病。
()A.错误B.正确6.建模中的数据需求常常是一些汇总数据。
()A.正确B.错误7.观察实际问题中的平衡现象的方法有()。
A.从长期的宏观的角度着眼,在大局上或整体上进行研究B.从瞬时的局部的角度着眼,把微小结构及瞬时变化作为问题来研究C.利用宏观模型去观察D.利用微观模型去观察8.对模拟模型的分析包括____A.收集系统长期运转的统计值B.比较系统的备选装置C.研究参数变化对系统的影响D.研究改变假设对系统的影响E.求系统的最佳工作条件9.模型具有可转移性。
()10.11.一个理想的数学模型需满足_______。
A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性12.在构造一个系统的模拟模型时要抓住系统中的主要因素。
()A.正确B.错误13.赛程安排不属于逻辑分析法。
()A.错误B.正确14.用框图说明数学建模的过程。
15.估计模型中参数值的常用方法有()。
A.直接查阅资料B.图解法C.统计法D.机理分析法16.17.对黑箱系统一般采用的建模方法是_______。
A、机理分析法B、几何法C、系统辩识法D、代数法18.引言是整篇论文的引论部分。
()A.正确B.错误19.20.第1卷参考答案一.综合考核1.参考答案:ABC2.参考答案:A4.参考答案:A5.参考答案:B6.参考答案:A7.参考答案:ABCD8.参考答案:ABCDE9.参考答案:正确11.参考答案:AB12.参考答案:A13.参考答案:A14.参考答案:概括的说,数学模型就是一个迭代的过程,其一般建模步骤用框架图表示如下:15.参考答案:ABCD17.参考答案:C18.参考答案:A。
数学建模课后答案
数学建模课后答案数学建模课后答案【篇一:《数学模型》习题解答】t>1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,p1?235,p2?333,p3?432,方法一(按比例分配)第二章(1)(2008年9月16日)pi?13i1000.q1?p1npi?132.35,q2?p2nipi?133.33, q3?p3nipi?134.32i分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为235233324322q1??9204.17, q2??9240.75, q3??9331.22?33?44?5q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pi是ni每席位代表的人数,取ni?1,2,?,从而得到的pip中选较大者,可使对所有的i,i尽量接近. nini再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得tvdt?2?k?(r?wkn)dnn2?rk?wk22n22vv《数学模型》作业解答第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=mlt 23, [v]=lt1,[s]=l,[?]=ml,这里l,m,t是基本量纲.2?3量纲矩阵为:1?2?10a=?3?1(p)(v)齐次线性方程组为:2?3?(l)01??(m) 00??(t)(s)(??2y1?y2?2y3?3y4?0y1?y4?03y?y?012?它的基本解为y?(?1,3,1,1) 由量纲pi定理得p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lmt,[?]=lmt,0-1-3[?]=mlt(ltl)l=mlltt=lmt,[g]=lmt,其中l,m,t是基本量纲.-2-1-1-1-2-2-2-1-10-2量纲矩阵为1?3?11?(l)?0?(m)110?a=? ???10?1?2(t)??(v)(?)(?)(g)齐次线性方程组ay=0 ,即y1-3y2-y3?y4?0?0 ?y2?y3-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得*v?3??1?g. ?v??3g,其中?是无量纲常数. ?16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lm0t0 ,[g]=lmt0-1-3-2-1-1-1-2-2-2-1-10-2其中l,m,t是基本量纲. 量纲矩阵为1?0a=1(v)齐次线性方程组ay=0 即(l)?(m)?00?1?2?(t)?(?)(?)(?)(g)1?3?10111y1?y2?3y3?y4?y5?0?y3?y4?0 ?y1?y4?2y5?0?的基本解为11?y?(1,?,0,0,?)?12231?y2?(0,?,?1,1,?)22?得到两个相互独立的无量纲量1?v??1/2g?1/23/2?1?1/2g??2??即 v?1) g?1,?3/2?g1/2??1??2?1. 由?(?1,?2)?0 , 得 ?1??(?2g?(?3/2?g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?l0m0t,[l]?lm0t0,[m]?l0mt0,[g]?lm0t?2,[k]?[f][v]?1?mlt?2(lt 1 )1l0mt?1,其中l,m,t是基本量纲.量纲矩阵为0?0a=1(t)?(l)?(m)?00?2?1??(t)(l)(m)(g)(k)10011001齐次线性方程组y2?y4?0??y3?y5?0 ?y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量tl?1/2g1/2??11/2?1?1/2lmgk??2∴t?kl1/2l1, ?1??(?2), ?2?gmg1/2∴t?lkl1/2(1/2) ,其中?是未定函数 . gmg考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为t,t;l?kl?1/2l,l;m,m. 又t() 1/2gm?g当无量纲量m?l?t?l?gl?时,就有 ?.mltgll《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k,其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:【篇二:数学建模习题答案】t>中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
