卫生统计学卡方检验共59页文档
卡方检验医学统计学
![卡方检验医学统计学](https://img.taocdn.com/s3/m/e1b6cf2ea88271fe910ef12d2af90242a995ab52.png)
卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。
在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。
卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。
期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。
而实际频数则是实验中观察到的实际结果。
卡方检验的步骤如下:1.建立零假设和备择假设。
零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。
2.确定显著性水平 alpha,通常取值为0.05。
3.构建卡方检验统计量。
计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。
4.根据自由度和显著性水平,查卡方分布表得到 P 值。
5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。
卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。
卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。
举个例子,某药厂要研发一种新的药物来治疗心脏病。
为了验证该药的疗效,实验组和对照组各50 人。
在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。
卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。
除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。
卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。
其中比较明显的一点就是对样本量有一定的要求。
当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。
此外,在面对非常态分布数据时,卡方检验也会出现问题。
当数据呈现正态分布时,卡方检验的准确性最高。
然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。
卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。
《医学统计学》医统-第九章卡方检验
![《医学统计学》医统-第九章卡方检验](https://img.taocdn.com/s3/m/6db2f533c1c708a1294a44bc.png)
卡方值
当自由度ν确定后,χ2分布曲线下右侧尾部的面积 为α时,编辑课横件 轴上相应的χ2值记作χ2α,ν
查χ2界值表,得χ20.05,1=3.84,按α=0.05 水 准, 拒绝H0 , 接受H1 , P<0.05,可 以认为两组治疗原发性高血压的总体有 效率不同,即可认为吲达帕胺片治疗原 发性高血压是有效的。
医学统计学
第九章 2检验
公共卫生系 流行病与卫生统计学教研室
祝晓明
一、率
率(rate):率表示在一定空间或时间范围内 某现象的发生数与可能发生的总数之比,说明 某现象出现的强度或频度,通常以百分率 (%)、千分率(‰)、万分率(/万)、或 十万分率(/10万)等来表示。
你们班级的及格率,挂科率怎么算?
❖自由度ν愈大,χ2 值也会愈大;所以 只有考虑了自由度ν的影响,χ2 值才
能正确地反映实际频数A和理论频数T 的吻合程度。
检验的自由度取决于可以自由取值的格子数目,
而不是样本含量n。四格表资料只有两行两 列,ν=1,即在周边合计数固定的情况下,4个基
本数据当中只有一个可以自由取值。
编辑课件
检验步骤: 1.建立检验假设并确定检验水准 H0:π1=π2 即试验组与对照组的总体有效率相等 H1:π1≠π2 即试验组与对照组的总体有效率不等
2
(20 25.77)2
(24 18.23)2
(21 15.23)2
(5 10.77)2
8.40
25.77
18.23
15.23
10.77
(2 1)(2 1) 1
编辑课件
纵高
3.确定P 值,作出推断结论
0.5
0.4
0.3
自由度=1
第九讲 卫生统计学 卡方检验
![第九讲 卫生统计学 卡方检验](https://img.taocdn.com/s3/m/9b3f094633687e21af45a977.png)
例9-2:将病情相似的169名消化道溃疡患者随机分成两组, 分别用洛赛克与雷尼替丁两种药物治疗,4周后疗效见表92。问某两种药物治疗消化道溃疡的疗效有无差别?
表9-2 两种药物治疗消化道溃疡4周后疗效 疗 愈合 64 (57.84) 115 效 未愈合 21(27.16) 33 (26.84) 54
五年级
合计
5(2.33)
7
9(11.69)
35
14
42
35.71
16.67
(1)建立假设,确定检验水准 H0:π1=π2 H1:π1≠π2 α=0.05
(2)计算检验χχ2值 本例n=42,最小的理论数为:T21=(14×7)/42=2.33, 故对2 值作校正。
2
(3)确定P值
( 2 9 26 5 42 / 2) 2 42 7 35 28 14
2
(64 33 21 51) 2 169 2 4.13 85 84 115 54
(3)确定p值:
=(2-1)(2-1)=1,查2界值表得2 0.05(1) =3.84,因2 >3.84 , 故P<0.05。
(4)判断结果 在α=0.05水准上,因P<0.05,所以拒绝H0,接受H1, 说明两药疗效的差别具有统计学意义。
图9-1, 2分布的形状依赖于自由度υ的 大小,当自由度υ>2时,随着υ的增加,曲 线逐渐趋于对称,当自由度υ趋于∞时,2分 布逼近正态分布。各种自由度的2分布右侧尾 2 , 部面积为α时的临界值记为 列于附表8。
第二节
四格表资料的2检验
例9-1:用某中药预防流感,获得如下资料,问用药者 流感发病率是否不同于不用药者?
