2014届高三人教A版数学(理)一轮复习课后作业(31)《数列的概念与简单表示法》Word版含解析

合集下载

2014高考数学一轮汇总训练《数列的综合问题-》理-新人教A版

2014高考数学一轮汇总训练《数列的综合问题-》理-新人教A版

第五节数列的综合问题[备考方向要明了]考什么怎么考能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.1.以递推为背景,考查数列的通项公式与前n项和公式,如2012年新课标全国T16等.2.等差数列、等比数列综合考查数列的基本计算,如2012年T16,T18等.3.考查数列与函数、不等式、解析几何的综合问题,且以解答题的形式出现,如2012年T19等.[归纳·知识整合]1.数列综合应用题的解题步骤(1)审题——弄清题意,分析涉及哪些数学容,在每个数学容中,各是什么问题.(2)分解——把整个大题分解成几个小题或几个“步骤”,每个小题或每个“步骤”分别是数列问题、函数问题、解析几何问题、不等式问题等.(3)求解——分别求解这些小题或这些“步骤”,从而得到整个问题的解答.具体解题步骤如下框图:2.常见的数列模型(1)等差数列模型:通过读题分析,由题意抽象出等差数列,利用等差数列有关知识解决问题.(2)等比数列模型:通过读题分析,由题意抽象出等比数列,利用等比数列有关知识解决问题.(3)递推公式模型:通过读题分析,由题意把所给条件用数列递推式表达出来,然后通过分析递推关系式求解.[探究] 银行储蓄单利公式及复利公式分别是什么模型?提示:单利公式——设本金为a元,每期利率为r,存期为n,则本利和a n=a(1+rn),属于等差数列模型.复利公式——设本金为a元,每期利率为r,存期为n,则本利和a n=a(1+r)n,属于等比数列模型.[自测·牛刀小试]1.(教材习题改编)已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2的值为( )A.-4 B.-6C.-8 D.-10解析:选B 由题意知:a23=a1a4.则(a2+2)2=(a2-2)(a2+4),解得a2=-6.2.已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为( )解析:选A 由于log2x,log2y,2成等差数列,则有2log2y=log2x+2,所以y2=4x.又y>0,x>0,故M的轨迹图象为A.3.在如图所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么x+y+z的值为( )A.1 B.2C.3 D.4解析:选C 由题意知,第三列各数成等比数列,故x=1;第一行第五个数为6,第二行第五个数为3,故z=34;第一行第四个数为5,第二行第四个数为52,故y=54,从而x+y+z=3.4.等比数列{a n}的前n项和为S n,若a1=1,且4a1,2a2,a3成等差数列,则S4=________.解析:设数列{a n}的公比为q,∵4a2=4a1+a3,∴4a1q=4a1+a1q2,即q2-4q+4=0,解得q=2.∴S4=1-241-2=15.答案:152 41 2x yz5.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,若1<S k <9(k ∈N *),则k 的值为________.解析:由S n =23a n -13得当n ≥2时,S n =23(S n -S n -1)-13,即S n =-2S n -1-1. 令S n +p =-2(S n -1+p )得S n =-2S n -1-3p ,可知p =13.故数列⎩⎨⎧⎭⎬⎫S n +13是以-23为首项,以-2为公比的等比数列.则S n +13=-23×(-2)n -1,即S n =-23×(-2)n -1-13.由1<-23×(-2)k -1-13<9,k ∈N *得k =4.答案:4等差数列、等比数列的综合问题[例1] 在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0.(1)求证:数列{b n }是等差数列; (2)求{b n }的前n 项和S n 及{a n }的通项a n . [自主解答] (1)证明:∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n=log 2q 为常数, ∴数列{b n }为等差数列且公差d =log 2q . (2)∵b 1+b 3+b 5=6,∴b 3=2. ∵a 1>1,∴b 1=log 2a 1>0. ∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1.∴S n =4n +n n -12×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n(n ∈N *).在本例(2)的条件下,试比较a n 与S n 的大小. 解:显然a n =25-n>0,当n ≥9时,S n =n 9-n2≤0,∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7, S 8=4,∴当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9时,a n >S n . ——————————————————— 解答数列综合问题的注意事项(1)要重视审题,善于联系,将等差、等比数列与函数、不等式、方程、应用性问题等联系起来.(2)对于等差、等比数列的综合问题,应重点分析等差、等比数列的通项,前n 项和以及等差、等比数列项之间的关系,往往用到转化与化归的思想方法.1.(2013·模拟)已知等差数列{a n }的公差大于零,且a 2,a 4是方程x 2-18x +65=0的两个根;各项均为正数的等比数列{b n }的前n 项和为S n ,且满足b 3=a 3,S 3=13.(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c n =⎩⎪⎨⎪⎧a n ,n ≤5,b n ,n >5,求数列{c n }的前n 项和T n .解:(1)设{a n }的公差为d ,{b n }的公比为q .由x 2-18x +65=0,解得x =5或x =13. 因为d >0,所以a 2<a 4,则a 2=5,a 4=13,则⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,解得a 1=1,d =4.所以a n =1+4(n -1)=4n -3.因为⎩⎪⎨⎪⎧b 3=b 1q 2=9,b 1+b 1q +b 1q 2=13,又q >0,解得b 1=1,q =3. 所以b n =3n -1.(2)当n ≤5时,T n =a 1+a 2+a 3+…+a n =n +n n -12×4=2n 2-n ;当n >5时,T n =T 5+(b 6+b 7+b 8+…b n ) =(2×52-5)+351-3n -51-3=3n-1532.所以T n =⎩⎪⎨⎪⎧2n 2-n ,n ≤5,3n-1532,n >5.数列与函数的综合应用[例2] (2012·高考)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{}x n .(1)求数列{}x n 的通项公式;(2)设{}x n 的前n 项和为S n ,求sin S n .[自主解答] (1)令f ′(x )=12+cos x =0,即cos x =-12,解得x =2k π±23π(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-23π(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-23n π=n (n +1)π-2n π3,所以sin S n =sin ⎣⎢⎡⎦⎥⎤nn +1π-2n π3. 因为n (n +1)表示两个连续正整数的乘积,n (n +1)一定为偶数,所以sin S n=-sin2nπ3.当n =3m -2(m∈N*)时,sin S n=-sin⎝⎛⎭⎪⎫2mπ-43π=-32;当n=3m-1(m∈N*)时,sin S n=-sin⎝⎛⎭⎪⎫2mπ-23π=32;当n=3m(m∈N*)时,sin S n=-sin 2mπ=0.综上所述,sin S n=⎩⎪⎨⎪⎧-32,n=3m-2m∈N*,32,n=3m-1m∈N*,0,n=3m m∈N*.———————————————————解决函数与数列的综合问题应该注意的事项(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.2.已知函数f(x)=x2+x-1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,a n+1=a n-f a nf′a n(n=1,2,…).(1)求α,β的值;(2)已知对任意的正整数n,都有a n>α,记b n=lna n-βa n-α(n=1,2,…),求数列{b n}的前n项和S n.解:(1)由方程x2+x-1=0解得方程的根为x1=-1+52,x2=-1-52,又∵α,β是方程的两个实根,且α>β,∴α=-1+52,β=-1-52.(2)∵f ′(x )=2x +1,∴a n +1=a n -f a n f ′a n =a n -a 2n +a n -12a n +1=a 2n +12a n +1.∵a n >α>β(n =1,2,3,…),且a 1=1, ∴b 1=ln 1-β1-α=ln β2α2=4ln 5+12.或b 1=ln 1-β1-α=ln1--1-521--1+52=ln3+524=2ln3+52=2ln ⎝ ⎛⎭⎪⎫1+522=4ln5+12b n +1=ln a n +1-βa n +1-α=ln a 2n -2βαn -β+1a 2n -2αa n -α+1=lna n -β2-β2-β+1a n -α2-α2-α+1=ln a n -β2a n -α2=2lna n -βa n -α=2b n . 即{b n }是以b 1为首项,2为公比的等比数列. 故数列{b n }的前n 项和S n =b 11-2n1-2=(2n-1)·4ln 5+12=(2n +2-4)ln5+12. 数列与不等式的综合应用[例3] (2012·高考)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.[自主解答] (1)当n =1时,2a 1=a 2-4+1=a 2-3, ① 当n =2时,2(a 1+a 2)=a 3-8+1=a 3-7, ② 又a 1,a 2+5,a 3成等差数列, 所以a 1+a 3=2(a 2+5), ③ 由①②③解得a 1=1.(2)由题设条件可知n≥2时,2S n=a n+1-2n+1+1,④2S n-1=a n-2n+1.⑤④-⑤得2a n=a n+1-a n-2n+1+2n,即a n+1=3a n+2n,整理得a n+1+2n+1=3(a n+2n),则{a n+2n}是以3为首项,3为公比的等比数列.所以a n+2n=(a1+2)·3n-1=3n,即a n=3n-2n(n>1).又a1=1满足上式,故a n=3n-2n.(3)证明:∵1a n=13n-2n=13n·11-⎝⎛⎭⎪⎫23n≤13n·11-23=3·13n,∴1a1+1a2+…+1a n≤3⎝⎛⎭⎪⎫13+132+…+13n=3×13⎝⎛⎭⎪⎫1-13n1-13=32⎝⎛⎭⎪⎫1-13n<32.———————————————————数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法,穿根法等.总之这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.3.等比数列{a n}为递增数列,且a4=23,a3+a5=209,数列b n=log3a n2(n∈N*).(1)求数列{b n}的前n项和S n;(2)T n=b1+b2+b22+…+b2n-1,求使T n>0成立的最小值n.解:(1)∵{a n}是等比数列,设其公比为q,∴⎩⎪⎨⎪⎧a1q3=23,a1q2+a1q4=209,两式相除得,q 1+q 2=310,q =3或q =13, ∵{a n }为递增数列,∴q =3,a 1=281.∴a n =a 1qn -1=281·3n -1=2·3n -5, ∴b n =log 3a n2=n -5,数列{b n }的前n 项和S n =n -4+n -52=12(n 2-9n ). (2)T n =b 1+b 2+b 22+…b 2n -1=(1-5)+(2-5)+(22-5)+…+(2n -1-5)=1-2n1-2-5n >0,即2n>5n +1.∵24<5×4+1,25>5×5+1,∴n min =5(只要给出正确结果,不要求严格证明).数列的实际应用[例4] (2012·高考)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).[自主解答] (1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d . a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d=32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2. 整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d . 由题意,a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000.解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m -1=1 0003m -2m +13m -2m. 故该企业每年上缴资金d 的值为1 0003m -2m +13m -2m时,经过m (m ≥3)年企业的剩余资金为4 000万元.——————————————————— 解决数列实际应用问题的方法解等差数列、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.这其中体现了把实际问题数学化的能力,即数学建模能力.4.某市2010年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2010年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比较首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)解:(1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n n -12×50=25n 2+225n .令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,解得n ≥10.故到2019年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米.(2)设新建住房面积形成数列{b n},由题意可知{b n}是等比数列,其中b1=400,q=1.08,则b n=400×(1.08)n-1.由题意可知a n>0.85b n,有250+(n-1)×50>400×(1.08)n-1×0.85.当n=5时,a5<0.85b5,当n=6时,a6>0.85b6,即满足上述不等式的最小正整数n为6.故到2015年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.1个问题——分期付款问题等比数列中处理分期付款问题的注意事项:(1)准确计算出在贷款全部付清时,各期所付款额及利息(最后一次付款没有利息).(2)明确各期所付的款以及各期所付款到最后一次付款时所生的利息之和,等于商品售价及从购买到最后一次付款时的利息之和,只有掌握了这一点,才可顺利建立等量关系.3个注意——递推、放缩与函数思想的考查(1)数列与解析几何结合时注意递推.(2)数列与不等式相结合时注意对不等式进行放缩.(3)数列与函数相结合时主要考查函数的思想及函数的性质(多为单调性).创新交汇——数列的新定义问题1.数列题目中有时定义一个新数列,然后根据定义的新数列所具备的性质解决有关问题.2.解决新情境、新定义数列问题,首先要根据新情境、新定义进行推理,从而明确考查的是哪些数列知识,然后熟练运用归纳、构造、正难则反、分类与整合等方法进行解题.[典例] (2011·高考)若数列A n:a1,a2,…,a n(n≥2)满足|a k+1-a k|=1(k=1,2,…,n-1),则称A n为E数列.记S(A n)=a1+a2+…+a n.(1)写出一个满足a1=a5=0,且S(A5)>0的E数列A5;(2)若a1=12,n=2 000.证明:E数列A n是递增数列的充要条件是a n=2 011;(3)对任意给定的整数n(n≥2), 是否存在首项为0的E数列A n,使得S(A n)=0?如果存在,写出一个满足条件的E数列A n;如果不存在,说明理由.[解] (1)0,1,2,1,0是一个满足条件的E 数列A 5. (答案不唯一,0,1,0,1,0也是一个满足条件的E 数列A 5) (2)必要性:因为E 数列A n 是递增数列, 所以a k +1-a k =1(k =1,2,…,1 999). 所以A n 是首项为12,公差为1的等差数列. 所以a 2 000=12+(2000-1)×1=2 011. 充分性:由于a 2 000-a 1 999≤1,a 1 999-a 1 998≤1,…a 2-a 1≤1,所以a 2 000-a 1≤1 999,即a 2 000≤a 1+1 999. 又因为a 1=12,a 2 000=2 011, 所以a 2 000=a 1+1 999.故a k +1-a k =1>0(k =1,2,…,1 999),即A n 是递增数列. 综上,结论得证.(3)令c k =a k +1-a k (k =1,2,…,n -1),则c k =±1. 因为a 2=a 1+c 1,a 3=a 1+c 1+c 2,…a n =a 1+c 1+c 2+…+c n -1,所以S (A n )=na 1+(n -1)c 1+(n -2)c 2+(n -3)c 3+…+c n -1=(n -1)+(n -2)+…+1-[(1-c 1)(n -1)+(1-c 2)(n -2)+…+(1-c n -1)]=n n -12-[(1-c 1)(n -1)+(1-c 2)(n -2)+…+(1-c n -1)].因为c k =±1,所以1-c k 为偶数(k =1,…,n -1). 所以(1-c 1)(n -1)+(1-c 2)(n -2)+…+(1-c n -1)为偶数, 所以要使S (A n )=0,必须使n n -12为偶数,即4整除n (n -1),亦即n =4m 或n =4m +1(m ∈N *).当n =4m (m ∈N *)时,E 数列A n 的项满足a 4k -1=a 4k -3=0,a 4k -2=-1,a 4k =1(k =1,2,…,m )时,有a 1=0,S (A n )=0;当n =4m +1(m ∈N *)时,E 数列A n 的项满足a 4k -1=a 4k -3=0,a 4k -2=-1,a 4k =1(k =1,2,…,m ),a 4m +1=0时,有a 1=0,S (A n )=0;当n =4m +2或n =4m +3(m ∈N *)时,n (n -1)不能被4整除,此时不存在E 数列A n ,使得a1=0,S(A n)=0.[名师点评]1.本题具有以下创新点:(1)本题为新定义问题,命题背景新颖.(2)命题方式创新,既有证明题,也有探究性问题,同一个题目中多种方式相结合.2.解决本题要注意以下几个问题:对于此类压轴型新定义数列题,首先要有抢分意识,得一分是一分,多尝试解答,仔细分析,认真翻译;其次,要有运用数学思想方法的意识,如构造、分类等.第(1)问中E数列A5的首尾都是0,则必须先增后减或先减后增,或者摆动;第(2)问条件在后边,因此,前推后是证明条件的必要性,不可颠倒,前推后比较容易,应该先证明;第(3)问和第(1)问相呼应,所以在推理时要善于前后联系,善于发现矛盾,从而找到解决问题的突破口.[变式训练]1.已知数列{a n}:a1,a2,a3,…,a n,如果数列{b n}:b1,b2,b3,…b n满足b1=a n,b k =a k-1+a k-b k-1,其中k=2,3,…,n,则称{b n}为{a n}的“衍生数列”.若数列{a n}:a1,a2,a3,a4的“衍生数列”是5,-2,7,2,则{a n}为______;若n为偶数,且{a n}的“衍生数列”是{b n},则{b n}的“衍生数列”是______.解析:由b1=a n,b k=a k-1+a k-b k-1,k=2,3,…,n可得,a4=5,2=a3+a4-7,解得a3=4.又7=a2+a3-(-2),解得a2=1.由-2=a1+a2-5,解得a1=2,所以数列{a n}为2,1,4,5.由已知,b1=a1-(a1-a n),b2=a1+a2-b1=a2+(a1-a n),….因为n是偶数,所以b n =a n+(-1)n(a1-a n)=a1.设{b n}的“衍生数列”为{c n},则c i=b i+(-1)i(b1-b n)=a i+(-1)i·(a1-a n)+(-1)i(b1-b n)=a i+(-1)i(a1-a n)+(-1)i·(a n-a1)=a i,其中i=1,2,3,…,n.则{b n}的“衍生数列”是{a n}.答案:2,1,4,5 {a n}2.(2012·高考改编)对于项数为m的有穷数列{a n},记b k=max{a1,a2,…,a k}(k=1,2,…,m),即b k为a1,a2,…,a k中的最大值,并称数列{b n}是{a n}的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n}的控制数列为2,3,4,5,5,写出所有的{a n};(2)设{b n}是{a n}的控制数列,满足a k+b m-k+1=C(C为常数,k=1,2,…,m).求证:b k=a k(k=1,2,…,m).解:(1)数列{a n}为:2,3,4,5,1;2,3,4,5,2;2,3,4,5,3;2,3,4,5,4;2,3,4,5,5.(2)证明:因为b k=max{a1,a2,…,a k},b k+1=max{a1,a2,…,a k,a k+1},所以b k+1≥b k.因为a k +b m -k +1=C ,a k +1+b m -k =C , 所以a k +1-a k =b m -k +1-b m -k ≥0,即a k +1≥a k . 因此,b k =a k .一、选择题(本大题共6小题,每小题5分,共30分)1. 等差数列{a n }中,a 3+a 11=8,数列{b n }是等比数列,且b 7=a 7,则b 6·b 8的值( ) A .2 B .4 C .8D .16解析:选D ∵{a n }为等差数列,∴a 7=a 3+a 112=4=b 7.又{b n }为等比数列,∴b 6·b 8=b 27=16.2.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }中连续的三项,则数列{b n }的公比为( )A. 2 B .4 C .2D.12解析:选C 设数列{a n }的公差为d (d ≠0),由a 23=a 1a 7得(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d ,故数列{b n }的公比q =a 3a 1=a 1+2d a 1=2a 1a 1=2.3.(2013·模拟)满足a 1=1,log 2a n +1=log 2a n +1(n ∈N *),它的前n 项和为S n ,则满足S n >1 025的最小n 值是( )A .9B .10C .11D .12解析:选C 因为a 1=1,log 2a n +1=log 2a n +1(n ∈N *),所以a n +1=2a n ,a n =2n -1,S n =2n -1,则满足S n >1 025的最小n 值是11.4.