铁矿石中全铁含量的测定数据处理
实验一铁矿石中全铁含量的测定
实验一铁矿石中全铁含量的测定(重铬酸钾-无汞盐法)实验目的1.掌握K2Cr2O7标准溶液的配制和使用2.学习矿石试样的酸溶法3.学习K2Cr2O7法测定铁的原理方法4.对无汞定铁有所了解,增强环保意识5.了解二苯胺磺酸钠指示剂的作用原理二实验方法1..经典的重铬酸钾法炼铁的矿物主要是磁铁矿,赤铁矿,菱铁矿等。
试样一般是用盐酸分解后,在浓、热盐酸溶液中用SnCl2将三价铁还原为二价,过量的二氯化锡用氯化汞氧化除去。
此时,溶液中有白色丝状氯化亚汞沉淀生成,然后在1—2mol硫-磷混酸介质中以二苯胺磺酸钠为指示剂用重铬酸钾标准溶液滴定到溶液呈现紫红色即为终点。
重要反应式如下:2FeCl4-+SnCl42-+2Cl- ====2FeCl42-+SnCl62-SnCl42-+2HgCl2====SnCl62-+Hg2Cl2 (白色)6Fe2+ +Cr2O72-+14H+====6Fe3+ +2Cr3+ +7H2O经典方法的不足用此法每一份试液需加入饱和氯化汞溶液480mg 汞排入下水道,而国家环境部门规定汞排放量为0.05mg/L ,要达到此标准至少要加入9.6~10t 的水稀释,用此方法来减轻汞污染既不经济也不实际。
众所周知,汞对于人类身体健康的危害是巨大的。
2无汞测定铁方法一(SnCl2-TiCl3为还原剂,Na2WO4为指示剂)2.1实验原理:关于铁的测定,沿用的K2Cr2O7法需用HgCl2,造成环境污染,近年来推广不使用HgCl2的测定铁法(俗称无汞测铁法)。
方法的原理如下:试样用硫-磷混酸溶解后,先用SnCl2还原大部分Fe3+,继用TiCl3定量还原剩余部分Fe3+,当Fe3+定量还原为Fe2+之后,过量一滴TiCl3溶液,即可使溶液中作为指示剂的六价钨(无色的磷钨酸)还原为蓝色的五价钨化合物,俗称“钨蓝”,故指示溶液呈现蓝色。
滴入K 2Cr 2O 7溶液,使钨蓝刚好褪色,或者以Cu 2+为催化剂,使稍过量的Ti 3+在加水稀释后,被水中溶解的氧氧化,从而消除少量的还原剂的影响。
铁矿(或铁粉)中全铁含量的测定(无汞定铁法)
二、实验步骤
移取铁矿石样品溶液25.00 mL于锥形瓶中, 加入4 mL浓HCl,电炉上加热至近沸,趁热加 入3滴甲基橙指示剂,先用100 g ·L-1 SnCl2还原 Fe3+ 至溶液为粉红色,再用50 g ·L-1 SnCl2还原 至微粉红色,摇动锥形瓶至粉红色褪去,迅速 流水冷却。加入50 mL H2O、10 mL 硫磷混酸、 4滴二苯胺磺酸钠指示剂,用K2CrO7滴定至溶 液由绿色变为紫色即为终点。(平行三份)
西北大学基础化学实验
三、结果表示
以矿石中铁的质量百分含量(Fe%)表示,保留四 位有效数字。 计算公式:
w Fe =
mK 2Cr2O7 × V K 2Cr2O 7 × 6 × M Fe × 4 M K 2Cr2O 7 × 250 × ms
× 100%
西北大学基础化学实验
四、有关常数
M K 2Cr2O 7 = 294.18 g·mol-1
铁矿(或铁粉) 铁矿(或铁粉)中全铁含量的测定 无汞定铁法) (无汞定铁法)
西北大学基础化学实验
一、主要试剂 二、实验步骤 三、结果表示 四、有关常数 五、注意事项
西北大学基础化学实验
一、主要试剂
1. K2Cr2O7标准溶液:减量法准确称取K2Cr2O7 0.6~0.65 g,用水溶解后转入250 mL容量瓶中 定容(为了减少环境污染,两人配制一份)。 2. 铁矿石样品溶液:减量法准确称取矿样 0.35~0.40 g于100 mL烧杯中,加入10 mL浓 HCl,盖上表面皿,在电炉上加热至溶液清亮 (杯底无黑色残渣),冷却后转入100 mL容量瓶 中定容。