1、建立假设,确定检验水准 H0: b=c(两种检验方法的阳性概率相等) H1: b≠c(两种检验方法的阳性概率不相等)
医学统计学——卡方检验
![医学统计学——卡方检验](https://img.taocdn.com/s3/m/80a415d3f111f18582d05a04.png)
• ⑵χ2分布具有可加性:如果两个独立的 随机变量X1和X2分别服从ν1和ν2的χ2分 布,那么它们的和(X1+X2)也服从(ν1+ ν2)的χ2分布。
χ2 界值
• ν确定后,如果分布曲线下右侧尾部的 面积为α时,则横轴上相应的χ2值就记 作χ2 α,ν ,即χ2界值。其右侧部分的 面积α表示:自由度为ν时, χ2值大 于界值的概率大小。χ2值与P值的对应 关系见χ2界值表(附表6)。χ2值愈大,P 值愈小;反之,χ2值愈小,P值愈大。
• T22=(c+d)×(1- PC)=(c+d)×(b+d)/n = 56×17/112=8.5
χ2检验的基本思想
• χ2检验实质上是检验A的分布与T的分 布是否吻合及吻合的程度,χ2越小,表
明实际观察次数与理论次数越接近。
• 若检验假设成立,则A与T之差不会很 大,出现大的χ2值的概率P是很小的, 若P≤α,就怀疑假设成立,因而拒绝 它;若P>α,则没有理由拒绝它。
不同自由度的χ2分布曲线图
图 8-1 不同自由度的χ2 分布曲线图
二、χ2检验的基本思想
• 例8-1 某中医院将112例急性肾炎 病人随机分为两组,分别用西药和 中西药结合方法治疗,结果见表8-1, 问两种方法的疗效有无差别?
表8-1 两种方法治疗急性肾炎的结果
组 别 治愈例数 未愈例数 合计 治愈率(%)
例8-2
• 某医师将门诊的偏头痛病人随机 分为两组,分别采用针灸和药物 两种方法治疗,结果见表8-3 , 问两种疗法的有效率有无差别?
两种疗法对偏头痛的治疗结果
疗 法 有效例数 无效例数 合计 有效率(%)
针 灸 33(30.15) 2(4.85) 35 94.29
医学统计学 4、卡方检验
![医学统计学 4、卡方检验](https://img.taocdn.com/s3/m/0d7b496be45c3b3567ec8b33.png)
地区 Eskdale Annandale 合计
A型 33 54 87
B型 6 14 20
O型 56 52 108
AB 型 5 5 10
合计
100 125 225
Page
22
练习题(作业)
见word文档
Page
23
Page
24
Thank you!
