离散数学期末试题2

合集下载

离散数学期末考试卷

离散数学期末考试卷

离散数学期末考试卷一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 幂集2. 命题逻辑中,下列哪个命题不是合取命题?A. (p ∧ q)B. (p ∨ q)C. (p → q)D. (p ↔ q)3. 关系R在集合A上是自反的,这意味着:A. 对于所有a∈A,(a, a)∈RB. R是对称的C. R是传递的D. R是反对称的4. 在图论中,下列哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 矩阵5. 布尔代数中,下列哪个操作不是基本操作?A. 与(AND)B. 或(OR)C. 非(NOT)D. 模(MOD)6. 函数f: A → B,下列哪个条件不是函数的一一对应的必要条件?A. 对于A中不同的元素,它们的函数值不同B. 对于B中的每个元素,A中至少有一个元素映射到它C. 对于A中的每个元素,B中只有一个元素映射到它D. A和B的元素数量相同7. 在组合数学中,下列哪个是排列的定义?A. 从n个不同元素中取出r个元素的所有可能组合B. 从n个不同元素中取出r个元素的所有可能排列C. 从n个元素中取出r个元素的所有可能组合,不考虑顺序D. 从n个元素中取出r个元素的所有可能排列,考虑顺序8. 逻辑等价是指两个命题:A. 总是同时为真或同时为假B. 在所有可能的真值分配下都具有相同的真值C. 只有在某些真值分配下具有相同的真值D. 至少在一个真值分配下具有相同的真值9. 递归函数的特点是:A. 只能通过迭代来实现B. 必须有一个或多个基本情况C. 只能通过递归调用自身来实现D. 不能包含任何循环结构10. 在证明中,归纳法的基本步骤是:A. 基础步骤和归纳步骤B. 假设步骤和证明步骤C. 假设步骤和归纳步骤D. 基础步骤和假设步骤二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集包含元素个数为______。

离散数学期末试卷卷及答案2

离散数学期末试卷卷及答案2

1 离散数学(B卷)(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分)1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ pB .⎤ p∨qC .⎤ p∧qD .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的D .太好了!3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )A .自反的B .对称的C .传递的、对称的D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)B. A (1)→A (2)C.A (1)D. A (2)→A (1)6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0010101017. 设(A ,|)是一个偏序集,其中A 是正整数12的正因子的集合,“|”为整除关系,则能盖住元素3的是 ( )A.1B.3C.6D.128..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷>课程考试试题学期 学年 拟题学院(系): 适 用 专 业:9. 右图的最大入度是( )A.0 B.1C.2 D.3第9题图10. 设简单图G所有结点的度数之和为36,则G的边数为A.12B.18C.36D.72二、填空题(每空3分,共30分)1.设A={1,2,3,4},B={2,4,6},则A-B=________,A⊕B=________。

《离散数学》试题及答案 2

《离散数学》试题及答案 2

《离散数学》试题及答案 2《离散数学》试题及答案2一、填空题1设子集a,b,其中a={1,2,3},b={1,2},则a-b=____________________;?(b)=__________________________.2.设有限集合a,|a|=n,则|?(a×a)|=__________________________.3.设子集a={a,b},b={1,2},则从a至b的所有态射就是_______________________________________,其中双射的就是__________________________.4.已知命题公式g=?(p?q)∧r,则g的主析取范式是_________________________________________________________________________________________.5.设g就是全然二叉树,g存有7个点,其中4个叶点,则g的总度数为__________,分枝点数为________________.6设a、b为两个集合,a={1,2,4},b={3,4},则从a?b=_________________________;a?b=_________________________;a-b=_____________________.7.设r就是子集a上的等价关系,则r所具备的关系的三个特性就是______________________,________________________,______________________________ _.8.设命题公式g=?(p?(q?r)),则使公式g为真的解释有__________________________,_____________________________,__________________________.9.设子集a={1,2,3,4},a上的关系r1={(1,4),(2,3),(3,2)},r1={(2,1),(3,2),(4,3)},则r1?r2=________________________,r2?r1=____________________________,r12=________________________.(a)-10.设有限集a,b,|a|=m,|b|=n,则||?(a?b)|=_____________________________.11设a,b,r是三个集合,其中r是实数集,a={x|-1≤x≤1,x?r},b={x|0≤x<2,x?r},则a-b=__________________________,b-a=__________________________,a∩b=__________________________,.13.设子集a={2,3,4,5,6},r就是a上的相乘,则r以子集形式(列出法)记作__________________________________________________________________.14.设一阶逻辑公式g=?xp(x)??xq(x),则g的前束范式是_______________________________.15.设g就是具备8个顶点的树,则g中减少_________条边就可以把g变为全然图。

离散数学期末试卷及部分答案 (2)

离散数学期末试卷及部分答案 (2)