MFe = 55.845 g·mol-1
西北大学基础化学实验
铁矿石中全铁含量的测定实验报告
铁矿石中全铁含量的测定实验报告一、实验目的。
本实验旨在通过化学分析方法,测定铁矿石中全铁的含量,为矿石的质量评价和冶炼工艺提供依据。
二、实验原理。
本实验采用重量法测定铁矿石中全铁的含量。
首先将铁矿石样品进行干燥和研磨,然后用酸溶解铁矿石中的铁成为可溶性铁盐,并通过沉淀法将铁从其他金属离子中分离出来,最后用称量法测定得到的沉淀物的质量,从而计算出铁矿石中全铁的含量。
三、实验步骤。
1. 取一定质量的铁矿石样品,进行干燥和研磨处理,使其颗粒均匀细小。
2. 将处理后的铁矿石样品加入稀盐酸中,使其完全溶解,生成可溶性铁盐。
3. 将溶解后的样品溶液进行加热,使其中的铁盐转化成氢氧化铁沉淀。
4. 用氢氧化铵将溶液中的其他金属离子沉淀成氢氧化物,然后用过滤纸过滤得到沉淀物。
5. 将得到的沉淀物进行干燥、烧灼,然后用天平称量得到的沉淀物的质量。
6. 根据称量得到的沉淀物的质量,计算出铁矿石中全铁的含量。
四、实验数据与结果。
经过实验测定,得到铁矿石中全铁的含量为XX%。
五、实验分析与讨论。
本实验通过重量法测定了铁矿石中全铁的含量,结果表明……(根据实验结果进行分析和讨论)。
六、实验结论。
本实验通过化学分析方法,成功测定了铁矿石中全铁的含量,为矿石的质量评价和冶炼工艺提供了重要依据。
七、实验注意事项。
1. 实验操作过程中要注意安全,避免酸碱溶液的飞溅和腐蚀。
2. 实验中使用的仪器和设备要保持干净,避免杂质的干扰。
3. 实验过程中要严格按照步骤进行操作,避免操作失误导致实验结果的不准确性。
八、参考文献。
[1] XXX,XXX. 化学分析实验指导[M]. 北京,化学工业出版社,20XX.[2] XXX,XXX. 分析化学实验教程[M]. 北京,高等教育出版社,20XX.以上是本次实验的全部内容,希望对大家有所帮助。
铁矿石中铁含量的测定(无汞法)
铁矿中全铁含量的测定(无汞法)一、实验目的1.掌握K2Cr2O7标准溶液的配制及使用。
2.学习矿石试样的酸溶法。
3.学习K2Cr2O7法测定铁的原理及方法。
4.对无汞定铁有所了解,增强环保意识。
5.了解二苯胺磺酸钠指示剂的作用原理。
二、实验原理K2Cr2O7直接配制标准溶液。
1.测定:Cr2O7 2-+ 6 Fe2++ 14H+===2Cr3++6 Fe3+ +7H2O2.预还原:2FeCl4- + SnCl42- + 2Cl- =====2FeCl42- + SnCl62-过量SnCl2:SnCl2 + 2HgCl2===== SnCl4 + Hg2Cl2(汞污染)3. 使用甲基橙指示SnCl2还原Fe3+:三、实验仪器和药品:铁矿石试样、K2Cr2O7 、浓HCl、100g/L SnCl2、50g/L SnCl2 、甲基橙指示剂、去离子水、二苯胺磺酸钠指示剂、磷硫混酸(将150 mL浓硫酸缓慢加入700 mL 水中,冷却后再加入150 mL 浓磷酸)250ml容量瓶、烧杯、玻璃棒、表面皿、锥形瓶若干、移液管、酸式滴定管、台秤、电光分析天平四、实验步骤1. K2Cr2O7标准溶液的配制准确称取0.65~0.70g左右已干燥的K2Cr2O7于小烧杯中,加水溶解,定量转移至250ml容量瓶中,加水稀释至刻度,摇匀。
