概率论例题
概率论总结及例题
常见连续性随机变量1、均匀分布2、正态分布3、指数分布4、埃尔兰分布5、 T 分布(一)均匀分布 ξ~U(a,b)▪ 实际背景:随机变量 X 仅在一个有限区间(a,b )上取值;随机变量 X 在其内取值具有“等可能”性,则 ξ~U(a,b)。
“等可能”表现在: 若a ≤c<c+l ≤b ,则P{c<ξ<c+l } 与位置无关,只与长度有关设ξ具有概率密度:则称ξ在区间 (a,b)上服从均匀分布,记为ξ ~U(a,b)。
例1:设电阻值R 是一个随机变量,均匀分布在900Ώ~1100Ώ,求R 的概率密度及R 落在 950Ώ~1050Ώ的概率。
解:按题意,R 的概率密度为:⎪⎩⎪⎨⎧∉∈-=].,[,0];,[,1)(b a x b a x a b x p ⎪⎩⎪⎨⎧>≤<--≤=.,1;,;,0)(b x b x a a b a x a x x F ⎪⎩⎪⎨⎧<<-=其它0110090090011001)(x x p 5.02001}1050950{1050950==<<⎰dr R P例2 ξ ~ U (2, 5). 现在对 ξ 进行三次独立观测,试求至少有两次观测值大于 3 的概率.解:记 A = { ξ > 3 },则 P (A ) = P ( ξ> 3) = 2/3设 Y 表示三次独立观测中 A 出现的次数,则 Y ~ B (3, 2/3),所求概率为P (Y ≥2) =P (Y =2)+P (Y =3)=20/27(二)正态分布(normal distribution )记为ξ ~ N (μ, σ2),其中σ >0, μ 是任意实数.➢ μ 是位置参数➢ σ 是尺度参数.正态分布的性质(1) p (x ) 关于μ 是对称的. 在μ 点 p (x ) 取得最大值.(2) 若σ 固定, μ 改变, p (x )左右移动, 形状保持不变.(3) 若μ 固定, σ 改变,σ 越大曲线越平坦; σ 越小曲线越陡峭标准正态分布N (0, 1)密度函数记为 ϕ(x ),分布函数记为 Φ(x ).Φ(x ) 的计算(1) x ≥ 0 时, 查标准正态分布函数表.(2) x < 0时, 用 若 ξ ~ N (0, 1), 则(1) P (ξ < a ) = Φ(a );(2) P (ξ≥a ) =1-Φ(a );(3) P (a ≤ξ<b ) = Φ(b )Φ-(a );(4) 若a ≥ 0, 则P (|ξ|<a ) = P (-a <ξ<a ) = Φ(a )Φ-(-a ) = Φ(a )- [1- Φ(a )] = 2Φ(a )-1230233*********C C =+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2()(),22x p x x μσ⎧⎫-⎪⎪=--∞<<∞⎨⎬⎪⎪⎩⎭R x dt e x F x t ∈=⎰∞---,21)(222)(σμσπ1(1) (0),2Φ=(2)()1()x x Φ-=-Φ()1().x x Φ=-Φ-例2.5.1 设 ξ ~ N (0, 1), 求P (ξ>-1.96) , P (|ξ|<1.96)解: P (ξ>-1.96)= 1- Φ(-1.96) = 1-(1- Φ(1.96)) = Φ(1.96)= 0.975 (查表得)P (|ξ|<1.96)= 2 Φ(1.96)-1= 2 ⨯0.975-1= 0.95例2.5.2 设 ξ ~ N (0, 1), P (ξ ≤ b ) = 0.9515, P (ξ ≤ a ) = 0.04947, 求 a , b . 解: Φ(b ) = 0.9515 >1/2,所以 b > 0,反查表得: Φ(1.66) = 0.9515,故 b = 1.66而 Φ(a ) = 0.0495 < 1/2,所以 a < 0,Φ(-a ) = 0.9505, 反查表得:Φ(1.65) = 0.9505,故 a = - 1.65一般正态分布的标准化 结论1 设 ξ ~ N (μ, σ 2), 结论2:若 ξ ~ N (μ, σ 2), 则 若 ξ ~ N (μ, σ2), 则P (ξ<a ) = , P (ξ>a ) = 例2.5.3 设ξ ~ N (10, 4), 求 P (10<ξ<13), P (|ξ-10|<2).解: P (10<ξ<13) = Φ(1.5)Φ-(0) = 0.9332 - 0.5= 0.4332P (|ξ -10|<2) = P (8<ξ<12)= 2Φ(1)-1= 0.6826例2.5.4 设 ξ ~ N (μ, σ 2), P (ξ ≤ -5) = 0.045,P (ξ ≤ 3) = 0.618, 求 μ 及 σ.