北师大版九年级数学上册第三章3.1用树状图或表格求概率 假期同步测试(原卷板)
2016年北师大版九年级数学上3.1用树状图或表格求概率同步试卷含答案解析
2016年北师大版九年级数学上册同步测试:3.1 用树状图或表格求概率一、选择题(共3小题)1.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.B.C.D.2.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A.B.C.D.13.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.二、填空题(共4小题)4.把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是.5.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.6.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.7.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.三、解答题(共23小题)8.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.9.学校初三年级男生共200名,随机抽取10名测量他们的身高(单位:cm)为:181,176,169,155,163,175,173,167,165,166.(1)求这10名男生的平均身高和上面这组数据的中位数;(2)估计该校初三年级男生身高高于170cm的人数;(3)从身高为181,176,175,173的男生中任选2名,求身高为181cm的男生被抽中的概率.10.有三张卡片(形状、大小、颜色、质地都相等),正面分别写上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图或列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.11.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?12.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?13.某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:请根据以上信息回答下列问题:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.14.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.15.(2015•烟台)”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:。
北师大九年级上《3.1.用树状图或表格求概率(第1课时)用树状图或表格求概率》同步练习(含答案
第三章概率的进一步认识1用树状图或表格求概率第1课时 用树状图或表格求概率基础自我诊断关键问答①何时用列表法或画树状图法求概率?1.①2017大连 同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( )2. 甲口袋中装有2个小球,分别标有号码1 , 2;乙口袋中装有2个小球,分别标有号 码1 , 2;这些球除数字不同外,其余完全相同•从甲、乙两个口袋中分别随机地摸出一个 小球,求这两个小球上的号码都是 1的概率.能力备哮课时化命题点1直接列举法求概率 [热度:93%]3•②2017恩施州小明和他的爸爸妈妈共 3人站成一排拍照,他的爸爸妈妈相邻的概率 是() 1112A.6B.3C.2D.3易错警示 ②利用列举法求事件的概率,所列结果要准确,不要出现遗漏或重复.4.③如图3- 1- 1,有以下三个条件:① AC = AB ,②AB // CD ,③/ 1 = Z 2•从这三个 条件中任选两个作为条件,另一个作为结论,则组成的命题是真命题的概率是( )1 1 1 A.4 B.3 C.2D.3 考向提升训练方法点拨③概率问题经常与其他知识综合在一起考查 ,求解过程中一定要注意回顾所学知识.5•从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是 _________________________ .命题点2用列表法或画树状图法求“两步”试验的概率[热度:93%]6.④从分别标有数字2, 3和4, 5的两组卡片中的一组中随机地抽取一张作为十位上的数字,再从另一组中抽取一张作为个位上的数字,组成的两位数恰好是“5的倍数的概率为方法点拨 ④ 列表时,把其中的一次操作或一个条件作为横行 列出表格计算概率.7.⑤一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1, 2, 3, 4,随机摸出一个小球后不放回,再从剩下的小球中随机摸出一个小球 ,则两次摸出的小球标号之和等于5的概率为 _____________ .易错提示 ⑤ 不放回,就是第一次摸出的球,在第二次摸时不会出现,所以在画树状图时一定要注意这一点.& 一个不透明的袋中有 3张形状和大小完全相同的卡片 ,编号分别为1, 2, 3,先从 中任取一张,将其编号记为 m ,再从剩下的两张中任取一张 ,将其编号记为n ,则关于x 的 方程x 2+ mx + n = 0有两个不相等的实数根的概率是.9.某市今年中考需进行体育测试,其中男生测试项目有“ 1000米跑”“立定跳远” “掷实心球” “一分钟跳绳”“引体向上”五个项目. 考生须从这五个项目中选取三个,另一次操作或另一个条件作为竖列B图 3-1 — 1项目•要求:“ 1000米跑”必选,“立定跳远”和“掷实心球”二选一,“一分钟跳绳”和“引体向上”二选一.(1) 写出男生在体育测试中所有可能选择的结果;(2) 若小明和小亮都做不了引体向上,请你用列表法或画树状图法求他们在体育测试中所选项目完全相同的概率.命题点3 利用画树状图法求“三步”试验的概率[热度:92%]10. ⑥2017 •台州三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每名运动员的出场顺序都发生变化的概率为____________________________________________ .方法点拨⑥在遇到“三步”或“三步”以上的问题时,用列表法已经不能解决,只能用画树状图的方法来解决.11.2017 •镇江改编某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每名学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.(1) 小丽参加实验A考查的概率是 ______________ ;(2) 小明、小丽都参加实验A考查的概率是 _________________ ;(3) 他们三人都参加实验A考查的概率是 ________________ .12. ⑦某乳品公司最近推出一款果味酸奶,共有红枣、木瓜两种口味,若送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率是多少?(请用画树状图的方法给出分析过程,并求出结果)解题突破⑦本题只能用画树状图的方法来做,不适合用列表法思维拓展:咅优13. ⑧为落实“垃圾分类”,环卫部门要求垃圾要按A, B, C三类分别装袋、投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾•甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1) 直接写出甲投放的垃圾恰好是A类的概率;(2) 求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.解题突破⑧解决这个问题分几步走?应该选用哪种方法分析?“乙投放的两袋垃圾不同类”在分析时需要注意什么?详解详析【关键问答】①当一次试验涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法;当一次试验涉及多个因素(三个或三个以上)时,通常采用画树状图法求概率.1. A [解析]画树状图如下:开始共有4种等可能的结果,其中两枚硬币全部正面向上的结果有1种,所以两枚硬币全部1正面向上的概率为4•故选A.2. 解:列表如下.乙12甲1(1 , 1)(1 , 2)2(2, 1)(2 , 2)由表可知,共有4种等可能的结果,其中两个小球上的号码都是1的结果仅有1种,1••• P(两个小球上的号码都是1)=-.43. D [解析]设小明为A,爸爸为B ,妈妈为C,则所有的可能结果是(ABC) , (ACB), (BAC) , (BCA) , (CAB) , (CBA),•他的爸爸妈妈相邻的概率是4= ?.6 3故选D.4. D [解析]构成如下三个命题:如果① AC= AB ,②AB// CD ,那么③/ 1 = Z 2;如果②AB / CD ,③/ 1 = Z 2,那么①AC= AB;如果①AC = AB,③/ 1 = Z 2,那么②AB // CD. 这三个命题都是真命题.故选D.1 - 一5.;1 [解析]从四条线段中随机取三条,有如下四个不同的结果:① 2, 4, 6:②2, 4, 7;③2,6,7;④4,6,7•因为这四个结果出现的可能性相等 ,其中,能构成三角形的结果有两个,所以,从长度分别为2, 4,6, 7的四条线段中随机取三条,能构成三角形的概率2 1 1 P =1故答案为亍町[解析]列表格,得:45 2 24, 42 25, 52 334, 4335, 53“5的倍数的结果有两种,•组成的两位数恰好是 “ 5”2 1的倍数的概率为8盲17.1 [解析]画树状图如下:•••共有12种等可能的结果,两次摸出的小球标号之和等于 5的有4种情况,•两次摸出的小球标号之和等于5的概率是茅i18.1 [解析]依题意列表如下:n m12 31(1 , 2)(1 , 3) 2 (2, 1)(2 , 3)3(3, 1) (3, 2)•••一共有8种等可能的结果,其中是开始123 4/N ZN ZN ZN 2 3 4 1 3 4 1 2 4L 2 3当m2—4n > 0时,关于x的方程x2+ mx+ n = 0有两个不相等的实数根,而使得m2—4n >0成立的m, n有2组,即(3, 1)和(3, 2),则关于x的方程x2+ mx+ n = 0有两个不相等1的实数根的概率是£9.