2. 铁矿中全铁含量的测定准确称取铁矿石粉1.5g左右于250 mL烧杯中,用少量水润湿,加入20 mL浓HCl溶液,盖上表面,在通风柜中低温加热分解试样,若有带色不溶残渣,可滴加20~30滴100g/L SnCl2助溶。
试样分解完全时,残渣应接近白色(SiO2),用少量水吹洗表面皿及烧杯壁,冷却后转移至250ml容量瓶中,稀释至刻度并摇匀。
移取试样溶液25.00mL于锥形瓶中,加8mL浓HCl溶液,加热近沸,加人6滴甲基橙,趁热边摇动锥形瓶边逐滴加人100g·L-1 SnCl2还原Fe3+。
铁矿石 全铁含量的测定
铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法一、方法原理:式样以硫磷混酸和盐酸分解后,用氯化亚锡还原大部分的三价铁,再以钨酸钠为指示剂,三氯化钛将剩余的三价铁全部还原为二价铁至生成钨蓝,以稀重铬酸钾溶液氧化过剩的还原剂。
以二苯胺磺酸钠作指示剂,用重铬酸钾标准溶液滴定二价铁,计算全铁含量。
二、试剂:1、硫磷混酸:1:12、氟化钾:25%3、盐酸:1:14、高锰酸钾:4g/L5、氯化亚锡:60g/L6、钨酸钠:250g/L(称取25g钨酸钠溶于适量水中,加磷酸5ml,用水稀释至100ml)7、三氯化钛:1+9(取10ml三氯化钛溶液,用1:1盐酸稀释至100ml,当班用当班配制)8、稀重铬酸钾:0.5g/L9、二苯胺磺酸钠:2.5g/L三、分析方法称取预先干燥的式样0.2g精确到0.0001g,置于300ml锥形瓶中,用少量水吹洗杯壁,加入硫磷混酸(1:1)20ml、氢氟酸5ml,加热溶解试样,轻轻晃动瓶子1-2次,继续加热至冒硫酸烟到200刻度时取下锥形瓶。
冷却至不烫手时,用少量水吹洗杯壁,加入20ml盐酸(1:1),加热溶解至冒大泡,取下用氯化亚锡还原至微黄色,若还原时过量可滴加少量的高锰酸钾氧化至微黄色,冷却至室温,加水50ml,10滴钨酸钠,滴加三氯化钛溶液至试液呈蓝色。
滴加稀重铬酸钾至蓝色消失,加二苯胺磺酸钠5滴作指示剂,用重铬酸钾标准溶液滴定至由绿色至蓝色到最后一滴变紫红色时为终点。
四、注意事项1、分析时同时代两个以上标样。
2、三氯化钛溶液当班使用当班配制。
3、用氯化亚锡还原三价铁时,一定保证还原至微黄色,过量会导致结果偏高,黄色过深时用三氯化钛还原剩余的三价铁时难以还原至蓝色。
4、用稀重铬酸钾溶液氧化过剩的还原剂时,试液由蓝色变为无色过量至1-2滴即可。
不可滴加过多,会导致结果偏低。
5、滴定过程中,始终保持滴定速度一致。
5、终点颜色要掌握好,一定要到终点,但不能过量。
铁矿石中全铁含量测定方法分析
铁矿石中全铁含量测定方法分析在钢铁工业中,铁矿石是至关重要的原材料,而准确测定铁矿石中全铁的含量对于评估矿石质量、优化冶炼工艺以及控制生产成本都具有极其重要的意义。
本文将对常见的铁矿石中全铁含量测定方法进行详细分析。
一、重铬酸钾滴定法重铬酸钾滴定法是测定铁矿石中全铁含量的经典方法之一。
其基本原理是将铁矿石样品用酸溶解,使其中的铁全部转化为二价铁离子。
然后,在酸性条件下,用过量的重铬酸钾标准溶液将二价铁氧化为三价铁,最后以二苯胺磺酸钠为指示剂,用硫酸亚铁铵标准溶液滴定过量的重铬酸钾,从而计算出全铁的含量。
该方法的优点是准确度高、重现性好,适用于各种类型铁矿石中全铁含量的测定。
但也存在一些不足之处,比如操作过程较为繁琐,需要进行多次加热和滴定,耗时较长;同时,使用的重铬酸钾具有一定的毒性,对环境和操作人员的健康有一定影响。
二、氯化亚锡氯化汞重铬酸钾滴定法这种方法是在重铬酸钾滴定法的基础上进行改进的。
首先用盐酸和氟化钠溶解样品,然后加入氯化亚锡将大部分三价铁还原为二价铁。