数学建模课后答案
第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
数学建模与数学实验课后习题答案
P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
数学建模课后习题
数学建模课后习题第⼀章课后习题6、利⽤1、5节药物中毒施救模型确定对于孩⼦及成⼈服⽤氨茶碱能引起严重中毒与致命得最⼩剂量。
解:假设病⼈服⽤氨茶碱得总剂量为a ,由书中已建⽴得模型与假设得出肠胃中得药量为:由于肠胃中药物向⾎液系统得转移率与药量成正⽐,⽐例系数,得到微分⽅程(1)原模型已假设时⾎液中药量⽆药物,则,得增长速度为。
由于治疗⽽减少得速度与本⾝成正⽐,⽐例系数,所以得到⽅程:(2)⽅程(1)可转换为:? 带⼊⽅程(2)可得:将与带⼊以上两⽅程,得:针对孩⼦求解,得:严重中毒时间及服⽤最⼩剂量:,; 致命中毒时间及服⽤最⼩剂量:, 针对成⼈求解:严重中毒时间及服⽤最⼩剂量:, 致命时间及服⽤最⼩剂量:,课后习题7、对于1、5节得模型,如果采⽤得就是体外⾎液透析得办法,求解药物中毒施救模型得⾎液⽤药量得变化并作图。
解:已知⾎液透析法就是⾃⾝排除率得6倍,所以 ,x 为胃肠道中得药量,1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:⽤matla b画图:图中绿⾊线条代表采⽤体外⾎液透析⾎液中药物浓度得变化情况。
从图中可以瞧出,采取⾎液透析时⾎液中药物浓度就开始下降。
T=2时,⾎液中药物浓度最⾼,为236、5;当z=200时,t=2、8731,⾎液透析0、8731⼩时后就开始解毒。
第⼆章1、⽤2、4节实物交换模型中介绍得⽆差别曲线得概念,讨论以下得雇员与雇主之间得关系:1)以雇员⼀天得⼯作时间与⼯资分别为横坐标与纵坐标,画出雇员⽆差别曲线族得⽰意图,解释曲线为什么就是那种形状;2)如果雇主付计时费,对不同得⼯资率画出计时⼯资线族,根据雇员得⽆差别曲线族与雇主得计时⼯资线族,讨论双⽅将在怎样得⼀条曲线上达成协议;3)雇员与雇主已经达成了协议,如果雇主想使⽤雇员得⼯作时间增加到t2,她有两种办法:⼀就是提⾼计时⼯资率,在协议线得另⼀点达成新得协议;⼆就是实⾏超时⼯资制,即对⼯时仍付原计时⼯资,对⼯时付给更⾼得超时⼯资,试⽤作图⽅法分析那种办法对雇主更有利,指出这个结果得条件。
(完整版)数学建模复习内容带习题答案
考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。
一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。
(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。
A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。
(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3) 结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000 fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。
佛大数学建模作业5
(2) 问题二是在问题一的基础上,进一步减少吨千米数。
在舍弃两个临时场,改建两个新的临时场,从而使得在其他条件不变的的情况下使节省的吨千米数最小。
为此,需建立一个非线性规划模型。
要同时确定料场的位置(,)i i x y 和A,B 两料场往各工地的运送量ij c 使(1)的总吨千米数最小。
由于目标函数f 对i x 和i y 是非线性的,所以在求新建料场位置和用料时是非线性规划模型 四、模型假设1、各工地不会在除题目所给的两个料场之外的其他料场获取水泥;2、假设从料场飞到工地之间均有直线道路相连;3、两个临时料场日储量满足题目所给的条件;4、假设其他突发事件的影响可以忽略;5、假设两料场供应量与日用量达到平衡;6、假设改建后供应计划保持原计划不变。
7、每天工地所需要的水泥不变,每天分配给工地的水泥都用完,不能在第二天继续用;五、模型建立1.记工地的位置为:(,)j j a b 水泥日用量j d ,j=1,2,3,4,5,6;料场位置为(,)i i x y ,日储量i e ,i=1,2; 料场i 到工地j 的运送量为ij c ,则该问题有目标函数:262211min ()()ij i j i j i j f x x a y b ===-+-∑∑约束条件为:6161,1,2,1,2;20ij j ij ij i j x d i x e i e ==⎧==⎪⎪⎨⎪≤=≤⎪⎩∑∑ 当用临时料场时决策变量为:ij x ,当不用临时料场时的决策变量为ij x ,,i i x y2.模型二的建立改建两个新料场,要同时确定料场的位置,iixy 和运送量ijc ,在同样条件下 使总吨千米数最小。