解:⑴将“立定跳远”“掷实心球”“一分钟跳绳”和“引体向上”分别用 A , B ,C ,D 表示,画树状图如下:由树状图可知可能选择的结果有四种:①“1000米跑” “立定跳远”和“一分钟跳绳”;②“ 1000米跑”“立定跳远”和“引体向上”; ③“ 1000米跑”“掷实心球”和“ 分钟跳绳”;④“1000米跑”“掷实心球”和“引体向上”.(2)因为他们都做不了引体向上,所以不会选②④•列表如下:①③①(①,①) (①,③) ③(③,①)(③,③)•••所有可能出现的结果共有 4种,其中所选项目完全相同的有 2种,.••他们在体育测试中所选项目完全相同的概率为4= 1.110.3 [解析]画树状图如下:• ••抽签后每名运动员的出场顺序都发生变化的概率为111 111. (1)- ⑵-(3)-[解析](1)小丽参加实验 A 考查的概率是-. 2 4 82•••共有6种等可能的结果 ,抽签后每名运动员的出场顺序都发生变化的有 2种情况,2 _ 16 = 3.A B C D C D开始第一牛第二个 第三个甲一►乙(2画树状图如图所示.共有8种等可能的结果,其中至少有两瓶为红枣口味的结果数为 4,所以该住户收到的4 1 三瓶酸奶中,至少有两瓶为红枣口味的概率为4=-. 8 213. 解:(1) ••垃圾要按A , B , C 三类分别装袋,甲投放了一袋垃圾1•甲投放的垃圾恰好是 A 类的概率为扌⑵画树状图如图所示:• • •两人参加的实验考查共有四种等可能的结果 种,,而两人均参加实验 A 考查的结果有1•••小明、小丽都参加实验A 考查的概率为14⑶画树状图如图所示.小华A三人参加的实验考查共有 8种等可能的结果,其中三人都参加实验 A 考查的结果只有1种,.••他们三人都12. 解:画树状图如下:开始由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是12 _ 218=3.。
初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(含答案及解析)
初中数学北师大版九年级上学期第三章 3.1 用树状图或表格求概率一、单选题1.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.2.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A. B. C. D.3.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.二、综合题5.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.6.九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:15 20 10已知前面两个小组的人数之比是.解答下列问题:(1)________.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)7.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)________,________;(2)扇形统计图中“科学类”所对应扇形圆心角度数为________ ;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.8.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球. (1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.9.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)答案解析部分一、单选题1. A解:用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆画树状图为:共有9种等可能的结果数,其中两人恰好选择同一场馆的有3种情况,∴两人恰好选择同一场馆的概率=故答案为:A【分析】由题意可知,此事件是抽取放回,列出树状图,根据树状图求出所有等可能的结果数及两人恰好选择同一场馆的可能数,然后利用概率公式求解。
北师版九年级初三上册数学《用树状图或表格求概率》同步练习题
3.1 用树状图或表格求概率第1课时 用树状图或表格求概率【基础练习】 一、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;(2)“两颗的点数相同”的概率是16 ; (3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.A. (1)、(2)B. (3)、(4)C. (1)、(3)D. (2)、(4)二、填空题:用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .用画树状图的方法求下列各事件发生的概率,并用所得的结果填空.4.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.5.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.6.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.答案:【基础练习】一、D.二、1. 25 ; 2. 310 ; 3. 715 ; 4.13 ;5.13; 6.14. 三、415. 【综合练习】(1)7;(2)14 ;(3)12. 【探究练习】14.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案
北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为( )A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是( )A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是( )A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是( )A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是( )A.14B.13C.12D.1参考答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为(B)A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是(D)A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.【解析】略·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(A)A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是16.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是(D)A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是(B)A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于13.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是13.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【解析】略【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是(C)A.14B.13C.12D.1。
北师大版-数学-九年级上册-3.1 用树状图或表格求概率 同步练习
用树状图或表格求概率一、选择题1.一枚质地均匀的正方体骰子,连续抛掷两次,两次点数相同的概率是( )A. 12 B.13 C.14 D.16【答案】D 【解析】列表得:由表格可知,总共出现的等可能结果有36种,两次点数相同的结果有6种,两次点数相同的概率为61 366.故选D.2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. 12 B.14 C.16 D.112【答案】C 【解析】试题分析:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为:C.考点:概率.3. 暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为【】A.12 B.13 C.16 D.19【答案】B【解析】画树状图得:∵共有9种等可能的结果,小明和小亮选到同一社区参加实践活动的有3种情况,∴小明和小亮选到同一社区参加实践活动的概率为:3193=。
故选B。
4. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. 1 6B.13 C.12 D.23【答案】B【解析】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P==.故选B.考点:列表法与树状图法求概率.二、填空题5.现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4。
把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是_____ .【答案】23。
【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率同步练习及答案