解:μ = 1.76σμξη-=()x F x μσ-=Φ⎛⎫ ⎪⎝⎭a μσ-⎛⎫Φ ⎪⎝⎭1a μσ-⎛⎫-Φ ⎪⎝⎭5 1.6930.3μσμσ+⎧=⎪⎪⎨-⎪=⎪⎩σ =4课堂练习(1)已知ξ~ N(3, 22), 且P{ξ>k} = P{ξ≤k}, 则k = ( ).课堂练习(2)设ξ~ N(μ, 42), η~ N(μ, 52), 记p1 = P{ξ≤μ-4},p2 = P{η≥μ +5}, 则( )①对任意的μ,都有p1 = p2②对任意的μ,都有p1 < p2③只个别的μ,才有p1 = p2④对任意的μ,都有p1 > p2课堂练习(3)设ξ~ N(μ , σ2), 则随σ的增大,概率P{| ξ-μ | <σ} ( )①单调增大②单调减少③保持不变④增减不定▪例假设在设计公共汽车车门的高度时,要求男子的碰头机会在1%以下,设男子的身高ξ(cm)服从正态分布,ξ~ N (170,36),问车门高度至少应为多高?实际背景:如果一个随机现象是由大量微小的相互独立的因素共同构成,那么描述这种随机现象的随机变量通常被认为服从或近似服从正态分布.在自然现象和社会现象中,大量随机变量都服从或近似服从正态分布。
概率论(仅供参考)
前言由于汤老师不给力,下面由刘老师来为你们划重点 内部使用,仅供参考,不承当任何后果。
参考: 课本 课件第一章该章概型和公式比较多,每个都配上了一个例题便于理解第一节重点:德·摩根律公式交换律:A ∪B=B ∪A ,AB=BA 结合律(A ∪B)∪C=A ∪(B ∪C )(A∩B)∩C=A∩(B∩C )分配律:A∩(B ∪C) = (A∩B)∪( A∩C )A ∪(B∩C) = (A ∪B)∩(A ∪C ) 德·摩根律A B AB A B A B ==第二节频率性质1. 样本任意一事件概率不小于0(非负性)2. 样本事件概率和为1(规范性)3. 如果AB 互斥 ()()()n n n f A B f A f B =+4. 如果AB 不排斥 ()()()()n n n n f A B f A f B f A B =+-⋂5. ()1().P A P A =-第三节 古典概型性质1. 样本空间中样本点有限,既事件有限2. 样本点概率等可能发生3. ()==k A P A n 中所含的基本事件数基本事件总数例题排列组合问题(要是考应该不会太难)几何概型求法:1.求出状态方程2.根据定义域画图3.求概率=阴影面积/总面积第四节条件概型公式:()()()() (|).()()()()AB AB P AB P A BB B P BμμμΩμμμΩ===条件概率满足概率的一切性质既非法性,规范性,可加性例题11()()()()n ni i i i i P B P BA P A P B A ====∑∑例题 书 p251()(|)(|)()(|)i i i ni ii P A P B A P A B P A P B A ==∑第五节独立性如果AB事件独立P AB P A P B()()()若多事件相互独立,理论仍然成立贝努利概型既服从二项分布模型抽取n次的组合次数第二章重点章节,几大分布都是后几章的基础第二节 离散型随机变量及其分布律1. 两点分布、0﹣1分布既随机变量 X 只可能取0或1两个值,事件执行一次只有两种情况,例如抛硬币 记为 X~b (1,p ) p 表示事件的概率,样本点个数为1, 并且1-p 表示相反事件概率 2. 二项分布(应用于上章的贝努利概型)与0-1分布类似,事件执行n 次,记为 X~b (n ,p ) p 表示事件的概率 样本点个数为n 3. 泊松分布{}e ,0,1,2,,!kP X k k k λλ-===⋅⋅⋅记为 X~π(λ),如果出题,应该会标明是泊松分布,或者给出明确的λ二项分布X~b (n ,p )当n 充分大,p 充分小时,对于任意固定的非负整数k ,与泊松分布概率近视相等,并且λ=nb (数学期望相等) 4. 几何分布既抽取问题中可放回情况,该分布具有无记忆性-1{}(1),1,2,k P X k p p k ==-=5. 超几何分布既抽取问题不放回情况12{},0,1,2,k n k N N nNC C P X k k C-===第三节 随机变量及其分布随机变量分布(感觉这个知识点必考,虽然不知道会是什么题) 求事件概率公式,p511. 已知分布函数求分布律,并求事件概率(习题2第一题)根据公式000{}(0)(0)P X x F x F x ==+--求出各个点的概率,并画出分布表,求事件概率可以不会套公式,可以直接看表。
概率论典型例题
P{ X 0} P{ X 2}
P{ X 0} P{ X 2} P{ X 5}
22 . 29
---
例2 设离散型随机变量 X 的分布函数为
0, x 1,
a,
1 x 1,
F
(
x
)
2 3
a,
1 x 2,
a b, x 2.