离散数学试题(A 卷及答案)一、证明题(10分)1)(⌝P ∧(⌝Q ∧R))∨(Q ∧R)∨(P ∧R)⇔R证明: 左端⇔(⌝P ∧⌝Q ∧R)∨((Q ∨P)∧R)⇔((⌝P ∧⌝Q)∧R))∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∧R)∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∨(Q ∨P))∧R ⇔(⌝(P ∨Q)∨(P ∨Q))∧R ⇔T ∧R(置换)⇔R2)∃x(A(x)→B(x))⇔ ∀xA(x)→∃xB(x)证明 :∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x ⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x) 二、求命题公式(P ∨(Q ∧R))→(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))→(P ∧Q ∧R)⇔⌝(P ∨(Q ∧R))∨(P ∧Q ∧R))⇔(⌝P ∧(⌝Q ∨⌝R))∨(P ∧Q ∧R) ⇔(⌝P ∧⌝Q)∨(⌝P ∧⌝R))∨(P ∧Q ∧R)⇔(⌝P ∧⌝Q ∧R)∨(⌝P ∧⌝Q ∧⌝R)∨(⌝P ∧Q ∧⌝R))∨(⌝P ∧⌝Q ∧⌝R))∨(P ∧Q ∧R) ⇔m0∨m1∨m2∨m7 ⇔M3∨M4∨M5∨M6三、推理证明题(10分)1) C ∨D, (C ∨D)→ ⌝E, ⌝E →(A ∧⌝B), (A ∧⌝B)→(R ∨S)⇒R ∨S证明:(1) (C ∨D)→⌝E(2) ⌝E →(A ∧⌝B)(3) (C ∨D)→(A ∧⌝B) (4) (A ∧⌝B)→(R ∨S) (5) (C ∨D)→(R ∨S)(6) C ∨D(7) R ∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) (2)P(a)(3)∀x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)∃x(P(x)∧R(x)) (11)Q(y)∧∃x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。

二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。

(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。

(10分)5. 试判断),(≤z 是否为格?说明理由。

(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。

(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。

求证:g f 和都是满射;但不是单射。

(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。

离散期末考试题及答案

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

离散数学期末试卷

离散数学期末试卷

离散数学期末试卷一、选择题(共10题,每题2分,共20分)1.下列哪个是真值?–[ ] A. $P \\vee \\sim P$–[ ] B. $P \\wedge \\sim P$–[ ] C. $P \\rightarrow \\sim P$–[ ] D. $P \\leftrightarrow \\sim P$2.下列哪个式子是永真式?–[ ] A. $(P \\rightarrow Q) \\wedge (Q \\rightarrow P)$–[ ] B. $(P \\rightarrow Q) \\vee (Q\\rightarrow P)$–[ ] C. $(P \\wedge \\sim P) \\vee (Q \\wedge \\sim Q)$–[ ] D. $(P \\rightarrow Q) \\rightarrow (Q \\rightarrow P)$3.下列集合中的哪个是无穷集合?–[ ] A. $\\{1, 2, 3\\}$–[ ] B. $\\{1, 2, 3, ...\\}$–[ ] C. $\\{\\emptyset\\}$–[ ] D. $\\{\\emptyset, \\{1\\}, \\{2\\}\\}$4.对于集合$A = \\{1, 2, 3\\}$和$B = \\{3, 4, 5\\}$,下面哪个选项是$A \\cap B$?–[ ] A. $\\{1, 2\\}$–[ ] B. $\\{2, 4\\}$–[ ] C. $\\{3\\}$–[ ] D. $\\{1, 3\\}$5.对于集合$A = \\{1, 2, 3\\}$和$B = \\{3, 4, 5\\}$,下面哪个选项是$A \\cup B$?–[ ] A. $\\{1, 2, 4, 5\\}$–[ ] B. $\\{\\emptyset\\}$–[ ] C. $\\{1, 2, 3, 4, 5\\}$–[ ] D. $\\{1, 3\\}$6.哪个选项是集合$A = \\{2, 4, 6, 8, 10\\}$的幂集?–[ ] A. $\\{2, 4, 6, 8, 10\\}$–[ ] B. $\\{2, 4, 6, 8, 10, \\{\\}\\}$–[ ] C. $\\{\\{2\\}, \\{4\\}, \\{6\\}, \\{8\\},\\{10\\}, \\{2, 4\\}, \\{2, 6\\}, \\{2, 8\\}, \\{2, 10\\}, \\{4, 6\\}, \\{4, 8\\}, \\{4, 10\\}, \\{6, 8\\}, \\{6,10\\}, \\{8, 10\\}, \\{2, 4, 6\\}, \\{2, 4, 8\\}, \\{2, 4, 10\\}, \\{2, 6, 8\\}, \\{2, 6, 10\\}, \\{2, 8, 10\\}, \\{4, 6, 8\\}, \\{4, 6, 10\\}, \\{4, 8, 10\\}, \\{6, 8, 10\\},\\{2, 4, 6, 8\\}, \\{2, 4, 6, 10\\}, \\{2, 4, 8, 10\\}, \\{2, 6, 8, 10\\}, \\{4, 6, 8, 10\\}, \\{2, 4, 6, 8, 10\\}\\}$–[ ] D. $\\{\\{\\}, \\{2\\}, \\{4\\}, \\{6\\},\\{8\\}, \\{10\\}, \\{2, 4\\}, \\{2, 6\\}, \\{2, 8\\},\\{2, 10\\}, \\{4, 6\\}, \\{4, 8\\}, \\{4, 10\\}, \\{6,8\\}, \\{6, 10\\}, \\{8, 10\\}, \\{2, 4, 6\\}, \\{2, 4,8\\}, \\{2, 4, 10\\}, \\{2, 6, 8\\}, \\{2, 6, 10\\}, \\{2, 8, 10\\}, \\{4, 6, 8\\}, \\{4, 6, 10\\}, \\{4, 8, 10\\},\\{6, 8, 10\\}, \\{2, 4, 6, 8\\}, \\{2, 4, 6, 10\\}, \\{2, 4, 8, 10\\}, \\{2, 6, 8, 10\\}, \\{4, 6, 8, 10\\}, \\{2, 4, 6, 8, 10\\}\\}$7.下列哪个命题是正确的?–[ ] A. 如果x>10,则x>5–[ ] B. 如果x>5,则x>10–[ ] C. 如果x>10,则x<5–[ ] D. 如果x<5,则x>108.哪个选项是命题$P: (P \\rightarrow Q) \\wedgeP$的否定?–[ ] A. $\\sim P \\rightarrow (\\sim Q \\vee \\sim P)$–[ ] B. $(P \\rightarrow \\sim Q) \\vee P$–[ ] C. $(P \\rightarrow Q) \\wedge \\sim P$–[ ] D. $Q \\rightarrow P$9.对于命题$P: (x > 5) \\wedge (y < 10)$,下列哪个选项是x与$Q: (x < 2) \\vee (y > 8)$的合取式?–[ ] A. $(x > 5) \\wedge (y < 10) \\vee (x < 2) \\vee (y > 8)$–[ ] B. $(x > 5) \\vee (y < 10) \\wedge (x < 2) \\vee (y > 8)$–[ ] C. $(x > 5) \\vee (y < 10) \\vee (x < 2) \\wedge (y > 8)$–[ ] D. $(x > 5) \\vee (x < 2) \\vee (y < 10) \\vee (y > 8)$10.下列哪个命题是等价的?–[ ] A. $P \\rightarrow Q$–[ ] B. $\\sim P \\vee Q$–[ ] C. $\\sim Q \\rightarrow \\sim P$–[ ] D. $P \\wedge \\sim Q$二、填空题(共5题,每题4分,共20分)1.集合$\\{x | x > 0\\}$的基数是\\\\\\。