根据市场调查结果,预测某种家用商品从年初开始的n 个月累积的需求量S n (万件)近似地满足关系式S n =n90(21n -n 2-5)(n =1,2,…,12),按此预测,在本年度,需求量超过1.5万件的月份是( )A .5、6月B .6、7月C .7、8月D .8、9月解析:选C 由S n 解出a n =130(-n 2+15n -9),再解不等式130(-n 2+15n -9)>1.5,得6<n <9.5.数列{a n }的通项a n =n 2⎝⎛⎭⎪⎫cos 2n π3-sin2n π3,其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510解析:选A 注意到a n =n 2cos 2n π3,且函数y =cos 2πx 3的最小正周期是3,因此当n是正整数时,a n +a n +1+a n +2=-12n 2-12(n +1)2+(n +2)2=3n +72,其中n =1,4,7…,S 30=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 28+a 29+a 30)=⎝ ⎛⎭⎪⎫3×1+72+⎝ ⎛⎭⎪⎫3×4+72+…+⎝ ⎛⎭⎪⎫3×28+72=3×10×1+282+72×10=470.6.(2013·模拟)在数列{a n }中,对任意n ∈N *,都有a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”.下面对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列; ③等比数列一定是等差比数列;④通项公式为a n =a ·b n+c (a ≠0,b ≠0,1)的数列一定是等差比数列. 其中正确的判断为( ) A .①② B .②③ C .③④D .①④解析:选D 若k =0时,则a n +2-a n +1=0,因为a n +2-a n +1可能为分母,故无意义,故k 不可能为0,①正确;若等差、等比数列为常数列,则②③错误;由定义知④正确.二、填空题(本大题共3小题,每小题5分,共15分)7.(2013·模拟)设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.解析:由x 2-x <2nx (n ∈N *), 得0<x <2n +1, 因此知a n =2n . 故S 100=1002+2002=10 100.答案:10 1008.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析:依题意得,函数y =x 2(x >0)的图象在点( a k ,a 2k )处的切线方程是y -a 2k =2a k (x-a k ).令y =0得x =12a k ,即a k +1=12a k ,因此数列{a k }是以16为首项,12为公比的等比数列,所以a k =16·⎝ ⎛⎭⎪⎫12k -1=25-k,a 1+a 3+a 5=16+4+1=21.答案:219.气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910(n ∈N *)元,使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均耗资最少),一共使用了________天.解析:由第n 天的维修保养费为n +4910(n ∈N *)元,可以得出观测仪的整个耗资费用,由平均费用最少而求得最小值成立时的相应n 的值.由题意知使用n 天的平均耗资为3.2×104+⎝⎛⎭⎪⎫5+n +4910n 2n=3.2×104n+n20+9920,当且仅当3.2×104n =n20时取得最小值,此时n =800. 答案:800三、解答题(本大题共3小题,每小题12分,共36分) 10.设同时满足条件:①b n +b n +22≥b n +1;②b n ≤M (n ∈N *,M 是常数)的无穷数列{b n }叫“嘉文”数列.已知数列{a n }的前n 项和S n 满足S n =aa -1(a n -1)(a 为常数,且a ≠0,a ≠1).(1)求数列{a n }的通项公式;(2)设b n =2S na n+1,若数列{b n }为等比数列,求a 的值,并证明数列⎩⎨⎧⎭⎬⎫1b n 为“嘉文”数列.解:(1)因为S 1=aa -1(a 1-1)=a 1,所以a 1=a .当n ≥2时,a n =S n -S n -1=a a -1(a n -a n -1),整理得a na n -1=a ,即数列{a n }是以a 为首项,a 为公比的等比数列.所以a n =a · a n -1=a n .(2)由(1)知,b n =2×aa -1a n -1a n +1=3a -1a n -2aa -1a n,(*)由数列{b n }是等比数列,则b 22=b 1·b 3,故⎝ ⎛⎭⎪⎫3a +2a 2=3·3a 2+2a +2a 2,解得a =13,再将a =13代入(*)式得b n =3n,故数列{b n }为等比数列,所以a =13.由于1b n +1b n +22=13n +13n +22>213n ·13n +22=13n +1=1b n +1,满足条件①;由于1b n =13n ≤13,故存在M ≥13满足条件②.故数列⎩⎨⎧⎭⎬⎫1b n 为“嘉文”数列.11.已知正项数列{a n },{b n }满足:a 1=3,a 2=6,{b n }是等差数列,且对任意正整数n ,都有b n ,a n ,b n +1成等比数列.(1)求数列{b n }的通项公式;(2)设S n =1a 1+1a 2+…+1a n ,试比较2S n 与2-b 2n +1a n +1的大小.解:(1)∵对任意正整数n ,都有b n ,a n ,b n +1成等比数列,且数列{a n },{b n }均为正项数列,∴a n =b n b n +1(n ∈N *).由a 1=3,a 2=6得⎩⎪⎨⎪⎧a 1=b 1b 2=3,a 2=b 2b 3=6,又{b n }为等差数列,即有b 1+b 3=2b 2,解得b 1=2,b 2=322,∴数列{b n }是首项为2,公差为22的等差数列. ∴数列{b n }的通项公式为b n =2n +12(n ∈N *).(2)由(1)得,对任意n ∈N *,a n =b n b n +1=n +1n +22,从而有1a n=2n +1n +2=2⎝⎛⎭⎪⎫1n +1-1n +2,∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=1-2n +2. ∴2S n =2-4n +2.又2-b 2n +1a n +1=2-n +2n +3,∴2S n -⎝ ⎛⎭⎪⎫2-b 2n +1a n +1=n +2n +3-4n +2=n 2-8n +2n +3. ∴当n =1,n =2时,2S n <2-b 2n +1a n +1;当n ≥3时,2S n >2-b 2n +1a n +1.12.已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f (x )=x 2+2x 的图象上,且过点P n (n ,S n )的切线的斜率为k n .(1)求数列{a n }的通项公式;(2)若b n =2kn a n ,求数列{b n }的前n 项和T n ;(3)设Q ={x |x =k n ,n ∈N *},R ={x |x =2a n ,n ∈N *},等差数列{c n }的任一项c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,110<c 10<115,求{c n }的通项公式.解:(1)∵点P n (n ,S n )都在函数f (x )=x 2+2x 的图象上, ∴S n =n 2+2n (n ∈N *).当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=3满足上式,所以数列{a n }的通项公式为a n =2n +1. (2)由f (x )=x 2+2x 求导可得f ′(x )=2x +2. ∵过点P n (n ,S n )的切线的斜率为k n , ∴k n =2n +2.∴b n =2k n a n =4·(2n +1)·4n.∴ T n =4×3×41+4×5×42+4×7×43+…+4×(2n +1)×4n.① 由①×4,得4T n =4×3×42+4×5×43+4×7×44+…+4×(2n +1)×4n +1.②①-②得-3T n =4[3×4+2×(42+43+…+4n )-(2n +1)×4n +1]=4⎣⎢⎡⎦⎥⎤3×4+2×421-4n -11-4-()2n +1×4n +1, ∴T n =6n +19·4n +2-169.(3)∵Q ={x |x =2n +2,n ∈N *},R ={x |x =4n +2,n ∈N *},∴Q ∩R =R . 又∵c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,∴c 1=6. ∵{c n }的公差是4的倍数,∴c 10=4m +6(m ∈N *). 又∵110<c 10<115,∴⎩⎪⎨⎪⎧110<4m +6<115,m ∈N *,解得m =27.∴c 10=114. 设等差数列的公差为d , 则d =c 10-c 110-1=114-69=12,∴c n=6+(n-1)×12=12n-6.∴{c n}的通项公式为c n=12n-6.1.已知公差不为0的等差数列{a n}的首项a1为a(a∈R).设数列的前n项和为S n,且1a1,1a2,1a4成等比数列.(1)求数列{a n}的通项公式及S n;(2)设A n=1S1+1S2+1S3+…+1S n,B n=1a1+1a2+1a22+…+1a2n-1.当n≥2时,试比较A n与B n 的大小.解:(1)设等差数列{a n}的公差为d,由⎝⎛⎭⎪⎫1a22=1a1·1a4,得(a1+d)2=a1(a1+3d).因为d≠0,所以d=a1=a.所以a n=na,S n=an n+12.(2)因为1S n=2a⎝⎛⎭⎪⎫1n-1n+1,所以A n=1S1+1S2+1S3+…+1S n=2a⎝⎛⎭⎪⎫1-1n+1.因为a2n-1=2n-1a,所以B n=1a1+1a2+1a22+…+1a2n-1=1a·1-⎝⎛⎭⎪⎫12n1-12=2a⎝⎛⎭⎪⎫1-12n.当n≥2时,2n=C0n+C1n+C2n+…+C n n>n+1,即1-1n+1<1-12n,所以,当a>0时,A n<B n;当a<0时,A n>B n.2.已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b(单位:m2)的旧住房.(1)分别写出第1年末和第2年末的实际住房面积的表达式;(2)如果第5年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15≈1.6)解:(1)第1年末的住房面积为a ·1110-b =1.1a -b (m 2),第2年末的住房面积为⎝ ⎛⎭⎪⎫a ·1110-b ·1110-b =a ·⎝ ⎛⎭⎪⎫11102-b ⎝ ⎛⎭⎪⎫1+1110=1.21a -2.1b (m 2). (2)第3年末的住房面积为⎣⎢⎡⎦⎥⎤a ·⎝ ⎛⎭⎪⎫11102-b ⎝ ⎛⎭⎪⎫1+1110·1110-b =a ·⎝ ⎛⎭⎪⎫11103-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102(m 2),第4年末的住房面积为a ·⎝ ⎛⎭⎪⎫11104-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102+⎝ ⎛⎭⎪⎫11103(m 2),第5年末的住房面积为a ·⎝ ⎛⎭⎪⎫11105-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102+⎝ ⎛⎭⎪⎫11103+⎝ ⎛⎭⎪⎫11104=1.15a -1-1.151-1.1b ≈1.6a -6b (m 2).依题意可知,1.6a -6b =1.3a ,解得b =a 20,所以每年拆除的旧住房面积为a20 m 2.3.已知数列{a n }的前n 项和S n 满足S n +1=kS n +2(n ∈N *),且a 1=2,a 2=1. (1)求k 的值和S n 的表达式; (2)是否存在正整数m ,n ,使得S n -m S n +1-m <12成立?若存在,求出这样的正整数;若不存在,请说明理由.解:(1)由条件S n +1=kS n +2(n ∈N *),得S 2=kS 1+2, 即a 1+a 2=ka 1+2,∵a 1=2,a 2=1,∴2+1=2k +2,得k =12.于是,S n +1=12S n +2,设S n +1+x =12(S n +x ),即S n +1=12S n -12x ,令-12x =2,得x =-4,∴S n +1-4=12(S n -4),即数列{S n -4}是首项为-2,公比为12的等比数列.∴S n -4=(-2)·⎝ ⎛⎭⎪⎫12n -1,即S n =4⎝ ⎛⎭⎪⎫1-12n (n ∈N *).(2)由不等式S n -m S n +1-m <12,得4⎝ ⎛⎭⎪⎫1-12n -m 4⎝ ⎛⎭⎪⎫1-12n +1-m <12,即2n4-m -42n4-m -2<12.令t =2n(4-m ),则不等式变为t -4t -2<12, 解得2<t <6,即2<2n(4-m )<6.假设存在正整数m ,n ,使得上面的不等式成立,由于2n为偶数,4-m 为整数,则只能是2n(4-m )=4,∴⎩⎪⎨⎪⎧2n=2,4-m =2,或⎩⎪⎨⎪⎧2n=4,4-m =1.解得⎩⎪⎨⎪⎧m =2,n =1,或⎩⎪⎨⎪⎧m =3,n =2.于是,存在正整数m =2,n =1或m =3,n =2, 使得S n -m S n +1-m <12成立.由递推公式求通项的7种方法及破解数列中的4类探索性问题一、由递推公式求通项的7种方法 1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n ,求a n .[解] 由条件,知a n +1-a n =1n 2+n =1nn +1=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n ,所以a n -a 1=1-1n.因为a 1=12,所以a n =12+1-1n =32-1n .2.a n +1=f (n )a n 型 把原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a na 1=f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n ,求a n .[解] 由a n +1=n n +1·a n ,得a n +1a n =nn +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n. 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =qp -1,可令a n +1+t =b n +1换元即可转化为等比数列来解决.[例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3). 令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以b 1=4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3.4.a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0)型 (1)一般地,要先在递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n qn ,得b n +1=p q ·b n +1q,再用待定系数法解决; (2)也可以在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ·⎝ ⎛⎭⎪⎫q p n,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q pn ,再利用叠加法(逐差相加法)求解. [例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,求a n .[解] 法一:在a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1.令b n =2n·a n ,则b n +1=23b n +1,根据待定系数法,得b n +1-3=23(b n -3).所以数列{b n -3}是以b 1-3=2×56-3=-43为首项,以23为公比的等比数列. 所以b n -3=-43·⎝ ⎛⎭⎪⎫23n -1,即b n =3-2⎝ ⎛⎭⎪⎫23n.于是,a n =b n 2n =3⎝ ⎛⎭⎪⎫12n -2⎝ ⎛⎭⎪⎫13n.法二:在a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边乘以3n +1,得3n +1a n +1=3n a n +⎝ ⎛⎭⎪⎫32n +1. 令b n =3n·a n ,则b n +1=b n +⎝ ⎛⎭⎪⎫32n +1.所以b n -b n -1=⎝ ⎛⎭⎪⎫32n ,b n -1-b n -2=⎝ ⎛⎭⎪⎫32n -1,…,b 2-b 1=⎝ ⎛⎭⎪⎫322. 将以上各式叠加,得b n -b 1=⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n.又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n=1·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n +11-32=2⎝ ⎛⎭⎪⎫32n +1-2,即b n =2⎝ ⎛⎭⎪⎫32n +1-2.故a n =b n 3n =3⎝ ⎛⎭⎪⎫12n -2⎝ ⎛⎭⎪⎫13n.5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n . [解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧2A =2,2B -3A =-1,解得⎩⎪⎨⎪⎧A =1,B =1.令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n,代入(*)式,得a n =2·3n-n -1. 6.a n +1=pa rn (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a·a 2n (a >0),求数列{a n }的通项公式.[解] 对a n +1=1a·a 2n 的两边取对数,得lg a n +1=2lg a n +lg 1a.令b n =lg a n ,则b n +1=2b n +lg 1a.由此得b n +1+lg 1a=2⎝ ⎛⎭⎪⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n ,所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列.所以c n =2n -1·lg 1a.所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎢⎡⎦⎥⎤a ·⎝ ⎛⎭⎪⎫1a2n -1=lg a 1-2n,即lg a n =lg a 1-2n,所以a n =a1-2n.7.a n +1=Aa nBa n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n2a n +1,n =1,2,3,…,求{a n }的通项公式.[解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n,∴1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1.又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列,∴1a n -1=23·13n -1=23n , ∴a n =3n3n +2.二、破解数列中的4类探索性问题 1.条件探索性问题此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.[例1] 已知数列{a n }中,a 1=2,a 2=3,其前n 项和S n 满足S n +2+S n =2S n +1+1(n ∈N *);数列{b n }中,b 1=a 1,b n +1=4b n +6(n ∈N *).(1)求数列{a n },{b n }的通项公式; (2)设c n =b n +2+(-1)n -1λ·2a n (λ为非零整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有c n +1>c n 成立.[解] (1)由已知得S n +2-S n +1-(S n +1-S n )=1, 所以a n +2-a n +1=1(n ≥1). 又a 2-a 1=1,所以数列{a n }是以a 1=2为首项,1为公差的等差数列. 所以a n =n +1.因为b n +1=4b n +6,即b n +1+2=4(b n +2),又b 1+2=a 1+2=4, 所以数列{b 2+2}是以4为公比,4为首项的等比数列. 所以b n =4n-2.(2)因为a n =n +1,b n =4n-2, 所以c n =4n+(-1)n -1λ·2n +1.要使c n +1>c n 成立,需c n +1-c n =4n +1-4n+(-1)nλ·2n +2-(-1)n -1λ·2n +1>0恒成立,化简得3·4n -3λ(-1)n -12n +1>0恒成立,即(-1)n -1λ<2n -1恒成立,①当n 为奇数时,即λ<2n -1恒成立,当且仅当n =1时,2n -1有最小值1,所以λ<1;②当n 为偶数时,即λ>-2n -1恒成立,当且仅当n =2时,-2n -1有最大值-2,所以λ>-2,即-2<λ<1.又λ为非零整数,则λ=-1.综上所述,存在λ=-1,使得对任意n ∈N *,都有c n +1>c n 成立.[点评] 对于数列问题,一般要先求出数列的通项,不是等差数列和等比数列的要转化为等差数列或等比数列.遇到S n 要注意利用S n 与a n 的关系将其转化为a n ,再研究其具体性质.遇到(-1)n型的问题要注意分n 为奇数与偶数两种情况进行讨论,本题易忘掉对n 的奇偶性的讨论而致误.2.结论探索性问题此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论.[例2] 已知各项均为正数的数列{a n }满足:a 2n +1=2a 2n +a n a n +1,且a 2+a 4=2a 3+4,其中n ∈N *.(1)求数列{a n }的通项公式; (2)设数列{b n }满足:b n =na n2n +12n ,是否存在正整数m ,n (1<m <n ),使得b 1,b m ,b n成等比数列?若存在,求出所有的m ,n 的值,若不存在,请说明理由;(3)令c n =1+n a n,记数列{c n }的前n 项积为T n ,其中n ∈N *,试比较T n 与9的大小,并加以证明.[解] (1)因为a 2n +1=2a 2n +a n a n +1, 即(a n +a n +1)(2a n -a n +1)=0.又a n >0,所以2a n -a n +1=0,即2a n =a n +1. 所以数列{a n }是公比为2的等比数列.由a 2+a 4=2a 3+4,得2a 1+8a 1=8a 1+4,解得a 1=2. 故数列{a n }的通项公式为a n =2n(n ∈N *). (2)因为b n =na n2n +12n=n2n +1, 所以b 1=13,b m =m 2m +1,b n =n2n +1.若b 1,b m ,b n 成等比数列,则⎝ ⎛⎭⎪⎫m 2m +12=13⎝ ⎛⎭⎪⎫n 2n +1,即m 24m 2+4m +1=n6n +3.。

