双容水箱液位定值控制系统实验
自动控制实验_单容、双容水箱
单容水箱其具体原理可用下图表示:一、液位控制系统的工作原理当连杆位于电位器中点位置时,浮子电压为零,电压差为零,所以电动机不动,控制阀门有一定的开度,使水箱中流入水量与流出水量相等,从而液面保持在希望高度上,此时我们称系统达到平衡状态。
当连杆位于电位器中点位置偏上时,根据杠杆原理,箱内液面下降,此时电压差增大,使电动机工作,而控制闸门的开度,使入水量大于出水量,箱内液面逐渐升高,从而渐渐达到平衡状态。
当连杆位于电位器中点位置偏下时,根据杠杆原理,箱内液面上升,此时电压差减小,使电动机工作,而控制闸门的开度,使入水量小于出水量,箱内液面逐渐降低,从而渐渐达到平衡状态。
二、液位控制系统原理框图给定液位实际液位电位器放大器电动机减速器水池阀门门三、 自动控制系统各部分的数学模型的建立以及其传递函数在本控制系统中,我们设Q1为进水量(平衡状态下的增量),Q2为出水量,Ho 为平衡时的水面高度,H 为液面实际高度(平衡状态下的增量),C 为水箱的横截面积。
1)电位计独立工作没什么意义,我们把给定液面体现在电位器上,这就需要电位器和连杆,浮子一起工作,他们是一个整体,实际液面也通过电位器,连杆,浮子与给定电位比较,因为电位器体现的是电压的大小,而我们通过杠杆原理还有浮子,将液面高度与电压的关系联系起来,且两者的关系为正比关系,H (s )为液面高度的拉式变化,U (s )为电压的拉式变化,Go (s )=Ku)(H U(S)S 。
2) 电动机的数学模型设)(t u 为输入的控制电压)(V ,i 电枢电流)(A ,M 为电机产生的主动力矩)(m N •,ω为电机轴的角速度)/(s rad ,L 为电机的电感)(H ,R 为电枢导数的电阻)(Ω,)(t e 电枢转动中产生的反电势)(V ,J 为电机和负载的转动惯量)(2m Kg *根据电路的克希霍夫定理(KVL ):)()(t u t Ri dtdiL=++θ 整理后得:)(2122r rm m e M dt dM T K u K dt d T dt d T T +-=++θωωω式中:R LT =θ称为直流电动机的电气时间常数;m m K K JR T θ=称为直流电动机的机电时间常数;θK K 11=,θK K R K m =2为比例系数。
试验三双容水箱液位定值控制系统试验-化工控制工程试验中心
试验三双容水箱液位定值控制系统试验-化工控制工程试验中心过程控制系统与工程实验指导书沈阳工业大学工程学院目录实验一单容自衡水箱液位特性测试实验 (3)实验二单容液位定值控制系统实验 (6)实验三双容水箱液位定值控制系统实验 (8)实验四水箱液位串级控制系统实验 (10)实验五下水箱液位前馈-反馈控制系统实验 (12)实验一单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。
2.根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。
二、实验设备1.THJ-2型高级过程控制系统实验装置2.计算机、MCGS 工控组态软件、RS232/485转换器1只、串口线1根3.万用表一只三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图1-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
液位h 的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q1之间的数学表达式。
根据动态物料平衡关系有Q 1-Q 2=A dtdh (1-1) 将式(1-1)表示为增量形式ΔQ 1-ΔQ 2=Adt h d ? (1-2) 式中:ΔQ1,ΔQ2,Δh ——分别为偏离某一平衡状态的增量; A ——水箱截面积。
在平衡时,Q 1=Q 2,dtdh =0;当Q1发生变化时,液位h 随之变化,水箱出口处的静压也随之变化,Q2也发生变化。
由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=R h ? 或 R=2Q ??h (1-3) 式中:R —阀F1-11的阻力,称为液阻。
双容水箱液位PID控制实验
《过程控制系统设计》课程实验报告2018年5月9日实验二双容水箱液位PID控制实验一、实验目的1、学习双容水箱液位PID 控制系统的组成和原理;2、进一步熟悉PID 的调节规律;3、进一步熟悉PID 控制器参数的整定方法。
二、实验设备1、四水箱实验系统DDC 实验软件;2、PC 机(Window XP 操作系统);3、CS4000型过程控制实验装置。
三、实验原理1、控制系统的组成及原理单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。
双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如图 1 所示:图 1 双容水箱液位PID 控制系统的方框图在双容水箱液位PID 控制系统中,以液位为被控量。