且 P{ X 2} 1 ,试确定常数a,b,并求 X 的分布律. 2
---
例5 设某仪器上装有三只独立工作的同型号电子 元件,其寿命(单位 : 小时)都服从同一指数分布,其
中参数 1 600,试求在仪器使用的最初200小时
内,至少有一只元件损坏的概率a. [思路] 以 Ai (i 1,2,3) 分别表示三个电子元件“在 使用的最初 200 小时内损坏”的事件, 于是 a P{ A1 A2 A3 } 1 P( A1 A2 A3 )
C B AB.
---
例3 假设目标出现在射程之内的概率为0.7,这时 射击命中目标的概率为0.6, 试求两次独立射击至 少有一次命中目标的概率.
[思路] 引进事件 A {目标进入射程}; Bi {第i次射击命中目标}, i 1,2.
故所求概率为事件B B1 B2的概率,由于目标 不在射程之内是不可能命中目标的, 因此 , 可利 用全概率公式来求解.
---
例4 设有来自三个地区的各10名、15名和25名考 生的报名表,其中女生的报名表分别为3份、7份和
5 份, 随机地取一个地区的报名表,从中先后抽出 两份.
(1) 求先抽到的一份是女生表的概率 p;
(2)已知后抽到的一份表是男生表,求先抽到 的一份是女生表的概率 p.
[思路] 由于抽到的表与来自哪个地区有关,故此 题要用全概率公式来讨论.
概率论典型例题
20
4
故Y
~
B
⎛ ⎜⎝
3,
1 4
⎞ ⎟⎠
。
于是
C P{Y = 2} =
2⎛ 3 ⎜⎝
1 4
⎞2 ⎟⎠
⎛ ⎜⎝
3 4
⎞ ⎟⎠
=
9 64
。
注:本例既需要掌握二项分布的由来及其概率分布,还需掌握连续型随机变
量由密度函数求其在某个区间上的取值概率。 有离散也有连续,需要区分清楚,
掌握牢固,这是容易出问题的地方。
解:(1)当 y > 0 时,
FY ( y) = P(Y
≤
y)
=
P
⎛ ⎜⎝
1 X
≤
y
⎞ ⎟⎠
=
P
⎛ ⎜⎝
1 X
≤
0
⎞ ⎟⎠
+
P
⎛ ⎜⎝
0
<
1 X
≤
y
⎞ ⎟⎠
当 y < 0 时,
=
P(X
<
0) +
⎛ P⎜
⎝
X
≥
1 y
⎞ ⎟ ⎠
=
FX
(0) +1−
FX
⎛ ⎜ ⎝
1 y
⎞ ⎟
;
⎠
FY ( y) =
P(Y
≤
X2 0
1
4
9
pk 0.1 0.3 0.3 0.3
注:对离散型随机变量,其函数的分布列的求法比较简单。只要从分布列定
义中包含的两部分:可能取值与对应概率出发,必定能求出。
另外,值得提醒的是,如果分布列中有未知参数,一定要通过分布列的性质
(一般是归一性的应用),将其求出,再进行其他计算。
概率论-例题
1. 设随机变量X 与Y 分别服从参数为λ1和λ2的指数分布,且二者相互独立.求:(1) )|(|x y f X Y ; (2) ⎩⎨⎧>≤=YX Y X Z ,0,1的分布律.2. 设随机变量在上服从均匀分布, 服从参数的指数分布,且相互独立,求(1)关于的方程有实根的概率;(2).3. 一射手向某个靶子射击,设靶心为坐标原点,弹着点坐标(X ,Y )服从二维正态分布N(0,1;0,1;0). 求弹着点与靶心的距离Z 的概率密度函数。
4. 设P{X=0}=P{X=1}=1/2,Y~U(0,1)且X,Y 相互独立,求X+Y 的概率分布.5. 随机变量(X , Y )的联合概率密度函数是 )()(2121),(2222y g x g e e y x f y x πππ-+-+= (x , y )∈R 2 其中 ⎩⎨⎧>≤=ππx x x x g 0cos )( 1) 证明X 与Y 都服从正态分布;2) 求随机变量Y 关于X 的条件概率密度; 3)讨论X 与Y 是否相互独立? 4) 根据本题的结果,你能总结出什么结论?6. 甲乙两人约定在下午1点到2点之间的任意时刻独立到达某车站乘坐公交车,这段时间内共有四班公交车,它们开车的时刻分别为1:15, 1:30, 1:45; 2:00. 若他们约定:(1) 见车就乘;(2)最多等一辆车。