2014届高考人教A版数学(理)一轮复习单元训练数列(二)

2014届高考人教A版数学(理)一轮复习单元训练数列(二)

数列(二)(时间:40分钟 满分:75分)一、选择题(每小题5分,共50分)1.在等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ).A .1+ 2B .1- 2C .3+2 2D .3-2 2解析 设等比数列{a n }的公比为q (q >0),则由题意得a 3=a 1+2a 2,所以a 1q 2=a 1+2a 1q ,所以q 2-2q -1=0,解得q =1±2.又q >0,因此有q =1+2,故a 9+a 10a 7+a 8=q 2(a 7+a 8)a 7+a 8=q 2=(1+2)2=3+2 2. 答案 C2.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则 ( ).A.a 4S 4=a 6S 6 B.a 4S 4>a 6S 6C.a 4S 4<a 6S 6D.a 4S 4≤a 6S 6解析 由题意得q >0,当q =1时, 有a 4S 4-a 6S 6=14-16>0,即a 4S 4>a 6S 6; 当q ≠1时,有a 4S 4-a 6S 6=a 1q 3(1-q )a 1(1-q 4)-a 1q 5(1-q )a 1(1-q 6)=q 3(1-q )·1-q 2(1-q 4)(1-q 6)=q 31+q 2·1-q1-q 6>0,所以a 4S 4>a 6S 6.综上所述,应选B.答案 B3.(2013·广东六校联考)在等差数列{a n }中,a 3+a 11=8,数列{b n }是等比数列,且b 7=a 7,则b 6·b 8的值为( ).A .2B .4C .8D .16解析 ∵{a n }为等差数列,∴a 7=a 3+a 112=4=b 7.又{b n }为等比数列,∴b 6·b 8=b 27=16.答案 D4.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的取值为( ).A .5B .6C .4D .7解析 由S 10>0,S 11<0,知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5,选A. 答案 A5.等差数列{a n }的前n 项和记为S n ,若a 2+a 6+a 10为一个确定的常数,则下列各数中也可以确定的是( ).A .S 6B .S 11C .S 12D .S 13解析 若m +n =2p ,则a m +a n =2a p .由a 2+a 6+a 10=3a 6为常数,则a 6为常数,∴S 11=11×(a 1+a 11)2=11a 6为常数.答案 B6.等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则其中间项等于( ).A .145B .203C .109D .29解析 因为等差数列共有奇数项,项数为2n +1,所以S 奇=(n +1)a 中,S 偶=na 中,中间项a 中=S 奇-S 偶=319-290=29. 答案 D7.已知数列{a n }的首项a 1=1,并且对任意n ∈N *都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N *)为坐标的点在曲线y =12x (x +1)上运动,则数列{a n }的通项公式为( ).A .a n =n 2+1B .a n =n 2C .a n =n +1D .a n =n解析 由题意,得S n =12a n (a n +1), ∴S n -1=12a n -1(a n -1+1)(n ≥2). 作差,得a n =12(a 2n -a 2n -1+a n -a n -1), 即(a n +a n -1)(a n -a n -1-1)=0. ∵a n >0(n ∈N *),∴a n -a n -1-1=0, 即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n (n ∈N *). 答案 D8.在等差数列{a n }中,若3a 5=8a 12>0,S n 是等差数列{a n }的前n 项之和,则S n取得最大值时,n =( ).A .12B .14C .16D .18解析 因为在等差数列中,3a 5=8a 12,所以5a 5+56d =0,又因为a 5>0,所以a 1>0,d <0且d =-576a 1,S n =na 1+n (n -1)2d =a 1152(157n -5n 2),当n =15.7时,S n 取得最大值,因为n ∈N *,所以S n 取得最大值时n =16. 答案 C9.如果函数f (x )对任意a ,b 满足f (a +b )=f (a )·f (b ),且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2 012)f (2 011)=( ).A .4 016B .1 004C .2 008D .2 012解析 由f (a +b )=f (a )·f (b ),可得f (n +1)=f (n )·f (1),f (n +1)f (n )=f (1)=2,所以f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2 012)f (2 011)=2×1 006=2 012. 答案 D10.定义运算“*”,对任意a ,b ∈R ,满足①a *b =b *a ;②a *0=a ;(3)(a *b )*c =c *(ab )+(a *c )+(c *b ).设数列{a n }的通项为a n =n *1n *0,则数列{a n }为 ( ).A .等差数列B .等比数列C .递增数列D .递减数列解析 由题意知a n =⎝ ⎛⎭⎪⎫n *1n *0=0]n ·1n +(n *0)+⎝ ⎛⎭⎪⎫0]1n )=1+n +1n ,显然数列{a n }既不是等差数列也不是等比数列;又函数y =x +1x 在[1,+∞)上为增函数,所以数列{a n }为递增数列. 答案 C二、填空题(每小题5分,共25分)11.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则等比数列{a n }的公比为________.解析 设等比数列{a n }的公比为q (q ≠0),由4S 2=S 1+3S 3,得4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2), 即3q 2-q =0,又q ≠0,∴q =13. 答案 1312.设数列{a n }的通项公式为a n =2n -7(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.解析 由a n =2n -7≤0,得n ≤72,即a i ≤0(i =1,2,3),记S n 为数列{a n }的前n 项和,易得S n =a 1+a 2+…+a n =n 2+n -7n =n 2-6n .所以|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=-2S 3+S 15=-2×(-9)+135=153. 答案 153 13.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x+y +n =0在y 轴上的截距为________. 解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910,∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9. 答案 -914.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=13S n (n ≥1),则a n =________. 解析 ∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2).两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒a n +1a n =43(n ≥2)⇒n ≥2时,数列{a n }是以43为公比,以a 2为首项的等比数列,∴n ≥2时,a n =a 2·⎝ ⎛⎭⎪⎫43n -2. 令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=13, ∴a n =13⎝ ⎛⎭⎪⎫43n -2(n ≥2),故a n =⎩⎪⎨⎪⎧ 1,n =1,13⎝ ⎛⎭⎪⎫43n -2,n ≥2.答案 ⎩⎪⎨⎪⎧1,n =113⎝ ⎛⎭⎪⎫43n -2,n ≥215.(2013·南通模拟)在数列{a n }中,若a 2n -a 2n +1=p (n ≥1,n ∈N *,p 为常数),则称{a n }为“等方差数列”,下列是对“等方差数列”的判断: ①若{a n }是等方差数列,则{a 2n }是等差数列; ②{(-1)n }是等方差数列;③若{a n }是等方差数列,则{a kn }(k ∈N *,k 为常数)也是等方差数列. 其中真命题的序号为________(将所有真命题的序号填在横线上).解析 ①正确,因为a 2n -a 2n +1=p ,所以a 2n +1-a 2n =-p ,于是数列{a 2n }为等差数列.②正确,因为(-1)2n -(-1)2(n +1)=0为常数,于是数列{(-1)n }为等方差数列.③正确,因为a 2kn -a 2kn +k =(a 2kn -a 2kn +1)+(a 2kn +1-a 2kn +2)+(a 2kn +2-a 2kn +3)+…+(a 2kn +k -1-a 2kn +k )=kp ,则{a kn }(k ∈N *,k 为常数)也是等方差数列.答案 ①②③。

2014届高考一轮复习数学基础知识数列(新人教A版)Word版

2014届高考一轮复习数学基础知识数列(新人教A版)Word版

高中数学第三章数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题.§03. 数列知识要点1. ⑴等差、等比数列:⑵看数列是不是等差数列有以下三种方法:①②2()③(为常数).⑶看数列是不是等比数列有以下四种方法:①②(,)①注①:i. ,是a、b、c成等比的双非条件,即a、b、c等比数列.ii. (ac>0)→为a、b、c等比数列的充分不必要.iii. →为a、b、c等比数列的必要不充分.iv. 且→为a、b、c等比数列的充要.注意:任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.③(为非零常数).④正数列{}成等比的充要条件是数列{}()成等比数列.⑷数列{}的前项和与通项的关系:[注]:①(可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若不为0,则是等差数列充分条件).②等差{}前n项和→可以为零也可不为零→为等差的充要条件→若为零,则是等差数列的充分条件;若不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)2. ①等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍;②若等差数列的项数为2,则;③若等差数列的项数为,则,且,.3. 常用公式:①1+2+3 …+n =②③[注]:熟悉常用通项:9,99,999,…;5,55,555,….4. 等比数列的前项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为. 其中第年产量为,且过年后总产量为:⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款: =.⑶分期付款应用题:为分期付款方式贷款为a 元;m 为m 个月将款全部付清;为年利率. ()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m mm mm m mr r ar x r r x r a x r x r x r x r a 5. 数列常见的几种形式:⑴(p 、q 为二阶常数)用特证根方法求解.具体步骤:①写出特征方程(对应,x 对应),并设二根②若可设,若可设;③由初始值确定. ⑵(P 、r 为常数)用①转化等差,等比数列;②逐项选代;③消去常数n 转化为的形式,再用特征根方法求;④(公式法),由确定. ①转化等差,等比:. ②选代法: .③用特征方程求解:. ④由选代法推导结果:. 6. 几种常见的数列的思想方法:⑴等差数列的前项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法: 一是求使,成立的值;二是由利用二次函数的性质求的值.⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前项和可依照等比数列前项和的推倒导方法:错位相减求和. 例如:⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证为同一常数。