接着,加入氯化汞氧化过量的氯化亚锡,最后用重铬酸钾标准溶液滴定二价铁,计算全铁含量。
此方法相较于传统的重铬酸钾滴定法,简化了操作步骤,缩短了分析时间。
然而,氯化汞是一种剧毒物质,对环境和人体危害极大,需要在操作过程中特别小心,严格控制其使用和排放。
三、EDTA 配位滴定法EDTA 配位滴定法也是常用的测定铁矿石中全铁含量的方法之一。
在酸性条件下,将铁矿石样品溶解,用还原剂将铁全部还原为二价铁。
然后,加入过量的 EDTA 标准溶液与二价铁配位,再以二甲酚橙为指示剂,用锌标准溶液滴定剩余的 EDTA,从而计算出全铁的含量。
EDTA 配位滴定法的优点是操作相对简便,分析速度较快,且试剂毒性较小。
但该方法的选择性相对较差,容易受到其他金属离子的干扰,因此在测定前需要对样品进行预处理,以消除干扰。
四、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长光的吸收特性来测定元素含量的方法。
铁矿石中铁含量的测定实验报告
铁矿石中铁含量的测定实验报告铁矿石中铁含量的测定实验报告引言:铁矿石是一种重要的矿石资源,其中的铁含量对于冶金工业具有重要意义。
本实验旨在通过化学方法测定铁矿石中的铁含量,并探讨实验过程中的一些关键因素。
实验方法:1. 样品制备:将铁矿石样品研磨成细粉,并通过筛网筛选出粒径均匀的样品。
2. 硫酸浸取:取一定量的样品加入硫酸中,进行浸取反应。
反应过程中,产生的二氧化硫气体需要充分排除,以免干扰后续的实验结果。
3. 过滤与洗涤:将浸取后的溶液过滤得到含有铁离子的滤液,然后用去离子水进行洗涤,以去除杂质。
4. 氨水沉淀:将滤液中的铁离子与氨水反应生成氢氧化铁沉淀。
反应后,通过离心将沉淀分离出来。
5. 灼烧:将沉淀转移到燃烧器中进行灼烧,使其转化为氧化铁。
6. 灼烧后的称量:将灼烧后的氧化铁沉淀进行称量,得到其质量。
7. 计算铁含量:根据氧化铁的质量与样品的质量之比,计算出铁矿石中铁的含量。
实验结果与讨论:通过实验操作,我们得到了一批铁矿石样品的铁含量数据。
根据实验结果,我们可以发现不同样品之间的铁含量存在差异。
这可能是由于不同的矿石来源、矿石矿物组成以及矿石加工过程等因素所致。
在实验过程中,我们还发现了一些关键因素对于测定结果的影响。
首先,样品制备的粒径均匀性对于实验结果的准确性有重要影响。
如果样品颗粒过大或过小,会导致反应速率变慢或反应不完全,从而影响后续的实验步骤。
其次,硫酸浸取过程中二氧化硫气体的排除也是一个关键步骤。
二氧化硫气体的存在会干扰后续的滤液处理,从而影响测定结果的准确性。
因此,在实验过程中应该充分注意排气操作。
最后,灼烧过程中的温度和时间也会对实验结果产生影响。
过低的温度或时间会导致氧化铁的转化不完全,而过高的温度或时间则会引起样品的过烧,从而影响测定结果的准确性。
结论:本实验通过化学方法测定了铁矿石中的铁含量,并探讨了实验过程中的一些关键因素。
实验结果表明,不同样品之间的铁含量存在差异,这可能与矿石来源、矿石矿物组成以及矿石加工过程等因素有关。
铁矿石中全铁的测定---三氯化钛还原--重铬酸钾滴定法
实验有关方程式如下:
2Fe3++ Sn2+= 2Fe2++ Sn4+
Fe3++ Ti3++ H2O=Fe2++ TiO2++ 2H+
Cr2O72-+ 6Fe2++ 14H+= 2Cr3++ 6Fe3++ 7 H2O
tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!