《离散数学》期末练习题考试卷和答案

《离散数学》期末练习题考试卷和答案


, 1, b , 2 , b , 4 , b , 3 , c
。 D. 4 。
2

4. 设 G 是 4 阶群,则其子群的阶不能是下面的 B. 2 C. 3 5.设 S 1 , 2 , 3 , 4 , 5,则下列集合中等于 S 的是 A. 1, 2 , 3 , 4
B. x x是有理数, x 25
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。

13. 某班有学生 50 人,有 26 人在第一次考试中得优,有 21 人在第二次考试中得优,有 17 人两次考试都 没有得优,那么两次考试都得优的学生人数是 14. 将布尔表达式 a c c b b c 化简得 为 。 。 )式。 )个极小项。


。 。
15. 设 P : 我 有 钱 , Q : 我 去 看 电 影 , 命 题 “ 当 且 仅 当 我 有 钱 时 , 我 才 去 看 电 影 ” 符 号 化 16. 设 a, b, * 是群,且 a * a b ,则 b * b 17.命题公式 p p q q r 是永( 18. P Q 的主析取范式中,含有(
C. x x是正整数, x 5


D. x x是有理数, x 5

6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 乘法答案:D2. 命题逻辑中,以下哪个命题不是基本的逻辑连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 等于(=)答案:D3. 在图论中,一个图的度数之和等于边数的几倍?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是布尔代数的基本定理?A. 德摩根定律B. 布尔代数的分配律C. 布尔代数的结合律D. 所有选项都是答案:D5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合答案:C6. 在关系数据库中,以下哪个操作不是基本的数据库操作?A. 选择B. 投影C. 连接D. 排序答案:D7. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入符号D. 所有选项都是答案:D8. 以下哪个命题逻辑表达式是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p → q) ∧ (q → p)D. (p → q) ∧ (¬p → ¬q)答案:D9. 以下哪个是归纳法证明的基本步骤?A. 基础步骤B. 归纳步骤C. 反证法D. 所有选项都是答案:B10. 以下哪个是图的遍历算法?A. 深度优先搜索(DFS)B. 广度优先搜索(BFS)C. Dijkstra算法D. 所有选项都是答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的德摩根定律。

答案:德摩根定律是命题逻辑中描述否定命题的两个重要定律。

它们分别是:- ¬(p ∧ q) ≡ ¬p ∨ ¬q- ¬(p ∨ q) ≡ ¬p ∧ ¬q2. 解释什么是图的连通分量,并给出一个例子。

答案:图的连通分量是指图中最大的连通子图。

离散数学期末考试题(附答案和含解析2)