[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第六篇 第1讲 数列的概念与简单表示法

[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第六篇 第1讲 数列的概念与简单表示法

第六篇数列第1讲数列的概念与简单表示法A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.在数列{a n}中,a1=1,a2=5,a n+2=a n+1-a n(n∈N*),则a100等于().A.1 B.-1 C.2 D.0解析法一由a1=1,a2=5,a n+2=a n+1-a n(n∈N*),可得该数列为1,5,4,-1,-5,-4,1,5,4,….由此可得此数列周期为6,故a100=-1.法二a n+2=a n+1-a n,a n+3=a n+2-a n+1,两式相加可得a n+3=-a n,a n+6=a n,∴a100=a16×6+4=a4=-1.答案 B2.已知S n是数列{a n}的前n项和,S n+S n+1=a n+1(n∈N*),则此数列是().A.递增数列B.递减数列C.常数列D.摆动数列解析∵S n+S n+1=a n+1,∴当n≥2时,S n-1+S n=a n.两式相减得a n+a n+1=a n+1-a n,∴a n=0(n≥2).当n=1时,a1+(a1+a2)=a2,∴a1=0,∴a n=0(n∈N*),故选C.答案 C3.(2013·北京朝阳区一模)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=( ). A .-16 B .16 C .31 D .32解析 当n =1时,S 1=a 1=2a 1-1,∴a 1=1,又S n -1=2a n -1-1(n ≥2),∴S n -S n -1=a n =2(a n -a n -1).∴a n a n -1=2.∴a n =1×2n -1,∴a 5=24=16. 答案 B4.(2013·山东省实验中学测试)将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 014项与5的差即a 2 014-5=( ).A .2 020×2 012B .2 020×2 013C .1 010×2 012D .1 010×2 013解析 结合图形可知,该数列的第n 项a n =2+3+4+…+(n +2).所以a 2 014-5=4+5+…+2 016=2 013×1 010.故选D.答案 D二、填空题(每小题5分,共10分)5.数列{a n }的通项公式a n =-n 2+10n +11,则该数列前________项的和最大. 解析 易知a 1=20>0,显然要想使和最大,则应把所有的非负项求和即可,这样只需求数列{a n }的最末一个非负项.令a n ≥0,则-n 2+10n +11≥0,∴-1≤n ≤11,可见,当n =11时,a 11=0,故a 10是最后一个正项,a 11=0,故前10或11项和最大.答案 10或116.(2013·杭州调研)已知数列{a n }满足a 1=1,且a n =n (a n +1-a n )(n ∈N *),则a 2=________;a n =________.解析 由a n =n (a n +1-a n ),可得a n +1a n=n +1n , 则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n n -1×n -1n -2×n -2n -3×…×21×1=n ,∴a 2=2,a n =n .答案 2 n三、解答题(共25分)7.(12分)在数列{a n }中,a 1=1,112a n =14a n -1+13(n ≥2),求{a n }的通项公式.解 ∵112a n =14a n -1+13(n ≥2),∴a n =3a n -1+4,∴a n +2=3(a n -1+2).又a 1+2=3,故数列{a n +2}是首项为3,公比为3的等比数列.∴a n +2=3n , 即a n =3n -2.8.(13分)(2013·西安质检)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.在数列{x n }中,若x 1=1,x n +1=1x n +1-1,则x 2 013= ( ).A .-1B .-12 C.12 D .1 解析 将x 1=1代入x n +1=1x n +1-1,得x 2=-12,再将x 2代入x n +1=1x n +1-1, 得x 3=1,所以数列{x n }的周期为2,故x 2 013=x 1=1.答案 D2.定义运算“*”,对任意a ,b ∈R ,满足①a *b =b *a ;②a *0=a ;(3)(a *b )*c =c *(ab )+(a *c )+(c *b ).设数列{a n }的通项为a n =n *1n *0,则数列{a n }为( ).A .等差数列B .等比数列C .递增数列D .递减数列解析 由题意知a n =⎝ ⎛⎭⎪⎫n *1n *0=0]n ·1n +(n *0)+⎝ ⎛⎭⎪⎫0]1n )=1+n +1n ,显然数列{a n } 既不是等差数列也不是等比数列;又函数y =x +1x 在[1,+∞)上为增函数,所以数列{a n }为递增数列.答案 C二、填空题(每小题5分,共10分)3.(2013·合肥模拟)已知f (x )为偶函数,f (2+x )=f (2-x ),当-2≤x ≤0时,f (x )=2x ,若n ∈N *,a n =f (n ),则a 2 013=________.解析 ∵f (x )为偶函数,∴f (x )=f (-x ),∴f (x +2)=f (2-x )=f (x -2).故f (x )周期为4,∴a 2 013=f (2 013)=f (1)=f (-1)=2-1=12.答案 124.(2012·太原调研)设函数f (x )=⎩⎨⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________.解析 ∵数列{a n }是递增数列,又a n =f (n )(n ∈N *),∴⎩⎨⎧ 3-a >0,a >1,f (8)>f (7)⇒2<a <3.答案 (2,3) 三、解答题(共25分)5.(12分)(2013·杭州模拟)设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.解 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,当n =1时,a 1=a 不适合上式,故a n =⎩⎨⎧a ,n =1,2×3n -1+(a -3)2n -2,n ≥2. a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).6.(13分)(2012·山东)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m}的前m项和S m.解(1)因为{a n}是一个等差数列,所以a3+a4+a5=3a4=84,即a4=28.设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9. 由a4=a1+3d得28=a1+3×9,即a1=1.所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).(2)对m∈N*,若9m<a n<92m,则9m+8<9n<92m+8,因此9m-1+1≤n≤92m-1,故得b m=92m-1-9m-1.于是S m=b1+b2+b3+…+b m=(9+93+…+92m-1)-(1+9+…+9m-1)=9×(1-81m)1-81-1-9m1-9=92m+1-10×9m+180.。

贵州省2014届高三复习理科数学(人教A)三管齐下:32数列的综合应用 含解析

贵州省2014届高三复习理科数学(人教A)三管齐下:32数列的综合应用 含解析

32数列的综合应用导学目标:1.通过构造等差、等比数列模型,运用数列的公式、性质解决简单的实际问题.2。

对数列与其他知识综合性的考查也高于考试说明的要求,另外还要注重数列在生产、生活中的应用.自主梳理1.数列的综合应用数列的综合应用一是指综合运用数列的各种知识和方法求解问题,二是数列与其他数学内容相联系的综合问题.解决此类问题应注意数学思想及方法的运用与体会.(1)数列是一种特殊的函数,解数列题要注意运用方程与函数的思想与方法.(2)转化与化归思想是解数列有关问题的基本思想方法,复杂的数列问题经常转化为等差、等比数列或常见的特殊数列问题.(3)由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想.已知数列的前若干项求通项,由有限的特殊事例推测出一般性的结论,都是利用此法实现的.(4)分类讨论思想在数列问题中常会遇到,如等比数列中,经常要对公比进行讨论;由S n求a n时,要对______________进行分类讨论.2.数列的实际应用数列的应用问题是中学数学教学与研究的一个重要内容,解答应用问题的核心是建立数学模型.(1)建立数学模型时,应明确是等差数列模型、等比数列模型,还是递推数列模型,是求a n还是求S n.(2)分期付款中的有关规定①在分期付款中,每月的利息均按复利计算;②在分期付款中规定每期所付款额相同;③在分期付款时,商品售价和每期所付款额在贷款全部付清前会随时间的推移而不断增值;④各期付款连同在最后一次付款时所生的利息之和,等于商品售价及从购买时到最后一次付款的利息之和.自我检测1.(原创题)若S n是等差数列{a n}的前n项和,且S8-S3=10,则S11的值为()A.12 B.18C.22 D.442.(2011·汕头模拟)在等比数列{a n}中,a n>a n+1,且a7·a11=6,a4+a14=5,则错误!等于()A。

错误!B。

错误!C.-错误!D.-错误!3.若{a n}是首项为1,公比为3的等比数列,把{a n}的每一项都减去2后,得到一个新数列{b n},设{b n}的前n项和为S n,对于任意的n∈N*,下列结论正确的是( )A.b n+1=3b n,且S n=错误!(3n-1)B.b n+1=3b n-2,且S n=错误!(3n-1)C.b n+1=3b n+4,且S n=错误!(3n-1)-2nD.b n+1=3b n-4,且S n=错误!(3n-1)-2n4.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km,以后每秒钟通过的路程都增加2 km,在达到离地面240 km的高度时,火箭与飞船分离,则这一过程需要的时间大约是()A.10秒钟B.13秒钟C.15秒钟D.20秒钟5.(2011·台州月考)已知数列{a n}的通项为a n=nn2+58,则数列{a n}的最大项为( )A.第7项B.第8项C.第7项或第8项D.不存在6.(2011·南京模拟)设数列{a n},{b n}都是正项等比数列,S n,T n分别为数列{lg a n}与{lg b n}的前n项和,且错误!=错误!,则log b5a5=________。

人教A版数学高三数列的概念与简单表示法精选试卷练习(含答案)3

人教A版数学高三数列的概念与简单表示法精选试卷练习(含答案)3

a2 a5 a8 93 ,若对任意 n N* ,都有 Sn Sk 成立,则 k 的值为 (
)
试卷第 1页,总 8页
A. 22
B. 21
C. 20
D.19
6.已知函数
f
x
(3
{ a
x
6
a
)
x
3,(x (x 7)
7)
,若数列
an
满足
an
f
(n), (n N )
,且
对任意的正整数 m, n, (m n) 都有 (m n)(am an ) 0 成立,那么实数 a 的取值范围
则 an ____________.
25.已知数列
an
满足
a1
2 , an1
1
1 an
,则 a2019
_____.
26.已知数列 3,33,333,3333,…则通项 an _________.
27.已知数列{
an
}对任意的
n∈N*,都有
an
∈N*,且
an1
=
3an 1,an为奇数
an 2
ai a2i 100 的 i 的最小值为______.
34.数列{an} 中,若 a1 3 , an1 an ( n N* ),则数列{an} 的通项公式 an _____.
35.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数;1, 1,2,3,5,8,13, ,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样
的一列数所组成的数列
ห้องสมุดไป่ตู้
an
为“斐波那契数列”.那么 a12
a22
a32
a42

【山东专用】2014届高考数学(理)一轮复习专题集训《数列的概念与简单表示法》Word版含解析

【山东专用】2014届高考数学(理)一轮复习专题集训《数列的概念与简单表示法》Word版含解析

数列的概念与简单表示法(时间:45分钟 分值:100分)基础热身1.数列{a n }:1,-58,715,-924,…的一个通项公式是( ) A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n(n ∈N +) C .a n =(-1)n +12n -1n 2+2n(n ∈N +) D .a n =(-1)n -12n +1n 2+2n(n ∈N +) 2.[2013·福建卷] 数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( ) A .1 006B .2 012C .503D .03.[2013·银川联考] 设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为∏n ,则∏2 012的值为( )A.12B .-1C .1D .24.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为____________________.能力提升5.[2013·衡北中学调研] 观察下列数:1,3,2,6,5,15,14,x ,y ,z ,…中,x ,y ,z 的值依次为( )A .13,39,123B .42,41,123C .24,23,123D .28,27,1236.[2013·泉州四校联考] 已知数列{a n }中,a 1=1,a n +1=-1a n +1(n =1,2,3,…),则下列使a n =1的n 的值是( )A .2B .3C .4D .57.[2013·河南大市联考] 对于数列{a n },a 1=4,a n +1=f (a n ),n ∈N *,依照下表,则a 2 012=( )A.2B .3C .4D .58.[2013·宁德质检] 已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +1,n ∈N *,则a 6等于( )A .32B .48C .64D .969.[2013·昆明模拟] 如果执行如图K28-1所示的程序框图,则输出的结果是( )图K28-1A .16B .21C .22D .2910.[2013·朝阳二模] 已知数列{a n }满足a 1=2,且a n +1a n +a n +1-2a n =0(n ∈N *),则a 2=________;并归纳出数列{a n }的通项公式a n =________.11.已知数列{a n }的前n 项和S n 满足S n +S m =S n +m ,且a 1=1,则a 10=________.12.下列的数组均由三个数组成,它们是(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n ,b n ,c n ).若数列{c n }的前n 项和为S n ,则S n =________.13.若f (n )为n 2+1(n ∈N *)的各位数字之和,如62+1=37,f (6)=3+7=10.f 1(n )=f (n ),f 2(n )=f (f 1(n )),…,f k +1(n )=f (f k (n )),k ∈N *,则f 2 015(4)=________.14.(10分)已知数列{a n }满足a 1=1,a n =a n -1+3n -2(n ≥2).(1)求a 2,a 3;(2)求数列{a n }的通项公式.15.(13分)[2013·蚌埠调研] 已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n . (1)求数列{b n }的通项公式;(2)判断数列{c n }的单调性;(3)当n ≥2时,T 2n +1-T n <15-712log a (a -1)恒成立,求a 的取值范围.难点突破16.(1)(6分)[2013·上海卷] 已知f(x)=11+x,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n).若a2013=a2013,则a20+a11的值是________.(2)(6分)若数列{a n}满足:对任意的n∈N*,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)*,则得到一个新数列{(a n)*}.例如,若数列{a n}是1,2,3,…,n,…,则数列{(a n)*}是0,1,2,…,n-1,….已知对任意的n∈N*,a n=n2,则(a5)*=________,( (a n)*)*=________.【基础热身】1.D [解析] 观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,…,故选D. 2.A [解析] a 1=1cos π2=0, a 2=2cos π=-2,a 3=3cos 3π2=0, a 4=4cos2π=4;a 5=5cos 5π2=0, a 6=6cos3π=-6,a 7=7cos 7π2=0, a 8=8cos 8π2=8. 该数列每四项的和为2,2 012 ÷4=503,所以S 2 012=2×503=1 006.3.C [解析] 由题可知a 2=1-1a 1=12,a 3=1-1a 2=-1,a 4=1-1a 3=2,a 5=1-1a 4=12,…,则此数列为周期数列,周期为3,故∏2 012=∏3×670+2=∏2=a 1a 2=1,故选C.4.a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2 [解析] 当n =1时,a 1=S 1=21-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -1,又a 1=-1不适合上式,则数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.【能力提升】5.B [解析] 观察各项可以发现:x 为前一项的3倍即42,y 为前一项减1即41,z 为前一项的3倍即123,故选B.6.C [解析] 由已知的递推公式,得a 2=-1a 1+1=-12,a 3=-1a 2+1=-2,a 4=-1a 3+1=1,故选C.7.A [解析] a 1=4,a 2=f (4)=1,a 3=f (1)=5,a 4=f (5)=2,a 5=f (2)=4,…,该数列是周期为4的周期数列,所以a 2 012=a 4=2,故选A.8.B [解析] 当n ≥2时,a n +1=S n +1,a n =S n -1+1,两式相减,得a n +1-a n =S n -S n -1=a n ,即a n +1=2a n ,则a 2=a 1+1=3,a 3=2a 2=6,a 4=2a 3=12,a 5=2a 4=24,a 6=2a 5=48,故选B.9.C [解析] 问题转化为在数列{a n }中,a 1=1,a n +1=a n +n ,求a 7的值.由a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (n -1)2+1,得a 7=22.故选C. 10.43 2n 2n -1 [解析] 当n =1时,由递推公式,有a 2a 1+a 2-2a 1=0,得a 2=2a 1a 1+1=43; 同理a 3=2a 2a 2+1=87,a 4=2a 3a 3+1=1615,由此可归纳得出数列{a n }的通项公式为a n =2n2n -1. 11.1 [解析] 由a 1=1,得S 1=a 1=1,令m =1,得S n +1=S n +1,即a n +1=S n +1-S n =1,故得a 10=1.12.n (n +1)2+2n +1-2(n ∈N *) [解析] 由1,2,3,4,5,…猜想a n =n ;由2,4,8,16,32,…猜想b n =2n ;由“每组数都是前两个之和等于第三个数”猜想c n =n +2n ,从而S n=(1+2+3+…+n )+(2+22+23+…+2n )=n (n +1)2+2n +1-2(n ∈N *). 13.11 [解析] 因为42+1=17,f (4)=1+7=8,则f 1(4)=f (4)=8,f 2(4)=f (f 1(4))=f (8)=11,f 3(4)=f (f 2(4))=f (11)=5,f 4(4)=f (f 3(4))=f (5)=8,…,而2 015=3×671+2, 故f 2 015(4)=11.14.解:(1)当n =1时,a 1=2,当n ≥2时,a n =S n -S n -1=2n -1(n ≥2).∴数列{b n }的通项公式为b n =⎩⎨⎧23,n =1,1n,n ≥2. (2)∵c n =T 2n +1-T n ,∴c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1<0, ∴数列{c n }是递减数列.(3)由(2)知,当n ≥2时c 2=13+14+15为最大, ∴13+14+15<15-712log a (a -1)恒成立, 即log a (a -1)<-1,由真数a -1>0,a >1,∴a -1<1a, 化为a 2-a -1<0,∴1<a <5+12. 15.解:(1)由已知数列{a n }满足a 1=1,a n =a n -1+3n -2(n ≥2),∴a 2=a 1+4=5,a 3=a 2+7=12.(2)由已知:a n =a n -1+3n -2(n ≥2)得a n -a n -1=3n -2,由递推关系,得a n -1-a n -2=3n -5,…,a 3-a 2=7,a 2-a 1=4,叠加得:a n -a 1=4+7+…+3n -2=(n -1)(4+3n -2)2=3n 2-n -22, ∴a n =3n 2-n 2(n ≥2). 当n =1时,1=a 1=3×12-12=1, ∴数列{a n }的通项公式a n =3n 2-n 2. 【难点突破】16.(1)135+326 (2)2 n 2 [解析] (1)当n 为奇数时,由递推关系可得,a 3=11+1=12,a 5=11+a 3=23,依次可推得 a 7=35,a 9=58,a 11=813,又a 2010=a 2012=11+a 2010,由此可得出当n 为偶数的时候,所有的偶数项是相等的,即a 2=…=a 2010=a 2012,其值为方程x =11+x ,即x 2+x -1=0的根,解得x =-1±52,又数列为正数数列,所以a 20=-1+52, 所以a 20+a 11=135+326. (2)本题以数列为背景,通过新定义考查学生自学能力、创新能力、探究能力,属于难题.因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3,所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16,猜想((a n )*)*=n 2.。