求他们乘同一辆车的概率。
7. 某超市销售一批照相机共10台,其中有3台次品,7台正品。
某顾客去选购时,超市已售出2台,该顾客从剩下的8台中任选一台,求该顾客购买到正品的概率.8. 设甲、乙、丙三导弹向同一敌机射击,甲、乙、丙击中敌机的概率分别为0.4, 0.5, 0.7. 如果只有一弹击中,飞机坠毁的概率为0.2;如两弹击中,飞机坠毁的概率为0.6;如三弹击中,飞机坠毁的概率为0.9。
(1)求飞机坠毁的概率;(2)若飞机已经坠毁,问飞机最有可能是被几颗导弹击中的?9. 设)(),(21x F x F 为两个分布函数,问:(1) )()(21x F x F +是否分布函数? (2))()(21x F x F 是否分布函数? 给出证明。
《概率论与数理统计》典型例题
《概率论与数理统计》典型例题第一章 随机事件与概率例1.已知事件,A B 满足,A B 与同时发生的概率与两事件同时不发生的概率相等,且()P A p =,则()P B = 。
分析:此问题是考察事件的关系与概率的性质。
解:由题设知,()(P AB P A B =∩),则有()()()1()1()()()P AB P A B P A B P A B P A P B P AB ===−=−−+∩∪∪而,故可得。
()P A p =()P B =1p −注:此题具体考察学生对事件关系中对偶原理,以及概率加法公式的掌握情况,但首先要求学生应正确的表示出事件概率间的关系,这三点都是容易犯错的地方。
例2.从10个编号为1至10的球中任取1个,则取得的号码能被2或3整除的概率为 。
分析:这是古典概型的问题。
另外,问题中的一个“或”字提示学生这应该是求两个事件至少发生一个的概率,即和事件的概率,所以应考虑使用加法公式。
解:设A :“号码能被2整除”,B :“号码能被3整除”,则53(),()1010P A P B ==。
只有号码6能同时被2和3整除,所以1()10P AB =,故所求概率为 5317()()()()10101010P A B P A P B P AB =+−=+−=∪。
注:这是加法公式的一个应用。
本例可做多种推广,例如有60只球,又如能被2或3或5整除。
再如直述从10个数中任取一个,取得的数能被2或3整除的概率为多少等等。
例3.对于任意两事件,若,则 A B 和()0,()0P A P B >>不正确。
(A )若AB φ=,则A 、B 一定不相容。
(B )若AB φ=,则A 、B 一定独立。
()若C AB φ≠,则A 、B 有可能独立。
()若D AB φ=,则A 、B 一定不独立。
分析:此问题是考察事件关系中的相容性与事件的独立性的区别,从定义出发。
解:由事件关系中相容性的定义知选项A 正确。
概率论例题汇总
边缘分布为
7
若改为无放回摸球,则(X,Y)的联合分布律为
X
Y
0
3 10 3 10 3 5
1
3 10 1 10 2 5
3 5 2 5
X
Y
0
9 25 6 25
3 5
1
6 25 4 25 2 5 3 5 2 5
0
1
0
1
边缘分布为
与有放回的情况比较, 两者的联合分布完全不同,
i 1
5 0.1 2 0.2 1 0.3 4 0.4 1 .
EX 2 xi2 pi
i 1 4
4 0.1 1 0.2 0 0.3 1 0.4 1 .
24
例2 设随机变量 X ~ N (0,1), 求 E ( X 2 ) 解 E( X )
4 xy, 0 x 1, 0 y 1 (1) f1 ( x, y ) 其他 0,
8 xy, 0 x y, 0 y 1 (2) f 2 ( x, y ) 其他 0,
讨论X ,Y 是否独立?