这是非线性规划问题。
此时的决策变量是i x ,j x ,ij c 非线性规划模型为目标函数:262211min()()ij j i j i i j f x x a y b ===-+-∑∑约束条件;2611266111,1,2;20,1,2ij i i i j ij j i j j e e i e c d j =====⎧≤=≤⎪⎪⎨⎪==⎪⎩∑∑∑∑∑六、模型求解 1.模型一2.模型二。
数学建模课后习题第二章参考答案
数学建模第二章课后习题第5题参考答案5.(1)at m me w w w w w t w --+=)()(000,要使,只需。
联系:在目前的情况下,当时,两个模型中猪的体重的变化都一样,当时,新的假设中猪的体重增长的比较快,当时,新的假设猪的体重增长的比较慢。
因为,所以函数为增函数,即当t 增大时,猪的体重会随着增加,这与原来的假设是一致的。
两个假设都满足'(0)w r =,在最佳出售时机附近误差微小。
区别:150200250300当a=1/60时两个假设模型的比较由图可知,新假设是阻滞增长模型,体重w 是t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于w m 。
而原假设w(t)=0w +rt 只假设体重匀速增加。
从长时间来看,新假设比原假设更符合实际。
(2) 则t 天之后比现在出售多赚的纯利润为:0000((0))()()()()(0)(0)(0)()matm p gt w w Q t p t w t C t p w ct p w w w w e--=--=--+- 其中p(0)=12,g=0.08, 900=w ,270=m w ,,c=3.2,代入数据并用matlab 中的fminbnd 函数运算得到: 在t=14.4336时,纯利润到达最大值:Qm =12.1513。
代码如下:Q=@(t)((12-0.08*t)*90.*270)./(90+(270-90).*exp(-(1/60)*t))-3.2*t-12*90;nQ=@(t)-Q(t);[t,Q1]=fminbnd(nQ,0,100), Qm=-Q1 t = 14.4336 Q1 = -12.1513 Qm =12.1513 (3)所以,如果生猪体重wm 增加1%,灵敏度S(tm,dwm)= 3.7669,最佳出售时间tm 就推迟0.038%。
灵敏度比较小,所以wm 对tm 不灵敏。
程序如下:Q=@(t,wm)((12-0.08*t)*90.*wm)./(90+(wm-90).*exp(-(1/60)*t))-3.2*t-12*90;数值计算W m 对t m 的灵敏度(W m =270,t m =14.4336)m m w w +∆ ()/%m m w w ∆ m m t t +∆ ()/%m m t t ∆ (,)m m S w t272.70001.000014.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.46010.34833.4825数值计算W m 对Q m 的灵敏度(W m =270,Q m =12.1513) m m w w +∆ ()/%m m w w ∆ m m Q Q +∆ ()/%m m Q Q ∆ (,)m m S w Q272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794 297.0000 10.0000 22.47540.84968.4963d=[.01;.05;.1];dwm=d*270;Q1=@(t)-Q(t,270+dwm(1));[t1,Q1]=fminbnd(Q1,0,30);Q2=@(t)-Q(t,270+dwm(2));[t2,Q2]=fminbnd(Q2,0,30);Q3=@(t)-Q(t,270+dwm(3));[t3,Q3]=fminbnd(Q3,0,30);Qm1=-Q1;Qm2=-Q2;Qm3=-Q3;tm=14.4336;Qm=12.1513;Sw_t=@(t,w)((t-tm)/tm)./(w/270);Sw_Q=@(Q,w)((Q-Qm)/Qm)./(w/270);t=[t1;t2;t3],Q=[Qm1;Qm2;Qm3],a=[270+d.*270,d.*100,t,(t-tm)./tm,Sw_t(t,d.*270)],b=[270+d.*270,d.*100,Q,(Q-Qm)./Qm,Sw_Q(Q,d.*270)], t =14.977317.056519.4601Q =13.107817.120822.4754a =272.7000 1.0000 14.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.4601 0.3483 3.4825b =272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794297.0000 10.0000 22.4754 0.8496 8.4963 (4)由图可知,新假设模型是一个阻滞增长模型,比原来的模型更符合实际,可以在较长时间内使用。
《数学建模》习题及参考答案 第五章 微分方程模型
第五章部分习题1. 对于5.1节传染病的SIR 模型,证明:(1)若σ/10>s ,则()t i 先增加,在σ/1=s 处最大,然后减少并趋于零;()t s 单调减少至∞s 。
(2)若σ/10>s ,则()t i 单调减少并趋于零,()t s 单调减少至∞s 。