其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。
3、PID 控制器参数的实验整定方法双容水箱液位PID 控制器参数整定,是为了得到某种意义下的最佳过渡过程。
我们这里选用较通用的“最佳”标准,即在阶跃扰动作用下,先满足需要的衰减率,然后尽量协调准确性和快速性要求。
四、实验内容在手动情况下进入初始稳态(如图3),然后根据水箱的实际液位情况进行了一次下水箱阶跃响应测试,最终达到平衡状态,如图4所示。
根据两点法求K、T、τ参数,并用响应曲线法整定出对应的控制器参数。
将整定好的参数投入设备,进行闭环自动控制,并微调参数,记录分析控制系统的响应曲线。
图2 现场接线图图3 建立工作点图4 下水箱阶跃响应测试曲线五、数据记录由图4的阶跃响应曲线,根据两点法求出K、T、τ参数,并用响应曲线法整定出对应的控制器参数P、Ti,绘图及计算过程如图5所示。
图5 响应曲线法整定参数设置完PID参数(Kc=1/P=1/0.7=1.43,Ti=8.52min×60=514.8s),手动切自动,修改设定值(SV=13),最终达到平衡状态,如图6所示。
实验三 双容水箱液位定值控制
实验三双容液位定值控制实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
实验系统控制方框图如下所示:图3-1 双容液位定值控制系统方框图实验内容一:观察系统在PI控制参数下的动态响应曲线1、按要求设定参数,液位给定值SV=80mm,PI参数为P=20,I=60。
2、设置好系统的给定值后,用手动操作AI智能调节仪的输出,通过电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把输出切换为自动,使系统投入自动运行状态。
其总貌图如下图所示:图3-2 双容液位定值控制系统总貌图上图曲线中所示,恒定不变的曲线线为下水箱液位的设定值,上面一条曲线为下水箱液位的的测量值,下面一条曲线为中水箱液位的测量值。
3、 观察系统在设定的控制参数下的动态响应曲线,如下图所示:图3-3 双容液位定值控制系统动态响应曲线由上图可知,其最大测量值为PV max =119.35mm ,由此可得出其最大超调量δ=(119.35-80)/80*100%,δ=50% 。
又由实时数据知:t 1=09:59:15,t 2=10:04:43则其上升时间t =t 2-t 1=328s 。
由以上可知,该双容控制系统的动态响应不如单容液位定值控制系统的动态响应,并且,在双容定值控制系统中,系统的响应还有一定的滞后,其滞后时间为T=94s 。
分析以上现象可得出以下的结论:本实验中被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。
根据前一实验单容水箱液位定值控制的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G 1(s)G 2(s)=)1s T )(1s T (K 1s T k 1s T k 212211++=+⨯+ (3-1) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。
双容水箱实验报告
一、实验目的1. 了解双容水箱液位控制系统的基本原理和组成。
2. 掌握双容水箱液位控制系统的建模、仿真和实验方法。
3. 学习PID控制算法在双容水箱液位控制系统中的应用。
4. 分析不同控制策略对系统性能的影响,优化控制参数。
二、实验设备1. 双容水箱系统:包括两个水箱、阀门、传感器、执行器等。
2. 控制器:采用PID控制器进行液位控制。
3. 电脑:用于数据采集、仿真和参数调整。
4. MATLAB软件:用于系统建模、仿真和数据分析。
三、实验原理双容水箱液位控制系统主要由水箱、传感器、执行器和控制器组成。
系统的工作原理如下:1. 传感器检测水箱液位,并将液位信号传输给控制器。
2. 控制器根据预设的液位设定值和当前液位值,计算出控制信号。
3. 执行器根据控制信号调整阀门开度,控制进水流量和出水流量。
4. 通过调节进水流量和出水流量,使水箱液位保持在设定值附近。
四、实验步骤1. 系统建模:根据实验设备,建立双容水箱液位控制系统的数学模型。
模型包括水箱的液位方程、进水流量方程和出水流量方程。
2. 系统仿真:在MATLAB中,根据建立的数学模型进行系统仿真。
仿真过程中,调整PID控制器的参数,观察不同参数对系统性能的影响。
3. 实验验证:将PID控制器连接到实际双容水箱系统,进行实验验证。
通过改变液位设定值,观察系统响应和稳定性。
4. 参数优化:根据实验结果,调整PID控制器的参数,使系统性能达到最优。
五、实验结果与分析1. 系统仿真结果:在MATLAB中,通过仿真实验,观察到不同PID控制器参数对系统性能的影响。
结果表明,参数的合理选择对系统性能有显著影响。
2. 实验验证结果:将PID控制器连接到实际双容水箱系统,进行实验验证。