离散数学期末考试题(附答案和含解析2)

一.填空题1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是 ∃x ∃y¬P(x)∨Q(y)2。

设全集 E={1,2,3,4,5},A={1,2,3},B={2,5}, 则A ∩B = {2} ,=A {4,5} ,=B A {1,3,4,5} 。

3。

设{}{}b a B c b a A ,,,,==,则=-)()(B A ρρ__{{c },{a ,c},{b,c},{a,b,c}}_,=-)()(A B ρρ__Φ__。

4。

在代数系统(N,+)中,其单位元是0,仅有 单位元0 有逆元。

//x+y=0,x 的逆元= -x ,即x=05.如果连通平面图G 有n 个顶点,e 条边,则G 有__e+2-n __个面。

//点+面-边=23 无向图G 有12条边,G 中有6个3度结点,其余结点的度数均小于3,问G 中至少有 9 个结点?//因为至少,所以 6×3+2n=12×2 解得n=3 总结点m=6+3=9二.选择题1。

与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C))(R Q P ∧→ (D ))(R Q P ∨→3。

在图>=<E V G ,中,结点总度数与边数的关系是( C )(A )E v i 2)deg(= (B ) E v i =)deg((C)∑∈=V v i E v 2)deg((D) ∑∈=V v iE v )deg(4. 设D 是有n 个结点的有向完全图,则图D 的边数为( A )(A ))1(-n n (B))1(+n n (C)2/)1(+n n (D)2/)1(-n n5。

无向图G 是欧拉图,当且仅当( C )(A) G 的所有结点的度数都是偶数 (B )G 的所有结点的度数都是奇数(C)G 连通且所有结点的度数都是偶数 (D) G 连通且G 的所有结点度数都是奇数。

2020-2021大学《离散数学》期末课程考试试卷A2(含答案)

2020-2021大学《离散数学》期末课程考试试卷A2(含答案)

2020-2021《离散数学》期末课程考试试卷A2专业: 考试日期: 所需时间:120分钟 总分:100分 闭卷 一、选择题(每小题3分,总共30分)1、设P :我们划船,Q :我们跑步。

命题“我们不能既划船又跑步”符号化为( )A 、Q P ⌝∧⌝B 、Q P ⌝∨⌝C 、)(Q P ↔⌝D 、)(Q P ⌝↔ 2、下列语句中哪个是真命题?( )A 、我正在说谎。

B 、严禁吸烟C 、如果1+2=3,那么雪是黑的。

D 、如果1+2=5,那么雪是黑的。

3、命题公式Q Q P P →→∧))((是( )A 、矛盾式B 、蕴含式C 、重言式D 、等值式4、谓词公式)())()((x Q y yR x P x →∃∨∀中变元x 是( ) A 、自由变量 B 、约束变量 C 、既不是自由变量也不是约束变量 D 、既是自由变量也是约束变量5、若个体域为整数域,下列公式中哪个值为真?( )A 、)0(=+∃∀y x y xB 、)0(=+∀∃y x x yC 、)0(=+∀∀y x y xD 、)0(=+∃⌝∃y x y x6、设个体域A={a,b},公式)()(x xS x xP ∃∧∀在A 中消去量词应为( ) A 、)()(x S x P ∧ B 、))()(()()(b S a S b P a P ∨∧∧ C 、)()(b S a P ∧ D 、)()()()(b S a S b P a P ∨∧∧8、设A={{1,2,3},{4,5},{6,7,8}},下列正确的是( ) A 、1∈A B 、{1,2,3}⊆A C 、{{4,5}}⊂A D 、Φ∈A 9、幂集P (P (P (Φ)))为( )A 、{{Φ},{Φ,{Φ}}}B 、{Φ,{Φ},{Φ,{Φ}}}C 、{Φ,{Φ},{Φ,{Φ}},{{Φ}}}D 、{Φ,{Φ,{Φ}}}10、任意一个具有多个等幂元的半群,它( )A 、不能构成群B 、不一定能构成群C 、能构成群D 、不能构成交换群 二、填空题(每小题2分,总共16分)1、对于前提:S Q ⌝→,S ∨R ,R ⌝,Q P ↔⌝,其有效结论为2、谓词公式)()()(y yR x xQ x xP ∃∨∀→∀的前束范式为3、设集合A={x|x <3,x ∈Z},B={x|x=2k,k ∈Z} C={1,2,3,4,5},则 A ⊕(C-B )=4、某校有足球队员38人,篮球队员15人,排球队员20人,三队队员总数为58人,其中只有3人同时参加3种球队,则仅仅参加两种球队的队员为 人 。