16
4 xy, 0 x 1, 0 y 1 f1 ( x, y ) 其他 0, 1 解 (1)经计算得边缘密度为
( 3 ) 概 率 P{ X Y 1 } .
y x
解 (1)
1 0
x 0
f ( x , y ) dxdy
0 1 x
dx cy( 2 x ) dy
c 1 5 24 2 ( 2 x ) x dx c 1 , c . 5 2 0 24
概率论典型例题共102页
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
概率论例题
一、选择题(每题3分,共18分)1、匣中有2个白球,3个红球。
现一个接一个地从中随机地取出所有的球。
那么,白球比红球早出现的概率是 。
2、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,⋃==P(A B )___,P(B |A )___。
3、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 。
4、设X 服从正态分布2(,)N μσ,则~23X Y -= .5、设128==X B EX DX (且=,=,则~n,p ),n __,p __6、已知6.0)(,4.0)(,5.0)(=+==B A P B P A P ,则)|(B A P =二、计算题(每题12分,共60分)1. 甲袋中装有2个白球,1个黑球;乙袋中装有1白球,2个黑球; 现从甲袋中任取1个球放入乙袋中,再从乙袋中任取1个球,(1)求从乙袋中取出的球为白球的概率;(2)已知从乙袋中取出的球是白球,求从甲袋中取到白球的概率。
2. 设二维随机变量X 与Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=其它,010,1)(x x f X⎩⎨⎧≤>=-0,00,)(y y e y f y Y 试求:(1))2(Y X E +;(2)Y X Z +=2的概率密度函数。
3.设随机变量X 的概率密度为cos , ||()2 0 , A x x f x π⎧<⎪=⎨⎪⎩其它, 试求(1)常数A ;(2) 分布函数()F x ; (3) 概率{ 0 }4P X π<<。
4、已知随机变量Y X 与的分布律为:X -1 0 1 P1/41/21/4且已知1}0{==XY P .(1) 求(Y X ,)的联合分布律;(2)Y X 与是否相互独立?为什么?5. 如果你提前s 分钟赴约,花费为cs (单位:元);如果迟到s 分钟,花费为ks (单位:元)。
假设从现在的位置到赴约地点所用的时间]30,10[~U X (单位:分钟)。
第一章概率论典型例题
典型例题:一.排列1.特殊排列相邻、彼此隔开、顺序一定和不可分辨例1.晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例2.4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例3.5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?2.重复排列和非重复排列(有序)例4.5封不同的信,有6个信箱可供投递,共有多少种投信的方法?3.对立事件例5.七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例6.15人中取5人,有3个不能都取,有多少种取法?例7.有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?4.顺序问题例8.3白球,2黑球,先后取2球,放回,2白的种数?(有序)例9.3白球,2黑球,先后取2球,不放回,2白的种数?(有序)例10.3白球,2黑球,任取2球,2白的种数?(无序)二.概率1. 一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大.2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.3. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.4. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大.1.7 一个小孩用13个字母T T N M M I I H E C A A A ,,,,,,,,,,,,作组字游戏。
概率论典型例题(稻谷书苑)
(1 p5 )[1 (1 p1 p3 )(1 p2 p4 )].
藤蔓课堂
13
三、典型例题
例1 已知离散型随机变量 X 的可能取值为 2,0,
2, 5,相应的概率依次为 1 , 3 , 5 , 7 ,试求概率 a 2a 4a 8a
P{ X 2 X 0}.
[思路] 首先根据概率分布的性质求出常数 a 的
值, 然后确定概率分布律的具体形式,最后再计
算解 利用概率分布律的性质 pi 1,
条件概率.
i
藤蔓课堂
14
有
1
i
pi
1 a
3 2a
5 4a
7 8a
37 , 8a
故 a 37 , 8
因此 X 的分布律为
藤蔓课堂
7
解 记 Hi {抽到地区考生的报名表 }, i 1, 2, 3;
Aj {第 j 次抽到报名表是男生的}, j 1,2,
则有
P(Hi
)
1 3
(i
1,2,3);
P(
A1
H1
)
7; 10
P(
A1
H2
)
8; 15
P( A1
H3)
20 . 25
(1)由全概率公式知
3
p P( A1 ) P(Hi )P( A1 Hi ) i 1
藤蔓课堂
3
例3 假设目标出现在射程之内的概率为0.7,这时 射击命中目标的概率为0.6, 试求两次独立射击至 少有一次命中目标的概率.
[思路] 引进事件 A {目标进入射程};
Bi {第i次射击命中目标}, i 1,2. 故所求概率为事件B B1 B2的概率,由于目标 不在射程之内是不可能命中目标的, 因此 , 可利 用全概率公式来求解.