25
Page 12
Page
13
结合此例,SPSS演示配对设计2检验
例2 设有132份食品标本,把每份标本一分为二,分 别用两种检验方法作沙门菌检验,检验结果如表2所 示,试比较两种检验方法的阳性结果是否有差别? 表2 两种检验方法检验结果比较
乙法 甲法 + 合计 + 80 31 111 10 11 21 合计 90 42 132
合计
假设检验步骤: (1)建立检验假设,确定检验水准
H0:B=C,即A、B两种方法的总体检出率相同
H1:B≠C,即A、B两种方法的总体检出率不同 α=0.05 (2)计算检验统计量2值
当 b+c≥40,
2
b c
bc
2
当 b+c<40,
2
b c 1
bc
2
例3 用三种不同治疗方法治疗慢性支气管炎的疗效 如表3所示,试比较三种治疗方法治疗慢性支气管炎 的疗效。 表3 三种不同治疗方法治疗慢性支气管炎的疗效
组别 A药 B药 C药 合计 有效 35 20 7 62 无效 5 10 25 40 合计 40 30 32 102
Page 19
(五)Fisher确切概率法
表1 两种药物治疗消化道溃疡4周后疗效
《卫生统计学》卡方检验
![《卫生统计学》卡方检验](https://img.taocdn.com/s3/m/a9a10dfd700abb68a982fba0.png)
α=0.05
界值表, 水准不拒绝H 查χ2界值表,P>0.05 ,按α=0.05水准不拒绝 0, 水准不拒绝 故尚不能认为甲法测定结果的概率分布与乙法测 定结果的概率分布不同。 定结果的概率分布不同。
完全随机设计两组频数分布χ 完全随机设计两组频数分布χ2检验
例7-3 将病情相似的淋巴系肿瘤患者随机分 成两组,分别做单纯化疗与复合化疗, 成两组,分别做单纯化疗与复合化疗,两组 的缓解率见表7-4, 的缓解率见表 ,问两疗法的总体缓解率是 否不同? 否不同? (1)建立检验假设 ) H0:π1= π2, 两法总体缓解概率相同 H1: π1≠π2 ,两法总体缓解概率不同 检验水准α 检验水准α=0.05
x
2
(18 − 2 −1) =
18 + 2
2
225 = = 11.25 20
ν=(2-1)(2-1)=1
P<0.05,按α=0.05水准拒绝 0,接受 1,差别 水准拒绝H 接受H , 水准拒绝 有统计学意义,可以认为, 有统计学意义,可以认为 两种培养基上白喉杆菌 生长的阳性概率不相等。 生长的阳性概率不相等。鉴于甲培养基阳性频率 为40/56=71.4%,乙培养基为 ,乙培养基为24/56=42.9%,可 , 以认为, 甲培养基阳性概率高于乙培养基。 以认为 甲培养基阳性概率高于乙培养基。
χ2检验基本思想
比较样本的实际频数 1. 比较样本的实际频数(actual frequency) 理论频数( frequency)之间的 与理论频数( theoretical frequency)之间的 吻合程度。
2.频数分布的拟合优度检验(goodness of 2.频数分布的拟合优度检验( 频数分布的拟合优度检验 test)。 fit test)。
医学统计学卡方检验
![医学统计学卡方检验](https://img.taocdn.com/s3/m/a4ab6edbe43a580216fc700abb68a98270feac40.png)
03 左侧概率为P =P1+ P2 + P3 =0.316 , 右侧概率为P =P3+ P4 + P5 + P6 =0.929,故单侧检验P值为0.316。
Part 02.
配对四格表资料的 检验
χ2
概述
计数资料的配对设计常用于两种检验方 法、培养方法、诊断方法的比较。 特点是对样本中各观察单位分别用两种 方法处理,然后观察两种处理方法的某 两分类变量的计数结果,整理为
的条件下,利用超几何分布
Fisher确切概率法的基本思想
(hypergeometric distribution)公式直接计算 表内四个格子数据的各种组合 的概率,然后计算单侧或双侧
“!”为阶乘符号, n !=1×2×…×n,0 !=1, ∑Pi=1。
累计概率,并与检验水准比较,
P( ab)( c 作! 出 a 是! 否db 拒! ) 绝cH! ( 0a d 的! ! 结 论n! 。c)( b!d)!
当T<1或n<40,四格表资料χ2检验结果 可能会有偏性,需采用Fisher确切检验 进行分析。该法由R. A. Fisher提出,且 直接计算概率,因此也叫Fisher确切概 率检验(Fisher’s exact probability test)。
四格表资料的Fisher确切概率法
在四格表周边合计数固定不变
否有差别?