成人教育《离散数学》期末考试复习题及参考答案

成人教育《离散数学》期末考试复习题及参考答案

离散数学复习题二一、简要回答下列问题:1.请给出⌝P,P∧Q,P∨Q的真值表。

2.请给出公式蕴涵的定义。

举一个例子。

3.请给出命题∀xG(x)的真值规定。

4.什么是谓词逻辑公式的解释?5.叙述谓词逻辑公式G与它的Skolem范式之间的区别与联系。

6.什么是图的关联矩阵?7.什么是简单路?举一例。

8.什么是有向树?举一例9.设G为整数加群,H为5的所有倍数组成的加法群,给出H的所有陪集。

二、判断下列公式是恒真?恒假?可满足?a) (P→(Q∧R))∧(⌝P→(⌝Q∧⌝R));b) P→(P∧(Q→P));c) (Q→P)∧(⌝P∧Q);d) (⌝P∨⌝Q)→(P↔⌝Q)。

三、指出下列公式哪些是恒真的哪些是恒假的:(1)P∧(P→ Q)→Q(2)(P→ Q)→(⌝P∨Q)(3)(P→ Q)∧(Q→R)→(P→ R )(4)(P↔ Q)↔(P∧ Q∨⌝P∧⌝ Q)四、给P和Q指派真值1,给R和S指派真值0,求出下面命题的真值:a) (P∧(Q∧R))∨⌝((P∨Q)∧(R∨S))b) (⌝(P∧Q)∨⌝R)∨(((⌝P∧Q)∨⌝R)∧S)c) (⌝(P∧Q)∨⌝R)∨((Q↔⌝P)→(R∨⌝S))d) (P∨(Q→(R∧⌝P)))↔(Q∨⌝S)五、证明:连通图中任意两条最长的简单路必有公共点。

离散数学复习题二答案一、简要回答下列问题:1.请给出⌝P,P∧Q,P∨Q的真值表。

P Q ⌝P P∧Q P∨Q0 1 1 0 11 0 0 0 11 1 0 1 10 0 1 0 02.请给出公式蕴涵的定义。

举一个例子。

答:设G,H是两个公式,如果解释I满足G,I也满足S,称G蕴涵H。

例如:P∧Q蕴涵P。

3.请给出命题∀xG(x)的真值规定。

答:∀xG(x)取1值⇔对任意x∈D,G(x)都取1值;∀xG(x)取0值⇔有一个x0∈D,使G(x0)取0值。

4.什么是谓词逻辑公式的解释?答:词逻辑中公式G的一个解释I,是由非空区域D和对G中常量符号,函数符号,谓词符号以下列规则进行的一组指定组成:1. 对每个常量符号,指定D中一个元素;2. 对每个n元函数符号,指定一个函数,即指定D n到D的一个映射;3. 对每个n元谓词符号,指定一个谓词,即指定D n到{0,1}的一个映射。

河南科技学院新科学院离散数学试卷2

河南科技学院新科学院离散数学试卷2
29.原式 (┐(P→Q)→(P→┐Q))∧((P→┐Q)→┐(P→Q)) ((P→Q)∨(P→┐Q))∧(┐(P→┐Q)∨┐(P→Q)) (┐P∨Q∨┐P∨┐Q)∧(┐(┐P∨┐Q)∨(P∧┐Q)) (┐(P∧┐Q)∨(P∧┐Q)) (P∧Q)∨(P∧┐Q) P∧(Q∨┐Q)
P∨(Q∧┐Q)
23.设 M(x):x 是人,D(s):x 是要死的,则命题“所有的人都是要死的”可符号化为( x)______,
其中量词( x)的辖域是______。
24.若 H1∧H2∧„∧Hn 是______,则称 H1,H2,„Hn 是相容的,若 H1∧H2∧„∧Hn 是______,
则称 H1,H2,„Hn 是不相容的。
且学过 C++语言。只要他学过 DELPHI 语言或者 C++语言,那么他就会编程序。因此如果 他是计算机系本科生,那么他就会编程序。请用命题逻辑推理方法,证明该推理的有效结 论。
36.(6 分)一次学术会议的理事会共有 20 个人参加,他们之间有的相互认识但有的
相互不认识。但对任意两个人,他们各自认识的人的数目之和不小于 20。问能否把这 20 个人排在圆桌旁,使得任意一个人认识其旁边的两个人?根据是什么?
中至少有 2k-2 片树叶。 33.(8 分)设 A 是非空集合,F 是所有从 A 到 A 的双射函数的集合, 是函数复合运算。
证明:〈F, 〉是群。 34.(6 分)在个体域 D={a1,a2,„,an}中证明等价式:
( x)(A(x)→B(x)) ( x)A(x)→( x)B(x) 五、应用题(共 15 分) 35.(9 分)如果他是计算机系本科生或者是计算机系研究生,那么他一定学过 DELPHI 语言而
19.设 A 为集合,P(A)为 A 的幂集,则〈P(A), 〉是格,若 x,y∈P(A),则 x,y 最大下界是______,

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。

A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。

A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。

答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。

离散数学试题带答案(二)

离散数学试题带答案(二)

离散数学试题带答案一、选择题1、G 是一棵根树,则( )。

A 、G 一定是连通的B 、G 一定是强连通的C 、G 只有一个顶点的出度为0D 、G 只有一个顶点的入度为12、下面哪个语句不是命题( )。

A 、中国将成功举办2008年奥运会B 、一亿年前地球发生了大灾难C 、我说的不是真话D 、哈密顿图是连通的3、设R 是实数集合,在上定义二元运算*:a ,b ∈R ,a*b=a+b-ab ,则下面的论断中正确的是( )。