概率论例题
据题意得:P ( A0 ) 0.8, P ( A1 ) 0.1, P ( A2 ) 0.1,
P ( B | A0 ) 1,
4 C19 4 P ( B | A1 ) 4 , C20 5 4 C18 12 P ( B | A2 ) 4 . C20 19
y 0; 0, 2 FY y P Y y lim F x, y = y , 0 y 1; x 1, y 1.
1 1 (2) P X 3, 1 Y 3 2 1 1 1 1 1 F 3, F , 1 F , F 3, 1 . 12 3 2 2 3
例3.2 :已知二维随机变量 X , Y 的联合概率分布函数为 0, 2 2 x y , 2 F ( x, y ) x , y2, 1, x 0 或 y 0; 0 x 1, 0 y 1; 0 x 1,1 y ; 1 x , 0 y 1; 1 x ,1 y .
根据题意,两人能见面 | X Y | 15 ,
y
60
y x 15
15 o 15
x y 15
x
60
所以,两人能见面的概率为 阴影图像的面积 45 45 7 P | X Y | 15 1 . 3600 3600 16
例316:已知 . X , Y 的联合概率密度为 21 2 2 x y , x y 1, f ( x, y ) 4 其他。 0,
1问至少要配备多少维修工人,才能保证当设备发生
故障时不能及时维修的概率小于0. 5%;
概率论经典定理及例题
N (S) 33 N(A) 3! P( A) 2 9
P(B) 1 P{空两合} P{全有球}322 1Fra bibliotek33 9 3
5
{甲、乙至少有一人不来}
2
(1) 加法公式:对任意两事件A、B,有 P(A+B)=P(A)+P(B)-P(AB)
推广,对于任意事件 A、B、C P(A+B+C)=P(A)+P(B)+ P(C)
-P(AB) -P(AC)- P(BC) +P(ABC) (2)事件差 A、B是两个事件,则 P(A - B)=P(A) - P(AB)
3
例3、 3个人站成一排照相,可以拍出多少张不同的相片?
������ = ������33 = 6
例4、 从9个人中,任选3个人组成一个工作组,求有多少钟 不同的选法?
例5 设袋内有6个白球,4个黑球,现从中一次抽取4个球,求恰 好有三个黑球的概率。
4
分球入盒问题
例6:将3个球随机的放入3个盒子中去,问: (1)每盒恰有一球的概率是多少? (2)空一盒的概率是多少?
概率论经典定理及例题
55
例1:设A={ 甲来听课 },B={乙来听课 } ,则:
AB=A+B= ������ ∩ ������ = ������������ = ������ + ������ = ���ഥ��� ∙ ���ഥ���=
{甲、乙至少有一人来} {甲、乙都来} {甲、乙都不来}
������������ = ���ഥ��� + ���ഥ��� =
概率论第一章例题
例 3 某城市中发行 2 种报纸 A, B . 经调查, 在这2 种报
解
P ( A B ) P ( A) P ( B ) P ( AB ) 1115 ;
P ( A B ) 1 P ( A B ) 415
P ( A B C ) P ( A) P ( B) P (C ) P ( AB) P ( AC ) P ( BC ) P ( ABC ) 17 20
问题1
设袋中有4 只白球和 2只黑球, 现从袋中无
放回地依次摸出2只球,求这2只球都是白球的概率. 解 设 A {摸得 2 只球都是白球}, 2 基本事件总数为 A6 ,
2 A 所包含基本事件的个数为 A4 ,
不考虑顺序
C 42 C 62
P ( A)
A
2 4
2 . 2 A6 5
或 P ( A)
于是所求概率为
P ( A B ) 1 { P ( A) P ( B ) P ( AB )}
250 83 3 333 1 . 2000 2000 2000 4
例4 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的. 解 假设接待站的接待时间没有 规定,且各来访者在一周的任一天 中去接待站是等可能的. 7 1 周一 7 2 周二 7 3 周三 7 4 周四
1 { P ( A) P ( B ) P ( AB )}.