高考一轮复习 数列概念 知识点+例题+练习

高考一轮复习 数列概念 知识点+例题+练习

自主梳理1.数列的定义按____________着的一列数叫数列,数列中的________都叫这个数列的项;在函数意义下,数列是______________________的函数,数列的一般形式为:________________________,简记为{a n },其中a n 是数列的第____项.2.通项公式:如果数列{a n }的________与____之间的关系可以______________来表示,那么这个式子叫做数列的通项公式.但并非每个数列都有通项公式,也并非都是唯一的.3.数列常用表示法有:____________________、________、________.4.数列的分类:数列按项数来分,分为____________、____________;按项的增减规律分为____________、____________、____________和________.递增数列⇔a n +1____a n ;递减数列⇔a n +1____a n ;常数列⇔a n +1____a n .5.a n 与S n 的关系:已知S n ,则a n =⎩⎪⎨⎪⎧,n =1, ,n ≥2,.自我检测1.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项a n =______.2.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10=________.3.已知数列-1,85,-157,249,…按此规律,则这个数列的通项公式是______________________________.学生姓名教师姓名 班主任 日期时间段 年级 课时 教学内容数列的概念与简单表示法 教学目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数. 重点数学归纳方法、递推法 难点 同上4.下列对数列的理解:①数列可以看成一个定义在N *(或它的有限子集{1,2,3,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是________.5.设a n =-n 2+10n +11,则数列{a n }从首项到第________项的和最大.探究点一 由数列前几项求数列通项例1 写出下列数列的一个通项公式,使它的前几项分别是下列各数:(1)23,415,635,863,1099,… (2)12,-2,92,-8,252,…变式迁移1 写出下列数列的一个通项公式:(1)3,5,9,17,33,… (2)2,5,22,11,…(3)1,0,1,0,…探究点二 由递推公式求数列的通项例2 根据下列条件,写出该数列的通项公式.(1)a 1=2,a n +1=a n +n ;(2)a 1=1,2n -1a n =a n -1 (n ≥2).变式迁移2 根据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n +1=3a n +2;(2)a 1=1,a n +1=(n +1)a n ;(3)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n .探究点三 由a n 与S n 的关系求a n例3 已知数列{a n }的前n 项和S n =2n 2-3n +1,求{a n }的通项公式.变式迁移3 (1)已知{a n }的前n 项和S n =3n +b ,求{a n }的通项公式.(2)已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n .1.数列的递推公式是研究的项与项之间的关系,而通项公式则是研究的项a n 与项数n 的关系.2.求数列的通项公式是本节的重点,主要掌握三种方法:(1)由数列的前几项归纳出一个通项公式,关键是善于观察;(2)数列{a n }的前n 项和S n 与数列{a n }的通项公式a n 的关系,要注意验证能否统一到一个式子中;(3)由递推公式求通项公式,常用方法有累加、累乘.3.本节易错点是利用S n 求a n 时,忘记讨论n =1的情况.一、填空题1.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.2.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2 014=________.3.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2=________.4.数列{a n }中,若a n +1=a n 2a n +1,a 1=1,则a 6=________.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=________.6.数列{a n }满足a n +1=⎩⎨⎧2a n (0≤a n <12),2a n -1 (12≤a n <1),若a 1=67,则a 2 010的值为________.7.已知S n 是数列{a n }的前n 项和,且有S n =n 2+1,则数列{a n }的通项a n =__________________.8.将全体正整数排成一个三角形数阵:12 34 5 67 8 9 1011 12 13 14 15… … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是____________.二、解答题9.写出下列各数列的一个通项公式.(1)112,223,334,445,…(2)-1,32,-13,34,-15,36…10.由下列数列{a n }递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2);(2)a 1=1,a n a n -1=n -1n (n ≥2); (3)a 1=1,a n =2a n -1+1 (n ≥2).11.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n .。

高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1

高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1

第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。

人教A版数学高三数列的概念与简单表示法精选试卷练习(含答案)1

人教A版数学高三数列的概念与简单表示法精选试卷练习(含答案)1

人教A 版数学高三数列的概念与简单表示法精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.在数列{}n a 中,12a =,24a =,且1120(2)n n n a a a n +-++=≥,则4a =( ) A .22B .-22C .16D .-162.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则2019S =( )A .20182019B .20172019 C .20192020D .201820203.若数列{}n a 满足112a =,2112n n n a a a m +=-+,若对任意的正整数都有2n a <,则实数m 的最大值为( ) A .12B .1C .2D .44.数列{}n a 满足11a =,211n n n n a a a a +=++,则使得2020a k -值最小的整数k =( ) A .43B .44C .45D .465.数列1,,,,,…的一个通项公式是( )A .B .C .D .6.在数列{}n a 中,11a =,22a =,且()21(1)nn n a a n N ++-=+-∈,则100S =( )A .0B .1300C .2600D .26027.已知数列{}n a 中,12213,6,n n n a a a a a ++===-,则2016a =( ) A .B .C .D .8.大衍数列来源于乾坤谱中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,它是中华传统文化中隐藏着的世界数学史上第一道数列题,该数列从第一项起依次是0,2,4,8,12,18,24,32,40,50,,则该数列第18项为 A .200B .162C .144D .1289.已知数列{}n a 的首项11a =,11n n a a n +-=+,则7a =( ) A .21B .22C .27D .2810.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .204711.已知各项都是正数的数列{}n a 满足()*12n n a Na n n +-=∈,若当且仅当4n =时,na n取得最小值,则( ) A .1012a <<B .11220a <<C .112a =D .120a =12.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )A .()112n-+B .cos 2n πC .1cos2n π+ D .2cos2n π+ 13.已知数列{n a }的前n 项和n S 满足:n m n m S S S ++=,且1a =1,那么10a =( ) A .1B .9C .10D .5514.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,L L ,即()()()()()121,12F F F n F n F n ===-+-()3,n n N *≥∈,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{}n a ,则数列{}n a 的前2019项的和为( )A .672B .673C .1346D .201915.已知数列{}n a 满足2121n n n a a a ++-+=,且11a =,22a =,则10a =( ) A .92B .921-C .56D .4616.已知只有50项的数列{}n a 满足下列三个条件:①{}1,0,11,2,,50i a i ∈-=L ;②上述条件的数列{}2221250,n a a a a +++L 共有k 个不同的值,则k =( )A .10B .11C .6D .717.已知数列{}log a n b (0a >且)1a ≠是首项为2,公差为1的等差数列,若数列{}n a 是递增数列,且满足lg n n n a b b =,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .()2,+∞C .()2,11,3⎛⎫+∞⎪⎝⎭U D .()20,1,3⎛⎫+∞ ⎪⎝⎭U 18.数列1-,3,5-,7,9-,L ,的一个通项公式为( ) A .21n a n =-B .(1)(12)nn a n =-- C .(1)(21)nn a n =--D .1(1)(21)n n a n +=--19.如下分组正整数对:第1组为{}(1,2),(2,1),第2组为{}(1,3),(3,1),第3组为{}(1,4),(2,3),(3,2),(4,1),第4组为{}(1,5),(2,4),(4,2),(5,1),L依此规律,则第30组的第20个数对是( ) A .(12,20)B .(20,10)C .(21,11)D .(20,12)20.已知数列{}n a 的前n 项和为n S ,当22n S n n =+时,45a a +=( ) A .11B .20C .33D .3521.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712 B .714 C .74D .7822.若一个数列的前三项依次为6,18,54,则此数列的一个通项公式为( ) A .42n a n =- B .24n a n =+ C .23nn a =⨯ D .32nn a =⨯二、解答题23.已知数列{}n a 满足:11a =,2(0)a a a =≠,212nn na a p a ++=⋅(其中p 为非零常数,*n N ∈)(1)判断数列1n n a a +⎧⎫⎨⎬⎩⎭是不是等比数列? (2)求n a ;(3)当1a =时,令2n n nna b a -=,n S 为数列{}n b 的前n 项和,求n S . 24.正项数列{}n a 的前n 项和为n S,且1n a =+. (Ⅰ)试求数列{}n a 的通项公式; (Ⅱ)设()()1111n n n b a a +=+⋅+,求{}n b 的前n 项和为n T .(Ⅲ)在(Ⅱ)的条件下,若245n m mT -<<对一切*n N ∈恒成立,求实数m 的取值范围.25.设数列{}n a 的前n 项和为n S ,且112n n S a =-. (1)求数列{}n a 的通项公式,若,2n n n nb a T =为数列{}n b 的前n 项和,求n T ; (2)在(1)的条件下,是否存在自然数m ,使得244n m mT -<<对一切*n N ∈恒成立?若存在,求出m 的值;若不存在,说明理由.26.如果无穷数列{a n }的所有项恰好构成全体正整数的一个排列,则称数列{a n }具有性质P . (Ⅰ)若a n 12112n n k n n k +=-⎧=⎨-=⎩,,(k ∈N *),判断数列{a n }是否具有性质P ,并说明理由,(Ⅱ)若数列{a n }具有性质P ,求证:{a n }中一定存在三项a i ,a j ,a k (i <j <k )构成公差为奇数的等差数列;(Ⅲ)若数列{a n }具有性质P ,则{a n }中是否一定存在四项a i ,a j ,a k ,a l ,(i <j <k <l )构成公差为奇数的等差数列?证明你的结论.27.已知数列{}n a 的前n 项和122n n S n +=--.(1)求{}n a 的通项公式;(2)记数列12n n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:1n T <.28.已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等比数列,且a 1﹣b 1=9,b 32=b 23. (1)求数列{a n }、{b n }的通项公式;(2)令c n 16n na b +=,求数列{c n }的前n 项和T n . 29.正项数列{}n a ,其前n 项和n S 满足21056n n n S a a =++,且1315,,a a a 成等比数列. (1)求数列{}n a 的通项n a . (2)设11n n n b a a +=⋅,n T 是数列{}n b 的前n 项和,求n T .30.数列{}n a ,{}n b 满足11112211111··22n n n n n na ab b a b ++⎧=+⎪⎪⎨⎪=+⎪⎩,10a >,10b >;(1)求证:{}n n a b g是常数列; (2)若{}n a 是递减数列,求1a 与1b 的关系;(3)设14a =,11b =,当2n …时,求n a 的取值范围. 31.设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.32.已知数列{}n a 中,11a =,其前n 项和为n S ,且满足()21n n S n a =+,()*n N ∈. (1)求数列{}n a 的通项公式;(2)记23n n n b a λ=-,若数列{}n b 为递增数列,求λ的取值范围. 33.已知常数0a ≠,数列{}n a 的前n 项和为n S ,11a =,(1)nn S a a n n=+-; (1)求数列{}n a 的通项公式;(2)若3(1)n nn n b a =+-,且{}n b 是单调递增数列,求实数a 的取值范围;(3)若12a =,2016n n na c a =+,对于任意给定的正整数k ,是否存在正整数p 、q ,使得k p q c c c =?若存在,求出p 、q 的值(只要写出一组即可);若不存在,请说明理由; 34.已知数列{},{}n n a b 满足{}1,2n n n n a a b b +-=+为等比数列,且12a =,24a =,310a =.(1)求n b ; (2)求n a .35.已知数列{}n a 的前n 项和为n S ,且满足11a =,1(1)(1)2n n n n nS n S ++-+=,*n N ∈.(1)求2a 的值;(2)求数列{}n a 的通项公式. 评卷人 得分三、填空题36.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2K ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________.37.设n S 是数列{}n a 的前n 项和,且11a =,112n n n a S S ++=-,则2020S =______. 38.“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为1,1,2,3,5,8⋯,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前项和,若2020a =M 则2018=S __________.(用M 表示)39.数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题: ①若数列{}n a 满足:21a a >,则*1(1,)n n a a n n N ->>∈成立; ②存在常数c ,使得*()n a c n N >∈成立;③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+; ④存在常数d ,使得*1(1)()n a a n d n N >+-∈都成立.上述命题正确的是____.(写出所有正确结论的序号) 40.已知数列{}n a 满足11a =,111n na a +=-+,*n N ∈,则2019a =__________. 41.某地区森林原有木材存量为1,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为16,设n a 为n 年后该地区森林木材的存量,则n a 的表达式是________.42.已知数列{}n a 满足11a =,132n n a a +=+,则数列{}n a 的通项公式为________.43.已知数列{}n a 前n 项和n S 满足11323(2),1nn n S S n a -=+-≥=-,则4a =______.44.小明用数列{a n }记录某地区2019年12月份31天中每天是否下过雨,方法为:当第k 天下过雨时,记a k =1,当第k 天没下过雨时,记a k =﹣1(1≤k ≤31);他用数列{b n }记录该地区该月每天气象台预报是否有雨,方法为:当预报第k 天有雨时,记b k =1,当预报第k 天没有雨时,记b k =﹣1(1≤k ≤31);记录完毕后,小明计算出a 1b 1+a 2b 2+…+a 31b 31=25,那么该月气象台预报准确的的总天数为_____;若a 1b 1+a 2b 2+…+a k b k =m ,则气象台预报准确的天数为_____(用m ,k 表示).45.已知101a ≤≤,定义112,02121,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≥⎪⎩.(1)如果23a a =,则2a =________.(2)如果13a a <,则1a 的取值范围是________. 46.若数列{}n a 满足11n n n a a a +=+,且123a =,则10a =___________. 47.数列{}n a 共有13项,10a =,134a =,且11k k a a +-=,1,2,,12k =⋯,满足这种条件不同的数列个数为______48.已知数列{}n a 中,11a =,其前n 项和为n S ,且满足213(2)n n S S n n -+=≥,则2n a =__________.49.六位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为0.第二位同学首次报出的数为1,之后每位同学所报出的数都是前两位同学所报出的数之和:②若报出的是为3的倍数,则报该数的同学需拍手一次.当第50个数被报出时,六位同学拍手的总次数为__________.参考答案1.C 2.C 3.C 4.C 5.D 6.C 7.B 8.B 9.D 10.C 11.B 12.D 13.A 14.C 15.D 16.C 17.D 18.C 19.C 20.B 21.D 22.C23.(1)是等比数列;(2)23212,n n n na a pn N -+-*=∈;(3)()()3223222(1),12(1),121,111n nn n n p n n S p p p np p p p --+--⎧⎪+=⎪⎪+⎪=-=-⎨⎪⎪-⎪-≠±-⎪-⎩24.(Ⅰ)21n a n =-;(Ⅱ)()41n n T n =+;(Ⅲ)55,42⎡⎫⎪⎢⎣⎭.25.(1)23n na =,3231443n n n T +=-⋅(2)存在,3m = 26.(Ⅰ)数列{a n }具有性质P .见解析(Ⅱ)见解析(Ⅲ)不一定存在,见解析 27.(1)()21nn a n N*=-∈;(2)证明见解析. 28.(1)a n =6n +5,n ∈N *;b n =2n ,n ∈N *;(2)T n =3﹣(n +3)•(12)n. 29.(1)5n 3n a =- (2)n n104T n =+30.(1)证明见解析;(2)11a b >;(3)52,2n a ⎛⎤∈ ⎥⎝⎦31.(1) 221n a n =-;(2)221nn +. 32.(1) ()*n a n n N =∈;(2)(),2-∞. 33.(1) 12(1)n a a n =+- (2) 843a -<<(3) 1q k =+, (2017)p k k =+(或2q k =, 22016p k =+;…)34.(1)122n n b +=-;(2)122n n a n +=-35.(1)2;(2) n a n =. 36.()4031,404. 37.1403938.1M - 39.①④. 40.-241.1152343n n a -⎛⎫=+ ⎪⎝⎭42.1231n -⋅- 43.11 44.282m k+45.0或111123 0,,,43234⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭U U46.2 1947.49548.64n+49.13答案第3页,总3页。

2014年高考数学一轮复习精品学案(人教版A版)――数列概念及等差数列

2014年高考数学一轮复习精品学案(人教版A版)――数列概念及等差数列

2014年高考数学一轮复习精品学案(人教版A 版)数列概念及等差数列一.【课标要求】1.数列的概念和简单表示法;通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;2.通过实例,理解等差数列的概念,探索并掌握等差数列的通项公式与前n 项和的公式;3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题。

体会等差数列与一次函数的关系.二.【命题走向】数列在历年高考都占有很重要的地位,一般情况下都是一至二个客观性题目和一个解答题。

对于本将来讲,客观性题目主要考察数列、等差数列的概念、性质、通项公式、前n 项和公式等基本知识和基本性质的灵活应用,对基本的计算技能要求比较高.预测2014年高考:1.题型既有灵活考察基础知识的选择、填空,又有关于数列推导能力或解决生产、生活中的实际问题的解答题;2.知识交汇的题目一般是数列与函数、不等式、解析几何、应用问题联系的综合题,还可能涉及部分考察证明的推理题.三.【要点精讲】1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ;数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.例如,数列①的通项公式是n a = n (n ≤7,n N +∈),数列②的通项公式是n a = 1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。