A 、0是*的零元B 、1是*的幺元C 、0是*的幺元D 、*没有等幂元4、下面说法中正确的是( )。

A 、所有可数集合都是等势的B 、任何集合都有与其等势的真子集C 、有些无限集合没有可数子集D 、有理数集合是不可数集合5、无向完全图K 3的不同构的生成子图有( )个。

A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A 、无回路的连通图B 、有n 个顶点n-1条边的连通图C 、每对顶点间都有通路的图D 、连通但删去一条边则不连通的图7、设集合A ={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。

A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。

A 、必惟一B 、不惟一C 、不一定惟一D 、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A 是不封闭的?( )A 、 x*y=max{x,y}B 、 x*y=min{x,y}C 、 x*y=GCD(x,y),即x,y 的最大公约数D 、 x*y=LCM(x,y),即x,y 的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。

A 、R 是对称的B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,表示两个集合A和B的并集的符号是:A. ∩B. ∪C. ⊂D. ⊆2. 以下哪个命题逻辑表达式是真命题,当P为真,Q为假时?A. ¬PB. P ∧ QC. P ∨ QD. P → Q3. 如果函数f: A → B是一个单射,那么它不能是:A. 满射B. 双射C. 恒等函数D. 逆函数4. 在图论中,一个图G是连通的,当且仅当:A. G是无向图B. G是简单图C. G是完全图D. 对于任意两个顶点,都存在一条路径5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合二、简答题(每题10分,共30分)6. 解释什么是二元关系,并给出一个例子。

7. 描述什么是有向图和无向图的区别。

8. 什么是等价关系,它有哪些性质?三、计算题(每题15分,共30分)9. 给定集合A = {1, 2, 3, 4},B = {a, b, c},定义函数f: A → B,其中f(1) = a, f(2) = b, f(3) = c, f(4) = a。

判断f是否是单射、满射或双射,并给出理由。

10. 计算以下命题逻辑表达式的真值表:(P ∧ Q) → (¬P ∨ R),其中P、Q、R是命题变量。

四、证明题(每题20分,共20分)11. 证明:如果一个图G是连通的,那么它的任意子图也是连通的。

答案一、选择题1. B2. C3. A4. D5. D二、简答题6. 二元关系是定义在两个集合上的一个关系,它将第一个集合中的每个元素与第二个集合中的元素相关联。

例如,如果A是人名的集合,B是年龄的集合,关系R可以是“比...年长”,那么(Alice, 30) ∈ R表示Alice比30岁年长。

7. 有向图由顶点和有向边组成,每条边都有一个方向,表示从一个顶点指向另一个顶点。

无向图由顶点和无向边组成,边没有方向。

离散数学期末考试试题(配答案)模拟题2

离散数学期末考试试题(配答案)模拟题2

七、8%
若图 G 不连通,则 G 的补图 G 是连通的。
证明:G 不连通,则 G 的连通分支有 G1,G2,Gm,(m≥2) 在补图非 G 中找两个顶点,u,v 有两种情况: ①u,v 落在 G 的不同连通分支中,u∈Gi,v∈Gj,i≠j;
4
(u,v)是补图非 G 的一条边,故 u,v 连通。 ②u,v 都在 Gi 中,则找另一个连通分支 Gj,在 Gj 找任意一个顶点 w, (u,w),(w,v)是 G 的边,则 u,v 在补图非 G 边连通。
(3)(6)
( 8) ( 9) (10)
B(d)→D(a,d) C(e)→¬D(a,e) B(d)→¬C(e)
(3),Us (7),Us (8)(9)
(11)
(∀设 A {x1 , x 2 , x3 , x 4 , x5 } ,偏序集 A, R 的 Hass 图为 求 ① A 中最小元与最大元; ② {x3 , x 4 , x5 } 的上界和上确界,下界和下确界。 解: (1)A 中最小元:没有; 最大元: x1
3 .设 N , 是偏序格,其中 N 是自然数集合, “ ≤ ”是普通的数间“小于等于” 关系,则
a, b N 有 a b (
) 。
A、a ; B、b ; C、max(a,b) ; D、min(a,b)。 4.连通非平凡的无向图 G 有一条欧拉回路当且仅当图 G ( A、只有一个奇度结点; B、只有两个奇度结点; C、只有三个奇度结点; D、没有奇度结点。 5.设无向图 G V , E 是连通的且 V n , E m 若(
4.图
的对偶图为
5.若关系 R 是等价关系, 则 R 满足______自反性, 对称性, 传递性_____________________________。 6.代数系统 A , 是群,则它满足____结合律,有幺元 ,每个元素都有递元______。 7 . 若 连 通 平 面 图 G V , E 共 有 r 个 面 , 其 中 V v , E e , 则 它 满 足 的 Euler 公 式 为 _____v-e+r=2__。 8. n 个结点的无向完全图 Kn 的边数为 n(n-1)/2 ,欧拉图的充要条件是 顶点都是偶顶点且 是连通的 。 9. 设 I 为整数集合,R={<x, y>| x≡y(mod3)},则[1]=___ {……,-2,1,4,……}____ 。 10.代数系统 A,, 是环,若对运算“· ”还满足 a,b∈ R,使得 a•b≠0,可换,含幺元 则 A,, 是整环。 二、选择 10%(每小题 2 分)