9. 在5.6节人口的预测和控制模型中,总和生育率()t β和生育模式()t r h ,是两种控制人口增长的手段,试说明我国目前的人口政策,如提倡一对夫妇只生一个孩子、晚婚晚育,及生育第2胎的一些规定,可以怎样通过这两种手段加以实施。
*16. 建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为∂(与地面夹角),建立投掷距离与∂,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。
参考答案1. SIR 模型(14)式可写作().,1si dt di s i dt di λσμ-=-=由后一方程知()t s dtds ,0<单调减少。
1) 若σ10>s ,当01s s <<σ时,()t i dt di ,0>增加;当σ1=s 时,()t i dt di ,0=达到最大值m i ;当σ1<s 时,()t i dt di ,0<减少且()()式180=∞i 2) 若σ10<s ,()t i dt di ,0<单调减少至零 9. 一对夫妻只生一个孩子,即总和生育率()1=t β;晚婚晚育相当于生育模式()r h 中(5。
6节(13)式)使1r 和c r 增大;生育第2胎一些规定可相当于()t β略高于1,且()r h 曲线(5。
6节图19)扁平一些(规定生2胎要间隔多少年)*16. 在图中坐标下铅球运动方程为()()()().sin 0,cos 0,0,00,,0ααv y v x h y x g yx ====-== 解出()t x ,()t y 后,可以求得铅球掷远为,cos 2sin cos sin 2/12222ααααv g h g v g v R ⎪⎪⎭⎫ ⎝⎛++=这个关系还可表为()ααtan cos 2222R h v g R +=由此计算0*=ααd dR,得最佳出手角度()gh v v +=-21*2sin α,和最佳成绩gh v g v R 22*+=设m h 5.1=,s m v /10=,则0*4.41≈α,m R 4.11*=。
数学建模习题及答案课后习题
数学建模习题及答案课后习题第⼀部分课后习题1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在B宿舍,432⼈住在C宿舍。
学⽣们要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩数部分较⼤者。
(2)节中的Q值⽅法。
(3)d’Hondt⽅法:将A,B,C各宿舍的⼈数⽤正整数n=1,2,3,…相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种⽅法的道理吗。
如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法再分配名额。
将3种⽅法两次分配的结果列表⽐较。
(4)你能提出其他的⽅法吗。
⽤你的⽅法分配上⾯的名额。
2.在超市购物时你注意到⼤包装商品⽐⼩包装商品便宜这种现象了吗。
⽐如洁银⽛膏50g装的每⽀元,120g装的元,⼆者单位重量的价格⽐是:1。
试⽤⽐例⽅法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由⽣产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正⽐,有的与表⾯积成正⽐,还有与w⽆关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越⼤c越⼩,但是随着w的增加c减少的程度变⼩。
解释实际意义是什么。
3.⼀垂钓俱乐部⿎励垂钓者将调上的鱼放⽣,打算按照放⽣的鱼的重量给予奖励,俱乐部只准备了⼀把软尺⽤于测量,请你设计按照测量的长度估计鱼的重量的⽅法。
假定鱼池中只有⼀种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼⾝的最⼤周长):⾝长(cm)重量76548211627374821389652454(g)胸围(cm)先⽤机理分析建⽴模型,再⽤数据确定参数4.⽤宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹⾓应多⼤(如图)。
若知道管道长度,需⽤多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
数学建模与数学实验第五版课后答案4
数学建模与数学实验第五版课后答案4.41、27.下列各函数中,奇函数的是()[单选题] *A. y=x^(-4)B. y=x^(-3)(正确答案)C .y=x^4D. y=x^(2/3)2、4.点(-3,-5)关于x 轴的对称点的坐标为()[单选题] *A(-3,5)(正确答案)B(-3,-5)C(3,5)D(3,-5)3、1.(必修1P5B1改编)若集合P={x∈N|x≤2 022},a=45,则( ) [单选题] * A.a∈PB.{a}∈PC.{a}?PD.a?P(正确答案)4、2.在+3,﹣4,﹣8,﹣,0,90中,分数共有()[单选题] *A.1个B.2个C.3个(正确答案)D.4个5、13.在海上,一座灯塔位于一艘船的北偏东40°方向,那么这艘船位于灯塔()[单选题] *A.南偏西50°方向B.南偏西40°方向(正确答案)C.北偏东50°方向D.北偏东40°方向6、5.已知集合A={x|x=3k+1,k∈Z},则下列表示不正确的是( ) [单选题] *A.-2∈AB.2 022?AC.3k2+1?A(正确答案)D.-35∈A7、45.下列运算正确的是()[单选题] *A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16(正确答案)D.