用树状图或表格求概率(典型题汇总)知识点 1 利用列表法求概率1.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( )A.14B.12C.34D.232.国家出台全面二孩政策,自2016年1月1日起家庭生育无须审批.如果一个家庭已有一个孩子,再生一个孩子,那么两个都是女孩的概率是( )A.12B.13C.14D.无法确定3.一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从该口袋中随机摸出一个小球记下字母.用列表的方法,求小园同学两次摸出的小球上的字母相同的概率.知识点 2 利用画树状图法求概率4.小明和小亮在玩“石头、剪刀、布”的游戏,两人一起做同样手势的概率是( )A.12B.13C.14D.155.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A.38B.58C.23D.126.三名九年级学生坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原座位的概率为( )A.19B.16C.14D.127.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.8.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.9.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的2倍的概率是( )A.13B.12C.14D.1610.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中恰有两只雌鸟的概率是( )A.16B.38C.58D.2311.在一个不透明的袋子中装有四个小球,它们除分别标有的号码1,2,3,4不同外,其他完全相同.任意从袋子中摸出一球后不放回,再任意摸出一球,则第二次摸出球的号码比第一次摸出球的号码大的概率是( )A.13B.12C.23D.16图3-1-112.如图3-1-1,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是________.13.如图3-1-2,管中放置着三根同样的绳子AA1,BB1,CC1.小明在左侧选两个打一个结,小红在右侧选两个打一个结,则这三根绳子能连接成一根长绳的概率为__________.图3-1-214.如图3-1-3是“密室逃脱俱乐部”的通路俯视图,一同学进入入口后,可任选一条通道过关.(1)他进入A密室或B密室的可能性哪个大?请说明理由(利用画树状图或列表法来求解);(2)求该同学从中间通道进入A密室的概率.图3-1-315.端午节的早晨,小文妈妈为小文准备了四个粽子做早点:一个枣馅粽、一个肉馅粽、两个花生馅粽,四个粽子除内部馅料不同外,其他均相同.(1)小文吃前两个粽子刚好都是花生馅粽的概率为________;(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请利用列表或画树状图的方法来说明理由.详解1.C2.C [解析] 列表如下:∵共有4种等可能的结果,两个都是女孩的有1种情况,∴两个都是女孩的概率是14.故选C.3.解:列表如下:所有等可能的情况有9种,其中两次摸出的小球上的字母相同的情况有3种. 所以小园同学两次摸出的小球上的字母相同的概率为39=13.4.B [解析] 画树状图如下:共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3种,故两人一起做同样手势的概率是39=13.故选B.5.D [解析] 画树状图如下:∴至少有两枚硬币正面向上的概率是48=12.6.D [解析] 画树状图为(用A ,B ,C 表示三位同学,用a ,b ,c 表示他们原来的座位):共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3种, 所以恰好有两名同学没有坐回原座位的概率=36=12.故选D.7.解:(1)画树状图如下:共有9种等可能的结果数,其中两次取出小球上的数字相同的结果数为3种, 所以两次取出小球上的数字相同的概率=39=13.(2)由(1)中树状图可知:两次取出小球上的数字之和大于3的结果数为6种, 所以两次取出小球上的数字之和大于3的概率=69=23.8.解:(1)小丽从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为14.(2)画树状图如下:共有12种等可能的结果,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率为112.9.A [解析] 画树状图如下:∵共有12种等可能的结果,其中一个数是另一个数的2倍的有4种情况, ∴其中一个数是另一个数的2倍的概率是:412=13.故选A.10.B [解析] 画树状图如图所示:因为所有等可能的情况有8种,其中三只雏鸟中恰有两只雌鸟的情况有3种,所以三只雏鸟中恰有两只雌鸟的概率是38.11.B [解析] 画树状图如下:共有12种等可能的结果数,其中第二次摸出球的号码比第一次摸出球的号码大的结果数为6种,所以第二次摸出球的号码比第一次摸出球的号码大的概率=612=12.故选B.12.1513.23 [解析] 小明在左侧选两个打一个结有三种可能:AB ,AC ,BC ,小红在右侧选两个打一个结有三种可能:A 1B 1,A 1C 1,B 1C 1,画树状图如下:共有9种等可能的结果数,其中这三根绳子能连接成一根长绳的结果数为6种, 所以这三根绳子能连接成一根长绳的概率=69=23.故答案为23.14.解:(1)该同学进入B 密室的可能性大. 理由如下:画树状图如图:共有6个等可能的结果,∴P (进入A 密室)=26=13,P (进入B 密室)=46=23,∴该同学进入B 密室的可能性大.(2)由(1)中的树状图可知该同学从中间通道进入A 密室的概率为16.15.解:(1)16(2)会增大.理由:分别用A ,B 表示一个枣馅粽、一个肉馅粽,用C 1,C 2,C 3表示三个花生馅粽,画树状图如下:∵共有20种等可能的结果,两个都是花生馅粽的有6种情况, ∴小文吃前两个粽子都是花生馅粽的概率为620=310>16,∴给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性会增大.。
初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(I)卷
初中数学北师大版九年级上学期第三章 3.1 用树状图或表格求概率(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分) (2018九上·岐山期中) 岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A .B .C .D .2. (2分) (2018九上·永康期末) 一天晚上,小丽在清洗两只颜色分别是粉色和白色的有盖茶杯时,突然停电了,小丽只好将杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率是()A . 1B .C .D .3. (2分)(2019·鄂尔多斯) 下列计算① ② ③ ④⑤ ,其中任意抽取一个,运算结果正确的概率是()A .B .C .D .4. (2分)(2018·北部湾模拟) 一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球;随机从中摸出一球,不再放回,充分搅均后再随机摸出一球。
则两次都摸到红球的概率是()A .B .C .D .二、综合题 (共5题;共49分)5. (10分)(2019·恩施) 为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数________.(2)图1中,求∠α的度数,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.6. (11分)(2019·十堰) 第一盒中有个白球、个黄球,第二盒中有个白球、个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出个球,则取出的球是白球的概率是________.(2)若分别从每个盒中随机取出个球,请用列表或画树状图的方法求取出的两个球中恰好个白球、个黄球的概率.7. (8分)(2019·扬州) 只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数都表示为两个素数的和”.如20=3+17.(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是________;(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.8. (10分)(2019·贵阳) 为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等(1)若从中只录用一人,恰好选到思政专业毕业生的概率是________:(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.9. (10分)今年我市将创建全国森林城市,提出了“共建绿色城”的倡议,某校积极响应,在3月12日植树节这天组织全校学生开展了植树活动,校团委对全校各班的植树情况进行了统计,并绘制了如图所示的两幅不完整的统计图。
北师大版九年级数学上册第三章3.1用树状图或表格求概率 假期同步测试(解析版)
北师大版九年级数学上册第三章 3.1用树状图或表格求概率 假期同步测试一.选择题1. 从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .B .C .D .【解析】画树状图得:∵共有12种等可能的结果,任取两个不同的数,a 2+b 2>19的有4种结果, ∴a 2+b 2>19的概率是=,故选:D .2.如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()A.12B.13C.14D.18【解析】列表得:共有16种情况,两个指针同时落在标有奇数扇形内的情况有4种情况,所以概率是41,故选C .3.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .B .C .D .【解析】画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为: =.故选C .4.随机闭合开关S 1、S 2、S 3中的两个,能让灯泡⊙发光的概率是( )A.43 B.32 C.21 D.31 【解析】随机闭合开关S 1、S 2、S 3中的两个出现的情况列表得,所以概率为32,故选B .5.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( ) A .点数都是偶数 B .点数的和为奇数 C .点数的和小于13 D .点数的和小于2【解析】画树状图为:共有36种等可能的结果数,其中点数都是偶数的结果数为9,点数的和为奇数的结果数为18,点数和小于13的结果数为36,点数和小于2的结果数为0, 所以点数都是偶数的概率==,点数的和为奇数的概率==,点数和小于13的概率=1,点数和小于2的概率=0,所以发生可能性最大的是点数的和小于13. 故选C .6.