离散数学期末复习试题及答案(二)

离散数学期末复习试题及答案(二)

第二章 二元关系1. 设A={1,2,3,4},A 上二元关系 R={(a,b)|a=b+2}, S={(x,y)|y=x+1 or y=2x }求R ⋅S,S ⋅R,S ⋅R ⋅S,S 2,S 3,S ⋅R c 。

R ⋅S={(3,2),(4,3),(4,1)} S ⋅R={(2,1),(3,2)} S ⋅R ⋅S={(2,2),(3,3),(3,1)} S2={(1,1),(1,3),(2,2),(2,4),(3,2),(4,1),(4,3)} S3={(1,2),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3),(4,2),(4,4)} S ⋅R c ={(1,4),(2,3),(4,4)}2.A={a,b,c,d,e,f,g,h},给定A 上关系R 的 关系图如下:图3-14求最小正整数m,n,m<n,使Rm =Rn 。

R1=R16这是因为R 15是8个顶点以及8个自回路,相 当于左图的点各走了5圈,左图的点各走了3圈, R 16就成了原来的R .3.证明:.I )b ,b (,A b ,I )b ,b (,I )a ,a (,...,I )a ,a (,A a ,I )a ,a (I )I )(1(A nA nA 2A A AnA ∈∈∈∀∈∈∈∈∀=.R I R ,;R R I ,,R I )b ,a (,R )b ,a (,R I )b ,a (;I R R ,R I R ,I R )b ,a (,R I )b ,a (,I )b ,b (,I )a ,a (,A b ,a ,R )b ,a (RI R R I )2(A A A A A A A A A A A A ⊆⋅⊆⋅⋅∉∉⋅∈∀⋅⊆⋅⊆⋅∈⋅∈∴∈∈∈∈∀=⋅=⋅同理得矛盾则若即事实上,当|A|有限时,R 与I A 复合,相当于矩阵与 单位矩阵相乘,不会变化。

1k k2A k2A 1k 2A k2A 1k A k 2A kA A A n2A nA R R ...R R I )R ...R R I ()R...R R ()I R )(R ...R R I ()I R (R ...R R I )I R (;R I )I R (1n R ...R R I )I R )(3(+++======= 设4.判断下列等式是否成立(R,R1,R2均是A到B的 二元关系)c2c1c2c12121c21c2c1c21R R )b ,a (R )b ,a (or R )b ,a (R )a ,b (or R )a ,b (R R )a ,b ()R R ()b ,a (,R R )R R )(1( ∈⇔∈∈⇔∈∈⇔∈⇔∈=对c2c1c2c12121c21c2c 1c 21R R )b ,a (R )b ,a (and R )b ,a (R )a ,b (and R )a ,b (R R )a ,b ()R R ()b ,a (R R )R R )(2( ∈⇔∈∈⇔∈∈⇔∈⇔∈=对c2c 1c2c1c2c12121c21c21c2c 1c 21R R R R )b ,a (R )b ,a (,R )b ,a (R )a ,b (,R )a ,b (R R )a ,b ()R R ()R R ()b ,a (R R )R R )(3(-=∈⇔∉∈⇔∉∈⇔∈⇔=-∈-=- 对)}2,4(),1,4(),2,3(),1,3{()B A ()}4,2(),4,1(),3,2(),3,1{(B A },4,3{B },2,1{A :,B A )B A )(4(cc=⨯=⨯==⨯=⨯例否.,,)5(cc值域对换了一下的定义域与否φφφ=φcccccR )b ,a (R )b ,a (R )a ,b (R )a ,b ()R ()b ,a (,)R ()R )(6(∈⇔∉⇔∉⇔∈⇔∈=对.R R ,R R )R R )(7(12c1c 2c 21的值域相同的定义域不一定与否⋅=⋅.R )b ,a (,R R )a ,b (,R )b ,a (,R R ,R R )8(c221c1c2c121∈⊆∈∈∀⊆⊆对则如果.R )c ,d (,R )c ,d (,R )d ,c (,R )d ,c (,R R ,R )b ,a (,R R )a ,b (,R )b ,a (,R R ,R R )9(c1c21221c221c1c2c121∉∈∉∈∃⊂∈⊂∈∈∀⊂⊂而对则如果.R R ,R R R R )10(121221的值域相同的定义域不一定与否⋅=⋅5. 设R 1,R 2是集合A 上的二元关系,如果12R R ⊆,其中r ,s,t 分别是自反闭包,对称闭包,传递闭包的 记号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则{a},{b}都为B的极大元素也是极小元素;B的最大元素是{b},最小元素是{a}。
10.(本小题2分)若R是集合A上的拟序关系,则它是非对称的
四.解答题(本题共2小题,共20分)请详细解答下列问题
1.(本小题10分)在图4-27中给出有向图,试求 , 和 ,此有向图对应的关系是否可传递?如果不是可以传递的,试求此图的传递闭包。
图4-27()
2.(本小题10分)证明R是集合A上的空关系或全关系,则 。
五.证明题(本题共1小题,共10分)
1.(本小题10分)证明:
D.在外向树中既是根又是叶的结点叫分支结点。
二.填空题(本题共5小题,共20分)
1.(本小题4分) 的真值是_______
2.(本小题4分)设图G是一个n个结点m条边的简单连通图,若n>=3,则有m<=_________.
3.(本小题4分)设P:雪是白色的,Q:1+2=3,则命题:“除非1+2 3,
C.任何两条边除端点外无其他交点;
D.G的邻接矩阵是非对称的。
8.(本小题3分)若G为m元树,则()
A.G为外向树
B.G的所有结点的次数满足deg(vi)<m;
C.存在结点满足deg(vi)>m
D.除叶外所有结点vi满足deg(vi)=m.
9.(本小题3分)设G=<V,E>为二部图,则系列说法错误的是( )
6.(本小题2分)在n阶无向图G中,如果每个结点的次数都是d,称图G为d次正则图。
7.(本小题2分)如A={a,b,c},则A的幂集的“包含于”关系是线序的。
8.(本小题2分)如b是B的一个上界且b属于B,则b是B的最大元素。
9.(本小题2分)设A={a,b}, 是 上的偏序。设B={{a},{b}},
A.G的生成树是一个(n,n-1)图;
B.G的秩=m-n+1;
C.G的秩是为了打断它所有基本回4.(本小题3分)下列命题错误的是()
A.具有两个以上结点的树至少有两片叶
B.一个连通图G的生成树为T,则G与T的边相同
C.一个连通图G的生成树是G的一个子图
A.如果从结点a到b有一条边,则b是a的儿子;
B.如果从结点a到b有一条边,则a是b的父亲或母亲;
C.如果从结点a到b及a到c均有一条边,则b,c是兄弟;
D.如果从a到f有一条路径,则a是f的子孙,而f是a的祖先。
7.(本小题3分)如果G为一个平面图,则下列说法错误的是()
A.G是无向图;
B.能够把G的所有结点和边画在平面上;
重庆工商大学试题
考试科目:离散数学
适用专业(班):06软件考核方式:闭卷(√)开卷()
10-11学年度上学期套别:A套(√)B套()
题号