(2ab﹣n)(2ab+n)=4ab2﹣n28、10.如图是丁丁画的一张脸的示意图,如果用表示左眼,用表示右眼,那么嘴的位置可以表示成().[单选题] *A.(1,0)B(-1,0)(正确答案)C(-1,1)D(1,-1)9、6.方程x2=3x的根是()[单选题] *A、x = 3B、x = 0C、x1 =-3, x2 =0D、x1 =3, x2 = 0(正确答案)10、13.在数轴上,下列四个数中离原点最近的数是()[单选题] *A.﹣4(正确答案)B.3C.﹣2D.611、13.设x∈R,则“x3(x的立方)>8”是“|x|>2”的( ) [单选题] * A.充分而不必要条件(正确答案)B.必要而不充分条件C.充要条件D.既不充分也不必要条件12、35.若代数式x2﹣16x+k2是完全平方式,则k等于()[单选题] * A.6B.64C.±64D.±8(正确答案)13、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)14、13.不等式x+3>5的解集为()[单选题] *A. x>1B. x>2(正确答案)C. x>3D. x>415、掷三枚硬币可出现种不同的结果()[单选题] *A、6B、7C、8(正确答案)D、2716、6、已知点A的坐标是,如果且,那么点A在()[单选题] *x轴上y轴上x轴上,但不能包括原点(正确答案)y轴上,但不能包括原点17、49.若(x+2)(x﹣3)=7,(x+2)2+(x﹣3)2的值为()[单选题] * A.11B.15C.39(正确答案)D.5318、1.计算| - 5 + 3|的结果是[单选题] *A. - 2B.2(正确答案)C. - 8D.819、4.一个数是25,另一个数比25的相反数大- 7,则这两个数的和为[单选题] *A.7B. - 7(正确答案)C.57D. - 5720、30.圆的方程+=4,则圆心到直线x-y-4=0的距离是()[单选题] *A.√2(正确答案)B.√2/2C.2√2D.221、用角度制表示为()[单选题] *30°(正确答案)60°120°-30°22、19.对于实数a、b、c,“a>b”是“ac2(c平方)>bc2(c平方) ; ”的()[单选题] * A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件23、10.下列四个数中,属于负数的是().[单选题] *A-3(正确答案)B 3C πD 024、6.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是1/3?,则正面画有正三角形的卡片张数为()[单选题] *A.3B.5C.10(正确答案)D.1525、若m·23=2?,则m等于[单选题] *A. 2B. 4C. 6D. 8(正确答案)26、下列各式计算正确的是( ) [单选题] *A. (x3)3=x?B. a?·a?=a2?C. [(-x)3]3=(-x)?(正确答案)D. -(a2)?=a1?27、13.下列说法中,正确的为().[单选题] * A.一个数不是正数就是负数B. 0是最小的数C正数都比0大(正确答案)D. -a是负数28、函数式?的化简结果是()[单选题] *A.sinα-cosαB.±(sinα-cosα)(正确答案)C.sinα·cosαD.cosα-sinα29、6.下列说法正确的是().[单选题] * A.不属于任何象限的点不在坐标轴上就在原点B.横坐标为负数的点在第二、三象限C.横坐标和纵坐标互换后就表示另一个点D.纵坐标为负数的点一定在x轴下方(正确答案)30、下列函数是奇函数的是()[单选题] *A、f(x)=3x(正确答案)B、f(x)=4xC、f(x)= +2x-1D、f(x)=。
(完整版)数学建模复习内容带习题答案
考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。
一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。
(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。
A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。
(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3)结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。
数学建模习题及答案
5.设圆盘半径为单位1,矩形板材长a,宽b;可以精确加工,即圆盘之间及圆盘与板材之间均可相切。
若 ,则 , 是平衡点; 的平衡点为 . 的平衡点为 ,其中 ,此时的差分方程变为
.
由 可得平衡点 .
在平衡点 处,由于 ,因此, 不稳定.
在在平衡点 处,因 ,所以
(i) 当 时,平衡点 不稳定;
(ii) 当 时,平衡点 不稳定.
第
1.判断下列数学模型是否为线性规划模型。(a,b,c为常数,x,y为变量)
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)单位重量价格 ,其简图如下:
显然c是w的减函数,说明大包装比小包装的商品便宜,;曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。
3.对于同一种鱼不妨认为其整体形状是相似的,密度也大体上相同,所以重量w与身长 的立方成正比,即 , 为比例系数。
常钓得较肥的鱼的垂钓者不一定认可上述模型,因为它对肥鱼和瘦鱼同等看待。如果只假定鱼的横截面积是相似的,则横截面积与鱼身最大周长的平方成正比,于是 , 为比例系数。