⑴设H0 :π1=π2 ,即两药有效率相同;H1 : π1≠π2 α=0.05
⑵n>40,Tmin>5
2 5 5 2 . 1 7 2 8 1 1 9 . 8 3 2 2 3 3 9 . 8 3 2 2 3 8 . 1 2 8 6 . 48 5 . 1 7 81 . 8 3 23 . 8 3 28 . 18
医学统计学卡方检验
![医学统计学卡方检验](https://img.taocdn.com/s3/m/4daabc85ab00b52acfc789eb172ded630b1c98f6.png)
计算期望频数
2
根据独立性假设,计算预期的频数。
3
计算卡方值
根据观察频数和期望频数,计算卡方值。
判断显著性
4
根据卡方值和自由度,判断结果是否显著。
卡方检验的计算方法
卡方检验的计算方法主要包括计算卡方值、计算自由度以及查找临界值。 计算卡方值:
1. 计算每个组别的观察频数和期望频数之差的平方。 2. 将所有差的平方相加,得到卡方值。 计算自由度: • 自由度 = (行数 - 1) * (列数 - 1) 查找临界值:
卡方检验的应用范围和特点
卡方检验广泛应用于医学研究中,例如研究疾病与风险因素之间的关联性。 卡方检验的特点包括:
非参数检验
不依赖于总体的任何参数假设。
适用性广泛
可用于分析两个或释。
卡方检验的步骤
1
收集数据
收集观察到的数据,例如不同组别的频数。
根据自由度和显著性水平,在卡方分布表中查找对应的临界值。
案例分析:卡方检验在医学统计学中的应用
临床研究
通过卡方检验分析患者病情与治疗 效果之间是否存在关联性。
遗传研究
运用卡方检验检测基因型与表型之 间的关联性。
公共卫生
分析卡方检验数据以确定风险因素 与疾病之间的关联性。
结论和总结
卡方检验是一种强大的统计工具,可用于分析变量之间的关联性。 通过掌握卡方检验的原理、应用和计算方法,我们能更好地理解数据背后的 关系,并做出有针对性的决策。
医学统计学卡方检验
卡方检验是一种常用的统计方法,主要用于比较观察到的数据与期望值之间 是否存在显著差异。
卡方检验的原理和假设
卡方检验基于观察到的频数与期望频数之间的差异,用于判断变量之间是否存在关联性。 卡方检验的假设为:
卫生统计学9——卡方检验
![卫生统计学9——卡方检验](https://img.taocdn.com/s3/m/cbb76c7c1711cc7931b716a3.png)
51 33
其余数据都是由以上四个数据计算出来的。
这四个数叫实际频数,简称实际数
(actual freqency, A)
12
理论频数(theoretical freqency,T)
对于洛赛克组的64人,按照合并愈合率Pc=68.05%治疗 的话,理论上: 64×68.05%=57.84人愈合,用T11表示,
?
(1)先假设H0成立,按特定分布的规律(概率函数)
计算理论频数,进而计算 2值。
(2)若 2值小,可认为现有资料服从某一分布;
若 2值大,尚不能认为现有资料服从某一分布。
自由度=K-参数个数-1 K:组段数 参数个数:正态分布和二项分布有2个参数,poisson分布有1个
30
例9-1 对数据作正态分布拟合优度检验。120名 男孩身高的测量值, 均数=139.48cm;标准差=7.30cm
为v 。
2 u12 u22 u2
ui
Xi
5
2 分布的拓展与应用
卡方检验基本思想
2 分布的概念
1875年,F. Helmet得出:来自正态总体的样
本方差的分布服从 2分布;
1900年K. Pearson又从检验分布的拟合优度
(goodness of fit)中也发现了这一相同的 2 分
统计量2值。
33
计算统计量:
计算T I 时的参数有2 个(均数和标准差)
2
(A T )2 6.27
T
推断结论:自由度=10-1-2=7,查Leabharlann 表8,得到2 0.50,7
6.35
P>0.50,可以认为该样本服从正态分布。
医学统计学----卡方检验
![医学统计学----卡方检验](https://img.taocdn.com/s3/m/e24e614a852458fb770b569a.png)
=
Xi − μ σ
χ2检验的内容