三、结果计算
铁矿石中铁的质量分数为
式中:
V滴定试液消耗重铬酸钾标准溶液的体积(mL)
V0滴定空白消耗重铬酸钾标准溶液的体准溶液(0.01667mol/L)相当于铁量(g)
m铁矿石试样的称取重量(g)
任务分析
一、方法优点
过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,
低温蒸发至约50mL,加热近沸,滴加SnCl2溶液还原三价铁至溶液呈浅黄
色。加水稀释至约150mL左右。加入25%钨酸钠溶液0.5mL,用三氯化钛溶液
还原至呈蓝色。滴加K2Cr2O7溶液至钨蓝色刚好褪去。加入硫磷混合酸
30mL,加0.5%二苯胺磺酸钠指示剂3滴,立即以重铬酸钾标准溶液滴至稳定
的紫色即为终点。同时做空白实验。
受温度的影响(30℃以下)较小,测定的结果比较准确。
二、SnCl2TiCl3K2Cr2O7法测定铁矿石中Fe含量(无汞法)原理
在酸性条件下,先用SnCl2溶液还原大部分Fe(Ⅲ),再以TiCl3溶液还原
剩余部分的Fe(Ⅲ),稍过量的TiCl3可使作为指示剂的NaWO4溶液由无色还
铁矿石中全铁量的测定方法
铁矿石中全铁量的测定
一、原理
试样以盐酸氟化钠溶解,氯化亚锡还原大部分铁后,三氯化钛还原剩余铁为低价,过量三氯化钛用重铬酸钾回滴,以二苯胺磺酸钠作指示剂,用标准重铬酸钾溶液滴定铁,求得试样铁含量。
二、试剂
1、浓盐酸
2、氟化钠(固体)
3、6%氯化亚锡:6g氯化亚锡溶于20 mL盐酸中,用水稀释至100 mL
4、硫磷混酸:硫酸:磷酸:水 = 2:3:5
5、25%钨酸钠:1:20磷酸溶液
6、1:19三氯化钛:取15 ~ 20%三氯化钛用1:9盐酸稀释后加一层液体石蜡保护(或现用现配)
7、重铬酸钾标准溶液:(1/6) 0.05 mol/L
三、分析步骤
称取试样0.2 g两份于300 mL三角瓶中,加少许水使其散开,加氟化钠0.3 g,盐酸20 mL,低温加热溶解,滴加二氯化锡至溶液呈现浅黄色,继续加热10 ~ 20 min(体积约10 mL)取下,加水150 ~ 200 mL,加钨酸钠15 d,用三氯化钛还原兰色出现,用重铬酸钾标准溶液滴至兰色消失(不计读数),立即加硫磷混液10 mL,二苯胺磺酸钠5 d,用重铬酸钾标准溶液滴定至紫色为终点,记下消耗重铬酸钾溶液的毫升数V,则;
Fe% =
式中:M—重铬酸钾溶液浓度
V-滴定消耗重铬酸钾溶液毫升数。
T860测定铁矿粉中的全铁含量
T860测定铁矿粉中的全铁含量1、方法概要及原理氧化还原滴定法。
具体实验步骤参照GB/T6730.66-2009进行,采用SnCl2-TiCl3-K2Cr2O7方法。
2、实验仪器及试剂仪器:T860试剂:硫酸:盐酸:氢氟酸;过氧化氢溶液;氯化亚锡溶液;三氯化钛溶液;硫磷混酸溶液;铁标准溶液重铬酸钾标准溶液;硫酸亚铁铵标准溶液;3、检测步骤3.1样品消解过程。
铁矿石的消解条件:铁矿粉取样量为0.2g。
加入10ml 的硫磷混酸(硫酸:磷酸=2:8)与2mL100g/L的SnCl2.使用TANK微波消解仪进行消解,微波消解条件如下:阶段升温时间min温度℃压力psi保温时间min 111180350322200350203.2滴定管的清洗。
使用蒸馏水清洗,清洗完成后,使用滴定剂进行补液操作,补液至少在6次以上。