福建师范大学22春“数学与应用数学”《数学建模》期末考试高频考点版(带答案)试卷号3
福建师范大学22春“数学与应用数学”《数学建模》期末考试高频考点版(带答案)一.综合考核(共50题)1.数学建模不是一个创新的过程。
()A.正确B.错误参考答案:B2.明显歪曲实验结果的误差为过失误差。
()A.正确B.错误参考答案:A3.论文写作的目的在于表达你所做的事情。
()A.正确B.错误参考答案:A4.数据的需求是与建立模型的目标密切相关的。
()A.错误B.正确参考答案:B5.对变量关系拟合时精度越高越好。
()A.正确参考答案:B6.用框图说明数学建模的过程。
参考答案:概括的说,数学模型就是一个迭代的过程,其一般建模步骤用框架图表示如下:7.正态随机数的模拟的方法有()。
A.反函数法B.舍选法模拟正态随机数C.坐标变换法D.利用中心极限定理参考答案:ABCD8.利用数据来估计模型中出现的参数值称为模型参数估计。
()A.错误B.正确参考答案:B9.量纲分析是20世纪提出的在物理领域建立数学模型的一种方法。
()A.错误B.正确参考答案:B10.整个数学建模过程是又若干个有明显区别的阶段性工作组成。
()A.正确B.错误11.建模中的数据需求常常是一些汇总数据。
()A.正确B.错误参考答案:A12.数据整理即对数据进行规范化管理。
()A.错误B.正确参考答案:B13.数学建模是一种抽象的模拟,它用数学符号等刻画客观事物的本质属性。
()A.正确B.错误参考答案:A14.拐角问题来源于医院手术室病人的接送。
()A.正确B.错误参考答案:A15.明显歪曲实验结果的误差为过失误差。
()A.错误B.正确参考答案:B数学建模第一步是明确问题。
()A.正确B.错误参考答案:A17.人口预测模型用以预测人口的增长。
()A.错误B.正确参考答案:B18.实验中服从确定性规律的误差称为系统误差。
()A.错误B.正确参考答案:B19.建模中的数据需求常常是一些汇总数据。
()A.错误B.正确参考答案:B20.捕食系统的方程是意大利学家Lanchester提出的。
数学建模习题-第五章
习 题1、对于节传染病的SIR 模型证明;①若σ/10>s ,则)(t i 先增加,在σ/1=s 处达到最大 ,然后减少并趋于零;)(t s 单调减少至∞s 。
②若σ/10<s ,则)(t i 单调减少并趋于零,)(t s 单调减少至∞s 。
2、对于传染病的SIR 模型证明(20)~(22)式。
3、在节经济增长模型中,为了适用于不同的对象可将产量函数)(t Q 折算成现金,仍用)(t Q 表示。
考虑到物价上升因素我们记物价上升指数为)(t p (设1)0(=p )。
则产品的表面价值)(t y 、实际价值)(t Q 和物价指数)(t p 之间满足)(t y =)()(t P t Q 。
①导出)(t y 、)(t Q 、)(t p 的相对增长率之间的关系,并作解释。
②设雇佣工人数目为)(t L ,每个工人工资为)(t W ,企业的利润简化为从产品的收入)(t y 中扣除工人的工资和固定的成本。
利用节的(5)式讨论,企业应雇佣多少工人能使利润最大。
4、在节的房室模型中证明方程(3)对应的齐次方程通解如(4)、(5)式所示,说明方程的两个特征根α和β一定是负实根。
5、模仿节建立的二室模型建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出浓度曲线图。
6、利用上题建立的一室模型,讨论按固定时间间隔T 每次给予固定剂量D 的多次重复给药方式。
为了维持药品的疗效和保证机体的安全,要求血药浓度C 控制在(21,C C )范围内。
设中心室容积V 为已知。
① 在快速静脉注射的多次重复给药方式下,写出血药浓度表达式并作图,讨论怎样确定T 和D 使血药浓度的变化满足上述要求。
② 在恒速静脉滴注和口服(或肌肉注射)的多次重复给药方式下,给出血药浓度变化的简图,并在这两种方式选择一种来讨论确定T 和D 的问题。
7、在节香烟过滤嘴模型中,① 设800=M 毫克,801=l 毫米,202=l 毫米,02.0=b (1/秒),08.0=β(1/秒),50=v 毫米/秒,3.0=a ,求Q 和21/Q Q 。
数学建模第五次
1、因为它们比较全面的达到了建模的目的,即描述传播过程、分析感染人数的变化规律,预测传染病高潮期到来时刻,度量传染病蔓延的程度并探索制止蔓延的手段。
2、第一,多数食饵――捕食者系统都观察不到Volterra模型显示的那种周期动荡,而是趋向某种平衡状态。
第二,自然界里生长期存在的周期变化的生态平衡系统应该是稳定的,而Volterra模型描述的周期变化状态却不是稳定的。
3、在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。
4、层次分析法是一种定性和定量相结合的、系统化、层次化的分析法。
5、第一,模型所涉及的各因素可以组合为属性基本相同的若干层次,层次内部因素之间不存在相互影响或支配作用,或者这种影响可以忽略;第二,层次之间存在自上而下、逐层传递的支配关系,没有下层对上层的反馈作用,或层次间的循环影响。
6、(1)计算一致性指标C.I.=(最大特征值-n)/n-1 (2)找出相应的平均随机一致性指标R.I.;(3)计算一致性比例C.R.=C.I./R.I.;当C.R.<0.1时,可接受一致性检验,否则将对判断矩阵修正。
7、1)竞赛图存在完全路径;2)若存在唯一的完全路径,则由完全路径确定的顶点的顺序,与得分多少排列的顺序相一致,这里一个顶点的得分指标由它按箭头方向引出的边的数目。
8、系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。