实验结果显示,系统响应速度快,稳定性好,能够有效控制水箱液位。
3. 参数优化结果:根据实验结果,对PID控制器的参数进行优化。
优化后的参数能够使系统在较短时间内达到稳定状态,并保持较高的响应速度。
实验05双容水箱液位定值控制实验
实验05双容水箱液位定值控制实验实验5 双容水箱液位定值控制实验一、实验目的1、掌握多容系统单回路控制的特点2、深入了解PID控制特点。
3、深入研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备A3000现场系统,任何一个控制系统。
三、实验原理与介绍1、系统结构水从中水箱进入,中水箱闸板开度8毫米,进入下水箱,下水箱闸板开度5-6毫米。
要保证中水箱闸板开度大约下水箱闸板开度,这样控制效果好些。
水流入量Qi由调节阀u控制,流出量Qo则由用户通过闸板来改变。
被调量为下水位H。
如图5-3-1所示。
实际上,可以通过控制连接到水泵上的变频器来控制压力,效果可能更好。
图5-3-1 双容水箱液位定值控制实验2、控制逻辑结构双容水箱液位控制系统如图5-3-2所示。
图5-3-2 双容水箱液位定值控制实验逻辑图这也是一个单回路控制系统,它与上一个实验不同的是有两个水箱相串联,控制的目的是使下水箱的液位高度等于给定值所期望的高度;具有减少或消除来自系统内部或外部扰动的影响。
显然,这种反馈控制系统的性能完全取决于调节器Gc(S)的结构和参数的合理选择。
由于双容水箱的数学模型是二阶的,故它的稳定性不如单容液位控制系统。
对于阶跃输入(包括阶跃扰动),这种系统用比例(P)调节器去控制,系统有余差,且与比例度成正比,若用比例积分(PI)调节器去控制,不仅可实现无余差,而且只要调节器的参数δ和Ti调节得合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的控制作用,从而使系统既无余差存在,又使其动态性能得到进一步改善。
4、参考结果双容水箱液位控制实验PI控制器控制曲线如图5-3-3所示:图5-3-3 PI控制器控制曲线PID控制的曲线具有两个波,然后逐步趋于稳定。
由于系统延迟很大,这个稳定时间非常长。
比较好的效果是P=24, I=200,D=2。
如图5-3-4所示:图5-3-4 PID控制曲线从图可见,增加微分项之后,系统在有10%的扰动下,很快就进入稳定状态。
双容型水箱实验报告
双容型⽔箱实验报告机械电⼦⼯程原理实验报告双容型⽔箱液位与PID控制综合实验组员:XXXXXX年X⽉实验⼀压⼒传感器特性测试及标定测量实验⼀、实验⽬的1、了解本实验装置的结构与组成。
2、掌握压⼒传感器的实验原理及⽅法,对压⼒传感器进⾏标定。
⼆、实验设备1、德普施双容⽔箱⼀台。
2、PC 机及DRLINK4.5 软件。
三、实验原理图1-1 传感器装置图本实验传感器如图1-1所⽰,使⽤⼆个扩散硅压阻式压⼒传感器,分别⽤来测量上⽔箱⽔柱压⼒,下⽔箱⽔柱压⼒。
扩散硅压阻式压⼒传感器实质是硅杯压阻传感器。
它以N型单晶硅膜⽚作敏感元件,通过扩散杂质使其形成4个P型电阻,形成电桥。
在压⼒作⽤下根据半导体的压阻效应,基⽚产⽣应⼒,电阻条的电阻率产⽣很⼤变化,引起电阻的变化,使电桥有相应输出。
经过后级电路的放⼤处理之后输出0~5V之间的电信号。
扩散硅压⼒传感器的输出随输⼊呈线性关系,输出特性曲线⼀般是⼀条直线,⼀般使⽤传感器前需要对此传感器进⾏标定,通常的做法是取两个测量点(x1,y1)和(x2,y2)然后计算特性直线的斜率K和截距B即可。
由于扩散硅压⼒传感器承受的⽔压⼒与⽔的液位⾼度成正⽐,因此扩散硅压⼒传感器通常也⽤来测量液位⾼度。
四、实验内容及结果图1-2 上⽔槽压⼒传感器特性测试及标定测量实验图1-3 下⽔槽压⼒传感器特性测试及标定测量实验5)压⼒传感器的标定系数值表。
表1-1 压⼒传感器标定系数值6)依据压⼒传感器标定系数值绘制的压⼒传感器特性曲线如图1-3,图1-4所⽰:图1-3 上⽔槽压⼒传感器特性曲线图1-4 下⽔槽压⼒传感器特性曲线五、思考题1.在做本实验的时候,为何2次标定的液位⾼度不能够太接近?答:由于液位⾼度与电压值为线性关系,故2次标定的液位⾼度要保持⼀定距离,这样可以有效降低系统误差。
在控制过程中由于⽔泵抽⽔压⼒冲击传感器等影响会对液位传感器产⽣⼀定程度的⼲扰。
为了更好的体现⼀阶液位的特性和准确的获得测量值。
双容水箱液位PID控制实验
《过程控制系统设计》课程实验报告2018年5月9日实验二双容水箱液位PID控制实验一、实验目的1、学习双容水箱液位PID 控制系统的组成和原理;2、进一步熟悉PID 的调节规律;3、进一步熟悉PID 控制器参数的整定方法。
二、实验设备1、四水箱实验系统DDC 实验软件;2、PC 机(Window XP 操作系统);3、CS4000型过程控制实验装置。
三、实验原理1、控制系统的组成及原理单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。