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数y=x-2图象上的概率是( )A.21 B.31 C.41 D.61 【解析】画树状图如上:共有6种等可能的结果,其中只有(1,-1)在一次函数y=x-2图象上,所以点在一次函数y=x-2图象上的概率=16.故选D .7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x+c =0有实数解的概率为( ) A .B .C .D .【解析】画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为,故选:C.8.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.B.C.D.【解析】树状图如图所示:共有12种等可能的结果,颜色相同的有2种情形,故小赖抽出的两颗球颜色相同的机率==;故选:B.9.一个盒子中有4个除颜色外其余都相同的玻璃球,1个红色,1个绿色,2个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为( )【解析】共12种等可能的情况,2次都是白球的情况数有2种,所以概率为故选A.10.甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x 的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A.B.C.D.【解析】画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选:C.11.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.【解析】由题意可得,同时投掷这两枚骰子,所得的所有结果是:(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、(2,3)、(2,4)、(2,5)、(2,6)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(3,6)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),则所有结果之和是:2、3、4、5、6、7、3、4、5、6、7、8、4、5、6、7、8、9、5、6、7、8、9、10、6、7、8、9、10、11、7、8、9、10、11、12,∴所得结果之和为9的概率是:,故选C.12.(2019•临沂)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【解析】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.二.填空题13. 由1,2,3组成不重复的两位数,十位数字是2的概率是_____.【解析】由1,2,3组成不重复的两位数有:12、13、21、23、31、32共六种情况;则十位数字是2的情况有:21、23两种;∴十位数字是2的概率是2÷14.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.【解析】根据树状图,蚂蚁获取食物的概率是=.故答案为.15.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.【解析】画树状图得:∵共有12种等可能的结果,抽到的都是合格品的有6种情况,∴抽到的都是合格品的概率是: =.故答案为:.16.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是.【解析】画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册”的概率为;故答案为:.17.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【解析】画树状图如下:∴P(两次摸到同一个小球)==故答案为:18.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____. 【解析】列表如下:由表可知,共有6种等可能结果,其中点M 在第二象限的有2种结果, 所以点M 在第二象限的概率是 31. 故答案为:31 . 三.解答题19. (2019 山东省潍坊市)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)解:(1)前8次的指针所指数字的平均数为×(3+5+2+3+3+4+3+5)=3.5; (2)∵这10次的指针所指数字的平均数不小于3.3,且不大于3.5, ∴后两次指正所指数字和要满足不小于5且不大于7,画树状图如下:由树状图知共有12种等可能结果,其中符合条件的有8种结果,所以此结果的概率为=.20.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)解:(1)设袋子中白球有x个,根据题意得: =,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.21.“十一”黄金周期间,小明要与父母外出游玩,带了2件上衣和3条长裤(把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.问题为:(1)小明随意拿出一条裤子和一件上衣配成一套,用(画树状图或列表格)中的一种列出所有可能出现结果;配好一套衣服,小明正好拿到黑色长裤的概率是多少;(3)他任意拿出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?解:(1)列表如上:裤子红色黑色黄色上衣红色红色,红色红色,黑色红色,黄色黄色黄色,红色黄色,黑色黄色,黄色所以小明随意拿出一条裤子和一件上衣配成一套,所有可能出现的结果有6种;(2(322.为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14 b%舞蹈8 16%书法16 32%摄影 a 24%合计m 100%根据以上信息,解答下列问题:(1)m=,b=.(2)求出a的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.解:(1)m=8÷16%=50,b%=×100%=28%,即b=28,故答案为:50、28;(2)a=50×24%=12,补全图形如下:(3)估计选修“声乐”课程的学生有1500×28%=420(人).(4)画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,则所抽取的2人恰好来自同一个班级的概率为=.23.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.24.我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是200 人,m=35 ,并补全条形统计图;(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),则m%=×100%=35%,即m=35,C景区人数为200﹣(20+70+20+50)=40(人),补全条形图如下:故答案为:200,35;(2)估计去B地旅游的居民约有1200×35%=420(人);(3)画树状图如下:由树状图知,共有12种等可能结果,其中选到A,C两个景区的有2种结果,所以选到A,C两个景区的概率为=.。
北师大版九年级数学上册 第三章 概率的进一步认识 3.1 用树状图或表格求概率 同步测试题(无答案)
3.1 用树状图或表格求概率同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题 3 分,共计30分,)1. 现有点数为,,,的四张扑克牌,背面朝上洗匀,然后从中任意抽取从中任意抽取两张,这两张牌上的数字之和为偶数的概率为()A. B. C. D.2. 把个大小、质地相同的球,分别标号为,,,,,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.3. 现有点数为,,,的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为奇数的概率为()A. B. C. D.4. 如图,图中的两个转盘分别被均匀地分成个和个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A. B. C. D.5. 在一个袋中,装有除颜色外其它完全相同的个红球和个白球,从中随机摸出两个球,摸到的两个球颜色不同的概率是()A. B. C. D.6. 有两组扑克牌各三张,牌面数字均为,,.随意从每组牌中各抽一张,数字和等于的概率是()A. B. C. D.7. 同学们的衣服各式各样,假设你的衣橱里有一件夹克,一件中山装,一件校服上衣,有一条黑色牛仔裤,一条蓝色牛仔裤,一条校服裤子,那么你随手拿出一件上衣和一条裤子时,恰好是一身校服的机会是()A. B. C. D.8. 同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A. B. C. D.9. 甲、乙、丙三位同学每人手中分别持有红桃和黑桃各一张扑克牌,现由每人随机拿出一张,恰好是“两红一黑”三张牌的概率是()A. B. C. D.10. 你喜欢玩游戏吗?现在请你玩一个转盘游戏,如图所示的两个转盘中,指针落在每个数字上机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针指向一个数字,用所指的两个数字作乘积,请你求出数字之积为奇数的概率.()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在一个不透明的盒子里装有个分别标有数字、、、的小球,它们除数字外其他均相同.充分摇匀后,先摸回个球不放回,再摸出一个球.那么这两个球上数字之和为奇数的概率为________.12. 为了改善生态环境,促进生活垃圾的分类处理,将生活垃圾分为三类:厨余、可回收和其他,分别记为、、,并且设置了相应的垃圾桶,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为、、,若将三类垃圾随机投入三类垃圾箱,垃圾投放正确的概率是________.13. 甲、乙、丙位同学到个风景区去游玩,每位同学到每个风景区的可能性相同,则位同学不同在同一风景区游玩的概率是________.14. 