为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。
这叫灵敏性分析。
9、 1)简单算法;2)一维搜索算法;3)可接受点算法。
10、罚函数基本思想是求通过构造函数把约束问题转化为一系列无约束最优化问题,进而用无约束最优化方法求解。
这类方法称为序列无约束最小化方法。
11、1)SUMT外点法;2)SUMT内点法。
12、在多阶段决策问题中,各个阶段采取的决策一般来说是与时间有关的,决策依赖于当前的状态,而又随即引起状态的转移,一个决策序列就是在状态的运动变化中产生的,因此,把处理它的方法称为动态规划方法。
数学建模课后习题
数学建模课后习题数学建模课后习题:探索斐波那契数列的奥秘数学建模,一项充满挑战与乐趣的实践活动,让我们的思维在理论联系实际的道路上飞驰。
在完成了一系列的课堂学习后,我们迎来了第一道课后习题——探索斐波那契数列的奥秘。
斐波那契数列,一个古老而神奇的话题,早在中世纪就引起了数学家的关注。
这个数列由0和1开始,后续的数字是前两个数字之和,即0, 1, 1, 2, 3, 5, 8, 13, 21, 34,等等。
这些数字在数学界被称为“斐波那契数”,而在生物学界,它们则被称为“黄金分割数”。
我们首先需要理解这个数列的定义和性质。
例如,斐波那契数列的每个数字都是前两个数字之和,且每个数字都无限接近于一个黄金分割比。
这些性质使得斐波那契数列在自然界的许多领域中都有应用,如植物生长、动物繁衍,甚至在人类的艺术和建筑设计中也有体现。
为了更好地理解和应用斐波那契数列,我们需要通过编程来实现它。
Python语言提供了一种简单的方法。
以下是一段Python代码,用于生成斐波那契数列:通过调用fibonacci(n)函数,我们可以得到前n个斐波那契数。
在完成这个函数之后,我们可以进一步思考如何利用斐波那契数列解决实际问题。
例如,我们可以使用斐波那契数列来优化矩阵乘法。
在传统的矩阵乘法中,我们需要进行一系列的加法和乘法操作,而这些操作的时间复杂度是O(n^3)。
然而,通过利用斐波那契数列,我们可以将时间复杂度降低到O(n)。
这是一个巨大的优化,尤其是在处理大规模数据时。
总的来说,斐波那契数列是一个充满挑战和乐趣的数学主题。
通过完成这个课后习题,我们不仅可以加深对数学建模的理解,还可以将所学知识应用于实际问题,实现从理论到实践的跨越。
让我们一起继续探索斐波那契数列的奥秘吧!数学建模习题及答案数学建模是一种将数学方法应用于实际问题求解的技能。
通过数学建模,我们可以将现实世界中的问题转化为数学问题,并运用数学工具和计算机技术进行求解。
福建师范大学22春“数学与应用数学”《数学建模》期末考试高频考点版(带答案)试卷号:1
福建师范大学22春“数学与应用数学”《数学建模》期末考试高频考点版(带答案)一.综合考核(共50题)1.回归分析是研究变量间相关关系的统计方法。
()A.错误B.正确参考答案:B2.大学生走向工作岗位后就不需要数学建模了。
()A.正确B.错误参考答案:B3.时间步长法又称为固定时间增量法。
()A.错误B.正确参考答案:B4.泊松分布常用于穿越公路模型中。
()A.错误B.正确参考答案:B5.泊松分布常用于穿越公路模型中。
()A.正确参考答案:A6.利用无量纲方法可对模型进行简化。
()A.正确B.错误参考答案:A7.求常微分方程的基本思想是将方程离散化转化为递推公式以求出函数值。
()A.正确B.错误参考答案:A8.学习数学建模不需要具备科技论文写作能力。
()A.错误B.正确参考答案:A9.把各类问题归结为我们熟知的模型为类比思维。
()A.错误B.正确参考答案:B10.分析检验一般有____A.量纲一致性检验B.参数的讨论C.假设合理性检验11.不必认真设计结果的输出格式。
()A.错误B.正确参考答案:A12.在某5000个人中有10个人患有一种病,现要通过验血把这10个病人查出来,若采用逐个人化验的方法许化验9999次,(这里所需化验次数是指在最坏情况下化验次数,如果碰巧,可能首先化验的10个人全是病人,10次化验就够了,下面讨论的化验次数均指在最坏情况下的化验次数)。
为了减少化验次数,人们采用分组化验的办法,即把几个人的血样混在一起,先化验一次,若化验合格,则这几个人全部正常,若混合血样不合格,说明这几个人中有病人,再对它们重新化验(逐个化验或再分组化验)。
试给出一种分组化验的方法使其化验次数尽可能地小,不超过1000次。
参考答案:我们给出如下的方法:从1000人中任取64人,把他们的血样混合化验。
一般地,n 个人中有k个病人,令s使2s≤n/k<2s+1,则从n个人中任取25个人一组,当n=1000,k=10时,25=64 若这64人混合血样合格(化验是阴性),则这64个人正常,可排除,无需再化验,再从剩下未化验的人中任取64个人,混合血样化验。
数学建模总结