一、 χ2检验的基本思想 二、独立四格表资料的χ2检验 三、配对四格表资料的χ2检验 四、行×列表资料的χ2检验 五、多个样本率比较的χ2分割法 六、四格表资料的Fisher确切概率法 七、频数分布拟合优度的χ2检验
一、 χ2 检验的基本思想
χ2分布的概念 χ2检验的基本思想 P 值的确定 χ2 检验的基本检验步骤
表4
处理组
A B C 合计
三种脐带处理方法的脐带感染情况
脐带感染 感染 未感染
76
3143
15
2409
2
762
93
6314
合计 感染率(%)
3219
2.36
2424
0.62
764
0.26
6407
1.45
2. 样本构成比的比较
(comparison of several proportions)
例4 某医师在研究血管紧张素I转化酶(ACE)基
二、四格表资料的χ2检验
1. 四格表资料χ2 检验的专用公式
χ2 =
(ad − bc)2 n
(a + b)(c + d)(a + c)(b + d)
用四格表资料χ2专用公式计算例1的χ2值:
χ 2 = (99 × 21 − 5 × 75 ) 2 200 = 12 .86 104 × 96 × 174 × 26
处理组的例数由发生数和未发生数两部分组成。表
内有99、5、75、21 四个基本数据,其余数据均由
此四个数据推算出来的,故称四格表资料。
表2 四格表资料的基本形式
处理组 发生数 未发生数 合计
医学统计方法之卡方检验
![医学统计方法之卡方检验](https://img.taocdn.com/s3/m/2f978d506d175f0e7cd184254b35eefdc8d3150a.png)
医学统计方法之卡方检验卡方检验(Chi-square test)是一种常用的医学统计方法,用于比较观察频数与期望频数的差异,以判断两个或多个类别变量之间是否存在相关性或差异。
卡方检验适用于分类数据的分析,常用于研究疾病与相关因素的关系、药物与不良反应的关系等。
卡方检验的基本原理是通过计算观察频数与期望频数之间的差异,并比较差异的程度来判断两个或多个分类变量之间的关联性。
卡方值越大,观察频数与期望频数之间的差异越大,相关性越显著。
卡方检验的零假设(Null hypothesis)是假设变量之间没有关联性,即观察频数与期望频数之间的差异是由随机误差引起的。
卡方检验的计算步骤如下:1.建立零假设与备择假设。
例如,我们想要研究其中一种药物与不良反应的关系,零假设可以是“该药物与不良反应之间没有关联性”,备择假设可以是“该药物与不良反应之间存在关联性”。
2.构建两个变量的列联表,计算观察频数。
列联表是将两个或多个分类变量交叉组合生成的一个二维表格。
例如,我们可以将药物使用与不良反应按行和列分别组合,得到一个2×2的列联表。
3.计算期望频数。
期望频数是在零假设成立的情况下,根据总体总数和变量之间的独立性计算的理论频数。
期望频数可以通过计算每个组合的行合计、列合计以及总体合计来得到。
4.计算卡方值。
卡方值是观察频数与期望频数之间的差异的平方和除以期望频数的总和,即卡方值=Σ((O-E)²/E),其中O为观察频数,E为期望频数。
5.比较卡方值与临界值。
通过查找卡方分布表,根据给定的显著性水平(一般为0.05或0.01),确定临界值。
如果卡方值大于临界值,则拒绝零假设,认为两个变量之间存在关联性。
如果卡方值小于等于临界值,则无法拒绝零假设,认为两个变量之间不存在关联性。
6.进行推论。
如果拒绝零假设,可以推断两个变量之间存在关联性。
反之,如果无法拒绝零假设,不能推断两个变量之间存在关联性。
需要注意的是,卡方检验对样本容量有一定要求,通常要求每个格子的期望频数不低于5、如果期望频数低于5,需要采取合适的修正方法或使用其他适用于小样本的检验方法。
精选卫生统计学卡方检验资料
![精选卫生统计学卡方检验资料](https://img.taocdn.com/s3/m/54210d52b84ae45c3b358c71.png)
21.88
合计 230
1070
1300
17.69
2
( A T )2
T
A: actual value 实际数
T: theoretical value 理论数
Dec 1,2009
如何求各个格子的理论数T?