袋中有五张卡片,其中红色卡片三张,标号分别为,,,绿色卡片两张,标号分别为,,若从五张卡片中任取两张,则两张卡片的标号之和小于的概率为________.15. 如图,小明同学沿着格线从点到点,在路线最短的条件下,经过点的概率是________.16. 一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一球后放回去摇匀,再摸出一个球,则小亮两次都能摸到白球的概率是________.17. 某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为________.18. 如图,用一个可以自由转动的转盘(转盘被平均分成面积相等的三部分)做游戏,转动转盘两次,两次所得数字之乘积大于的概率为________.19. 课间休息,小亮与小明一起玩“五子棋”游戏,他们决定通过“剪刀、石头、布”游戏赢者开棋,若小亮出“石头”,则小亮开棋的概率是________.20. 口袋中有个小球,分别为个红球和个黄球,它们除颜色外完全相同,随机一次性取出两个小球,取出的小球的颜色都是红色的概率为________.三、解答题(本题共计 6 小题,共计60分,)21. 某中学准备随机选出七、八、九三个年级各名学生担任学校国旗升旗手.现已知这三个年级每个年级分别选送一男、一女共名学生作为备选人.(1)请你利用树状图或表格列出所有可能的选法;(2)求选出“一男两女”三名国旗升旗手的概率.22. 将分别标有数字,,,的四个小球装在一个不透明的口袋中,这些小球除数字外无其他差别,先将口袋中的小球搅拌均匀,随机摸出一个小球,不放回;再随机摸出一个小球,请用树状图或列表法求出两次摸出的小球上的数字都是无理数的概率.23. 一个不透明的口袋中装有个红球、个白球、个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出个球,放回捞匀,再任意摸出个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24. 九年一班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,小强拿出一个箱子说:“这个不透明的箱子里装有红、白球各个和若干个黄球,它们除了颜色外其余都相同,谁能同时摸出两个黄球谁就获得一等奖”.已知任意摸出一个球是黄球的概率为.(1)请直接写出箱子里有黄球________个;(2)请用列表或树状图求获得一等奖的概率.25. 在一次数学考试中,小明有一道选择题(只能在四个选项、、、中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是________;(2)通过画树状图或列表法求小亮两题都答对概率是多少?(3)这个班数学老师参加集体阅卷,在阅卷的过程中,发现学生的错误率较高.他想:若这道选择题都是靠随机选择答案,则这道选择题全对的概率是________.26. 某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字、、、的个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为,则可获得元代金券一张;若所得的数字之和为,则可获得元代金券一张;若所得的数字之和为,则可获得元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率.。
北师大版九年级上册第三章3.1用树状图或表格求概率(一)
北师大版九年级上册第三章3.1用树状图或表格求概率(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,那么经过这个十字路口的两辆汽车一辆左转、一辆右转的概率是( )A.47B.49C.29D.192.我市某学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(8)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.23B.56C.16D.123.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米,50×2米,100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.19D.124.如图,随机闭合开关S1、S2、S3中的两个,则灯泡发光的概率为()A.34B.23C.13D.125.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为A.116B.18C.14D.126.一个不透明的口袋里装有红、黑、绿三种颜色的乒乓球(除颜色外其余都相同),其中红球有2个,黑球有1个,绿球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,则两次摸到的都是红球的概率为()A.118B.19C.215D.1157.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为()A.13B.12C.14D.168.如图,四个带圆圈的数字,任取两个数字(既可以是相邻,也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是()A.13B.12C.23D.34二、填空题9.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为_______.10.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另—个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是_____________.11.甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.三、解答题12.李老师和他刚初中毕业的儿子准备到古隆中、水镜庄两个景点去游玩.如果他们各自在两个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中景点为第一站的概率是多少?13.小勇收集了两张著名的旅游景点图片(大小、形状及背面完金相同):壶口瀑布和平遥古城.他与爸爸玩游戏:把这两张图片背面朝上洗匀后,随机抽取一张,然后放回洗匀,再抽取一张,若两次抽到同一个景点,则爸爸同意带他到抽到的景点旅游,否则不去旅游.请你用列表的方法求小勇能去旅游的概率.(两张困片分别用H P,表示)14.4张相同的卡片上分别写有数字-1、-3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y kx b=+中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y kx b=+中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率. 15.活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→→,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)参考答案1.C【解析】画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果;两辆汽车一辆左转,一辆右转的结果有2种,且所有结果的可能性相等,∴P(两辆汽车一辆左转,一辆右转)= 2 9 .故选C.2.A【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲乙两人恰有一人参加此活动的情况,再利用概率公式即可求得答案.试题解析:画树状图得:∵共有12种等可能的结果,甲乙两人恰有一人参加此活动的有8种情况,∴甲乙两人恰有一人参加此活动的概率是:82 123.故选A.考点:列表法与树状图法.3.C【分析】首先画出树状图,然后根据树状图即可求得所有等可能的结果与恰好抽中实心球和50米的情况,利用概率公式即可求得答案.【详解】画树状图得:∵共有9种等可能的结果,恰好抽中实心球和50米的有1种情况,∴恰好抽中实心球和50米的概率是:1 9 .故选C.【点睛】此题考查概率公式,解题关键在于画出树状图.4.B【分析】先确定三个开关闭合两个的组合数,再确定能使灯泡发光的组合数,然后利用概率公式计算即可.【详解】∵随机闭合开关S1、S2、S3中的两个,有S1S2、S1S3、S2S3光共3种结果,其中灯泡发光的有S1S3、S2S3共2种结果,所以灯泡发光的概率为P=23,故选:B.【点睛】本题考查概率公式,熟练掌握用概率公式求概率的方法是解答的关键.5.C【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,4个球,白球记为1、2黑球记为3、4,画树状图得:∵共有16种等可能的结果,两次都摸到白球的只有4种情况,∴两次都摸到黑球的概率是41164.故选C.6.D【解析】【分析】列表得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.【详解】列表如下:所有等可能的情况有30种,其中两次都是红球的情况有2种,则P=21= 3015.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7.A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小亮选到同一社区参加实践活动的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有9种等可能的结果,小明和小亮选到同一社区参加实践活动的有3种情况,∴小明和小亮选到同一社区参加实践活动的概率为:31 = 93.故选A.【点睛】此题考查列表法与树状图法,解题关键在于画出树状图.8.A【分析】画树状图展示所有12种等可能的结果数,再找出交换一次后能使①、②两数在相对位置上的结果数,然后根据概率公式求解.【详解】画树状图为:共有12种等可能的结果数,其中交换一次后能使①、②两数在相对位置上的结果数为4,所以交换一次后能使①、②两数在相对位置上的概率=41= 123;故选:A.【点睛】此题考查列表法与树状图法,解题关键在于画出树状图.9.14.【解析】试题分析:列表或画树状图得出所有等可能的情况数,找出舟舟和嘉嘉同坐2号车的情况数,即可求出所求的概率:列表如下:∵所有等可能的情况有4种,其中舟舟和嘉嘉同坐2号车的的情况有1种,∴两人同坐3号车的概率P=14.考点:1.