例如,n a =(1)n -=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩; ③不是每个数列都有通项公式。

智慧测评新高考人教A版理科数学一轮总复习课时训练5.1数列的概念与简单表示法(含答案详析)

智慧测评新高考人教A版理科数学一轮总复习课时训练5.1数列的概念与简单表示法(含答案详析)

第五篇第 1 节一、选择题1.设数列 { a n} 的前 n 项和 S n= n2,则 a8的值为 ()A. 15 B .16C. 49D. 64分析:由 a8= S8- S7= 64- 49= 15,应选 A.答案: A2. (2014 山师大附中高三模拟)数列 { a n } 中, a1=1, a n=1+1,则 a4等于 ()a n-154A. 3B.32C. 1 D.3分析:由 a1n1213113412= 1,a =+ 1得, a =a1+ 1= 2,a =a2+ 1=2+ 1=2,a =a3+ 1=3+a n-151=3.应选 A.答案: A3.关于数列 { a n} , a1= 4, a n+1=f(a n),依据下表则a2015=()x12345f(x)54312A.2 B .3C. 4D5分析:由题意 a2= f(a1)= f(4) = 1, a3= f(a2)= f(1) =5,a4= f(a3)= f(5) = 2, a5= f(a4)= f(2)= 4, a6= f(a5)= f(4) = 1.则数列 { a n} 的项周期性出现,其周期为2015=a4× 503+3=a3=5.应选D. 4, a答案:D4. (2014江西八校联考)将石子摆成如下图的梯形形状.称数列5,9,14,20,为“梯20145a2014 5 ()A. 2018×2012 B .2020× 2013C. 1009 ×2012D. 1010×2013分析:∵a n- a n-1= n+ 2(n≥ 2), a1= 5.∴a2014= (a2014- a2013)+ (a2013- a2012) ++(a2-a1)+a1=2016+2015++4+5=2016+ 4 × 20132+ 5= 1010× 2013+5.∴a2014- 5= 1010 ×2013,应选 D.答案: D5.关于数列 { a n} , a1= 4, a n+1=f(a n),依据下表则a2015=()x12345f(x)54312A.2 B .3C. 4D. 5分析:由题意 a2= f(a1)= f(4) = 1, a3= f(a2)= f(1) =5,a4= f(a3)= f(5) = 2, a5= f(a4)= f(2)= 4, a6= f(a5)= f(4) = 1.则数列 { a n} 的项周期性出现,其周期为4, a2015= a4×503+3= a3= 5.应选 D.答案: D6. (2014 太原一模 )已知函数f(x)=3- a x- 3, x≤ 7,x-6,x>7若数列 { a n} 知足 a n= f(n)(n∈a,N *),且{ a n}是递加数列,则实数 a 的取值范围是 ()A.9,3 B.9, 3 44C. (2,3)D. (1,3)分析:由题意, a n= f(n)=3-a n- 3, n≤7,a n-6,n>7,3- a>0 ,要使 { a n a>1,} 是递加数列,必有3- a × 7- 3<a8-6,解得, 2<a<3.应选 C.答案: C二、填空题智慧测评新高考人教A 版理科数学一轮总复习课时训练5.1数列的观点与简单表示法(含答案详析)2 ,4 ,-8,16, 的一个通项公式为 ________.7.数列- 1× 2 2× 33× 44× 5分析: 察看各项知,其通项公式能够为a n =- 2 n.n n + 1答案: a = - 2nnn n + 18.已知数列 { a n } 中, a 1=1, a n + 1= a n ,则 { a n } 的通项 a n = ________.1+ 2a n 分析: ∵a n +1= a n ,∴ 1 = 1+2.1+ 2a n a n +1 a n∴1- 1=2, a n +1a n∴数列1 是以 1= 1 为首项, 2 为公差的等差数列,a n a 11∴ = 1+(n - 1)× 2= 2n - 1.a n1∴a n =.2n - 1答案:1 2n - 19.已知 a 1+ 2a 2+ 22a 3+ + 2n -1a n = 9-6n ,则数列 { a n } 的通项公式是 ________.分析: 令 S n = a 1+ 2a 2+ 223+ + 2n -1 n ,a a则 S n = 9- 6n ,当 n = 1 时, a 1= S 1= 3;当 n ≥2 时, 2n -1·a n = S n - S n -1=- 6,∴a n =-3 2.n2 -3n = 1 , ∴通项公式 a n =3n ≥ 2 .-n22-3n = 1答案: a n =3n ≥ 2-2n -210. (2014 青岛模拟 )已知数列 { a n } 的前 n 项和 S n = n 2+ 2n - 1,则 a 1+ a 25= ________.分析: ∵S n = n 2+ 2n - 1,∴a 1= S 1= 2.当 n ≥2 时, a n =S n -S n -1= n 2+ 2n - 1- [( n - 1) 2+2(n - 1)- 1]= 2n + 1.2n= 1 ,∴a n=2n+ 1n≥ 2 .∴a1+ a25= 2+ 51= 53.答案: 53三、解答题三、解答题11. (2014 合肥模拟 )已知数列 { a n } 的前 n 项和为 S n,且 4S n= a n+ 1(n∈N* ).(1)求 a1, a2.(2)设 b n= log 3|a n |,求数列 { b n} 的通项公式.解: (1)由已知 4S1= a1+ 1,即 4a1=a1+1,1∴a1=3.又∵4S2=a2+ 1,1即 4(a1+ a2)= a2+ 1,∴a2=-9.11(2)当 n≥ 2 时, a n= S n- S n-1=4(a n+1) -4(a n-1+ 1),即 3a n=- a n-1,由题意知数列各项不为零.∴a n=-1对 n≥2 恒建立,a n-13∴{ a n} 是首项为13,公比为-13的等比数列,∴a n=13-13n-1= (- 1)n-13-n,∴log 3|a n|= log3 3-n=- n,即 b n=- n.12.已知数列 { a n} 的通项公式为a n= n2- n- 30.(1)求数列的前三项,60 是此数列的第几项?(2)n 为什么值时, a n= 0, a n>0, a n<0?(3)该数列前n 项和 S n能否存在最值?说明原因.解: (1)由 a n=n2- n- 30,得a1= 12- 1-30=- 30,a2= 22- 2-30=- 28,a3= 32- 3-30=- 24.设 a n= 60,则 60= n2- n- 30.解之得 n= 10 或 n=- 9(舍去 ).∴60 是此数列的第10 项.(2)令 a n= n2- n-30= 0,解得 n= 6 或 n=- 5(舍去 ).∴a6= 0.令 n2- n- 30>0,解得 n>6 或 n<- 5(舍去 ).∴当n>6( n∈N* ) 时, a n>0.令 n2- n- 30<0,解得 0<n<6.∴当0<n<6( n∈N* )时, a n<0.(3)S n存在最小值,不存在最大值.2121*由 a n= n -n- 30= n-2- 304,(n∈N)知 { a n} 是递加数列,且a1<a2< <a5<a6= 0<a7<a8<a9<,故 S n存在最小值S5= S6,不存在最大值.。

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)5.1数列的概念与函数特性课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)5.1数列的概念与函数特性课件 新人教A版
解得 a2=3a1=3. 5 由 S3= a3 得 3(a1+a2+a3)=5a3, 3 3 解得 a3= (a1+a2)=6. 2
(2)由题设知 a1=1. n+2 n+1 当 n>1 时,有 an=Sn-Sn-1= a- a , 3 n 3 n-1 n+1 整理得 an= a . n-1 n-1 n+1 3 4 n 于是 a2= a1,a3= a2,„,an-1= a ,an= a . 1 2 n-2 n-2 n-1 n-1 nn+1 将以上 n-1 个等式中等号两端分别相乘,整理得 an= . 2 nn+1 综上可知,{an}的通项公式 an= . 2
an+1 > an 其中 n∈N*
间的大
小关系
递减数列
常数列
an+1 < an
an+1=an
3.数列与函数的关系
(1)从函数观点看,数列可以看作定义域为 正整数 集N+(或N+的有限子集) 的函数,当自变量从小到大 依次取值时,该函数对应的一列 函数值 就是这个数列. (2)数列同函数一样有解析法、图像法、列表法三种 表示方法.
(2)用n-1替换Sn中的n得到一个新的关系,利用an
=Sn-Sn-1(n≥2)便可求出当n≥2时an的表达式;
(3)对n=1时的结果进行检验,看是否符合n≥2时an
的表达式,如果符合,则可以把数列的通项公式合写; 如果不符合,则应该分n=1与n≥2两段来写.
2.已知数列{an}的前 n 项和为 Sn,若 S1=1,S2=2, 且 Sn+1-3Sn+2Sn-1=0(n∈N+且 n≥2),求该数列 的通项公式.
C.8
[解析]
D.11
由已知得bn =2n-8,an+1 -an =2n-8,
所以a2-a1 =-6,a3 -a2=-4,…,a8-a7=6,由累

高三数学数列的概念与简单表示法专题训练(含答案)

高三数学数列的概念与简单表示法专题训练(含答案)

高三数学数列的概念与简单表示法专题训练(含答案)数列中的每一个数都叫做这个数列的项,以下是数列的概念与复杂表示法专题训练,查字典数学网希望对考生有协助。

1.数列,2,,那么2是该数列的()A.第6项B.第7项C.第10项D.第11项答案:B解析:由an==2,解得n=7.2.数列0,,的通项公式为()A.an=B.an=C.an=D.an=答案:C解析:原数列可变形为,,an=.3.数列的通项公式an=那么a2a3等于()A.70B.28C.20D.8答案:C解析:由an=得a2a3=210=20.选C.4.数列{an}满足:a10,,那么数列{an}是()A.递增数列B.递减数列C.摆动数列D.不确定答案:B解析:由数列各项为正,且从第二项起每一项为哪一项前一项的,那么数列{an}是递减数列.5.在数列1,2,2,3,3,3,4,4,4,4,中,第25项为()A.2B.6C.7D.8答案:C解析:数字为1的有1个,数字为2的有2个,数字为3的有3个,依照此规律.当数字为6时,共有1+2+3+4+5+6=21项,当数字为7时,共有1+2+3+4+5+6+7=28项.第25项为7.6.数列{an},an=an+m(a0,nN*),满足a1=2,a2=4,那么a3= . 答案:2解析:an=(-1)n+3,a3=(-1)3+3=2.7.以下表达中正确的为.数列an=2是常数列;数列是摆动数列;数列是递增数列;假定数列{an}是递增数列,那么数列{anan+1}也是递增数列.答案:解析:中每一项均为2,是常数列.中项的符号由(-1)n调整,是摆动数列.可变形为,为递增数列.中假定an=n-3,那么anan+1=(n-3)(n-2)=n2-5n+6,不是递增数列.8.黑色两种颜色的正六边形空中砖按以下图的规律拼成假定干个图案,那么第n个图案中有白色空中砖块.答案:4n+2解析:第1个图案有白色空中砖6块,第2个图案有10块,第3个图案有14块,可以看出每个图案较前一个图案多4块白色的空中砖.第n个图案有6+4(n-1)=(4n+2)(块).9.依据数列的前几项,写出以下各数列的一个通项公式:(1),(2)1,3,6,10,15,(3)7,77,777,.剖析:(1)留意前4项中有两项的分子为4,无妨把分子一致为4,即为,,于是它们的分母依次相差3,因此有an=.(2)留意6=23,10=25,15=35,规律还不清楚,再把各项的分子和分母都乘以2,即,,因此有an=.(3)把各项除以7,得1,11,111,,再乘以9,得9,99,999,,因此有an=(10n-1).解:(1)an=;(2)an=;(3)an=(10n-1).10.数列{an}的通项公式an=.(1)求a10.(2)能否是这个数列中的项?(3)这个数列中有多少整数项?(4)能否有等于序号的项?假定有,求出该项;假定没有,说明理由.解:(1)a10=.(2)令,得n=100,故是这个数列的第100项.(3)an=1+,当n=1,2,3,6时,an为整数,故这个数列中有4项是整数项.(4)令=n得n2-n-6=0,解得n=3或n=-2(舍去),故该数列中有等于序号的项,即a3=3.数列的概念与复杂表示法专题训练的全部内容就是这些,更多精彩内容请继续关注查字典数学网。