双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如图 1 所示:图 1 双容水箱液位PID 控制系统的方框图在双容水箱液位PID 控制系统中,以液位为被控量。
其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。
3、PID 控制器参数的实验整定方法双容水箱液位PID 控制器参数整定,是为了得到某种意义下的最佳过渡过程。
我们这里选用较通用的“最佳”标准,即在阶跃扰动作用下,先满足需要的衰减率,然后尽量协调准确性和快速性要求。
四、实验内容在手动情况下进入初始稳态(如图3),然后根据水箱的实际液位情况进行了一次下水箱阶跃响应测试,最终达到平衡状态,如图4所示。
根据两点法求K、T、τ参数,并用响应曲线法整定出对应的控制器参数。
将整定好的参数投入设备,进行闭环自动控制,并微调参数,记录分析控制系统的响应曲线。
图2 现场接线图图3 建立工作点图4 下水箱阶跃响应测试曲线五、数据记录由图4的阶跃响应曲线,根据两点法求出K、T、τ参数,并用响应曲线法整定出对应的控制器参数P、Ti,绘图及计算过程如图5所示。
图5 响应曲线法整定参数设置完PID参数(Kc=1/P=1/0.7=1.43,Ti=8.52min×60=514.8s),手动切自动,修改设定值(SV=13),最终达到平衡状态,如图6所示。
双容水箱液位调节阀控制实验
实验五双容水箱液位调节阀控制5.1 实验目的了解双容液位控制的构成环节,调节阀的工作原理,熟悉上位机组态王的组态及通讯。
通过实验,掌握双容液位PID参数的整定。
5.2 实验要求1、实验前需熟悉实验的设备装置以及管路构成。
2、熟悉仪表装置,如检测单元、控制单元、执行单元等。
3、用响应曲线法求取PID参数,以4:1标准衰减振荡作为指标,整定出最佳的比例度、积分时间和微分时间。
5.3 实验设备及系统组成1、实验设备:A3000对象系统(1)泵:工作电源220VAC。
(2)变频器:工作电源220VAC,控制信号4-20mA,输出电源0-220VAC。
(3)电动调节阀:工作电源24VAC,控制信号2.10VDC,阀门开度0.100%。
(4)液位传感器:输出信号4-20mA,量程为0-50cm。
2、系统组成双容下水箱液位PID控制流程图如图5.1所示图5.1双容下水箱液位调节阀PID单回路控制3、测点清单测点清单如表5.1所示:表5.1 双容下水箱液位调节阀PID单回路控制测点清单水介质由泵P102箱V104中加压获得压头,经由调节阀FV101进入水箱V102,经QV117流向V103,通过挡板QV116回流至水箱V104而形成水循环;其中,水箱V103的液位由LT103测得,用调节挡板QV116的开启程度来模拟负载的大小。
本例为定值自动调节系统,FV101为操纵变量,LT103为被控变量,采用PID调节来完成。
需要全打开的手阀:QV102、QV107;需要全关闭的手阀:QV103、QV104、QV105、QV109;挡板开度:QV1170.8cm。
QV1160.5cm。
5.4 操作步骤和调试1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。
2、在现场对象上,选择管路,打开或关闭相应手阀。
3、在控制柜上,将IO面板的下水箱液位输出连接到AI0,IO面板的电动调节阀控制端连到A O0。
双容水箱液位定值控制系统实验报告
双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。
2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。
3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。
4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。
5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。
6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。
7.记录不同设定值下液位的控制效果,并分析数据。
8.关闭水源,停止实验。
实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。
当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。
实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。
实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。
P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。
通过PID控制器的联合作用,可以实现对液位的稳定控制。
从实验结果分析可以看出,PID控制器的参数设置非常重要。