列表法或树状图法;2.概率.10.1 6【分析】首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率公式求解.【详解】解:画树状图得:∴一共有6种等可能的结果,两球标号恰好相同的有1种情况,∴两球标号恰好相同的概率是1 6故答案为:16.【点睛】此题考查了树状图法与列表法求概率.树状图法与列表法适合两步完成的事件,可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.11..【解析】试题分析:甲、乙两位同学各抛掷一枚质地均匀的骰子,所有可能的结果是:满足a+b=9的有4种可能,∴a+b=9的概率为=,故答案为.考点:列表法与树状图法.12.他们都选择古隆中景点为第一站的概率是14.【分析】可以看做是李老师先选择第一站,然后儿子再进行选择,画出树状图,再根据概率公式解答.【详解】根据题意,李老师父子二人所有的选择结果用树状图表示如图:由树状图可知,所有结果共有4种,每种结果出现的可能性相同,即(古隆中,古隆中),(古隆中,水镜庄),(水镜庄,古隆中),(水镜庄,水镜庄).李老师父子二人都选择古隆中景点为第一站的结果只有1种.∴他们都选择古隆中景点为第一站的概率是14.【点睛】此题考查列表法与树状图法,解题关键在于画出所有结果.13.P(小勇能去旅游)=12.【分析】列表得出所有等可能的情况数,找出两次抽到同一个景点的结果数,即可求出所求的概率.【详解】列表如下:由表格可以看出,所有可能出现的结果共有4种,而且每种结果出现的可能性相同,两次抽到同一个景点的结果共有2种.∴P(小勇能去旅游)21 42 ==.【点睛】此题考查列表法与树状图法,解题关键在于写出所有结果.14.(1)12;(2)13. 【解析】 解:(1)总共有四个,奇数有两个,所以概率就是1242÷= (2)根据题意得:一次函数图形过第一、二、四象限,则0,0k b3146-⎧⎪-⎨⎪⎩ 1346-⎧⎪-⎨⎪⎩ 1436-⎧⎪-⎨⎪⎩1634-⎧⎪-⎨⎪⎩ ∴图象经过第一、二、四象限的概率是14123÷=. 分析:(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k <0,b >0的结果数,然后根据概率公式求解.详解:(1)从中任意抽取1张,抽到的数字是奇数的概率=12; 故答案为12; (2)画树状图为:共有12种等可能的结果数,其中k <0,b >0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率=41=123. 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了一次函数的性质.15.(1)13;(2)丙、甲、乙、14,14;(3)P (甲胜出)=P (乙胜出)=P (丙胜出),抽签是公平的,与顺序无关.(答案不唯一).【解析】试题分析:(1)画出树状图法,判断出甲胜出的概率是多少即可.(2)首先对甲、乙、丙三名同学规定一个摸球顺序:丙→甲→乙,然后画出树状图法,判断出第一个摸球的丙同学和最后一个摸球的乙同学胜出的概率各等于多少即可.(3)首先根据(1)(2),猜想这三名同学每人胜出的概率之间的大小关系为:P(甲胜出)=P(乙胜出)=P(丙胜出);然后总结出得到的活动经验为:抽签是公平的,与顺序无关.试题解析:(1)如图1,,甲胜出的概率为:P(甲胜出)=13;(2)如图2,,对甲、乙、丙三名同学规定一个摸球顺序:丙→甲→乙,则第一个摸球的丙同学胜出的概率等于14,最后一个摸球的乙同学胜出的概率也等于14,故答案为丙、甲、乙、14,14;(3)这三名同学每人胜出的概率之间的大小关系为:P(甲胜出)=P(乙胜出)=P(丙胜出).得到的活动经验为:抽签是公平的,与顺序无关.(答案不唯一).考点:列表法与树状图法.。
2020北师大版九年级数学上册第三章3.1用树状图或表格求概率 同步测试(原卷板)
2020北师大版九年级数学上册第三章3.1用树状图或表格求概率 同步测试一.选择题1. (2019 山东省泰安市)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( )A .B .C .D .2.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )A .B .C .D .3.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A .B .C .D .4.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.则两次取的小球的标号相同的概率为( ) A.31 B.61 C.21 D.91 5.(2019•大连)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A .B .C .D .6.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长正好构成等边三角形的概率是( )A .B .C .D .7.小兰和小潭分别用掷A 、B 两枚骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小谭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y=-2x+6上的概率为()8.(2019•荆门)投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a ,b .那么方程x2+ax+b =0有解的概率是( )A .B .C .D .9.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A.21 B.31 C.41 D.61 10. 将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为( )A.15 B.14 C.13 D.1211.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A .B .C .D .12.(2019•临沂)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A .B .C .D .二.填空题13.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是 .14.掷两枚质地均匀的骰子,其点数之和大于10的概率为 .15. (2019 山东省聊城市) 在阳光中学举行的春季运动会上,小亮和大刚报名参。
新北师大版九年级数学上册 第三章 《用树状图或表格求概率》同步测试
3.1 用树状图或表格求概率同步测试题一、选择题(共30分)1.下列说法不正确的是()A.某事件发生的概率为1,则它不一定必然会发生B.某事件发生的概率为0,则它必然不会发生C.抛一个普通纸杯,杯口不可能向上D.从一批产品中任取一个为次品是可能的2.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.12B.13C.14D.163.一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200 张,那么任一位抽奖者(仅买一张奖券)中奖的概率是()A.150B.225C.15D.3104.往返与A、B两市之间的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么有()种不同的票价.A.4 B.6 C.10 D.125.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是()A.公平的B.不公平的C.先摸者赢的可能性大D.后摸者赢的可能性大6.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数B.投掷一枚均匀硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1、2、3、4、5这五个数字中任取一个数,取得奇数比取得偶数的可能性大7.如图,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是()A.1 2B.13C.14D.0 8.某班学生在颁奖大会上得知该班获得奖励的情况如下表.已知该班共有28人获得奖励,其中获得两项奖励的13人,那么该班获得奖励最多的一位同学可能获得的奖励为()A.3 项B.4 项C.5 项D.6 项二、填空题(共20分)9.某校有一支由12 人组成的篮球队,年龄结构如下表.从中抽取1人,年龄不小于15岁的概率是.10.如图表示某班21位同学衣服上口袋的数目.若任选一位同学,则其衣服上口袋数为5的概率是.11.一个科室有3名男士、2名女士,从中任选2人做一项接待工作,则选到的人都女士的概率为.12.去掉大小王一副牌共52张,任取两张,则两张为同色的概率等于.年龄(岁)14 15 16 17人数(人) 2 6 3 1三、解答题(共50分)13.某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣众人抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?14.两家商厦搞节日促销活动,A商厦进行有奖销售,凡购物满100元可摸一张奖券,每一万张奖券设一等奖10个,奖金5000元;二等奖100个,奖金500元;三等奖200个,奖金20元.B商厦,全场八五折酬宾.问顾客参加哪一家商厦的节日促销活动期望值较高?15.保险公司对某地区人们的寿命调查后发现活到50岁的有69800人,在该年龄死亡的人数为980人,活到70岁的有38500人,在该年龄死亡的有2400人.(1)某人今年50岁,则他活到70岁的概率为多少?(2)若有20000个50岁的人参加保险,当年死亡的赔偿金为每人2万元,预计保险公司该年赔付总额为多少?.16.小明有3双黑袜子和1双白袜子,假设袜子不分左右,那么从中随机抽取2只恰好配成一双的概率是多少?如果袜子分左右呢?17.请你在如图转盘内涂上红、黄、蓝三种颜色,要求任意旋转一次指针落在红色区域的概率是512,落在黄色区域和蓝色区域的概率之比是3 : 418.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等.现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:(1)列举(用列表或画树状图)所有可能得到的数字之积.(2)求出数字之积为奇数的概率.19.某商场搞促销活动,设计了一个游戏:在一只黑色的口袋里装有颜色不同的50只小球,其中红球1只、黄球2只、绿球10只,其余为白球.搅拌均匀后,每花2元钱可摸1个球.奖品的情况为:摸得红球奖金8元;摸得黄球奖金5元;摸得绿球奖金l元;摸得白球无奖金.(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?20.一个口袋里有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200 次,其中有50次摸到红球.参考答案。