总计
分值
30
20
20
20
10
100
得分
阅卷人
一.选择题(本题共10小题,共30分)请选择正确答案的代号
1.(本小题3分)下列说法错误的是()
A.有向图G的各边取反向所得到的图称为G的逆图;
雪才是白色的”可以符号化为________
4.(本小题4分)设G是一个(n,m)连通平面图,则它的区域数为r=_______
5.(本小题4分)设P:雪是白色的,Q:1+2=3,则命题:“除非1+2 3,否则雪不是白色的”可以符号化为________
三.判断题(本题共10小题,共20分)在正确命题的后面写√在错误叙述的后面写×
D.图G是树的充要条件是图G的每对结点之间只有一条路径。
5.(本小题3分)下列说法错误的是()
A.多重图中 代表结点 到结点 的重数
B.有权图中 代表权
C.邻接矩阵中从 到 不存在边时,规定 =0;
D.有向图G的邻接矩阵的第i行之和,代表结点 的引入次数。
6.(本小题3分)在外向树中,下列说法错误的是()
B.图G的邻接矩阵为A,则G的逆图的邻接矩阵是A的逆;
C.图G的邻接矩阵为A,则G的逆图的邻接矩阵是A的转置;
D.无向图的邻接矩阵是对称矩阵
2.(本小题3分)设G=<V,E>为二部图,有两个V的子集 和 ,它们满足条件( )
A. ;
B. ;
C.
D.上面说法都正确
3.(本小题3分)对于一个(n,m)连通图G,则下列说法错误的是()
1.(本小题2分)任一图中所有结点的次数之和必为偶数,且必为图中边数的2倍。
2.(本小题2分)R为实数集合,则(R,<)是拟序集合。
3.(本小题2分)在有向图中,如果不考虑边的方向而构成树,则此有向图为有向树。
4.(本小题2分)设G是有n个结点的有向图,P为其可达矩阵,则P的元素为0或者1。
5.(本小题2分)库拉拖夫斯基(Kuratowski)定理的结论是,一个图是平面图的充分必要条件是它的任何子图都不可能缩减成为两个基本的非平面图的形式。
A.G为无向图;
B.V可以划分成为两个点集V1和V2;
C.图G的边都在V1内或在V2内;
D.图G的边的端点分别在V1和V2内。
10.(本小题3分)T为外向树,则下列说法错误的是()
A.T有一结点,它的引入次数为0,这个结点称为T的根;
B.T的除根以外的其他结点的引入次数都为1;
C.T中有一些结点,它们的引出次数为0,这些结点称为T的叶;
相关文档
最新文档