当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。
因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。
结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
实验二 双容水箱液位定值控制系统(单回路)
实验项目名称:(所属课程:)学院:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:一、实验目的1.通过实验进一步了解双容水箱液位的特性。
2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。
3.研究调节器相关参数的改变对系统动态性能的影响。
4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。
5.掌握双容液位定值控制系统采用不同控制方案的实现过程。
二、实验条件THSA-1型过控综合自动化控制系统实验平台。
三、实验原理图2-4 单容液位定值控制系统原理框图四、实验内容与要求本实验选择中水箱液位作为被控参数,上水箱流入量为控制参数。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7和F1-11全开,将中水箱出水阀F1-10开至适当开度(50%左右,上水箱出水阀开到70%左右),其余阀门均关闭。
按以下步骤进行实验。
1.根据系统组成方框图接线,如图2-5所示。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相1、单相对性空气开关,给智能仪表及电动调节阀上电。
3.打开上位机“组态王”组态环境,打开“智能仪表控制系统”工程,然后进入组态王运行环境,在主菜单中点击“实验四、双容液位定值控制系统”,进入实验四的监控界面。
4.在上位机监控界面中点击“启动仪表”,将智能仪表设置为“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过调节仪表实现。
值得注意的是手自动切换的时间为:当中水箱液位基本稳定不变(一般约为3~5cm)且下水箱的液位趋于给定值时切换为最佳。
5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使中水箱的液位平衡于设定值。
6.按经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。
图2-5 智能仪表控制单容液位定值控制实验接线图7.待液位稳定于给定值后,将调节器切换到“自动控制状态。
双容水箱液位定值控制系统
第四节双容水箱液位定值控制系统一、实验目的1.通过实验,进一步了解双容对象的特性.2.掌握调节器参数的整定与投运方法.3.研究调节器相关参数的改变对系统动态性能的影响.二、实验设备1.THJ-2型高级过程控制系统装置.2.计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3.万用表一只三、实验原理图3-1 双容液位定值控制系统结构图图3-2 双容液位定值控制系统方框图本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被控制量.基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID.本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵.如果采用电动调节阀作执行元件,则变频调速磁力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动.图3-1为实验系统的结构图,图3-2为控制系统的方框图.四、实验内容与步骤本实验选择中水箱和下水箱串联作为双容对象〔也可选择上水箱和中水箱〕.实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度〔要求阀F1-10稍大于阀F1-11〕,其余阀门均关闭.然后接通控制系统电源,打开用作上位监控的的PC机,进入实验界面的操作和打开实验主界面的操作过程与本实验指导书第二章第一节中所描述的相同.在实验主界面中选择本实验项即"串接双容水箱液位PID整定实验",系统进入正常的测试状态,呈现的实验界面如图3-3所示.图3-3 实验界面实验步骤与上个实验"第三节上水箱液位定值控制系统"相同,在此只列出实验数据.P=3P=8P=3I=50000无调节时间P=8 I=100000P=3 D=5000无超调、调节、上升,只算峰值时间P=8 D=10000无调节时间P=6 I=100000D=10000分析内容与上个实验"上水箱液位定值控制系统"内容一致.五、思考题1. 为什么本实验较上水箱液位定值控制系统更容易引起振荡?如果达到同样的动态性能指标,为什么本实验中调节器的比例度和积分时间常数均要比前两个实验大?答:由于在本实验中的比例系数相对较大,过程相应时间相对较长,更加容易引起振荡.要达到同样的动态性能指标,调节器的比例度应该调节的相对较大,积分时间常数调高.2. 你能说出下水箱的时间常数比中水箱时间常数大的原因吗?答:采用上中水箱做实验,它的响应曲线要比中下水箱变化快.原因:因为中水箱的截面积比下水箱的要小,上升相同的液位高度,下水箱要更长时间.3. 为什么双容液位控制系统比单容液位控制系统难于稳定?答:因为双容的相当于两个单容的串联,变成了二阶系统,输出可能会震荡,单容的是一阶系统,输出是指数单调收敛的.。