• H0: 1=2= • 理论数T为假设的总合计率已知的条件下,
所估计的理论频数,在目前的情况下,将 样本现有的合计患病率作为总合计率的最 佳估计,即17.69%
Dec 1,2009
H0:=0 H1:>0
单侧=0.05
本例n=500,X=95,p=0.19,0=0.097,
得:
u
0.19 0.097
7.026
0.097(1 0.097) / 500
因单u0.05=1.64, u>u0.05, p<0.05,按=0.05水准, 拒绝H0,接受H1
=0.05
2 (A T)2
T
(90 116.77)2 (570 543.23)2 (140 113.23)2 (500 526.77)2 15.15
116.77
543.23
113.23
526.77
查附表12可知,ν=1时,02.05,1
3.84,
2 0.005,1
Dec 1,2009
2、实际频数与理论频数的差值服从
2分布:
计算2值的基本公式:
2
( A T )2
T
=(R-1)(C-1)
3、查表,判断结果,下结论。
Dec 1,2009
分组
两周患病
有
无
合计 患病率(%)
[医学]卫统 卡方检验
![[医学]卫统 卡方检验](https://img.taocdn.com/s3/m/b2f3f625e87101f69e3195dd.png)
3、确定P值,并做出结论
查卡方表,
2 0.05
3.84 ,
2
2
0.05
, 故P 0.05
按照 0.05水准,不拒绝 H0,两样本率的差别 无统计学意义,尚不能 认为两组工人的骨质增 生 总体发生率不等。
卡方检验的使用范围
两组及多组率的检验 两组及多组构成比分布的检验 独立性检验 拟合优度检验
45 25 35.5
综合以上思路,列联表期望频数的统一 计算公式为:
Tij
ri c j n
如果H0成立,A与T不应相差太大,x2值不应很大;
如果H0不成立,由H0为真的条件下所计算的理论频数 与样本的实际频数的差别会很大,大多数情况下的 检验统计量x2会较大或很大。 2 ( A T ) 2 理论上可以证明,若H0成立, T 服从x2分布。
表:两组工人的骨质增生发生率比较
组别 发生 井下工人 井上工人 18(14.2)a 9(12.8)c 骨质增生 未发生 22(25.8)b 27(23.2)d 40(a+b) 36(c+d) 45 25 合计 发生率
合计
27(a+c)
49(b+d)
76(n)
35.5
具体步骤
1. 建立假设
H 0 : 两组工人的骨质增生总 体发生率相等,即 1 2 H1 : 两组工人的骨质增生总 体发生率不等,即 1 2
χ2 分布(chi-square distribution)
0.5 0.4 0.3
f ( ) 2( / 2) 2
2
1
2
( / 21)
e
2 / 2
卫生统计学---卡方检验
![卫生统计学---卡方检验](https://img.taocdn.com/s3/m/07578b97168884868662d638.png)
例 某市重污染区、一般污染区和农村的出生婴儿的致畸情况如下 表,问三个地区的出生婴儿的致畸率有无差别?
表 某市三个地区出生婴儿的致畸率比较
① 建立假设 H0:π1=π2=π3 H1:π1,π2,π3之间不等或不全等。
② 确定检验水准
α=0.05
③ 计算统计量
值
2
2 n(
A2 1) nR nC
⑤ 下结论
因为P<0.05,按α=0.05的水准,拒绝H0,接受H1, 差异有统计学意义。即可认为两药治疗消化 道溃
疡的愈合率有差别,其中奥美拉唑的愈合率比雷
尼替丁愈合率高。
ห้องสมุดไป่ตู้二) 四格表的专用公式
2
(ad - bc)2 n
(a b)(c d)(a c)(b d)
a、b、c、d 分别为四格表中的四个实际频数,n为总
例3 某研究者欲比较A、B、C 三种方案治疗轻、中度高血压的疗 效,将年龄在50~70岁的240例轻、中度高血压患者随机等分为3组, 分别采用三种方案治疗。一个疗程后观察疗效,结果见表11.4。问 三种方案治疗轻、中度高血压的有效率有无差别?
表3 三种方案治疗轻、中度高血压的效果
① 建立假设
H0:π1=π2=π3 H1: 三种方案治疗轻、中度高血压的有效率不等或
(二) 两个或多个构成比的比较
例4 为了解新型农村合作医疗对于农村贫困居民住院服务利用的 影响,在经济条件相似的甲、乙两个国家级贫困县(其中甲县2006 年已开展新型农村合作医疗,乙县2006年尚未开展)分别进行抽样 调查,得到2006年应住院者未住院原因,见表11.5。问甲、乙两县 应住院者未住院原因构成比是否不同?
论频数之差相差很大,则 值相应也会很大,相应的P值也就2 越小,