北师大新版九年级上册《31_用树状图或表格法求概率》2020年同步练习卷(某校)
北师大新版九年级上册《3.1 用树状图或表格法求概率》2020年同步练习卷(某校)一、单选题1. 在某班举行的歌王争霸赛上,小孙、芳芳、阿玉报名参加了竞选,分A,B,C,D 四组进行比赛,选手通过抽签方式参加比赛,则小孙、芳芳和阿玉分到同一组的概率为()A. B. C. D.2. 在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是()A. B. C. D.3. 经过某十字路口的汽车,可能直行,也可能左转或右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,至少有一辆左转的概率是()A.1 3B.12C.49D.594. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.1 3B.14C.16D.185. 一个口袋中有5个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.35个B.30个C.25个D.20个6. 有一个转盘如图,让转盘自由转动两次,则指针两次都落在黄色区域的概率是()A.1 4B.49C.23D.567. 某校开展“文明小卫士”活动,从学生会的2名男生和1名女生中随机选取两名进行督查,恰好选中两名男生的概率是()A. B. C. D.8. 一个不透明的口袋中有4个除标号外其余均相同的小球,分别标有数字1,2,3,4,充分混合后随机摸出一个小球记下标号,放回后混合再随机摸出一个小球记下标号,则两次摸出的小球的标号之和等于5的概率是()A. B. C. D.9. 在一个不透明的袋子里,有2个白球和3个红球.它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回.再随机地摸出一个球,则两次都摸到红球的概率为()A. B. C. D.10. 某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为()A.1 2B.45C.49D.5911. 假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功,那么3只雏鸟恰有2只雄鸟的概率是多少?()A.1 8B.14C.38D.1212. 现有4张卡片,正面分别写着“中”“考”“必”“胜”,它们除字之外完全相同,洗匀后反面向上摆放在桌面上,从中随机抽取两张,则恰巧抽到“必”“胜”二字的概率是()A. B. C. D.二、填空题甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是________.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是________.一个不透明布袋里有4个小球(只有编号不同),编号分别为1,2,3,4,从中任意摸出两球,两球的编号之和为偶数的概率是________.若从−2,0,1这三个数中任取两个数,其中一个记为a,另一个记为b,则点A(a, b)恰好落在x轴上的概率是________.一个袋子里有2个红色球,3个黄色球,4个绿色球,这些球除了颜色不同外,其他都相同.从袋子中随机地摸出一个球是红色或绿色的概率是________.,√2,π,从中随机抽取1张,则抽出的有5张无差别的卡片,上面分别标有−1,0,13数是无理数的概率是________.三、解答题小华报名参加运动会,有5个项目可供选择,分别是径赛项目中的100m,200m和400m;田赛项目中的跳远和铅球.(1)小华从5个项目中任选一个,恰好是田赛项目的概率是________;(2)小华从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.参考答案与试题解析北师大新版九年级上册《3.1 用树状图或表格法求概率》2020年同步练习卷(某校)一、单选题1.【答案】A【考点】列表法与树状图法【解析】此题暂无解析【解答】此题暂无解答2.【答案】D【考点】列表法与树状图法【解析】此题暂无解析【解答】此题暂无解答3.【答案】D【考点】列表法与树状图法【解析】此题可以采用列表法或树状图求解.可以得到一共有9种情况,至少有一辆左转的结果有5种,根据概率公式求解即可.【解答】由“树形图”知,至少有一辆左转的结果有5种,且所有结果的可能性相等,,所以至少有一辆左转的概率是59故选:D.4.【答案】C【考点】列表法与树状图法概率公式【解析】根据题意画出树状图得出所有等可能情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意画树状图如下:共用12种等可能情况,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是212 = 16.故选C.5.【答案】D【考点】用样本估计总体【解析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:∵小明共摸了100次,其中20次摸到黑球,则有80次摸到白球,∴摸到黑球与摸到白球的次数之比为1:4,∵这个口袋中有5个黑球,∴共有白球5×4=20个,故答案为:D.6.【答案】B【考点】列表法与树状图法【解析】首先将黄色区域平分成两部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在黄色区域的情况,再利用概率公式即可求得答案.【解答】将黄色区域平分成两部分,画树状图得:∵共有9种等可能的结果,两次指针都落在黄色区域的只有4种情况,∴两次指针都落在黄色区域的概率为:49;7.【答案】A【考点】列表法与树状图法【解析】此题暂无解析【解答】此题暂无解答8.【答案】C【考点】列表法与树状图法【解析】此题暂无解析【解答】此题暂无解答9.【答案】C【考点】列表法与树状图法【解析】此题暂无解析【解答】此题暂无解答10.【答案】D【考点】几何概率【解析】击中黑色区域的概率等于黑色区域面积与正方形总面积之比.【解答】解:∵整个正方形被分成了9个小正方形,黑色正方形有5个,∴落在黑色区域即获得笔记本的概率为5,9故选D.11.【答案】C【考点】列表法与树状图法【解析】根据题意列举出所有情况,看三只雏鸟中恰有2只雄鸟的情况数占总情况数的多少即可.【解答】根据题意画图如下:共8种情况,三只雏鸟中恰有两只雄鸟有3种情况,所以概率为38.12.【答案】C【考点】列表法与树状图法【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】13【考点】列表法与树状图法【解析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次都摸到红球的情况,再利用概率公式求解即可求得答案.【解答】解:由题意列表如下:由上表可知,一共有6种可能的结果,两次都摸到红球的结果有2种,∴两次都摸到红球的概率是26=13.【答案】16【考点】列表法与树状图法画出树状图得出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.【解答】画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册”的概率为1;6【答案】【考点】列表法与树状图法【解析】此题暂无解析【解答】此题暂无解答【答案】【考点】几何概率点的坐标列表法与树状图法【解析】此题暂无解析【解答】此题暂无解答【答案】【考点】概率公式【解析】此题暂无解析【解答】此题暂无解答【答案】25【考点】无理数的识别概率公式先找出无理数的个数,再根据概率公式可得答案.【解答】在−1,0,13,√2,π中,无理数有√2,π,共2个,则抽出的数是无理数的概率是25.三、解答题【答案】25(2)径赛项目100m,200m,400m分别用A1,A2,A3表示;田赛项目跳远,铅球分别用B1,B2表示,画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:1220=35.【考点】等可能事件的概率列表法与树状图法概率公式【解析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【解答】解:(1)∵5个项目中田赛项目有2个,∴小华从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为:25.(2)径赛项目100m,200m,400m分别用A1,A2,A3表示;田赛项目跳远,铅球分别用B1,B2表示,画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:1220=35.【答案】∵共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,∴P(恰好选中乙同学)=13;画树状图得:∵所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=16.【考点】概率公式列表法与树状图法【解析】(1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【解答】∵共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,∴P(恰好选中乙同学)=13;画树状图得:∵所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=16.。
北师大版九年级数学上册 3.1 用树状图或表格求概率 同步测试试题(无答案)