数学建模知识总结第一章习题8 解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点方法二:设想有两个人,I ) 一人上山,一人下山,同一天同时出发,沿同一路径,必定相遇. 0d 早8 0t 晚5方法三:我们以山下旅店为始点记路程,设从山下旅店到山顶的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从山顶到山下旅店的路函数为)(t g ,并设山下旅店到山顶的距离为a (a >0).由题意知:,0)8(=f a f =)17(,a g =)8(,0)17(=g .令)()()(t g t f t h -=,则有0)8()8()8(<-=-=a g f h ,0)17()17()17(>=-=a g f h ,由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]17,8[0∈∃t ,使0)(0=t h ,即)()(00t g t f =.(2)36场比赛,因为除冠军队外,每队都负一场;6轮比赛,因为2队赛1轮,4队赛2轮,32队赛5轮. n 队需赛1-n 场,若k k n 221≤- ,则需赛k 轮.(3)不妨设从甲到乙经过丙站的时刻表是8:00,8:10,8:20,…… 那么从乙到甲经过丙站的时刻表应该是8:09,8:19,8:29……(4)步行了25分钟.设想他的妻子驾车遇到他后,先带他前往车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车多跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻应该是5:55.(5)放学时小狗奔跑了3 km.孩子上学到学校时小狗的位置不定(可在任何位置),因为设想放学时小狗在任何位置开始跑,都会与孩子同时到家.之所以出现位置不定的结果,是由于上学时小狗初始跑动的那一瞬间,方向无法确定.第三章 1。
福建师范大学22春“数学与应用数学”《数学建模》作业考核题库高频考点版(参考答案)试题号4
福建师范大学22春“数学与应用数学”《数学建模》作业考核题库高频考点版(参考答案)一.综合考核(共50题)1.利用理论分布基于对问题的实际假设选择适当的理论分布可以对随机变量进行模拟。
()A.正确B.错误参考答案:A2.四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同时着地?参考答案:4条腿能同时着地(一) 模型假设对椅子和地面都要作一些必要的假设:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
(二)模型建立现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D处,A、B、C、D的初始位置在与x轴平行,再假设有一条在x轴上的线ab,则ab也与A、B,C、D平行。
当方桌绕中心0旋转时,对角线ab与x轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令f(θ)为A、B离地距离之和,g(θ)为C、D离地距离之和,它们的值由θ唯一确定。
由假设(1),f(θ),g(θ)均为0的连续函数叹由假设(3),三条腿总能同时着地,故f(θ)g(θ)=0必成立(∀θ)。
f(θ),g(θ)均为0的连续函数。
又由假设(3),三条腿总能同时着地,故f(θ)g(θ)=0必成立(∀θ)。
不妨设f(θ)=0,g(θ)>0(若g(0)也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知f(0),g(θ)均为θ的连续函数,f(0)=0,g(0)>0且对任意θ有f(θ)g(θ)=0,求证存在某一0,使f(θ)g(θ)=0。
(三)模型求解证明:当日=π时,AB与CD互换位置,故f(π)>0,g(π)=0 \r\no作h(θ)=f(θ)-g(θ),显然,h(θ)也是θ的连续函数,h(θ)= f(θ)- g(θ)<0而h(π)=f(π)- \r\n8(r)>0,由连续函数的取零值定理,存在θ,0<θ<π,使得h(θ)=0,即h(θ)=g(θ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 问题二是在问题一的基础上,进一步减少吨千米数。
在舍弃两个临时场,改建两个新的临时场,从而使得在其他条件不变的的情况下使节省的吨千米数最小。
为此,需建立一个非线性规划模型。
要同时确定料场的位置(,)i i x y 和A,B 两料场往各工地的运送量ij c 使(1)的总吨千米数最小。
由于目标函数f 对i x 和i y 是非线性的,所以在求新建料场位置和用料时是非线性规划模型 四、模型假设
1、各工地不会在除题目所给的两个料场之外的其他料场获取水泥;
2、假设从料场飞到工地之间均有直线道路相连;
3、两个临时料场日储量满足题目所给的条件;
4、假设其他突发事件的影响可以忽略;
5、假设两料场供应量与日用量达到平衡;
6、假设改建后供应计划保持原计划不变。
7、每天工地所需要的水泥不变,每天分配给工地的水泥都用完,不能在第二天继续用;
五、模型建立
1.记工地的位置为:(,)
j j a b 水泥日用量j d ,j=1,2,3,4,5,6;料场位置为(,)i i x y ,日储
量i e ,i=1,2; 料场i 到工地j 的运送量为ij c ,则该问题有
目标函数:
2
6
22
11min ()()ij i j i j i j f x x a y b ===-+-∑∑
约束条件为:
6
16
1
,1,2,1,2;20ij j ij ij i j x d i x e i e ==⎧==⎪⎪⎨⎪≤=≤⎪⎩∑∑ 当用临时料场时决策变量为:ij x ,当不用临时料场时的决策变量为ij x ,,i i x y
2.模型二的建立
改建两个新料场,要同时确定料场的位置
,iixy 和运送量ijc ,在同样条件下 使总吨千米
数最小。
这是非线性规划问题。
此时的决策变量是i x ,j x ,ij c 非线性规划模型为
目标函数:26
22
11
min
()()ij j i j i i j f x x a y b ===-+-∑∑
约束条件;26
11266
11
1,1,2;20,1,2ij i i i j ij j i j j e e i e c d j =====⎧≤=≤⎪⎪⎨⎪==⎪⎩∑∑∑∑∑
六、模型求解 1.模型一
2.模型二。