3.3电极的准备。
使用铂复合电极与单盐桥饱和甘汞电极,并将电极连接到相应的接口内。
3.4滴定。
将消解好的铁矿粉样品转移至滴定杯中,并使用少量蒸馏水清洗消解罐,清洗液也全部转移至滴定杯中,将电极插入到溶液中并调整好位置。
仪器面板上选择常量滴定,并设定好相应参数后进行滴定。
4、结果统计样品质量(g)样品消耗重铬酸钾体积(ml)重铬酸钾的浓度(mol/l)空白体积全铁含量(%)平均值(%)0.208223.9220.016670.00264.3664.130.202423.05563.80 0.198622.77664.24。
铁矿石中全铁含量的测定实验报告
实验报告:铁矿石中全铁含量的测定1. 背景铁矿石是一种重要的矿产资源,广泛应用于钢铁工业和建筑业等领域。
准确测定铁矿石中的全铁含量对于评估其品质和价值具有重要意义。
本实验旨在通过一种简单而有效的方法来测定铁矿石中全铁含量。
2. 分析2.1 实验原理本实验采用酸溶法测定铁矿石中的全铁含量。
主要步骤如下:1.取适量细粉末样品,加入足量稀盐酸。
2.将混合物加热至沸腾,持续加热一段时间以完全溶解样品。
3.将溶液冷却至室温,并转移至容量为100 mL的容器中。
4.加入足够的去离子水使总体积达到100 mL。
5.用适当浓度的标准高锰酸钾溶液滴定样品溶液,直到出现粉红色终点。
6.记录滴定所需的高锰酸钾溶液体积,并根据反应方程计算出样品中全铁的含量。
2.2 实验步骤1.准备所需试剂和仪器:稀盐酸、去离子水、标准高锰酸钾溶液、容量瓶、滴定管等。
2.称取适量铁矿石样品,将其细粉末化。
3.将细粉末样品加入容量瓶中,并加入足够的稀盐酸。
4.将容量瓶放置在加热板上,加热至沸腾,持续加热15分钟以完全溶解样品。
5.将溶液冷却至室温,并转移至容量为100 mL的容器中。
6.加入足够的去离子水使总体积达到100 mL,充分混合溶液。
7.取一定体积的样品溶液(如10 mL),倒入滴定管中。
8.用标准高锰酸钾溶液滴定样品溶液,直到出现粉红色终点。
记录滴定所需的高锰酸钾溶液体积(V)。
9.重复3次滴定,计算平均滴定体积(V_ave)。
10.根据反应方程和滴定结果计算出样品中全铁的含量。
3. 结果3.1 数据记录•实验样品质量:10 g•平均滴定体积(V_ave):20.5 mL3.2 计算结果根据反应方程:5Fe^2+ + MnO_4^- + 8H^+ → 5Fe^3+ + Mn^2+ + 4H_2O理论上,每1 mL的标准高锰酸钾溶液可以氧化5/2 mol的Fe^2+。
根据滴定结果可得:每1 mL的标准高锰酸钾溶液可以氧化V_ave × (5/2) mol的Fe^2+假设铁矿石中全铁以Fe_2O_3的形式存在,则全铁含量为:全铁含量= V_ave × (5/2) × M / m其中,M为高锰酸钾溶液的摩尔浓度,m为样品质量。
铁矿石中全铁含量测定方法分析(一)
铁矿石中全铁含量的测定(重铬酸钾容量法)基本原理:在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化高汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。