3.1 用树状图或表格求概率同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在祁家河初中组织的演讲比赛中,七、八年级各有两名同学进入决赛,九年级有一名同学进入决赛,那么九年级同学获得第一名或第二名的概率是()A. B. C. D.2. 某次活动课上,要在某个小组中随机挑选名同学上台表演,已知这个小组共有名男同学,名女同学,那么恰好挑选名男同学和名女同学的概率是()A. B. C. D.3. 两个正四面体骰子的各面上分别标明数字,,,,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于的概率为()A. B. C. D.4. 我市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容,规定:每一位考生必须在三个物理实验(用纸签、、表示)和三个化学实验(用纸签、、表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.小刚抽到物理实验和化学实验的概率是()A. B. C. D.5. 从,,这三个数中,随机抽取两个数相乘,积是正数的概率是()A. B. C. D.6. 如图,甲、乙两个转盘同时转动,两指针指向的数之积不小于的概率是()A. B. C. D.7. 课间休息,小丽在玩抛掷两枚硬币的游戏,她掷出“两个正面朝上”的概率是()A. B. C. D.8. 从,,,这四个数中,随机抽取两个相加,和为偶数的概率为()A. B. C. D.9. 同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A. B. C. D.10. 甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有至的点数,若甲、乙的点数相同时,算两人平手;若甲的点数乙时,算甲获胜;若乙的点数甲时,算乙获胜.则甲获胜的概率是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 学校图书馆有甲、乙两名同学担任志愿者,他们二人各自在周六、日两天中任意选择一天参加图书馆的公益活动,则该图书馆恰好周六、周日都有志愿者参加公益活动的概率是________.12. 一个不透明的布袋里装有个只有颜色不同的球,其中个白球,个红球.从中摸出个球,记下颜色后放回搅匀,再摸出个球.则两次都摸出红球的概率是________.13. 口袋中装有二黄三蓝共个小球,它们大小、形状等完全一样,每次同时摸出两个小球,恰为一黄一蓝的概率是________.14. 掷出两枚一元的硬币,落地后反面都向上的概率是________.15. 在一个不透明的口袋中,装有个红球,个白球,除颜色不同外,其余都相同.先从口袋中随机摸出一个球,放回去,再摸出一个球,则两次摸出都是红球的概率是________.16. 把一副普通扑克牌中的张:方块、梅花、红桃、黑桃,洗匀后数字面朝下放在桌面上,小敏和小华两人同时从中随机各抽取一张牌,两张牌数字之和为偶数的概率是________.17. 在一个不透明的袋中装着个红球和个黄球,它们只有颜色上的区别,随机从袋中摸出个小球,两球恰好是一个黄球和一个红球的概率为________.18. 有两组卡片,第一组的三张卡片上分别写有数字,,,第二组的三张卡片上分别写有数字,,,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为________.19. 周末期间小明和小华到影城看电影,影城同时在四个放映室(室、室、室、室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择取同一间放映室看电影的概率是________.20. 有张看上去无差别的卡片,正面分别写着,,,,,洗匀后正面向下放在桌子上,从中随机抽取张,抽出的卡片上的数字恰好是两个连续整数的概率是________.三、解答题(本题共计5 小题,共计60分,)21. 质地均匀的小正方体,六个面分别有数字“”、“”、“”、“”、“”、“”,同时投掷两枚,观察朝上一面的数字.(1)求数字“”出现的概率;(2)求两个数字之和为偶数的概率.22. 本校有、两个餐厅,甲、乙两名学生各自随机选择其中一个餐厅用餐,请用列表或画树状图的方法解答:(1)甲、乙两名学生在同一餐厅用餐的概率;(2)甲、乙两名学生至少有一人在餐厅的概率.23 某校初中有三名同学被选入参加全国青少年知识竞赛的决赛,此消息被传开之后,九班数学老师,借此事在课堂上请同学们猜一猜、算一算被选入的学生是一个男生和两个女生的概率.王小帅说:共有四种情况:一男二女,一女二男,三男,三女,因此概率是.请你利用树状图,判断王小帅的说法是否正确,写出你的判断过程.24. 某篮球运动员带了件上衣和条短裤(上衣和短裤分别装在两个包里),上衣的颜色是红色和白色,短裤的颜色是红色、白色、黄色.(1)他随意拿出一件上衣和一条短裤配成一套,用画树状图或列表的方法列出所有可能出现的结果.(2)他随意拿出一件上衣和一条短裤,颜色正好相同的概率是多少?25. 小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学上册第三章 3.1用树状图或表格求概率 假期同步测试
一.选择题
1.从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2
+b 2
>19的概率是( ) A .
B .
C .
D .
2.如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()
A.
12 B.13 C.1
4
D.18
3.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .
B .
C .
D .
4.随机闭合开关S 1、S 2、S 3中的两个,能让灯泡⊙发光的概率是( )
A.
43 B.32 C.21 D.3
1
5.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( ) A .点数都是偶数 B .点数的和为奇数 C .点数的和小于13 D .点数的和小于2
6.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数y=x-2图象上的概率是( )
A.21
B.31
C.41
D.6
1 7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2
+4x+c =0有实数解的概率为( ) A .
B .
C .
D .
8.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?( ) A .
B .
C .
D .
9.一个盒子中有4个除颜色外其余都相同的玻璃球,1个红色,1个绿色,2个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为( )
10.甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程ax 2
+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( ) A .
B .
C .
D .
11.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( ) A .
B .
C .
D .
12.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A.B.C.D.
二.填空题
13. 由1,2,3组成不重复的两位数,十位数字是2的概率是_____.
14.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.
15.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.
16.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是.
17.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.
18.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.
三.解答题
19. 如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:
(1)求前8次的指针所指数字的平均数.
(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不
小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)
20.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
21.“十一”黄金周期间,小明要与父母外出游玩,带了2件上衣和3条长裤(把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.
问题为:
(1)小明随意拿出一条裤子和一件上衣配成一套,用(画树状图或列表格)中的一种列出所有
可能出现结果;
配好一套衣服,小明正好拿到黑色长裤的概率是多少;
(3)他任意拿出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?
22.为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
课程人数所占百分比
声乐14 b%
舞蹈8 16%
书法16 32%
摄影 a 24%
合计m 100%
根据以上信息,解答下列问题:
(1)m=,b=.
(2)求出a的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.
23.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出
一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你
根据图中信息解答下列问题:
(1)求本次比赛获奖的总人数,并补全条形统计图;
(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;
(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.
24.我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:
(1)该小区居民在这次随机调查中被调查到的人数是200 人,m=35 ,并补全条形统计图;
(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?
(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)。