新人教A版版高考数学一轮复习数列数列的概念与简单表示法教学案理解析版

新人教A版版高考数学一轮复习数列数列的概念与简单表示法教学案理解析版

[考纲传真]1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的有关概念概念含义数列按照一定顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项a n与n之间的关系能用公式a n=f(n)表示,这个公式叫做数列的通项公式前n项和数列{a n}中,S n=a1+a2+…+a n叫做数列的前n项和列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和a n+1=f(a n)或a1,a2和a n+1=f(a n,a n—1)等表示数列的方法n n若数列{a n}的前n项和为S n,则a n=错误!4.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*[求数列的最大(小)项,一般可以利用数列的单调性,即用错误!(n≥2,n∈N*)或错误!(n≥2,n∈N*)求解,也可以转化为函数的最值问题或利用数形结合思想求解.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.()(2)一个数列中的数是不可以重复的.()(3)所有数列的第n项都能使用公式表达.()(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.()[答案] (1)×(2)×(3)×(4)√2.已知数列错误!,错误!,错误!,…,错误!,…,下列各数中是此数列中的项的是()A.错误!B.错误!C.错误!D.错误!B [该数列的通项a n=错误!,结合选项可知B正确.]3.设数列{a n}的前n项和S n=n2,则a8的值为()A.15B.16 C.49 D.64A [a8=S8—S7=82—72=15.故选A.]4.(教材改编)在数列{a n}中,a1=1,a n=1+错误!(n≥2),则a5等于()A.错误!B.错误!C.错误!D.错误!D [∵a1=1,∴a2=1+错误!=1+1=2;a3=1—错误!=1—错误!=错误!;a4=1+错误!=1+2=3;a5=1—错误!=1—错误!=错误!.]5.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n=________.5n—4[{a n}是以1为首项,5为公差的等差数列,∴a n=1+(n—1)×5=5n—4.]由a n与S n的关系求通项公式1.已知数列{a n}的前n项和为S n=错误!n2+错误!n+3,则数列{a n}的通项公式a n=________.错误![当n=1时,a1=S1=错误!+错误!+3=错误!.又当n≥2时,a n=S n—S n—1=错误!n2+错误!n+3—错误!=错误!n+错误!.∴a n=错误!]2.若数列{a n}的前n项和S n=错误!a n+错误!,则{a n}的通项公式a n=________.(—2)n—1[由S n=错误!a n+错误!得当n≥2时,S n—1=错误!a n—1+错误!,∴a n=S n—S n—1=错误!—错误!=错误!a n—错误!a n—1.即a n=—2a n—1,(n≥2).又a1=S1=错误!a1+错误!,∴a1=1.∴数列{a n}是以首项为1,公比为—2的等比数列,∴a n=(—2)n—1.]3.已知数列{a n}满足a1+2a2+3a3+4a4+…+na n=3n2—2n+1,求a n.[解] 设a1+2a2+3a3+4a4+…+na n=T n,当n=1时,a1=T1=3×12—2×1+1=2,当n≥2时,na n=T n—T n—1=3n2—2n+1—[3(n—1)2—2(n—1)+1]=6n—5,因此a n=错误!,显然当n=1时,不满足上式.故数列的通项公式为a n=错误!][规律方法] 已知S n求a n的三个步骤1先利用a1=S1求出a1.2用n—1替换S n中的n得出S n—1,利用a n=S n—S n—1n≥2便可求出当n≥2时a n的表达式.3看a1是否符合n≥2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应写成分段的形式.易错警示:利用a n=S n—S n—1求通项时,应注意n≥2这一前提条件,易忽视验证n=1致误.由递推关系式求数列的通项公式【例1】分别求出满足下列条件的数列的通项公式.(1)a1=2,a n+1=a n+3n+2(n∈N*);(2)a1=1,a n=错误!a n—1(n≥2,n∈N*);(3)a1=1,a n+1=3a n+2(n∈N*).[解] (1)∵a n+1—a n=3n+2,∴a n—a n—1=3n—1(n≥2),∴a n=(a n—a n—1)+(a n—1—a n—2)+…+(a2—a1)+a1=错误!(n≥2).当n=1时,a1=错误!×(3×1+1)=2符合公式,∴a n=错误!n2+错误!.(2)当n≥2,n∈N*时,a n=a1×错误!×错误!×…×错误!=1×错误!×错误!×…×错误!×错误!×错误!=n,当n=1时,也符合上式,∴该数列的通项公式为a n=n.(3)∵a n+1=3a n+2,∴a n+1+1=3(a n+1),又a1=1,∴a1+1=2,故数列{a n+1}是首项为2,公比为3的等比数列,∴a n+1=2·3n—1,因此a n=2·3n—1—1.[规律方法] 由数列的递推关系求通项公式的常用方法1已知a1,且a n—a n—1=f n,可用“累加法”求a n.2已知a1a1≠0,且错误!可用“累乘法”求a n.3已知a1,且a n+1=qa n+b,则a n+1+k=q a n+k其中k可由待定系数法确定,可转化为{a n+k}为等比数列.易错警示:本题1,2中常见的错误是忽视验证a1是否适合所求式.n1n+1n nA.2+ln nB.2+(n—1)ln nC.2+n ln nD.1+n+ln n(2)若a1=1,a n+1=3a n+3n+1,则a n=________.(1)A (2)n·3n—2·3n—1[(1)∵a n+1—a n=ln错误!=ln错误!,∴a2—a1=ln错误!,a3—a2=ln错误!,…,a n—a n—1=ln错误!,n≥2,∴a2—a1+a3—a2+…+a n—a n—1=ln错误!=ln n,∴a n—a1=ln n⇒a n=2+ln n(n≥2).将n=1代入检验有a1=2+ln 1=2与已知符合,故a n=2+ln n.(2)因为a n+1=3a n+3n+1,所以错误!=错误!+1,所以错误!—错误!=1,又错误!=错误!,所以数列错误!是以错误!为首项,1为公差的等差数列.所以错误!=错误!+(n—1)=n—错误!,所以a n=n·3n—2·3n—1.]数列的性质【例2】(1)已知数列{a n}满足a n+1=错误!,若a1=错误!,则a2018=()A.—1B.错误!C.1D.2(2)已知数列{a n}满足:a1=1,a n+1=错误!(n∈N*),若b n+1=(n—λ)错误!,b1=—λ,且数列{b n}是递增数列,则实数λ的取值范围是()A.(2,+∞)B.(3,+∞)C.(—∞,2)D.(—∞,3)(3)已知数列{a n}满足a n=错误!(n∈N*),则数列{a n}的最小项是第________项.(1)D (2)C (3)5[(1)由a1=错误!,a n+1=错误!,得a2=错误!=2,a3=错误!=—1,a4=错误!=错误!,a5=错误!=2,…,于是可知数列{a n}是以3为周期的周期数列,因此a2018=a3×672+2=a2=2.(2)由a n+1=错误!,知错误!=错误!+1,即错误!+1=2错误!,所以数列错误!是首项为错误!+1=2,公比为2的等比数列,所以错误!+1=2n,所以b n+1=(n—λ)·2n,因为数列{b n}是递增数列,所以b n+1—b n=(n—λ)2n—(n—1—λ)2n—1=(n+1—λ)2n—1>0对一切正整数n恒成立,所以λ<n+1,因为n∈N*,所以λ<2,故选C.(3)因为a n=错误!,所以数列{a n}的最小项必为a n<0,即错误!<0,3n—16<0,从而n<错误!.又n∈N*,所以当n=5时,a n的值最小.][规律方法] 1.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.2.判断数列单调性的二种方法(1)作差比较法:比较a n+1—a n与0的大小.(2)作商比较法:比较错误!与1的大小,注意a n的符号.3.求数列最大项或最小项的方法(1)利用不等式组错误!(n≥2)找到数列的最大项;(2)利用不等式组错误!(n≥2)找到数列的最小项.n nA.递减数列B.递增数列C.常数列D.摆动数列(2)数列{a n}的通项公式是a n=(n+1)·错误!n,则此数列的最大项是第________项.(3)若a n=n2+kn+4且对于n∈N*,都有a n+1>a n成立,则实数k的取值范围是________.(1)B (2)9或10 (3)(—3,+∞)[(1)a n=1—错误!,将a n看作关于n的函数,n∈N*,易知{a n}是递增数列.(2)∵a n+1—a n=(n+2)错误!n+1—(n+1)错误!n=错误!n×错误!,当n<9时,a n+1—a n>0,即a n+1>a n;当n=9时,a n+1—a n=0,即a n+1=a n;当n>9时,a n+1—a n<0,即a n+1<a n,∴该数列中有最大项,且最大项为第9,10项.(3)由a n+1>a n知该数列是一个递增数列,又∵通项公式a n=n2+kn+4,∴(n+1)2+k(n+1)+4>n2+kn+4,即k>—1—2n,又n∈N*,∴k>—3.]1.(2018·全国卷Ⅰ)记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=________.—63[因为S n=2a n+1,所以当n=1时,a1=2a1+1,解得a1=—1,当n≥2时,a n=S n—S n—1=2a n+1—(2a n—1+1),所以a n=2a n—1,所以数列{a n}是以—1为首项,2为公比的等比数列,所以a n=—2n—1,所以S6=错误!=—63.]2.(2015·全国卷Ⅱ)设S n是数列{a n}的前n项和,且a1=—1,a n+1=S n S n+1,则S n=________.—错误![∵a n+1=S n+1—S n,a n+1=S n S n+1,∴S n+1—S n=S n S n+1.∵S n≠0,∴错误!—错误!=1,即错误!—错误!=—1.又错误!=—1,∴错误!是首项为—1,公差为—1的等差数列.∴错误!=—1+(n—1)×(—1)=—n,∴S n=—错误!.]3.(2014·全国卷Ⅱ)数列{a n}满足a n+1=错误!,a8=2,则a1=________.错误![∵a n+1=错误!,a8=2,∴a7=错误!,a6=—1,a5=2,∴{a n}是周期为3的数列,∴a8=a3×2+2=a2=2.而a2=错误!,∴a1=错误!.]。

2014年高考数学一轮复习精品学案(人教版A版)――数列概念及等差数列

2014年高考数学一轮复习精品学案(人教版A版)――数列概念及等差数列

2014年高考数学一轮复习精品学案(人教版A 版)数列概念及等差数列一.【课标要求】1.数列的概念和简单表示法;通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;2.通过实例,理解等差数列的概念,探索并掌握等差数列的通项公式与前n 项和的公式;3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题。

体会等差数列与一次函数的关系.二.【命题走向】数列在历年高考都占有很重要的地位,一般情况下都是一至二个客观性题目和一个解答题。

对于本将来讲,客观性题目主要考察数列、等差数列的概念、性质、通项公式、前n 项和公式等基本知识和基本性质的灵活应用,对基本的计算技能要求比较高.预测2014年高考:1.题型既有灵活考察基础知识的选择、填空,又有关于数列推导能力或解决生产、生活中的实际问题的解答题;2.知识交汇的题目一般是数列与函数、不等式、解析几何、应用问题联系的综合题,还可能涉及部分考察证明的推理题.三.【要点精讲】1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ;数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.例如,数列①的通项公式是n a = n (n ≤7,n N +∈),数列②的通项公式是n a =1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。

例如,n a =(1)n -=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩; ③不是每个数列都有通项公式。

【创新方案】2014届高考数学一轮复习 5.1数列的概念及简单表示法讲解与练习 理 新人教A版

【创新方案】2014届高考数学一轮复习 5.1数列的概念及简单表示法讲解与练习 理 新人教A版

第一节数列的概念与简单表示法[备考方向要明了]考什么怎么考1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.数列的概念在高考试题中常与其他知识综合进行考查,主要有:(1)以考查通项公式为主,同时考查S n与a n的关系,如2012年某某T16等.(2)以递推关系为载体,考查数列的各项的求法,如2012年新课标全国T16等.[归纳·知识整合]1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫做首项).2.数列的分类分类原则类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第2项起有些项大于它的前一项,有些项小于它的前一项.3.数列的表示法数列的表示方法有列表法、图象法、公式法.4.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[探究] 1.数列的通项公式唯一吗?是否每个数列都有通项公式?提示:不唯一,如数列-1,1,-1,1,…的通项公式可以为a n =(-1)n或a n =⎩⎪⎨⎪⎧-1,n 为奇数,1,n 为偶数.有的数列没有通项公式.5.数列的递推公式若一个数列{a n }的首项a 1确定,其余各项用a n 与a n -1的关系式表示(如a n =2a n -1+1,n >1),则这个关系式就称为数列的递推公式.[探究] 2.通项公式和递推公式有何异同点? 提示:[自测·牛刀小试]1.(教材习题改编)已知数列{a n }的前4项分别为2,0,2,0,…,则下列各式不可以作为数列{a n }的通项公式的一项是( )A .a n =1+(-1)n +1B .a n =2sinn π2C .a n =1-cos n π D.a =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数解析:选B 若a n =2sinn π2,则a 1=2sin π2=2,a 2=2sin π=0,a 3=2sin 3π2=-2,a 4=2sin 2π=0.2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.3.(教材习题改编)在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 5=( )A.32B.53C.74D.85解析:选D 由题意知,a 1=1,a 2=2,a 3=32,a 4=53,a 5=85.4.(教材改编题)已知数列2,5,22,…,根据数列的规律,25应该是该数列的第________项.解析:由于2=3×1-1,5=3×2-1,8=3×3-1,… 故可知该数列的通项公式为a n =3n -1 由25=3n -1,得n =7. 答案:75.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =________;数列{na n }中数值最小的项是第________项.解析:∵当n ≥2时,a n =S n -S n -1=(n 2-10n )-[(n -1)2-10(n -1)]=2n -11; 当n =1时,a 1=S 1=-9也满足a n =2n -11, ∴a n =2n -11.∴na n =2n 2-11n =2⎝ ⎛⎭⎪⎫n 2-112n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -1142-12116=2⎝⎛⎭⎪⎫n -1142-1218.又∵n ∈N *,∴当n =3时,na n 取最小值. 答案:2n -11 3已知数列的前几项求通项公式[例1] 根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)12,34,78,1516,3132,…; (3)12,14,-58,1316,-2932,6164,…. [自主解答] (1)各数都是偶数,且最小为4,所以通项a n =2(n +1)(n ∈N *). (2)注意到分母分别是21,22,23,24,25,…,而分子比分母少1, 所以其通项a n =2n-12n (n ∈N *).(3)分母规律明显,而第2,3,4项的绝对值的分子比分母少3,因此可考虑把第1项变为-2-32,这样原数列可化为-21-321,22-322,-23-323,24-324,-25-325,26-326,…所以其通项a n =(-1)n 2n-32n (n ∈N *).——————————————————— 用观察法求数列的通项公式的技巧用观察归纳法求数列的通项公式,关键是找出各项的共同规律及项与项数n 的关系.当项与项之间的关系不明显时,可采用适当变形或分解,以凸显规律,便于归纳.当各项是分数时,可分别考虑分子、分母的变化规律及联系,正负相间出现时,可用(-1)n 或(-1)n +1调节.1.写出下列数列的一个通项公式,使它的前几项分别是下列各数: (1)23,415,635,863,1099,…; (2)-1,13,-935,1763,-3399,…;(3)9,99,999,9 999,….解:(1)分子是连续的偶数,且第1个数是2,所以用2n 表示;分母是22-1,42-1,62-1,82-1,102-1,所以用(2n )2-1表示.所以a n =2n 2n2-1=2n 4n 2-1(n ∈N *). (2)正负交替出现,且奇数项为负,偶数项为正,所以用(-1)n表示; 1, 13, 935, 1763, 3399,…↕ ↕ ↕ ↕ ↕31×3, 53×5, 95×7, 177×9, 339×11,… 分母是连续奇数相乘的形式,观察和项数n 的关系,用(2n -1)(2n +1)表示;分子是21+1,22+1,23+1,24+1,用2n+1表示.所以 a n =(-1)n·2n+12n -12n +1=(-1)n ·2n+14n 2-1(n ∈N *).(3) 9, 99, 999, 9 999,… ↕ ↕↕↕101-1, 102-1, 103-1, 104-1,… 所以a n =10n-1(n ∈N *).由a n 与S n 的关系求通项公式[例2] 已知数列{a n }的前n 项和为S n =3n-1,求它的通项公式a n . [自主解答] 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2也满足a n =2×3n -1.故数列{a n }的通项公式为a n =2×3n -1.若将“S n =3n -1”改为“S n =n 2-n +1”,如何求解? 解:∵a 1=S 1=12-1+1=1, 当n ≥2时,a n =S n -S n -1=(n 2-n +1)-[(n -1)2-(n -1)+1]=2n -2.∴a n =⎩⎪⎨⎪⎧1n =1,2n -2n ≥2.———————————————————已知S n 求a n 时应注意的问题数列的通项a n 与前n项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.2.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.求数列{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2.由已知a 1=S 1>1,因此a 1=2. 又由a n +1=S n +1-S n=16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2), 得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0,即a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项公式为a n =3n -1.由递推关系式求数列的通项公式[例3] 根据下列条件,确定数列{a n }的通项公式. (1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n =n -1na n -1(n ≥2); (3)a 1=2,a n +1=a n +3n +2. [自主解答] (1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1),即a n +1+1a n +1=3. ∴数列{a n +1}为等比数列,公比q =3. 又a 1+1=2,∴a n +1=2×3n -1.∴a n =2×3n -1-1.(2)∵a n =n -1na n -1(n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1×12×23×…×n -1n =a 1n =1n .(3)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.——————————————————— 由递推公式求通项公式的常用方法已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+fn 时,用累加法求解;当出现a na n -1时,用累乘法求解.3.(2012·大纲全国卷)已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n >1时有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,…a n -1=n n -2a n -2,a n =n +1n -1a n -1,将以上n 个等式两端分别相乘,整理得a n =n n +12.综上可知,数列{a n }的通项公式a n =n n +12.数列函数性质的应用[例4] 已知数列{a n }. (1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.某某数k 的取值X 围. [自主解答] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.②∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.———————————————————函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.4.若数列⎩⎨⎧⎭⎬⎫nn +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________.解析:法一:由题意知, ⎩⎪⎨⎪⎧k k +4⎝ ⎛⎭⎪⎫23k ≥k -1k +3⎝ ⎛⎭⎪⎫23k -1,kk +4⎝ ⎛⎭⎪⎫23k ≥k +1k +5⎝ ⎛⎭⎪⎫23k +1,解得10≤k ≤1+10. ∵k ∈N *,∴k =4.法二:设a n =n (n +4)⎝ ⎛⎭⎪⎫23n,则a n +1-a n =(n +1)(n +5)⎝ ⎛⎭⎪⎫23n +1-n (n +4)⎝ ⎛⎭⎪⎫23n=⎝ ⎛⎭⎪⎫23n ⎣⎢⎡⎦⎥⎤23n +1n +5-n n +4=⎝ ⎛⎭⎪⎫23n 10-n 23. 当n ≤3时,a n +1-a n >0,即a n +1>a n ,当n ≥4时,a n +1-a n <0,即a n +1<a n , 故a 1<a 2<a 3<a 4,且a 4>a 5>a 6>…. 所以数列中最大项是第4项. 答案:41个关系——数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.3类问题——数列通项公式的求法及最大(小)项问题 (1)由递推关系求数列的通项公式常用的方法有: ①求出数列的前几项,再归纳出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用叠加法、累乘法、迭代法. (2)由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式; ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . (3)数列{a n }的最大(小)项的求法 可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.创新交汇——数列与函数的交汇问题1.数列的概念常与函数、方程、解析几何、不等式等相结合命题.2.正确理解、掌握函数的性质(如单调性、周期性等)是解决此类问题的关键. [典例] (2012·某某高考)已知f (x )=11+x .各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.[解析] ∵a n +2=11+a n ,又a 2 010=a 2 012=11+a 2 010,∴a 22 010+a 2 010=1.又a n >0,∴a 2 010=5-12. 又a 2 010=11+a 2 008=5-12,∴a 2 008=5-12,同理可得a 2 006=…=a 20=5-12. 又a 1=1,∴a 3=12,a 5=11+a 3=23,a 7=11+a 5=35,a 9=11+a 7=58,a 11=11+a 9=813. ∴a 20+a 11=5-12+813=135+326. [答案]135+326[名师点评]1.本题具有以下创新点(1)数列{a n }的递推关系式,以函数f (x )=11+x为载体间接给出;(2)给出的递推关系式不是相邻两项,即a n 与a n -1(n ≥2)之间的关系,而是给出a n 与a n+2之间的关系式,即奇数项与奇数项、偶数项与偶数项之间的递推关系. 2.解决本题的关键有以下两点 (1)正确求出数列{a n }的递推关系式; (2)正确利用递推公式a n +2=11+a n,分别从首项a 1推出a 11和从a 2 010推出a 20. [变式训练]1.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n的最小值为( ) A.172B.212C .10D .21解析:选B 由已知条件可知:当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33适合, 故a n =n 2-n +33.又a n n=n +33n-1,令f (n )=n +33n-1,f (n )在[1,5]上为减函数,f (n )在[6,+∞)上为增函数,又f (5)=535,f (6)=212, 所以f (5)>f (6).故f (n )=a n n 的最小值为212.2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1x ≤0,f x -1+1x >0,把函数g (x )=f (x )-x 的零点按从小到大的顺序排成一个数列,则该数列的通项公式为( )A .a n =n n -12(n ∈N *) B .a n =n (n -1)(n ∈N *)C .a n =n -1(n ∈N *) D .a n =2n -2(n ∈N *)解析:选C 据已知函数关系式可得f (x )=⎩⎪⎨⎪⎧2x-1x ≤0,2x -10<x ≤1,2x -2+11<x ≤2,…,此时易知函数g (x )=f (x )-x 的前几个零点依次为0,1,2,…,代入验证只有C 符合.一、选择题(本大题共6小题,每小题5分,共30分) 1.数列1,23,35,47,59,…的一个通项公式a n 是( )A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n2n -1.2.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,即λ<32.由λ<1可得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件.3.数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大值是( )A .310B .19 C.119D.1060解析:选C 因为a n =1n +90n,运用基本不等式得1n +90n≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大.4.(2013·某某模拟)设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为T r ,则T 2 013的值为( )A .-12B .-1C.12D .2 解析:选B 由a 2=12,a 3=-1,a 4=2可知,数列{a n }是周期为3的周期数列,从而T 2013=(-1)671=-1.5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 解析:选B 由a n =⎩⎪⎨⎪⎧S n n =1S n -S n -1n ≥2=⎩⎪⎨⎪⎧-8n =1,2n -10n ≥2,得a n =2n -10.由5<2k -10<8得7.5<k <9,由于k ∈N *,所以k =8. 6.(2012·某某高考)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( )A .1 006B .2 012C .503D .0解析:选A 由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 012=503×2=1 006.二、填空题(本大题共3小题,每小题5分,共15分)7.根据下图5个图形及相应点的个数的变化规律,猜测第n 个图中有________个点.解析:观察图中5个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n 个图中点的个数为(n -1)×n +1=n 2-n +1. 答案:n 2-n +18.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n⎝ ⎛⎭⎪⎫0≤a n<12,2a n-1⎝ ⎛⎭⎪⎫12≤a n<1,若a 1=67,则a 2 013=________.解析:因为a 1=67∈⎣⎢⎡⎭⎪⎫12,1,所以a 2=2a 1-1=2×67-1=57.因为a 2=57∈⎣⎢⎡⎭⎪⎫12,1,所以a 3=2a 2-1=2×57-1=37.因为a 3=37∈⎣⎢⎡⎭⎪⎫0,12,所以a 4=2a 3=2×37=67.显然a 4=a 1,根据递推关系,逐步代入,得a 5=a 2,a 6=a 3,…故该数列的项呈周期性出现,其周期为3,根据上述求解结果,可得a 3k +1=67,a 3k +2=57,a 3k +3=37(k ∈N ).所以a 2 013=a 3×671=a 3=37.答案:379.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10=________.解析:∵a n +a n +1=b n ,a n ·a n +1=2n, ∴a n +1·a n +2=2n +1,∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2, ∴a 2n =2n,a 2n -1=2n -1(n ∈N *),∴b 10=a 10+a 11=64. 答案:64三、解答题(本大题共3小题,每小题12分,共36分)10.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3…·a n =n 2,求a 3+a 5的值.解:∵a 1·a 2·a 3·…·a n =n 2, ∴a 1a 2=4,a 1a 2a 3=9,解得a 3=94.同理a 5=2516.∴a 3+a 5=6116.11.已知数列{a n }的前n 项和S n ,分别求它们的通项公式a n . (1)S n =2n 2+3n ; (2)S n =2n+1.解:(1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5,当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1. 当n =1时,4×1+1=5=a 1,故a n =4n +1. (2)当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -1.当n =1时,21-1=1≠a 1,故a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.12.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设=T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{}的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2), 故b n=⎩⎪⎨⎪⎧1n n ≥2,23n =1.(2)∵=b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1,∴+1-=12n +2+12n +3-1n +1=-n -12n +22n +3n +1<0.∴{}是递减数列.1.根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,…; (1)0.8,0.88,0.888,…; (3)32,1,710,917,…; (4)0,1,0,1,….解:(1)符号问题可通过(-1)n或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n(6n -5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…故a n =89⎝⎛⎭⎪⎫1-110n .(3)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为=n 2+1,故可得它的一个通项公式为a n =2n +1n 2+1.(4)a n =⎩⎪⎨⎪⎧n 为奇数,1n 为偶数或a n =1+-1n2或a n =1+cos n π2.2.已知数列{a n }的通项公式a n =(n +1)⎝ ⎛⎭⎪⎫1011n (n ∈N *),试问数列{a n }有没有最大项?若有,求最大项和最小项的项数;若没有,说明理由.解:∵a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =⎝ ⎛⎭⎪⎫1011n·9-n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ;故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…∴数列中有最大项,最大项为第9、10项, 即a 9=a 10=1010119.3.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎪⎫n ,S n n(n ∈N *)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解:(1)依题意得,S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5. 所以a n =6n -5(n ∈N *). (2)由(1)得b n =3a n a n +1=36n -5[6n +1-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =∑i =1nbi=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1 =12⎝⎛⎭⎪⎫1-16n +1.因此,使得12⎝ ⎛⎭⎪⎫1-16n +1<m 20(n ∈N *)成立的m 必须且仅需满足12≤m 20,即m ≥10,故满足要求的最小正整数m 为10.4.(2012·某某高考)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解:(1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1,易知当n =1时也满足通式a n =4n -1, 所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *.(2)由(1)知a n·b n=(4n-1)·2n-1,n∈N*,所以T n=3+7×2+11×22+…+(4n-1)·2n-1,2T n=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,2T n-T n=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5. 故T n=(4n-5)2n+5,n∈N*.。