反应方程式:2Fe 3+ + Sn 2+ + 6Cl ―—→ 2Fe 2+ + SnCl 62―Sn 2+ + 4Cl ― + 2HgCl 2 —→ SnCl 62―+ Hg 2Cl 2↓6Fe 2+ + Cr 2O 72- + 14H + —→ 6Fe 3+ + 2Cr 3+ + 2Cr 3+ + 7H 2O 计算结果:()m V m V Fe 2.01000020.0%=⨯⨯=此法的优点是:过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,受温度的影响(30℃以下)较小,测定的结果比较准确。
一、硫—磷混酸溶样1、药品及试剂①(2+3)硫磷混合酸② 重铬酸钾标准溶液:1.00 mL 此溶液相当于0.0020g 铁。
称取1.7559g 预先在150℃烘干1h 的重铬酸钾(基准试剂)于250 mL 烧杯中,以少量水溶解后移入1L 容量瓶中,用水定容。
③ 氯化亚锡溶液:10%称取10g 氯化亚锡溶于20 mL 盐酸中,用水稀释至100 mL 。
④ 氯化高汞饱和溶液:5%⑤ 二苯胺磺酸钠指示剂:0.5%⑥ 氟化钠2、分析步骤:准确称取0.2g 试样于250mL 锥形瓶中,用少许水润湿,摇匀。
加入10mL (2+3)硫磷混合酸及0.5g 氟化钠,摇匀。
在高温电炉上加热溶解完全,取下冷却,加入15mL 盐酸,低温加热至近沸并维持3~5min ,溶液变澄清,取下趁热滴加氯化亚锡溶液至铁(Ⅲ)离子的黄色消失,并过量2滴,用水冲洗杯壁。
在水槽中冷却,加入10mL 氯化高汞饱和溶液,摇动后放置2~3 min ,加水至120mL 左右,冷却后加入5滴0.5%二苯胺磺酸钠指示剂,用重铬酸钾标准溶液滴定至紫色。
与试样分析的同时进行空白试验。
铁矿石中全铁含量测定实验报告
铁矿石中全铁含量测定实验报告铁矿石中全铁含量测定实验报告
铁矿石是钢铁工业在制作比较高品质的钢铁产品时所必备的原料。
其合金固定
化学组成中的全铁含量是控制产品性能的关键指标之一,此项指标受精细淬火、氧化滤球、物理方法等多种熔炼工艺的影响,能够得到准确测定并在使用过程中及时调整,则对产品质量的控制就有着极大的实用价值。
本次的实验以既有的铁矿石为对象,对其中的全铁含量进行测定,在实验过程
中采用了湿时容量法和磁滤器裂样硫酸法多种精密仪器的检测技术,以确保准确度。
湿时容量法中,利用湿时容量仪将取样时的潮湿状态和湿体积进行实时记录,
而磁滤器裂样硫酸法则是通过研磨样品、使样品含水量稳定,然后根据湿时容量仪记录的结果计算出受试矿石中全铁含量。
经过上述实验,最终检测出受试铁矿石中的全铁含量为XXXXX(XX),综合分析
来看,铁矿石的检测数据基本符合钢铁行业所设定的标准要求,高于制定的含量标准,表明受试铁矿石具有比较良好的质量,可用于淬火、氧化滤索以及物理方法等制作钢铁产品。
本次实验结果表明,采用精密仪器进行铁矿石的全铁含量测定,能够准确掌握
实验结果,同时能够有效确认铁矿石的检测数据,而实验中的仪器配置和测试方法也能够对今后的检测工作提供有益的建议,有助于指导行业后续发展,为行业的发展奠定良好的基础。
7铁矿石中全铁含量的测定-无汞法
实验7 铁矿石中全铁含量的测定-无汞法
1. K2Cr2O7为什么能直接称量配制准确浓度的溶液呢?
答:因为K2Cr2O7具备基准物质的条件,而基准物质可以直接称量配制准确浓度。
2. 在预处理时为什么SnCl2溶液要趁热逐滴加入?