概率论与数理统计例题
第一章第一节例1:甲、乙、丙三个射手击中目标的事件分别记作A 、B 、C ,试替用A 、B 、C 表示以下事件。
1) 甲击中目标,乙、丙未击中;2) 三个人中恰有一个人击中目标;3) 三个人中至少有一个击中目标;4) 三个人中恰有两个人击中目标;5) 三个人中至多一个人击中目标;6) 三个人都击中了目标;7) 三个人都未击中目标。
解:1) C B A2) C B A C B A C B A3) C B A C B A C B A C AB C B A BC A ABC ,或A B C 4) C AB C B A BC A5) C B A C B A C B A C B A ,或C B C A B A6) ABC7) C B A 或C B A例2:一名射手连续向某个目标射击三次,事件i A 表示第i 次射击时击中目标(i =1,2,3),试用文字叙述叙述下列事件:1A 2A ,2A ,3A -2A ,C B A 。
解:1A 2A :前两次射击中至少有一次击中目标;2A :第二次射击未中目标;3A -2A :第三次击中目标但第二次未击中目标;C B A =A B C :三次射击中至少有一次击中目标。
第二节例1:同时掷两枚硬币,求出现一正一反的概率。
解:试验样本空间 ={(正,正),(正,反),(反,正),(反,反)},因此有四个基本事件且每个基本事件发生的可能性相同,所以是古典概型问题。
设A 表示事件“出现一正一反”,则事件A 包含两个基本事件(正,反)、(反,正),所以)(A P =42=21 例2:一批产品中有7件正品和3件次品,现从中任取两次,每次任取一件产品,考虑下面两种抽样方式:(a )第一次取出一件产品,观察是否合格后放回,混合后再取第二件。
这种抽样方式称为有放回抽样。
(b )第一次取出一件产品不放回,第二次从剩下的产品中再取一件。
这种抽样方式称为无放回抽样。
分别就以上两种情况求:1) 取到的两件都是次品的概率;2) 取到的两件是一件正品一件次品的概率。
概率论例题与详解
例题1.玻璃杯成箱出售,每箱20只,各箱次品数为0,1,2只的概率分别为0.8,0.1,0.1,一顾客欲买下一箱玻璃杯售货员随机取出一箱,顾客开箱后随机取4只进行检查,若无次品,则购买,否则退回,求(1)顾客买下该箱玻璃杯的概率?(2)在顾客买下的一箱中,确实没有次品的概率?解 设),2,1,0(=i A i 表示箱中有i 件次品,B 表示顾客买下该箱玻璃杯(1)由全概率公式()()()94.01.01.018.042041842041920≈⨯+⨯+⨯=∑==C C C C A p A B P B P i i i (2)由贝叶斯公式85.0)()()()(000≈=B P A P A B P B A P2.设有两箱同类零件,第一箱内装有50件,其中10件是一等品;第二箱内装有30件,其中18件是一等品,现从两箱中任意挑出一箱,然后从该箱中依次随机地取出两个零件(取出的零件不放回),试求(1)第一次取出的零件是一等品的概率;(2)在第一次取出的零件是一等品的条件下,第二次取出的零件仍是一等品的概率.解 设),2,1,0(=i A i 表示从第i 箱中取得的是一等品(取出的零件不放回),B 表示从第一箱中取零件,B 表示从第二箱中取零件(1)由全概率公式4.02130********)()()()()(111=⨯+⨯=+=B P B A P B P B A P A P (2)由全概率公式 2129173018214995010)()()()()(212121⨯⨯+⨯⨯=+=B P B A A P B P B A A P A A P 因此有 )()()(12112A P A A P A A P =4856.0)2129173018214995010(25=⨯⨯+⨯⨯= 3.某电子元件在每一次试验中发生故障的概率为0.3,当故障发生不少于3次时,指示灯发出信号(1)进行了5次重复独立试验,求指示灯发出信号的概率;(2)进行了7次重复独立试验,求指示灯发出信号的概率.解(1)进行了5次重复独立试验,指示灯发出信号的概率为163.03.07.03.07.03.054452335≈+⋅+⋅C C(2)进行了7次重复独立试验,指示灯发出信号的概率为353.07.03.07.03.07.0152276177≈⋅+⋅--C C4.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7,如果只有1人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落,求飞机被击浇的概率.解:设321,,A A A 分别表示甲、乙、丙击中飞机,i B 表示有)3,2,1(=i i 个人击中飞机=)(1B P )()()(321321321A A A P A A A P A A A P ++)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.05.06.03.05.06.03.05.04.0=⨯⨯+⨯⨯+⨯⨯==)(2B P )()()(321321321A A A P A A A P A A A P ++)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.05.04.03.05.06.03.05.04.0=⨯⨯+⨯⨯+⨯⨯==)(3B P )(321A A A P)()()(321A P A P A P =14.07.05.04.0=⨯⨯=由全概率公式)()()(11B B P B P B P =)()(22B B P B P +)()(33B B P B P +458.0114.06.041.02.036.0=⨯+⨯+⨯=5.