2014高三数学一轮总复习第三章数列参考答案

2014高三数学一轮总复习第三章数列参考答案

同步练习 g3.1021数列的概念1—5、BD D A A 6、232n n a n +=+ 7、45n a n =- 8、161 9、821n n -+、10、(1)36 (2)1211n c n =- 11、12n a n=- 12、(1)第7项 (2)递增数列,有界数列 13、3λ>-g3.1022等差数列和等比数列(1)1—6、CBBCCB7、0 8、9 9、5 10、1211、2log (31)n - 12、(1)21n a n =+ (2)略13、3(1)2(2)n n a n n =⎧=⎨≥⎩,不是 14、(1)等差数列 (2)min 2()1n b b ==-,max 3()3n b b ==15、(1)略 (2)第11项同步练习 g3.1023等差数列和等比数列(2)1—7、CDBBB CC8、1 9、1或1316 10、22()3k k Z ππ±∈ 11、(1)4010 (2)2 ;812、(1)62n n a -= (2)2111()lg 222n T n n =-+ 13、4 14、略15、当0q <<n n A B >;当q =时,n n A B =;当q >时,n n A B <; 同步练习g3.1024等差数列和等比数列(3)1—8、CBA CB B A A 9、20 10、2816;.231511、100100a 12、10. 15、a n =2+2n.同步练习 g3.1025数列的通项1—4、C DCD 5、12n n a n -=⋅ 6、32n + 7、4(1)n n + 81 9、(1)不可能 (2)1,c = 1(1)21n n a a -=+⋅- 10、(1)略 (2)1321n n a -=⋅- (3)323n n S n =⋅-- 11、(1)略 (2)2(31)2n n a n -=-⋅ ,1(34)22n n S n -=-⋅+同步练习 g3.1029 1—5、CCDCC6、 (1)(n-2)180o ;(2)(3)(3);2n n n -≥ (3)n 2-n-1;1 . 7、2(2k+1). 8、a=8,b=11,c=10. 9、(略). 10、(1)a n =n+1; (2)(略). 11、x>1时,A n >B n ;x=1时,A n =B n ;11.10n n x A B <<<时,同步练习 g3.1030 1—6、BAABCC.7、1.1a - 8、1.1或q 9、-1. 10、2. 11、3.2 12、3.213、121(1);(2)(,).(1)2n n nk a k -⋅=--∞- 同步练习 g3.10311—6、CDACACB.8、1.2 9、10. 10、()1()mm n n m n ⎧≠⎪⎨⎪=⎩ 11、1. 12、0.x x →→+∞或 13、(1)0;(2)1.14、当0()x f x →时,无极限,从而在x=0处不连续. 15、()f x ∞∞在区间(-,2)和(2,+)连续,在点x=2不连续;若定义24(2)(),()24(2)x x f x f x x x ⎧-≠⎪=-⎨⎪=⎩则在区间(-3,3)内连续.16、(略)同步练习 g3.1032 1—6、CCDCDD.7、x+y-2=0. 8、2'22sin cos .sin x x x x y x -= 9、1.6- 10、'234334.y x x x --=-+- 11、22sin(4).3x π+12、(1)6.8 rad/s; (2)20().3s 13、(1)215; 210.5; 210.05. (2)210.14、221(0)1'()0)sin 2sin .x x f x x x x xx ⎧>⎪+⎪⎪==⎨⎪⎪-⎪⎩不存在(同步练习 g3.10331—4、BBCB.5、1.6、3.2R7、a=4, b=-11.8、23.104l9、提示:22'()2()'()2'()2(321)(1)(1),F x af x f x af x a x x x x =+=-++- 注意定义域为[0,2].据此讨论其单调性和最值.10、增区间为2(,)(1,);,1);(2)7.3m -∞-+∞>2和减区间为(-3同步练习 g3.1034 1—7、BDDCD DC.8、(,2][0,).-∞-+∞和 9、30.x --= 10、2x-y-1=0. 11、(2,4). 12、0.35 (m/s).13、21. 本小题主要考查函数的单调性及奇偶性,考查运用导数研究函数单调性及极值等基础知识,考查综合分析和解决问题的能力,满分12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后作业(三十一) 数列的概念与简单表
示法
一、选择题
1.如图5-1-2,关于星星的图案中星星的个数构成一个数列,该数列的一个通项公式是( )
图5-1-2
A .a n =n 2-n +1
B .a n =
n (n -1)2
C .a n =n (n +1)2
D .a n =n (n +2)2
2.已知数列{a n }满足a 1=1,a n +1=a n +2n ,则a 10=( )
A .1 024
B .1 023
C .2 048
D .2 047
3.(2013·东莞调研)已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( )
A .2n -1
B .(n +1n )n -1
C .n 2
D .n
4.(2013·河源质检)已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( )
A .1
B .9
C .10
D .55
5.(2013·佛山模拟)数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }
的前n 项和,则S 21为( )
A .5 B.72 C.92 D.132
二、填空题
6.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=19,则a 36=
________.
7.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.
8.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,且1<S k
<9(k ∈N *),则a 1的值为________,k 的值为________.
三、解答题
9.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1
,且前n 项和为T n ,设c n =T 2n +1-T n .
(1)求数列{b n }的通项公式;
(2)判断数列{c n }的增减性.
10.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12
a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;
(2)求数列{a n }的通项公式.
11.(2013·湛江质检)在数列{a n },{b n }中,a 1=2,a n +1-a n =6n +2,点(a n n ,
b n )在y =x 3+mx 的图象上,{b n }的最小项为b 3.
(1)求数列{a n }的通项公式;
(2)求m 的取值范围.
解析及答案
一、选择题
1.【解析】 观察所给图案知,a n =1+2+3+…+n =n (n +1)2
. 【答案】 C
2.【解析】 ∵a n +1=a n +2n ,
∴a n -a n -1=2n -1(n ≥2),
∴a 10=(a 10-a 9)+(a 9-a 8)+…+(a 2-a 1)+a 1
=29+28+…+2+1=210-1=1 023.
【答案】 B
3.【解析】 ∵a n =n (a n +1-a n ),∴a n +1a n
=n +1n , ∴a n =a n
a n -1×a n -1a n -2×a n -2
a n -3×…×a 3a 2×a 2a 1×a 1=n n -1×n -1n -2×n -2n -3×…×32×21×1=n .
【答案】 D
4.【解析】 ∵S n +S m =S n +m ,
∴令n =9,m =1,即得S 9+S 1=S 10,
S 1=S 10-S 9=a 10=1,∴a 10=1.
【答案】 A
5.【解析】 ∵a n +a n +1=12(n ∈N *),
∴a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…
故a 2n =2,a 2n -1=12-2.
∴S 21=10×12+a 1=5+12-2=72.
【答案】 B
二、填空题
6.【解析】 ∵a p +q =a p +a q ,
∴a 36=a 32+a 4=2a 16+a 4=4a 8+a 4=8a 4+a 4=18a 2=36a 1=4.
【答案】 4
7.【解析】 由题意知:a 1·a 2·a 3…a n -1=(n -1)2,
∴a n =(n n -1
)2(n ≥2), ∴a 3+a 5=(32)2+(54)2=6116.
【答案】 6116
8.【解析】 当n =1时,a 1=23a 1-13,∴a 1=-1.
当n ≥2时,a n =S n -S n -1=23a n -13-(23a n -1-13)
=23a n -23a n -1,
∴a n a n -1
=-2, ∴数列{a n }是首项为-1,公比为-2的等比数列,
∴a n =-(-2)n -1,S n =-23×(-2)n -1-13.
由1<-23×(-2)k -1-13
<9得-14<(-2)k -1<-2, 又k ∈N *,∴k =4.
【答案】 -1 4
三、解答题
9. n -1(n ≥2).
∴b n =⎩⎪⎨⎪⎧23(n =1),
1n (n ≥2).
(2)∵c n =b n +1+b n +2+…+b 2n +1
=1
n +1+1
n +2+…+
12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1
<0, ∴{c n }是递减数列.
10.【解】 (1)由S n =12a 2n +12
a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1;
S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;
同理,a 3=3,a 4=4.
(2)S n =a n 2+12a 2n , ①
当n ≥2时,S n -1=a n -12+12a 2n -1,

①-②得(a n -a n -1-1)(a n +a n -1)=0.
由于a n +a n -1≠0,
所以a n -a n -1=1,
又由(1)知a 1=1, 故数列{a n }为首项为1,公差为1的等差数列,故a n =n .
11.【解】 (1)∵a n +1-a n =6n +2,
∴当n ≥2时,a n -a n -1=6n -4.
∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(6n -4)+(6n -10)+…+8+2
=(n -1)[8+(6n -4)]2
+2=3n 2-3n +2n -2+2 =3n 2-n ,
显然a 1也满足a n =3n 2-n ,
∴a n =3n 2-n .
(2)∵点(a n n ,b n )在y =x 3+mx 的图象上,
∴b n =(3n -1)3+m (3n -1).
∴b 1=8+2m ,b 2=125+5m ,b 3=512+8m ,b 4=1 331+11m .
∵{b n }的最小项是b 3,∴⎩⎪⎨⎪⎧8+2m ≥512+8m ,125+5m ≥512+8m ,1 331+11m ≥512+8m ,
∴-273≤m ≤-129.
∵b n +1=(3n +2)3+m (3n +2),
b n=(3n-1)3+m(3n-1),
∴b n+1-b n=3[(3n+2)2+(3n-1)2+(3n+2)(3n-1)]+3m=3(27n2+9n+3+m),
当n≥4时,27n2+9n+3>273,∴27n2+9n+3+m>0,
∴b n+1-b n>0,∴n≥4时,b n+1>b n.
综上可知-273≤m≤-129,
∴m的取值范围为[-273,-129].。

相关文档
最新文档