答:用SnCl2还原Fe3+时,溶液的温度不能太低,否则反应速度慢,黄色褪去不易观察,易使SnCl2过量。
3. 在预还原Fe(Ⅲ)至Fe(Ⅱ)时,为什么要用SnCl2和TiCl3两种还原剂?只使用其中一种有什么缺点?
答:定量还原Fe(Ⅲ)时,不能单独用SnCl2。
因SnCl2不能还原W(Ⅵ)至W(Ⅴ),无法指示预还原终点,因此无法准确控制其用量,而过量的SnCl2又没有适当的无汞法消除,但也不能单独用TiCl3还原Fe(Ⅲ),因在溶液中如果引入较多的钛盐,当用水稀释时,大量Ti(Ⅳ)易水解生成沉淀,影响测定。
故只能采用SnCl2-TiCl3联合预还原法。
4. K2Cr2O7法测定铁矿石中全铁时,在滴定前加入H3PO4的作用是什么?加入H3PO4后为什么立即滴定?。
铁矿石中全铁含量的测定(无汞定铁法)——重铬酸钾法
实验九铁矿石中全铁含量的测定(无汞定铁法)——重铬酸钾法、实验目的:1. 掌握基准物K2Cr2O7标准溶液的配制方法。
2. 了解铁矿石的溶解方法。
3. 理解甲基橙既是氧化剂又是指示剂的原理与条件。
4. 掌握K2Cr2O7法测全铁量的原理和方法。
5. 学习二苯胺磺酸钠的使用原理二、实验原理铁矿石的溶解方法:铁矿石的溶解方法是根据铁矿石的组成来决定的。
例如:含硅酸盐用氟化物助溶;磁铁矿用二氯化锡助溶;含硫或有机物先灼烧(550℃~600℃)去掉S和C(SO2↑、CO2↑)后,再用HCL溶;还有碱熔融法等。
本实验所用的铁矿石用浓HCL溶,基本上就可以完全溶完。
例: Fe3O4 + 8HCL == 2FeCL3 + FeCL2 + 4H2O溶解过程温度应保持80℃~90℃。
温低溶解慢、溶不完,温高FeCL3↑。
2、试样的预处理:(1) Fe(Ⅲ)的还原:用浓HCl 溶液分解铁矿石后,在热HCl 溶液中,以甲基橙为指示剂,用SnCl2 将Fe3+还原至Fe2+,并过量1 滴(只能过量1~2滴)。
经典方法是用HgCl2 氧化过量的SnCl2,除去Sn2+的干扰,但HgCl2 造成环境污染,本实验采用无汞定铁法。
还原反应为2FeCl4- + SnCl42- + 2Cl-= 2FeCl42- + SnCl62+(2) 除去过量的SnCl42-:SnCl42- 耗Cr2O72-所以必须除去。
使用甲基橙指示SnCl2 还原Fe3+的原理是:Sn2+将Fe3+还原完后,过量的Sn2+可将甲基橙还原为氢化甲基橙而褪色,指示了还原的终点,剩余的Sn2+还能继续使氢化甲基橙还原成N,N-二甲基对苯二胺和对氨基苯磺酸钠,反应为:(CH3)2NC6H4N=NC6H4SO3Na→(CH3)2NC6H4NH-NHC6H4SO3Na→(CH3)2NC6H4H2N + NH2C6H4SO3Na以上反应是不可逆的,不但除去了过量的Sn2+,而且甲基橙的还原产物不消耗K2Cr2O7。