随机地向半圆220x ax y -<<(a 为正常数)内扔一个点,点落在半圆内任何区域内的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于4π的概率. 解:以D 表示半圆220x ax y -<<,由题设,点),y x (应该落在如图的阴影部分G ,G 的面积为(在极坐标系中计算)θθπθθπd r rdr d G S a a ⎰⎰⎰⎪⎭⎫ ⎝⎛==40cos 202cos 204021)( θθπd a ⎰=4022cos 22402214)2cos 1(a d a ⎪⎭⎫ ⎝⎛+=+=⎰πθθπ(或G 的面积等于一个等腰直角三角形的面积加上41个圆的面积)故πππ12121214)()()(22+=⎪⎭⎫ ⎝⎛+==a a D S G S A P 6.设1)(0<<A P ,1)(0<<B P ,证明:B A 、独立⇔1)|()|(=+B A P B A P . 证明:1)|()|(=+B A P B A P ⇔)()|(1)|(B A P B A P B A P =-= ⇔)(1)()()(B P B A P B P AB P -=⇔)()()()()(B A P B P AB P B P AB P =- ⇔)()()]()()[()(A P B P B A P AB P B P AB P =+=⇔B A 、独立7. 要验收一批100件的乐器,验收方案如下:自该批乐器中随机地取3件测试(设3件乐器的测试是相互独立的),如果3件中至少有一件被认为音色不纯,则这批乐器就被拒绝接收,设一件音色不纯的乐器经测试查出其为音色不纯的概率为0.95,而一件音色纯的乐器经测试被误认为不纯的概率为0.01,如果已知这100件乐器中恰好有4件是音色不纯的,试问这批乐器被接收的概率是多少?解:设i B ={随机地取3件乐器,其中有i 件是音色不纯的}(3,2,1,0=i )A={这批乐器被接收}30)99.0()(=B A P ,05.0)99.0()(21⋅=B A P ,22)05.0(99.0)(⋅=B A P33)05.0()(=B A P31003960)(C C B P =,3100142961)(C C C B P =,3100241962)(C C C B P =,3100343)(C C B P = 故由全概率公式有8629.0)()()(30==∑=i i i B P B A P A P8.一 猎人用猎枪射击野兔,第一枪距离200米,如果未击中就追到150米处第二次射击,如果仍未击中,再追到100米处第三次射击,此时击中的概率为0.5,如果猎人的命中率始终与距离的平方成反比,求猎人击中野兔的概率。
典型例题_概率论
第一部分 随机事件及其概率例 1 设A B C 、、为三个随机事件,试用A B C 、、表示下列事件。
1)“A B 与发生,而C 不发生”(表示为A B C ); 2)“三个事件都发生”(表示为A B C ); 3)“三个事件至少有一个发生”(表示为A B C⋃⋃);4)“三个事件恰好有一个发生”(表示为A B C A B C A B C++);5)“三个事件至少有两个发生”(表示为A B B C A C ⋃⋃或A B CA B C A B C A B C+++)6)“三个事件至多有两个发生”(表示为A B C 或A B C⋃⋃)。
例2 将n 只球随机地放入N (N ≥n )个盒子中去,假定盒子装球容量不限, 试求1)每个盒子至多装一只球的概率,2)指定其中一个盒子装一只球的概率。
解: 设事件A =“N 个盒子中,每个盒子至多装一只球”,事件B=“指定其中一个盒子装一只球”。
1)一个球放入N 个盒子中的放法有N 种,n 个球放入N 个盒子中的放法有nN 种。
假设固定前n 个盒子各装一球,其分配方法有!n 种,从N 个盒子中任取n 个盒子各装一球,取法有nN C 种,所以,事件A 的样本点数为nNC !n ,即事件A 的概率为nn NNn CA P !)(=2)若指定一个盒子里装一只球,首先考虑球的取法有1nC 种,其次,剩余的1N-个盒子中,1n -只球的放法有1(1)n N --种,所以事件B 的样本点数为1n C 1(1)n N --,即事件B 的概率为11(1)()n n nC N P B N--=注:还可以将模型推广,如生日问题,求事件“n 个人中至少有两人的生日相同”的概率。
设想一年有365天,将“天”看成‘盒子’,n 个人好比‘n 只球’,考虑事件A 的对立事件A =“n 个人在一年中生日全不相同”,它等价于“n 个球装入365个盒子中各装一球”,由前面的计算知:nnn C A P 365!)(365=,所以nnn C A P 365!1)(365-=。