双容水箱液位定值控制系统实验报告
XXXX大学
电子信息工程学院
专业硕士学位研究生综合实验报告
实验名称:双容水箱液位定值控制系统专业:控制工程
姓名: XXX
学号:XXXXXX
指导教师: XXX
完成时间:XXXXX
方案设计及参数计算:
单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。
系统的给定量是某一定值,要求系统的被控制量稳定至给定量。
单回路控制系统方框图
调节器参数的整定方法
(一)经验法
系统
参数
δ(%)T I(min)T
D
(min)
温度20~603~10~3
流量40~100~1
压力30~70~3
液位20~80
(二)临界比例度法
根据临界比例度δk和振荡周期T S,按下表所列的经验算式,求取调节器的参考参数值,这种整定方法是以得到4:1衰减为目标。
通过系统响应曲线可以看出,当设定值为10时,系统的响应有明显的时滞过程,并且有较大的超调现象,但系统最终稳定,整体图像比较理想。
双容水箱PID
“过程控制系统计”实物实验报告实验名称:双容水箱液位PID控制实验姓名:学号:班级:指导老师:同组人:实验时间:2013 年05 月23 日一、实验目的1,学习双容水箱液位PID控制系统的组成和原理2,进一步熟悉PID的调节规律3,进一步熟悉PID控制器参数的整定方法二、实验设计(画出“系统方框图”和“设备连接图”)三、实验步骤1、进入实验运行四水箱实验系统DDC 实验软件,进入首页界面,选择实验模式为“实物模型”。
单击实验菜单,进入双容水箱液位PID控制实验界面。
2、选择控制回路a)选择控制对象在实验界面的“请选择控制回路”选择框中选择控制回路,从两个回路中任选一个。
这里,我们选择“水箱1 和3”作为控制回路,此时只有水箱1 的PID控制器是有效的。
b)控制回路构成根据选择的控制对象,调节相应的进水阀状态。
以“水箱1和3”对象为例,此时需打开水箱1和3的对应阀门,关闭其它进水阀,从而构成双容PID控制回路。
具体的设置方式请参考《单容水箱特性测试实验》的实验步骤4。
3、选择PID控制器的工作点a、PID控制器设置成手动方式假定我们选择了“水箱1和3”构成的控制回路,则相应地设置水箱1 的控制器。
单击实验界面中的“水箱1 液位控制器”标签,打开控制器窗体,如下图所示:单击控制器窗体中的“手动”按钮,将控制器设置成手动;b、设定工作点单击控制器界面中MV柱体旁的增/减键,设置MV(U1)的值,如下图所示:将阀门U1 开度设置在某一确定值——即选定某一工作点;4、设置PID控制器参数根据对象特性,设置P、I、D参数:假定估算PID参数如下:P=I=D=将参数输入控制器中;单击控制器界面中的“参数设置”按钮,弹出控制器参数设置窗体,如下图所示:通过键盘输入比例系数、积分时间和微分时间,一般不用修改其它参数。
5、启动水箱1 液位PID控制器a、将控制器改成自动方式:单击控制器窗体的“自动”按钮;b、改变设定值:单击控制器窗体SV柱体旁的增/减键,改变控制器的设定值SV。
双容型水箱实验报告
机械电子工程原理实验报告双容型水箱液位与PID控制综合实验组员:XXXXXX年X月实验一压力传感器特性测试及标定测量实验一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力传感器的实验原理及方法,对压力传感器进行标定。
二、实验设备1、德普施双容水箱一台。
2、PC 机及DRLINK4.5 软件。
三、实验原理图1-1 传感器装置图本实验传感器如图1-1所示,使用二个扩散硅压阻式压力传感器,分别用来测量上水箱水柱压力,下水箱水柱压力。
扩散硅压阻式压力传感器实质是硅杯压阻传感器。
它以N型单晶硅膜片作敏感元件,通过扩散杂质使其形成4个P型电阻,形成电桥。
在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,使电桥有相应输出。
经过后级电路的放大处理之后输出0~5V之间的电信号。
扩散硅压力传感器的输出随输入呈线性关系,输出特性曲线一般是一条直线,一般使用传感器前需要对此传感器进行标定,通常的做法是取两个测量点(x1,y1)和(x2,y2)然后计算特性直线的斜率K和截距B即可。
由于扩散硅压力传感器承受的水压力与水的液位高度成正比,因此扩散硅压力传感器通常也用来测量液位高度。
四、实验内容及结果图1-2 上水槽压力传感器特性测试及标定测量实验图1-3 下水槽压力传感器特性测试及标定测量实验5)压力传感器的标定系数值表。
表1-1 压力传感器标定系数值传感器K值B值液位1传感器0.06440 -7.98567液位2传感器0.065166 -12.63056)依据压力传感器标定系数值绘制的压力传感器特性曲线如图1-3,图1-4所示:图1-3 上水槽压力传感器特性曲线图1-4 下水槽压力传感器特性曲线五、思考题1.在做本实验的时候,为何2次标定的液位高度不能够太接近?答:由于液位高度与电压值为线性关系,故2次标定的液位高度要保持一定距离,这样可以有效降低系统误差。
在控制过程中由于水泵抽水压力冲击传感器等影响会对液位传感器产生一定程度的干扰。
二容水箱液位控制实验
二容水箱液位控制实验实验项目性质:验证性所属课程名称:过程装备与控制技术及应用计划学时:2学时实验一液位传感器标定实验一、实验目的了解传感器标定的基本概念,认识液位标定在系统控制中的作用。
二、实验原理本实验系统采用1000系列通用静压式液位传感器。
其基本原理是利用压阻效应,当被测压力作用于传感器芯体的敏感区域时,在恒流源或恒压源供电的情况下,传感器输出端会产生相应的电压信号输出,输出信号与所加压力成线性关系。
下面是压力传感器连接原理图:在实际使用中,由于传感器的零点与系统刻度的零点不同,以及由于传感器本身制造,水箱刻度制作及其它系统误差,一般需要对传感器进行标定。
在本实验中,传感器本身的线性度较好。
三、实验设备(1) 具有串口通讯(通过转接方式也可以)接口的计算机,Windows系统环境(2) DRMC-B运动控制采集卡(3) 多变量液位控制对象(4) 多变量液位控制系统实验软件四、实验步骤(1) 确保水箱有足够的纯净水,打开水箱电控箱开关。
(2) 运行水箱实验软件,确保软件设备端口正确,设置好AD/DA通道等参数(一般出厂已经设置好;德普施运动控制卡”的“最小采集周期”和” 采样频率”为:1000、5000)。
(3) 关闭各排水阀及各个水柱之间的耦合阀。
(4) 在实验软件的系统设置中,将“液位标定参数”的参数”设置为a=1,b=0。
(5) 手动拖动“控制量”状态条,直接控制直流电磁泵,向各个水柱注水,直到液位升至最高(参见软件使用说明),然后停止输入控制量(手动拖动“控制量”状态条至最左边),关闭直流电磁泵。
(6) 对各水柱,分别进行标定:调节水柱的出水阀,使液位处于不同高度,记录液位在水柱刻度上的读数和在实验软件中的读数。
至少记录两组数据。
注意:必须要保持液位稳定后,才能记录数据。
(7) 将得到的两组数据分别代入data=AD_data * a + b中。
解方程求出a和b值。
其中data表示实际刻度读数,AD_data表示从软件中得到的读数(8) 将计算的a.b值输入软件中。
实验五、串接双容下水箱液位PID整定实验
1.4.2二阶水箱对象PID控制
实验五串接双容中水箱液位PID整定
一、实验目的
(1)熟悉单回路双容液位控制系统的组成和工作原理。
(2)熟悉用P、PI和PID控制规律时的过渡过程曲线。
(3)定性分析不同PID控制器参数对双容系统控制性能的影响。
二、实验设备
CS2000型过程控制实验装置、计算机、DCS控制系统与监控软件。
(7)改变控制规律,时间允许的情况下,对于P、PI、PID,分别得到2条合理的过渡过程曲线(对应不同参数)。注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。
五、实验报告要求
(1)画出双容水箱液位控制实验系统的结构图。
(2)画出PID控制时的阶跃响应曲线,并分析微分D对系统性能的影响。
六、思考题
三、实验原理
二阶双容水箱液位PID控制方框图
上图为双容水箱液位控制系统。这也是一个单回路控制系统,它与实验四不同的是有两个水箱相串联,控制的目的是使中水箱的液位高度等于给定值所期望的高度,具有减少或消除来自系统内部或外部扰动的影响功能。显然,这种反馈控制系统的性能完全取决于控制器(DCS)的结构和参数的合理选择。由于双容水箱的数学模型是二阶的,故系统的稳定性不如单容液位控制系统。
对于阶跃输入(包括阶跃干扰),这种系统用比例(P)调节器去控制,系统有余差,且与比例度成正比。若用比例积分(PI)调节器去控制,不仅可实现无余差,而且只要调节器的参数δ和TI调节的合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的控制作用,从而使系统既无余差存在,阀,将CS2000 实验对象的储水箱灌满水(至最高高度)。
双容水箱液位数学模型的测定试验
双容水箱液位数学模型的测定实验一、实验目的1、获得双容水箱液位数学模型。
二、实验设备A3000-FS/FBS 常规现场系统,任意控制系统。
三、实验原理与介绍1、系统介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。
被调量为下水箱水位H 。
分析水位在调节阀开度扰动下的动态特性。
直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。
(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。
)调整水箱出口到一定的开度。
突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。
逻辑结构如图4-3所示。
通过物料平衡推导出的公式:0,122111=-+=+rH H dtdH T R k H dt dH T u μ,图4-3双容水箱液位数学模型的测定实验其中R1、R2为线性化水阻。
212212122111,,R R R r R R R R F T R F T +=+==。
那么: μμ122212221)(R rk H T dt dH T T dtH d T T =+++。
4、参考结果双容水箱水位阶跃响应曲线,如图4-5所示:图4-5 双容水箱液位飞升特性平衡时液位测量高度215 mm ,实际高度215 mm -3.5 mm =211.5mm 。
对比单容实验,双容系统上升时间长,明显慢多了。
但是在上升末端,还是具有近似于指数上升的特点。
按照理论有一个拐点。
四、实验要求1、要求使用不同的给定值获得不同的曲线。
2、给出双容水箱液位数学模型。
五、实验内容与步骤1、在A3000-FS上,将手动调节阀JV205、JV201完全打开,并使中水箱、下水箱闸板具有一定开度,其余阀门关闭。
2、在A3000-CS上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪输出端连到电动调节阀(FV101)控制信号端。
3、打开A3000电源,调节阀(FV101)通电。
4、在A3000-FS上,启动右边水泵,给中水箱注水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双容水箱液位定值控制系统实验
双容水箱液位定值控制系统
一、实验目的
1( 通过实验,进一步了解双容对象的特性。
2( 掌握调节器参数的整定与投运方法。
3( 研究调节器相关参数的改变对系统动态性能的影响。
二、实验设备
1( THJ-2型高级过程控制系统装置。
2( 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3( 万用表一只
三、实验原理
本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被图6-1 双容液位定值控制系统结构图
控制量。
基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID。
本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵。
如果采用电动调节阀作执行元件,则变频调速磁图6-2 双容液位定值控制系统方框图
力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动。
图6-1为实验系统的结构图,图6-2为控制系统的方框图。
四、实验内容与步骤
1( 图6-1所示,完成实验系统的接线。
2( 接通总电源和相关仪表的电源。
3( 打开阀F1-1、 F1-2、F1-7、F1-10和F1-11,且使F1-10的开度大于
F1-11的开度。
4( 用实验四(上册)中所述的临界比例度法或4:1衰减振荡法整定调节器的相关参数。
5( 设置系统的给定值后,用手动操作调节器的输出,控制电动调节阀给中水箱打水,待中水箱液位基本稳定不变且下水箱的液位等于给定值时,把调节器切换为自动,使系统投入自动运行状态。
6( 启动计算机,运行MCGS组态软件软件,并进行下列实验:
1)当系统稳定运行后,突加阶跃(给定量增加5%,15%),观察并记录系统的输出响应曲线。
2)待系统进入稳态后,启运变频器调速的磁力泵支路,分别适量改变阀F2-4或阀F2-5的开度(加扰动),观察并记录被控制量液位的变化过程。
7.通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。
用计算机记录此时系统的动态响应曲线。
五、实验报告
1(用实验方法确定调节器的参数。
2(列表表示在上述参数下,系统阶跃响应的动、静态性能。
3(列表表示在上述参数下,系统在扰动作用于中水箱或下水箱时输出响应的动态性能。
4(列表表示经调试后求得的调节器参数和相应系统阶跃响应的性能指标。
六、思考题
1.为什么本实验较上水箱液位定值控制系统更容易引起振荡,如果达到同样的动态性能指标,为什么本实验中调节器的比例度和积分时间常数均要比前两个实验大,
2.你能说出下水箱的时间常数比中水箱时间常数大的原因吗,
相关文档:
∙双容水箱液位定值控制系统
∙双容水箱液位定值控制
∙双容水箱液位实验
∙双容水箱液位控制系统实验报告
∙双容水箱液位控制系统
∙双容水箱液位控制系统仿真
∙下水箱液位定值控制系统实验报告
∙上水箱液位定值控制系统实验总结
∙二阶双容水箱液位特性测试实验
∙双容水箱液位串级控制实验
更多相关文档请访问:https:///。